1
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
2
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Kumar M, Joshi M, Jiang G, Yamada R, Honda R, Srivastava V, Mahlknecht J, Barcelo D, Chidambram S, Khursheed A, Graham DW, Goswami R, Kuroda K, Tiwari A, Joshi C. Response of wastewater-based epidemiology predictor for the second wave of COVID-19 in Ahmedabad, India: A long-term data Perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122471. [PMID: 37652227 DOI: 10.1016/j.envpol.2023.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In this work, we present an eight-month longitudinal study of wastewater-based epidemiology (WBE) in Ahmedabad, India, where wastewater surveillance was introduced in September 2020 after the successful containment of the first wave of COVID-19 to predict the resurge of the infection during the second wave of the pandemic. The study aims to elucidate the weekly resolution of the SARS-CoV-2 RNA data for eight months in wastewater samples to predict the COVID-19 situation and identify hotspots in Ahmedabad. A total of 287 samples were analyzed for SARS-CoV-2 RNA using RT-PCR, and Spearman's rank correlation was applied to depict the early warning potential of WBE. During September 2020 to April 2021, the increasing number of positive wastewater influent samples correlated with the growing number of confirmed clinical cases. It also showed clear evidence of early detection of the second wave of COVID-19 in Ahmedabad (March 2021). 258 out of a total 287 samples were detected positive with at least two out of three SARS-CoV-2 genes (N, ORF- 1 ab, and S). Monthly variation represented a significant decline in all three gene copies in October compared to September 2020, followed by an abrupt increase in November 2020. A similar increment in the gene copies was observed in March and April 2021, which would be an indicator of the second wave of COVID-19. A lead time of 1-2 weeks was observed in the change of gene concentrations compared with clinically confirmed cases. Measured wastewater ORF- 1 ab gene copies ranged from 6.1 x 102 (October 2020) to 1.4 x 104 (November 2020) copies/mL, and wastewater gene levels typically lead to confirmed cases by one to two weeks. The study highlights the value of WBE as a monitoring tool to predict waves within a pandemic, identify local disease hotspots within a city, and guide rapid management interventions.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Australia
| | - Rintaro Yamada
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan; Yachiyo Engineering Co., Ltd. Tokyo, 111-8648, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Vaibhav Srivastava
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Damia Barcelo
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnol'ogic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| | | | - Anwar Khursheed
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - David W Graham
- Department of Civil and Environmental Engineering, Newcastle University, Newcastle, UK
| | - Ritusmita Goswami
- Centre for Ecology, Environment and Sustainable Development, Tata Institute of Social Sciences, Guwahati, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, 939-0398, Japan
| | - Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| |
Collapse
|
4
|
Alahdal HM, Ameen F, AlYahya S, Sonbol H, Khan A, Alsofayan Y, Alahmari A. Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25050-25057. [PMID: 34138435 PMCID: PMC8210523 DOI: 10.1007/s11356-021-14809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.
Collapse
Affiliation(s)
- Hadil M Alahdal
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Anas Khan
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Yousef Alsofayan
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Ahmed Alahmari
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Soto I, Zamorano-Illanes R, Becerra R, Palacios Játiva P, Azurdia-Meza CA, Alavia W, García V, Ijaz M, Zabala-Blanco D. A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:1533. [PMID: 36772574 DOI: 10.3390/s23031533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.
Collapse
Affiliation(s)
- Ismael Soto
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Raul Zamorano-Illanes
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Raimundo Becerra
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
| | - Pablo Palacios Játiva
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
- Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago 8370190, Chile
| | - Cesar A Azurdia-Meza
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
| | - Wilson Alavia
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Verónica García
- Departamento en Ciencia y Tecnología de los Alimentos, de la Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Muhammad Ijaz
- Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Zabala-Blanco
- Department of Computer Science and Industry, Universidad Católica del Maule, Talca 3480112, Chile
| |
Collapse
|
6
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Kevill JL, Lambert-Slosarska K, Pellett C, Woodhall N, Richardson-O'Neill I, Pântea I, Alex-Sanders N, Farkas K, Jones DL. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156580. [PMID: 35690190 PMCID: PMC9181630 DOI: 10.1016/j.scitotenv.2022.156580] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - India Richardson-O'Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
9
|
Jia X, Shahzad K, Klemeš JJ, Jia X. Changes in water use and wastewater generation influenced by the COVID-19 pandemic: A case study of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115024. [PMID: 35447447 PMCID: PMC8986492 DOI: 10.1016/j.jenvman.2022.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 05/12/2023]
Abstract
This paper examines and projects the water use and wastewater generation during and after the SARS-CoV-2 (COVID-19) in China, and discussed the water use/wastewater generation pattern changes among different sectors. Existing studies on the impact of pandemic spread-prevention measures on water consumption and wastewater treatment during the pandemic are reviewed. The water use and wastewater discharge in China through the COVID-19 period are then projected and analyzed using Multivariate Linear Regression. The projection is carried out for years 2019-2023 and covers an (estimated) full process of pre-pandemic, pandemic outbreak, and recovery phase and provides essential information for determining the complete phase impact of the COVID-19. Two scenarios, i.e. the recovery scenario and the business as usual scenario, are set to investigate the water use and wastewater generation characteristics after the pandemic. The results imply that in both scenarios, the water use in China shows a V-shaped trend from 2019 to 2023 and reached a low point in 2020 of 5,813✕108 m3. The wastewater discharge shows an increasing trend throughout the COVID period in both scenarios. The results are also compared with the water consumption and wastewater generation during the SARS-CoV-1 period. The implication for policymakers is the possible increase of water use and wastewater discharge in the post COVID period and the necessity to ensure the water supply and control of water pollution and wastewater discharge.
Collapse
Affiliation(s)
- Xuexiu Jia
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Xiaoping Jia
- Qingdao University of Science and Technology, 99 Songling Rd, Laoshan District, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Proverbio D, Kemp F, Magni S, Ogorzaly L, Cauchie HM, Gonçalves J, Skupin A, Aalto A. Model-based assessment of COVID-19 epidemic dynamics by wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154235. [PMID: 35245552 PMCID: PMC8886713 DOI: 10.1016/j.scitotenv.2022.154235] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 04/14/2023]
Abstract
Continuous surveillance of COVID-19 diffusion remains crucial to control its diffusion and to anticipate infection waves. Detecting viral RNA load in wastewater samples has been suggested as an effective approach for epidemic monitoring and the development of an effective warning system. However, its quantitative link to the epidemic status and the stages of outbreak is still elusive. Modelling is thus crucial to address these challenges. In this study, we present a novel mechanistic model-based approach to reconstruct the complete epidemic dynamics from SARS-CoV-2 viral load in wastewater. Our approach integrates noisy wastewater data and daily case numbers into a dynamical epidemiological model. As demonstrated for various regions and sampling protocols, it quantifies the case numbers, provides epidemic indicators and accurately infers future epidemic trends. Following its quantitative analysis, we also provide recommendations for wastewater data standards and for their use as warning indicators against new infection waves. In situations of reduced testing capacity, our modelling approach can enhance the surveillance of wastewater for early epidemic prediction and robust and cost-effective real-time monitoring of local COVID-19 dynamics.
Collapse
Affiliation(s)
- Daniele Proverbio
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg
| | - Françoise Kemp
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg
| | - Stefano Magni
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux 4422, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux 4422, Luxembourg
| | - Jorge Gonçalves
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg; University of Cambridge, Department of Plant Sciences, Downing St, Cambridge CB2 3EA, UK
| | - Alexander Skupin
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg; University of Luxembourg, Department of Physics and Materials Science, 162a av. de la Faïencerie, Luxembourg 1511, Luxembourg; University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Atte Aalto
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 av. du Swing, Belvaux 4376, Luxembourg.
| |
Collapse
|
11
|
Kapoor V, Al-Duroobi H, Phan DC, Palekar RS, Blount B, Rambhia KJ. Wastewater surveillance for SARS-CoV-2 to support return to campus: Methodological considerations and data interpretation. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100362. [PMID: 35402756 PMCID: PMC8975751 DOI: 10.1016/j.coesh.2022.100362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The COVID-19 pandemic has been challenging for various institutions such as school systems due to widespread closures. As schools re-open their campuses to in-person education, there is a need for frequent screening and monitoring of the virus to ensure the safety of students and staff and to limit risk to the surrounding community. Wastewater surveillance (WWS) of SARS-CoV-2 is a rapid and economical approach to determine the extent of COVID-19 in the community. The focus of this review is on the emergence of WWS as a tool for safe return to school campuses, taking into account methodological considerations such as site selection, sample collection and processing, SARS-CoV-2 quantification, and data interpretation. Recently published studies on the implementation of COVID-19 WWS on school and college campuses were reviewed. While there are several logistical and technical challenges, WWS can be used to inform decision-making at the school campus and/or building level.
Collapse
Affiliation(s)
- Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Haya Al-Duroobi
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Duc C Phan
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
12
|
Augusto MR, Claro ICM, Siqueira AK, Sousa GS, Caldereiro CR, Duran AFA, de Miranda TB, Bomediano Camillo LDM, Cabral AD, de Freitas Bueno R. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107478. [PMID: 35251931 PMCID: PMC8882035 DOI: 10.1016/j.jece.2022.107478] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 05/06/2023]
Abstract
The shedding of SARS-CoV-2 RNA titers by infected individuals, even asymptomatic and oligosymptomatic ones, allows the use of wastewater monitoring to track the COVID-19 spread in a community. This approach is interesting especially for emerging countries with limited clinical testing capabilities. However, there are still important methodological aspects that need validation so that wastewater monitoring data become more representative and useful for public health. This study evaluated the between-day and within-day variability of SARS-CoV-2 RNA concentrations in 24-hour composite and grab samples from three different sampling points, including two wastewater treatment plants (WTTP) and a sewer manhole. In the between-day evaluation (17 weeks of monitoring), a good agreement between the SARS-CoV-2 RNA concentration of each sampling method was observed. There were no significant differences between the mean concentrations of the grab and composite samples (p-value > 0.05), considering N1 and N2 gene assays. The strong relationship between composite and grab samples was proven by correlation coefficients: Pearson's r of 0.83 and Spearman's rho of 0.78 (p-value < 0.05). In within-day evaluation, 24-hour cycles were analyzed and low variability in hourly viral concentrations was observed for three sampling points. The coefficient of variation (CV) values ranged from 3.0% to 11.5%. Overall, 24-hour profiles showed that viral RNA concentrations had less variability and greater agreement with the mean values between 8 a.m. and 10 a.m, the recommended time for grab sampling. Therefore, this study provides important information on wastewater sampling techniques for COVID-19 surveillance. Wastewater monitoring information will only be useful to public health and decision-makers if we ensure data quality through best practices.
Collapse
Affiliation(s)
- Matheus Ribeiro Augusto
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Kaori Siqueira
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Guilherme Santos Sousa
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Cláudio Roberto Caldereiro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Taís Browne de Miranda
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Lívia de Moraes Bomediano Camillo
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Diniz Cabral
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
- Federal University of Uberlândia (UFU), Faculty of Veterinary Medicine, Uberlândia, Minas Gerais 38402-018, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| |
Collapse
|
13
|
Gudra D, Dejus S, Bartkevics V, Roga A, Kalnina I, Strods M, Rayan A, Kokina K, Zajakina A, Dumpis U, Ikkere LE, Arhipova I, Berzins G, Erglis A, Binde J, Ansonska E, Berzins A, Juhna T, Fridmanis D. Detection of SARS-CoV-2 RNA in wastewater and importance of population size assessment in smaller cities: An exploratory case study from two municipalities in Latvia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153775. [PMID: 35151738 PMCID: PMC8830921 DOI: 10.1016/j.scitotenv.2022.153775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) has regained global importance during the COVID-19 pandemic. The mobility of people and other factors, such as precipitation and irregular inflow of industrial wastewater, are complicating the estimation of the disease prevalence through WBE, which is crucial for proper crisis management. These estimations are particularly challenging in urban areas with moderate or low numbers of inhabitants in situations where movement restrictions are not adopted (as in the case of Latvia) because residents of smaller municipalities tend to be more mobile and less strict in following the rules and measures of disease containment. Thus, population movement can influence the outcome of WBE measurements significantly and may not reflect the actual epidemiological situation in the respective area. Here, we demonstrate that by combining the data of detected SARS-CoV-2 RNA copy number, 5-hydroxyindoleacetic acid (5-HIAA) analyses in wastewater and mobile call detail records it was possible to provide an accurate assessment of the COVID-19 epidemiological situation in towns that are small (COVID-19 28-day cumulative incidence r = 0.609 and 35-day cumulative incidence r = 0.89, p < 0.05) and medium-sized towns (COVID-19 21-day cumulative incidence r = 0.997, 28-day cumulative incidence r = 0.98 and 35-day cumulative incidence r = 0.997, p < 0.05). This is the first study demonstrating WBE for monitoring COVID-19 outbreaks in Latvia. We demonstrate that the application of population size estimation measurements such as total 5-HIAA and call detail record data improve the accuracy of the WBE approach.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Sandis Dejus
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia.
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Martins Strods
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Anton Rayan
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Kristina Kokina
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Uga Dumpis
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Laura Elina Ikkere
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia
| | - Irina Arhipova
- Latvia University of Life Sciences and Technologies, Liela iela 2, Jelgava LV-3001, Latvia
| | - Gundars Berzins
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Aldis Erglis
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Juris Binde
- LLC "Latvian Mobile Telephone", Ropazu iela 6, Riga LV-1039, Latvia
| | - Evija Ansonska
- University of Latvia, Aspazijas bulvaris 5, Riga LV-1050, Latvia
| | - Aivars Berzins
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, Riga LV-1067, Latvia
| | - Talis Juhna
- Riga Technical University, Laboratory of Water Research and Environmental Biotechnology, Kipsalas iela 6a/6b, Riga LV-1048, Latvia.
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia.
| |
Collapse
|
14
|
Arora S, Nag A, Kalra A, Sinha V, Meena E, Saxena S, Sutaria D, Kaur M, Pamnani T, Sharma K, Saxena S, Shrivastava SK, Gupta AB, Li X, Jiang G. Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems-a case study of Jaipur (India). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:342. [PMID: 35389102 PMCID: PMC8987519 DOI: 10.1007/s10661-022-09942-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/12/2022] [Indexed: 05/09/2023]
Abstract
The present study tracked the city-wide dynamics of severe acute respiratory syndrome-corona virus 2 ribonucleic acids (SARS-CoV-2 RNA) in the wastewater from nine different wastewater treatment plants (WWTPs) in Jaipur during the second wave of COVID-19 out-break in India. A total of 164 samples were collected weekly between February 19th and June 8th, 2021. SARS-CoV-2 was detected in 47.2% (52/110) influent samples and 37% (20/54) effluent samples. The increasing percentage of positive influent samples correlated with the city's increasing active clinical cases during the second wave of COVID-19 in Jaipur. Furthermore, wastewater-based epidemiology (WBE) evidence clearly showed early detection of about 20 days (9/9 samples reported positive on April 20th, 2021) before the maximum cases and maximum deaths reported in the city on May 8th, 2021. The present study further observed the presence of SARS-CoV-2 RNA in treated effluents at the time window of maximum active cases in the city even after tertiary disinfection treatments of ultraviolet (UV) and chlorine (Cl2) disinfection. The average genome concentration in the effluents and removal efficacy of six commonly used treatments, activated sludge process + chlorine disinfection (ASP + Cl2), moving bed biofilm reactor (MBBR) with ultraviolet radiations disinfection (MBBR + UV), MBBR + chlorine (Cl2), sequencing batch reactor (SBR), and SBR + Cl2, were compared with removal efficacy of SBR + Cl2 (81.2%) > MBBR + UV (68.8%) > SBR (57.1%) > ASP (50%) > MBBR + Cl2 (36.4%). The study observed the trends and prevalence of four genes (E, RdRp, N, and ORF1ab gene) based on two different kits and found that prevalence of N > ORF1ab > RdRp > E gene suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. Hence, it is imperative to say that using a combination of different detection genes (E, N, RdRp, & ORF1ab genes) increases the sensitivity in WBE.
Collapse
Affiliation(s)
- Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India.
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Samvida Saxena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Devanshi Sutaria
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Manpreet Kaur
- Centre for Innovation, Research & Development (CIRD), Dr. B, Lal Clinical Laboratory Pvt. Ltd, Jaipur, India
| | - Tamanna Pamnani
- Centre for Innovation, Research & Development (CIRD), Dr. B, Lal Clinical Laboratory Pvt. Ltd, Jaipur, India
| | - Komal Sharma
- Centre for Innovation, Research & Development (CIRD), Dr. B, Lal Clinical Laboratory Pvt. Ltd, Jaipur, India
| | - Sonika Saxena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development (CIRD), Dr. B, Lal Clinical Laboratory Pvt. Ltd, Jaipur, India
| | - A B Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| |
Collapse
|
15
|
Garnett E, Balayannis A, Hinchliffe S, Davies T, Gladding T, Nicholson P. The work of waste during COVID-19: logics of public, environmental, and occupational health. CRITICAL PUBLIC HEALTH 2022. [DOI: 10.1080/09581596.2022.2048632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Emma Garnett
- Population Health Sciences, King’s College London, London, UK
| | | | | | - Thom Davies
- Department of Geography, University of Nottingham, Nottingham, UK
| | - Toni Gladding
- School of Engineering and Innovation, The Open University, Milton Keynes, UK
| | | |
Collapse
|
16
|
Habtewold J, McCarthy D, McBean E, Law I, Goodridge L, Habash M, Murphy HM. Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 204:112058. [PMID: 34516976 PMCID: PMC8433097 DOI: 10.1016/j.envres.2021.112058] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 05/22/2023]
Abstract
In search of practical and affordable tools for wastewater-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three independent field experiments were conducted using three passive sampler sorbents (electronegative membrane, cotton bud, and gauze) in Guelph, Ontario, Canada. Total daily cases during this study ranged from 2 to 17/100,000 people and 43/54 traditionally collected wastewater samples were positive for SARS-CoV-2 with mean detectable concentrations ranging from 8.4 to 1780 copies/ml. Viral levels on the passive samplers were assessed after 4, 8, 24, 48, 72, and 96 hrs of deployment in the wastewater and 43/54 membrane, 42/54 gauze, and 27/54 cotton bud samples were positive. A linear accumulation rate of SARS-CoV-2 on the membranes was observed up to 48 hours, suggesting the passive sampler could adequately reflect wastewater levels for up to two days of deployment. Due the variability in accumulation observed for the cotton buds and gauzes, and the pre-processing steps required for the gauzes, we recommend membrane filters as a simple cost-effective option for wastewater-based surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Jemaneh Habtewold
- Water, Health and Applied Microbiology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON, N1G 2W1, Canada
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia
| | - Edward McBean
- School of Engineering, University of Guelph, ON, N1G 2W1, Canada
| | - Ilya Law
- Water, Health and Applied Microbiology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON, N1G 2W1, Canada
| | - Larry Goodridge
- Department of Food Science, University of Guelph, ON, N1G 2W1, Canada
| | - Marc Habash
- School of Environmental Sciences, University of Guelph, ON, N1G 2W1, Canada
| | - Heather M Murphy
- Water, Health and Applied Microbiology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
17
|
Anand U, Li X, Sunita K, Lokhandwala S, Gautam P, Suresh S, Sarma H, Vellingiri B, Dey A, Bontempi E, Jiang G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. ENVIRONMENTAL RESEARCH 2022; 203:111839. [PMID: 34358502 PMCID: PMC8332740 DOI: 10.1016/j.envres.2021.111839] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 05/18/2023]
Abstract
This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Snehal Lokhandwala
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - Pratibha Gautam
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Dhodar Ali, Titabar, 785630, Assam, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641-046, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
18
|
Kumar M, Joshi M, Shah AV, Srivastava V, Dave S. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148367. [PMID: 34465041 PMCID: PMC8186940 DOI: 10.1016/j.scitotenv.2021.148367] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Following the proven concept, capabilities, and limitations of detecting the RNA of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) in wastewater, it is pertinent to understand the utility of wastewater surveillance data on various scale. In the present work, we put forward the first wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness. A three-month data of Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) was generated for the world heritage city of Ahmedabad, Gujarat, India. In this expedition, 116 wastewater samples were analyzed to detect SARS-CoV-2 RNA, from September 3rd to November 26th, 2020. A total of 111 samples were detected with at least two out of three SARS-CoV-2 genes (N, ORF 1ab, and S). Monthly variation depicted a significant decline in all three gene copies in October compared to September 2020, followed by a sharp increment in November 2020. Correspondingly, the descending order of average effective gene concentration was: November (~10,729 copies/L) > September (~3047 copies/L) > October (~454 copies/L). Monthly variation of SARS-CoV-2 RNA in the wastewater samples may be ascribed to a decline of 20.48% in the total number of active cases in October 2020 and a rise of 1.82% in November 2020. Also, the monthly recovered new cases were found to be 16.61, 20.03, and 15.58% in September, October, and November 2020, respectively. The percentage change in the gene concentration was observed in the lead of 1-2 weeks with respect to the percentage change in the provisional figures of confirmed cases. SWEEP data-based city zonation was matched with the heat map of the overall COVID-19 infected population in Ahmedabad city, and month-wise effective gene concentration variations are shown on the map. The results expound on the potential of WBE surveillance of COVID-19 as a city zonation tool that can be meaningfully interpreted, predicted, and propagated for community preparedness through advanced identification of COVID-19 hotspots within a given city.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector-11, Gandhinagar, Gujarat 382 011, India
| | - Anil V Shah
- Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar, Gujarat 382010, India
| | - Vaibhav Srivastava
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Shyamnarayan Dave
- United Nations Children's Fund, Gujarat State Office, Gandhinagar, Sector 20, Gandhinagar, Gujarat 382021, India
| |
Collapse
|
19
|
Impacts of COVID-19 on the Aquatic Environment and Implications on Aquatic Food Production. SUSTAINABILITY 2021. [DOI: 10.3390/su132011281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in ecological changes of aquatic ecosystems, affected the aquatic food supply chain, and disrupted the socio-economy of global populations. Due to reduced human activities during the pandemic, the aquatic environment was reported to improve its water quality, wild fishery stocks, and biodiversity. However, the sudden surge of plastics and biomedical wastes during the COVID-19 pandemic masked the positive impacts and increased the risks of aquatic pollution, especially microplastics, pharmaceuticals, and disinfectants. The transmission of SARS-CoV-2 from wastewater treatment plants to natural water bodies could have serious impacts on the environment and human health, especially in developing countries with poor waste treatment facilities. The presence and persistence of SARS-CoV-2 in human excreta, wastewaters, and sludge and its transmission to aquatic ecosystems could have negative impacts on fisheries and aquaculture industries, which have direct implications on food safety and security. COVID-19 pandemic-related environmental pollution showed a high risk to aquatic food security and human health. This paper reviews the impacts of COVID-19, both positive and negative, and assesses the causes and consequences of anthropogenic activities that can be managed through effective regulation and management of eco-resources for the revival of biodiversity, ecosystem health, and sustainable aquatic food production.
Collapse
|
20
|
Núñez-Delgado A, Bontempi E, Coccia M, Kumar M, Farkas K, Domingo JL. SARS-CoV-2 and other pathogenic microorganisms in the environment. ENVIRONMENTAL RESEARCH 2021; 201:111606. [PMID: 34181924 PMCID: PMC8459334 DOI: 10.1016/j.envres.2021.111606] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The title of the Virtual Special Issue (VSI) "SARS-CoV-2 and other pathogenic microorganisms in the environment", clearly indicates a main focus not only on the virus causing the current pandemic, but also on other pathogenic microorganisms and their spatial and temporal dynamics in environmental compartments. Overall, the VSI has received more than 100 submissions relating to most of the possible fields connected to the pandemic, many of them of high scientific value. A rigorous peer-reviewing process has been carried out, with a panel of experts making a great work to evaluate that important number of submissions. As a result, those manuscripts reaching the highest scientific standards were selected for publication. We think that the papers included constitute a set of high-quality contributions, which should help to improve the overall scientific perspective regarding this crucial issue. In this piece, the Editors comment some issues on the papers accepted for publication, and include additional reflections.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002, Lugo, Spain.
| | - Elza Bontempi
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Mario Coccia
- National Research Council of Italy, Research Institute on Sustainable Economic Growth, Roma, Italy
| | - Manish Kumar
- Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382 355, India
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, Gwynedd, UK
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|