1
|
Ovaska M, Tamminen M, Lahdenperä M, Vahtera J, Rautava S, Gonzales-Inca C, Heiskanen MA, Lagström H. The role of early life factors and green living environment in the development of gut microbiota in infancy: Population-based cohort study. ENVIRONMENT INTERNATIONAL 2024; 193:109093. [PMID: 39490300 DOI: 10.1016/j.envint.2024.109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Early life microbial exposure influences the composition of gut microbiota. We investigated how early life factors, and the green living environment around infants' homes, influence the development of gut microbiota during infancy by utilizing data from the Steps to Healthy Development follow-up study (the STEPS study). METHODS The gut microbiota was analyzed at early (∼3 months, n = 959), and late infancy (∼13 months, n = 984) using 16S rRNA amplicon sequencing, and combined with residential green environment, measured as (1) Normalized Difference Vegetation Index, (2) Vegetation Cover Diversity, and (3) Naturalness Index within a 750 m radius. We compared gut microbiota diversity and composition between early and late infancy, identified significant individual and family level early life factors influencing gut microbiota, and determined the role of the residential green environment measures on gut microbiota development. RESULTS Alpha diversity (t-test, p < 0.001) and beta diversity (PERMANOVA, R2 = 0.095, p < 0.001) differed between early and late infancy. Birth mode was the strongest contributor to the gut microbiota community composition in early infancy (PERMANOVA, R2 = 0.005, p < 0.01) and the presence of siblings in late infancy (PERMANOVA, R2 = 0.007, p < 0.01). Residential green environment showed no association with community composition, whereas time spend outdoors did (PERMANOVA, R2 = 0.002, p < 0.05). Measures of greenness displayed a statistically significant association with alpha diversity during early infancy, not during late infancy (glm, p < 0.05). In adjusted analysis, the associations remained only with the Naturalness Index, where higher human impact on living environment was associated with decreased species richness (glm, Observed richness, p < 0.05). CONCLUSIONS The role of the residential green environment to the infant gut microbiota is especially important in early infancy, however, other early life factors, such as birth mode and presence of sibling, had a more significant effect on the overall community composition.
Collapse
Affiliation(s)
- Minka Ovaska
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | | | - Jussi Vahtera
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Samuli Rautava
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics, University of Helsinki and New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Marja A Heiskanen
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Hanna Lagström
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Nutrition and Food Research Center, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Chen Y, Liang Z, Li G, An T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. ENVIRONMENT INTERNATIONAL 2024; 190:108857. [PMID: 38954924 DOI: 10.1016/j.envint.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 μm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 μm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.
Collapse
Affiliation(s)
- Yuying Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
De Ruyter T, Martens DS, Bijnens EM, De Henauw S, Nawrot TS, Michels N. Exploring the impact of lifestyle and environmental exposures on appetite hormone levels in children and adolescents: An observational study. ENVIRONMENTAL RESEARCH 2024; 252:118846. [PMID: 38582428 DOI: 10.1016/j.envres.2024.118846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Appetite hormones are considered a promising target in fighting obesity as impaired appetite hormone levels have already been associated with obesity. However, further insights in the drivers of appetite hormone levels are needed. OBJECTIVES In this study, we investigated the associations of fasting appetite hormone levels with lifestyle and environmental exposures in children and adolescents. METHODS A total of 534 fasting blood samples were collected from children and adolescents (4-16y,50% boys) and appetite hormone levels (glucagon-like peptide-1 (GLP-1), peptide YY (PYY), pancreatic polypeptide (PP), leptin and ghrelin) were measured. Exposures included dietary quality (fiber-rich food intake, sugar propensity, fat propensity), psychosocial stress (happiness, negative emotions, negative life events and emotional problems), sleep duration, physical activity and environmental quality (long term black carbon (BC), particulate matter <2.5 μM (PM2.5), nitrogen dioxide (NO2) exposure, and green space in a 100 m and 2000 m radius around the residence). A multi-exposure score was calculated to combine all the exposures at study in one measure. Associations of individual exposures and multi-exposure score with appetite hormone levels were evaluated using linear mixed regression models adjusting for sex, age, socioeconomic status, waist-to-height ratio and multiple testing. RESULTS GLP-1 was associated with air pollution exposure (NO2 β* = -0.13, BC β* = -0.15, PM2.5 β* = -0.16, all p < 0.001). Leptin was associated with green space in a 100 m radius around the residence (β* = -0.11; p = 0.002). Ghrelin was associated with negative emotions (active ghrelin β* = -0.16; p = 0.04, total ghrelin β* = -0.23; p = 0.0051) and happiness (active ghrelin β* = 0.25; p < 0.001, total ghrelin β* = 0.26; p < 0.001). Furthermore, total ghrelin levels were associated with the multi-exposure score, reflecting unhealthy exposures and lifestyle (β* = -0.22; p = 0.036). DISCUSSION Our findings provide new insights into the associations of exposures with appetite hormone levels, which are of high interest for preventive obesity research. Further research is crucial to reveal the underlying mechanisms of the observed associations.
Collapse
Affiliation(s)
- Thaïs De Ruyter
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Faculty of Science, Open University, Heerlen, the Netherlands
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven, Leuven, Belgium
| | - Nathalie Michels
- Department of Developmental, Personality and Social Psychology, Ghent University, Belgium
| |
Collapse
|
4
|
Shah BUD, Raj R, Kaur P, Karim A, Bansari RB, Mehmoodi A, Malik J. Association of transportation noise with cardiovascular diseases. Clin Cardiol 2024; 47:e24275. [PMID: 38708862 PMCID: PMC11071170 DOI: 10.1002/clc.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
This comprehensive article delves into the intricate and multifaceted issue of noise pollution, shedding light on its diverse sources, profound health implications, and the economic burden it imposes on societies. Noise pollution is an increasingly prevalent environmental challenge, impacting millions of people worldwide, often without their full awareness of its adverse effects. Drawing from a wealth of scientific research, the article underscores the well-established links between noise pollution and a spectrum of health issues, including cardiovascular diseases, sleep disturbances, and psychological stress. While exploring the sources and consequences of noise pollution, the article highlights the urgent need for a holistic and collaborative approach to mitigate its impact. This entails a combination of regulatory measures, technological innovations, urban planning strategies, and public education campaigns. It is increasingly evident that the detrimental effects of noise pollution extend beyond physical health, encompassing mental and social well-being. The article also addresses the synergistic relationship between noise pollution and other environmental stressors, emphasizing the importance of considering noise in conjunction with factors like air pollution and access to green spaces. It examines the potential of green spaces to mitigate the effects of noise pollution and enhance overall health.
Collapse
Affiliation(s)
- Badar ud Din Shah
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rohan Raj
- Department of MedicineNalanda Medical College and HospitalPatnaIndia
| | - Parvinder Kaur
- Department of MedicineCrimean State Medical UniversitySimferopolUkraine
| | - Ali Karim
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Raveena Bai Bansari
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
5
|
Luque-García L, Muxika-Legorburu J, Mendia-Berasategui O, Lertxundi A, García-Baquero G, Ibarluzea J. Green and blue space exposure and non-communicable disease related hospitalizations: A systematic review. ENVIRONMENTAL RESEARCH 2024; 245:118059. [PMID: 38157973 DOI: 10.1016/j.envres.2023.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global increase in non-communicable diseases (NCDs) presents a critical public health concern. Emerging evidence suggests that exposure to natural environments may reduce the risk of developing NCDs through multiple pathways. The present systematic review aims to synthesize and evaluate the observational evidence regarding associations between exposure to green and blue spaces and hospital admissions related to NCDs. A comprehensive literature search strategy was conducted in Embase (Ovid), PubMed, and Web of Science. The risk of bias and quality of the evidence were assessed using The Navigation Guide methodology, an approach specifically designed for environmental health research. Of 3060 search results, 17 articles were included. Notably, the majority of the studies (n = 14; 82.4%) were published from 2020 onwards. Most studies were conducted in the United States (n = 6; 35.3%) and China (n = 4; 23.5%). Exposure to green spaces was assessed through all studies, while only three included blue spaces. In terms of study design, cohort design was employed in nearly half of the studies (n = 8; 47.1%), followed by case-crossover design (n = 3, 17.6%). Over 75% of the included studies (n = 13) had a high or probably high rating in the risk of bias assessment. The studies encompassed diverse NCD outcome domains; cardiovascular diseases (CVDs) (n = 10), respiratory diseases (RSDs) (n = 2), heat-related diseases (n = 1), metabolic diseases (n = 2), cancer (n = 1), neurodegenerative diseases (NDDs) (n = 2), and mental health disorders (n = 2). The present review suggests that a clear link between blue space exposure and NCD hospital admissions is not evident. However, exposure to green spaces appears to predominantly have a protective effect, although the direction of the association varies across different outcome domains. The heterogeneity among the outcome domains together with the limited number of studies, emphasizes the need for more robust evidence.
Collapse
Affiliation(s)
- L Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain.
| | - J Muxika-Legorburu
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - O Mendia-Berasategui
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - A Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - G García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto S/n, 37007, Salamanca, Spain
| | - J Ibarluzea
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain
| |
Collapse
|
6
|
Chen X, Wen J, Wu W, Peng Q, Cui X, He L. A review of factors influencing sensitive skin: an emphasis on built environment characteristics. Front Public Health 2023; 11:1269314. [PMID: 38111482 PMCID: PMC10726041 DOI: 10.3389/fpubh.2023.1269314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Sensitive skin (SS) is a condition characterized by hyperreactivity. Impacting around 37 percent of the worldwide population and exerting an influence on the quality of life for affected individuals. Its prevalence rate has increased due to factors such as elevating stress levels and deteriorating environmental conditions. The exposome factors influencing SS have extended from demographic, biological attributes, and lifestyle to external environments. Built environments (BEs) have demonstrated as root drivers for changes in behaviors and environmental exposure which have the potential to trigger SS, but the review of the associations between BEs and SS is currently lacking. Objective This review aims to achieve two primary objectives: (1) Examine exposome factors that exert influence on SS at the individual and environmental levels. (2) Develop a theoretical framework that establishes a connection between BEs and SS, thereby offering valuable insights into the impact of the built environment on this condition. Methods An extensive literature search was carried out across multiple fields, including sociology, epidemiology, basic medicine, clinical medicine, and environmental research, with a focus on SS. To identify pertinent references, renowned databases such as PubMed, Web of Science, and CNKI were utilized. Results SS is the outcome of interactions between individual attributes and environmental factors. These influencing factors can be categorized into five distinct classes: (1) demographic and socioeconomic characteristics including age, gender, and race; (2) physiological and biological attributes such as emotional changes, skin types, sleep disorders, and menstrual cycles in women; (3) behavioral factors, such as spicy diet, cosmetic use, alcohol consumption, and physical exercise; (4) natural environmental features, including climate conditions and air pollution; (5) built environmental features such as population density, green space availability, road network density, and access to public transportation, also have the potential to affect the condition. Conclusion The importance of interdisciplinary integration lies in its ability to ascertain whether and how BEs are impacting SS. By elucidating the role of BEs in conjunction with other factors in the onset of SS, we can provide guidance for future research endeavors and the formulation of interventions aimed at mitigating the prevalence of SS.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wen
- The Centre for Modern Chinese City Studies, East China Normal University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiuzhi Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Skin Health, Kunming, China
| |
Collapse
|
7
|
Münzel T, Treede H, Hahad O, Daiber A. Too Loud to Handle? Transportation Noise and Cardiovascular Disease. Can J Cardiol 2023; 39:1204-1218. [PMID: 36858080 DOI: 10.1016/j.cjca.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The World Health Organization reported that more than 1.6 million healthy life-years are lost yearly from traffic-related noise in western Europe. In addition, the number of studies on health side effects in response to traffic noise is steadily growing, mainly cardiovascular disease, such as acute and chronic ischemic heart disease, heart failure, arrhythmia, and stroke. Pathophysiologically nighttime noise has been shown to cause sleep disturbances, including too short sleep periods and frequent interruption of sleep leading to an increase in the levels of circulating stress hormones and subsequently to a significant increase in the production of reactive oxygen species (oxidative stress) and inflammation in the vasculature and the brain. The consequence is arterial hypertension and vascular (endothelial) dysfunction, which might increase the risk of cardiovascular disease. With the present review, we give an overview of the "so-called" nonauditory cardiovascular health effects of noise, which have been proposed to be responsible for the future development of cardiovascular disease. We present epidemiological evidence but also evidence provided by translational human and experimental noise studies. Finally, we discuss manoeuvres to mitigate noise effectively.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
8
|
Zhang YD, Fan SJ, Zhang Z, Li JX, Liu XX, Hu LX, Knibbs LD, Dadvand P, Jalaludin B, Browning MH, Zhao T, Heinrich J, He Z, Chen CZ, Zhou Y, Dong GH, Yang BY. Association between Residential Greenness and Human Microbiota: Evidence from Multiple Countries. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87010. [PMID: 37585351 PMCID: PMC10431502 DOI: 10.1289/ehp12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Greenness, referring to a measurement of the density of vegetated land (e.g., gardens, parks, grasslands), has been linked with many human health outcomes. However, the evidence on greenness exposure and human microbiota remains limited, inconclusive, drawn from specific regions, and based on only modest sample size. OBJECTIVES We aimed to study the association between greenness exposure and human microbial diversity and composition in a large sample across 34 countries and regions. METHODS We explored associations between residential greenness and human microbial alpha-diversity, composition, and genus abundance using data from 34 countries. Greenness exposure was assessed using the normalized difference vegetation index and the enhanced vegetation index mean values in the month before sampling. We used linear regression models to estimate the association between greenness and microbial alpha-diversity and tested the effect modification of age, sex, climate zone, and pet ownership of participants. Differences in microbial composition were tested by permutational multivariate analysis of variance based on Bray-Curtis distance and differential taxa were detected using the DESeq2 R package between two greenness exposure groups split by median values of greenness. RESULTS We found that higher greenness was significantly associated with greater richness levels in the palm and gut microbiota but decreased evenness in the gut microbiota. Pet ownership and climate zone modified some associations between greenness and alpha-diversity. Palm and gut microbial composition at the genus level also varied by greenness. Higher abundances of the genera Lactobacillus and Bifidobacterium, and lower abundances of the genera Anaerotruncus and Streptococcus, were observed in people with higher greenness levels. DISCUSSION These findings suggest that residential greenness was associated with microbial richness and composition in the human skin and gut samples, collected across different geographic contexts. Future studies may validate the observed associations and determine whether they correspond to improvements in human health. https://doi.org/10.1289/EHP12186.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu-Jun Fan
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zheng Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jia-Xin Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Xin Hu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Luke D. Knibbs
- School of Public Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Kensington, New South Wales, Australia
| | - Matthew H.E.M. Browning
- Department of Park, Recreation, and Tourism Management, Clemson University, Clemson, South Carolina, USA
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Comprehensive Pneumology Center Munich, LMU Munich, Munich, Germany
- German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU Munich, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng-Zhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yuanzhong Zhou
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. The Gut Microbiome and Residential Surrounding Greenness: a Systematic Review of Epidemiological Evidence. Curr Environ Health Rep 2023:10.1007/s40572-023-00398-4. [PMID: 37296363 DOI: 10.1007/s40572-023-00398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW A healthy indigenous intestinal microbiome is essential for human health. Well-established gut microbiome determinants only explain 16% of the inter-individual variation in gut microbiome composition. Recent studies have focused on green space as a potential determinant of the intestinal microbiome. We systematically summarize all evidence concerning the association between green space and intestinal bacterial diversity, evenness, and richness indices, specific bacterial taxa, and potential underlying mechanisms. RECENT FINDINGS Seven epidemiological studies were included in this review. The majority of the included studies (n = 4) reported a positive association between green space and intestinal bacterial diversity, evenness, and richness, while two reported the opposite. There was little overlap between the publications regarding the association between green space and the relative abundance of specific bacterial taxa. Only a decrease in the relative abundance of Bacteroidetes, Bacteroides, and Anaerostipes and an increase in Lachnospiraceae and Ruminococcaceae were reported in multiple studies, predominantly suggesting that green space is positively associated with the intestinal microbiome composition, and subsequently with human health. Lastly, the only examined mechanism was a reduction in perceived psychosocial stress. Mechanisms indicated in blue and white represent tested or hypothesized mechanisms, respectively. The graphical abstract was created with illustrations from BioRender, Noun Project, and Pngtree.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Department of Public Health and Primary Care, Leuven University, Herestraat 49-Box 706, 3000, Louvain, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
10
|
Hou J, Fujiyoshi S, Perera IU, Nishiuchi Y, Nakajima M, Ogura D, Yarimizu K, Maruyama F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J Indian Inst Sci 2023; 103:1-11. [PMID: 37362849 PMCID: PMC10176311 DOI: 10.1007/s41745-023-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s41745-023-00380-x.
Collapse
Affiliation(s)
- Jianjian Hou
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - So Fujiyoshi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Yukiko Nishiuchi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Makiko Nakajima
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193 Japan
| | - Daisuke Ogura
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540 Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| |
Collapse
|
11
|
Lukkarinen M, Kirjavainen PV, Backman K, Gonzales-Inca C, Hickman B, Kallio S, Karlsson H, Karlsson L, Keski-Nisula L, Korhonen LS, Korpela K, Kuitunen M, Kukkonen AK, Käyhkö N, Lagström H, Lukkarinen H, Peltola V, Pentti J, Salonen A, Savilahti E, Tuoresmäki P, Täubel M, Vahtera J, de Vos WM, Pekkanen J, Karvonen AM. Early-life environment and the risk of eczema at 2 years-Meta-analyses of six Finnish birth cohorts. Pediatr Allergy Immunol 2023; 34:e13945. [PMID: 37102387 DOI: 10.1111/pai.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Urban-related nature exposures are suggested to contribute to the rising prevalence of allergic diseases despite little supporting evidence. Our aim was to evaluate the impact of 12 land cover classes and two greenness indices around homes at birth on the development of doctor-diagnosed eczema by the age of 2 years, and the influence of birth season. METHODS Data from 5085 children were obtained from six Finnish birth cohorts. Exposures were provided by the Coordination of Information on the Environment in three predefined grid sizes. Adjusted logistic regression was run in each cohort, and pooled effects across cohorts were estimated using fixed or random effect meta-analyses. RESULTS In meta-analyses, neither greenness indices (NDVI or VCDI, 250 m × 250 m grid size) nor residential or industrial/commercial areas were associated with eczema by age of 2 years. Coniferous forest (adjusted odds ratio 1.19; 95% confidence interval 1.01-1.39 for the middle and 1.16; 0.98-1.28 for the highest vs. lowest tertile) and mixed forest (1.21; 1.02-1.42 middle vs. lowest tertile) were associated with elevated eczema risk. Higher coverage with agricultural areas tended to associate with elevated eczema risk (1.20; 0.98-1.48 vs. none). In contrast, transport infrastructure was inversely associated with eczema (0.77; 0.65-0.91 highest vs. lowest tertile). CONCLUSION Greenness around the home during early childhood does not seem to protect from eczema. In contrast, nearby coniferous and mixed forests may increase eczema risk, as well as being born in spring close to forest or high-green areas.
Collapse
Affiliation(s)
- Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Katri Backman
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland
| | | | - Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Kallio
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Leea Keski-Nisula
- Kuopio Birth Cohort (KuBiCo), University of Eastern Finland, Kuopio, Finland
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland
| | - Laura S Korhonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Kuitunen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Kaarina Kukkonen
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Heikki Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- Department of Public Health, University of Turku, Turku, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkki Savilahti
- FLORA: New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauli Tuoresmäki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku, Turku, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
12
|
Saenen ND, Nawrot TS, Hautekiet P, Wang C, Roels HA, Dadvand P, Plusquin M, Bijnens EM. Residential green space improves cognitive performances in primary schoolchildren independent of traffic-related air pollution exposure. Environ Health 2023; 22:33. [PMID: 36998070 PMCID: PMC10061992 DOI: 10.1186/s12940-023-00982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cognitive performances of schoolchildren have been adversely associated with both recent and chronic exposure to ambient air pollution at the residence. In addition, growing evidence indicates that exposure to green space is associated with a wide range of health benefits. Therefore, we aimed to investigate if surrounding green space at the residence improves cognitive performance of primary schoolchildren while taking into account air pollution exposure. METHODS Cognitive performance tests were administered repeatedly to a total of 307 primary schoolchildren aged 9-12y, living in Flanders, Belgium (2012-2014). These tests covered three cognitive domains: attention (Stroop and Continuous Performance Tests), short-term memory (Digit Span Forward and Backward Tests), and visual information processing speed (Digit-Symbol and Pattern Comparison Tests). Green space exposure was estimated within several radii around their current residence (50 m to 2000 m), using a aerial photo-derived high-resolution (1 m2) land cover map. Furthermore, air pollution exposure to PM2.5 and NO2 during the year before examination was modelled for the child's residence using a spatial-temporal interpolation method. RESULTS An improvement of the children's attention was found with more residential green space exposure independent of traffic-related air pollution. For an interquartile range increment (21%) of green space within 100 m of the residence, a significantly lower mean reaction time was observed independent of NO2 for both the sustained-selective (-9.74 ms, 95% CI: -16.6 to -2.9 ms, p = 0.006) and the selective attention outcomes (-65.90 ms, 95% CI: -117.0 to -14.8 ms, p = 0.01). Moreover, green space exposure within a large radius (2000 m) around the residence was significantly associated with a better performance in short-term memory (Digit-Span Forward Test) and a higher visual information processing speed (Pattern Comparison Test), taking into account traffic-related exposure. However, all associations were attenuated after taking into account long-term residential PM2.5 exposure. CONCLUSIONS Our panel study showed that exposure to residential surrounding green space was associated with better cognitive performances at 9-12 years of age, taking into account traffic-related air pollution exposure. These findings support the necessity to build attractive green spaces in the residential environment to promote healthy cognitive development in children.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Louvain, Belgium
| | - Pauline Hautekiet
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Ciber On Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium.
- Department of Environmental Sciences, Faculty of Science, Open University, Heerlen, The Netherlands.
| |
Collapse
|
13
|
Hu W, Zhang H, Ni R, Cao Y, Fang W, Chen Y, Pan G. Interaction between the animal-based dietary pattern and green space on cognitive function among Chinese older adults: A prospective cohort study. Int J Hyg Environ Health 2023; 250:114147. [PMID: 36893615 DOI: 10.1016/j.ijheh.2023.114147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Green space is associated with better cognition, while the animal-based dietary pattern can be a risk factor. We aimed to verify the associations and explore their interaction among the elderly. The China Longitudinal Healthy Longevity Survey (CLHLS) cohort including 17,827 participants was used. The average green space coverage rate was used to measure green space exposure. The animal-based diet index (ADI) was scored based on the non-quantitative frequency questionnaire of ten types of food intake (three types of animal foods and seven types of plant foods). We used the Mini-Mental State Examination (MMSE) to assess cognitive function. The Cox proportional hazard regression was applied to explore the correlations and interactions. In the models, we gradually adjusted for the potential risk factors. Compared with participants living in the area with the lowest green space, those living with the highest were associated with a 20% decrease in the risk of cognitive impairment (hazard ratio (HR): 0.80, 95% CI: 0.73, 0.89). As for ADI, the highest group was related to a 64% increase in the risk of cognitive impairment (HR: 1.64, 95% CI: 1.38, 1.95). The protective effect of the highest green space group on cognitive impairment was more evident among participants with low ADI (HR = 0.72, 95% CI: 0.62, 0.83), compared to those with high ADI. Green space was positively associated with cognition, while the animal-based dietary pattern was a cognitive disadvantage. The animal-based dietary pattern may mitigate the beneficial effects of green space on cognition.
Collapse
Affiliation(s)
- Wan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hengchuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Ruyu Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yawen Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenbin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yingying Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Guixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
14
|
Asri AK, Liu T, Tsai HJ, Lee HY, Pan WC, Wu CD, Wang JY. Residential greenness and air pollution's association with nasal microbiota among asthmatic children. ENVIRONMENTAL RESEARCH 2023; 219:115095. [PMID: 36535395 DOI: 10.1016/j.envres.2022.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Both greenness and air pollution have widely been linked with asthma. However, the potential mechanism has rarely been investigated. This study aimed to identify the association between residential greenness and air pollution (fine particulate matter [PM2.5]; nitrogen dioxide [NO2]; ozone [O3]) with nasal microbiota among asthmatic children during the recovery phase. The normalized difference vegetation index was used to assess the extent of residential greenness. Spatiotemporal air pollution variation was estimated using an integrated hybrid kriging-LUR with the XG-Boost algorithm. These exposures were measured in 250-m intervals for four incremental buffer ranges. Nasal microbiota was collected from 47 children during the recovery phase. A generalized additive model controlled for various covariates was applied to evaluate the exposure-outcome association. The lag-time effect of greenness and air pollution related to the nasal microbiota also was examined. A significant negative association was observed between short-term exposure to air pollution and nasal bacterial diversity, as a one-unit increment in PM2.5 or O3 significantly decreased the observed species (PM2.5: -0.59, 95%CI -1.13, -0.05 and O3: -0.93, 95%CI -1.54, -0.32) and species richness (PM2.5: -0.64, 95%CI -1.25, -0.02 and O3: -0.68, 95%CI -1.43, -0.07). Considering the lag-time effect, we found a significant positive association between greenness and both the observed species and species richness. In addition, we identified a significant negative association for all pollutants with the observed species richness. These findings add to the evidence base of the links between nasal microbiota and air pollution and greenness. This study establishes a foundation for future studies of how environmental exposure plays a role in nasal microbiota, which in turn may affect the development of asthma.
Collapse
Affiliation(s)
- Aji Kusumaning Asri
- Department of Geomatics, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan.
| | - Hsiao-Yun Lee
- Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan.
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan.
| | - Jiu-Yao Wang
- Department of Pediatrics, National Cheng Kung University, Tainan, 701, Taiwan; Allergy, Immunology, and Microbiome (A.I.M.) Research Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
15
|
Lahdenperä M, Galante L, Gonzales-Inca C, Vahtera J, Pentti J, Rautava S, Käyhkö N, Yonemitsu C, Gupta J, Bode L, Lagström H. Residential green environments are associated with human milk oligosaccharide diversity and composition. Sci Rep 2023; 13:216. [PMID: 36604578 PMCID: PMC9816313 DOI: 10.1038/s41598-022-27317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Increased exposure to greener environments has been suggested to lead to health benefits in children, but the associated mechanisms in early life, particularly via biological mediators such as altered maternal milk composition, remain largely unexplored. We investigated the associations between properties of the mother's residential green environment, measured as (1) greenness (Normalized Difference Vegetation index, NDVI), (2) Vegetation Cover Diversity (VCDI) and (3) Naturalness Index (NI), and human milk oligosaccharides (HMOs), known for their immune- and microbiota-related health effects on the infant (N = 795 mothers). We show that HMO diversity increases and concentrations of several individual HMOs and HMO groups change with increased VCDI and NI in residential green environments. This suggests that variation in residential green environments may influence the infant via maternal milk through modified HMO composition. The results emphasize the mediating role of breastfeeding between the residential green environments and health in early life.
Collapse
Affiliation(s)
- Mirkka Lahdenperä
- Department of Biology, University of Turku, Turku, Finland. .,Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland. .,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Laura Galante
- grid.1374.10000 0001 2097 1371Department of Biology, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.4827.90000 0001 0658 8800School of Health and Social Care, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP UK
| | - Carlos Gonzales-Inca
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Jussi Vahtera
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.7737.40000 0004 0410 2071Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuli Rautava
- grid.1374.10000 0001 2097 1371Department of Pediatrics, University of Turku, Turku, Finland ,grid.7737.40000 0004 0410 2071Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Chloe Yonemitsu
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Julia Gupta
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Lars Bode
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Hanna Lagström
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
16
|
Dockx Y, Täubel M, Hogervorst J, Luyten L, Peusens M, Rasking L, Sleurs H, Witters K, Plusquin M, Valkonen M, Nawrot TS, Casas L. Association of indoor dust microbiota with cognitive function and behavior in preschool-aged children. MICROBIOME 2023; 11:1. [PMID: 36593490 PMCID: PMC9806900 DOI: 10.1186/s40168-022-01406-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Childhood cognitive development depends on neuroimmune interactions. Immunomodulation by early-life microbial exposure may influence neuropsychological function. In this study, we investigate the association between residential indoor microbiota and cognition and behavior among preschoolers. RESULTS Indoor-settled dust bacterial and fungal characteristics were assessed using 16S and ITS amplicon sequencing (microbial diversity) and qPCR measurements (microbial loads). Child behavior was assessed using four scales: peer relationship, emotional, conduct, and hyperactivity was assessed by the Strengths and Difficulties Questionnaire (SDQ). Cognitive function was assessed using four tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) software. The first two tasks were designed to assess attention and psychomotor speed (Motor Screening (MOT) and Big/Little Circle (BLC)) and the last two to evaluate the child's visual recognition/working memory (Spatial Span (SSP) and Delayed Matching to Sample (DMS)). Among the 172 included children (age 4-6 years), we observed a 51% (95%CI;75%;9%) lower odds of children scoring not normal for hyperactivity and a decrease of 3.20% (95%CI, -6.01%; -0.30%) in BLC response time, for every IQR increase in fungal Shannon diversity. Contrarily, microbial loads were directly associated with SDQ scales and response time. For example, a 2-fold increase in Gram-positive bacterial load was associated with 70% (95%CI 18%; 156%) higher odds of scoring not normal for hyperactivity and an increase of 5.17% (95%CI 0.87%; 9.65%) in DMS response time. CONCLUSIONS Our findings show that early-life exposure to diverse indoor fungal communities is associated with better behavioral and cognitive outcomes, whereas higher indoor microbial load was associated with worse outcomes. Video Abstract.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Martin Täubel
- Environmental Health Unit, Department Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Leen Luyten
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Martien Peusens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Maria Valkonen
- Environmental Health Unit, Department Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Herestraat 49–706, BE-3000 Leuven, Belgium
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Herestraat 49–706, BE-3000 Leuven, Belgium
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Doornstraat 331, 2610 Wilrijk, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
17
|
Alfano R, Bijnens E, Langie SAS, Nawrot TS, Reimann B, Vanbrabant K, Wang C, Plusquin M. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. ENVIRONMENTAL RESEARCH 2023; 216:114828. [PMID: 36400229 PMCID: PMC9760568 DOI: 10.1016/j.envres.2022.114828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/05/2023]
Abstract
BACKGROUND DNA methylation programming is sensitive to prenatal life environmental influences, but the impact of maternal exposure to green space on newborns DNA methylation has not been studied yet. METHODS We conducted a meta-epigenome-wide association study (EWAS) of maternal exposure to green space during gestation with cord blood DNA methylation in two subsets of the ENVIRONAGE cohort (N = 538). Cord blood DNA methylation was measured by Illumina HumanMethylation 450K in one subset (N = 189) and EPICarray in another (N = 349). High (vegetation height>3 m (m)), low (vegetation height<3 m) and total (including both) high-resolution green space exposures during pregnancy were estimated within 100 m and 1000 m distance around maternal residence. In each subset, we sought cytosine-phosphate-guanine (CpG) sites via linear mixed models adjusted on newborns' sex, ethnicity, gestational age, season at delivery, sampling day, maternal parity, age, smoking, education, and estimated blood cell proportions. EWASs results were meta-analysed via fixed-effects meta-analyses. Differentially methylated regions (DMRs) were identified via ENmix-combp and DMRcate algorithms. Sensitivity analyses were additionally adjusted on PM2.5, distance to major roads, urbanicity and neighborhood income. In the 450K subset, cord blood expression of differentially methylated genes was measured by Agilent microarrays and associated with green space. RESULTS 147 DMRs were identified, 85 of which were still significant upon adjustment for PM2.5, distance to major roads, urbanicity and neighborhood income, including HLA-DRB5, RPTOR, KCNQ1DN, A1BG-AS1, HTR2A, ZNF274, COL11A1 and PRSS36 DMRs. One CpG reached genome-wide significance, while 54 CpGs were suggestive significant (p-values<1e-05). Among them, a CpG, hypermethylated with 100 m buffer total green space, was annotated to PAQR9, whose expression decreased with 1000 m buffer low green space (p-value = 1.45e-05). CONCLUSIONS Our results demonstrate that maternal exposure to green space during pregnancy is associated with cord blood DNA methylation, mainly at loci organized in regions, in genes playing important roles in neurological development (e.g., HTR2A).
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sabine A S Langie
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
18
|
Hickman B, Kirjavainen PV, Täubel M, de Vos WM, Salonen A, Korpela K. Determinants of bacterial and fungal microbiota in Finnish home dust: Impact of environmental biodiversity, pets, and occupants. Front Microbiol 2022; 13:1011521. [PMID: 36419417 PMCID: PMC9676251 DOI: 10.3389/fmicb.2022.1011521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2023] Open
Abstract
The indoors is where many humans spend most of their time, and are strongly exposed to indoor microbiota, which may have multifaceted effects on health. Therefore, a comprehensive understanding of the determinants of indoor microbiota is necessary. We collected dust samples from 295 homes of families with young children in the Helsinki region of Finland and analyzed the bacterial and fungal composition based on the 16S rRNA and ITS DNA sequences. Microbial profiles were combined with extensive survey data on family structure, daily life, and physical characteristics of the home, as well as additional external environmental information, such as land use, and vegetational biodiversity near the home. Using permutational multivariate analysis of variance we explained 18% of the variation of the relative abundance between samples within bacterial composition, and 17% of the fungal composition with the explanatory variables. The fungal community was dominated by the phyla Basidiomycota, and Ascomycota; the bacterial phyla Proteobacteria, Firmicutes, Cyanobacteria, and Actinobacteria were dominant. The presence of dogs, multiple children, and firewood were significantly associated with both the fungal and bacterial composition. Additionally, fungal communities were associated with land use, biodiversity in the area, and the type of building, while bacterial communities were associated with the human inhabitants and cleaning practices. A distinction emerged between members of Ascomycota and Basidiomycota, Ascomycota being more abundant in homes with greater surrounding natural environment, and potential contact with the environment. The results suggest that the fungal composition is strongly dependent on the transport of outdoor environmental fungi into homes, while bacteria are largely derived from the inhabitants.
Collapse
Affiliation(s)
- Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirkka V. Kirjavainen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martin Täubel
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Fu X, Ou Z, Sun Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:133-146. [PMID: 38075599 PMCID: PMC10702906 DOI: 10.1016/j.eehl.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/20/2023]
Abstract
The prevalence of allergic diseases, such as asthma, rhinitis, eczema, and sick building syndrome (SBS), has increased drastically in the past few decades. Current medications can only relieve the symptoms but not cure these diseases whose development is suggested to be greatly impacted by the indoor microbiome. However, no study comprehensively summarizes the progress and general rules in the field, impeding subsequent translational application. To close knowledge gaps between theoretical research and practical application, we conducted a comprehensive literature review to summarize the epidemiological, environmental, and molecular evidence of indoor microbiome studies. Epidemiological evidence shows that the potential protective indoor microorganisms for asthma are mainly from the phyla Actinobacteria and Proteobacteria, and the risk microorganisms are mainly from Bacilli, Clostridia, and Bacteroidia. Due to extremely high microbial diversity and geographic variation, different health-associated species/genera are detected in different regions. Compared with indoor microbial composition, indoor metabolites show more consistent associations with health, including microbial volatile organic compounds (MVOCs), lipopolysaccharides (LPS), indole derivatives, and flavonoids. Therefore, indoor metabolites could be a better indicator than indoor microbial taxa for environmental assessments and health outcome prediction. The interaction between the indoor microbiome and environmental characteristics (surrounding greenness, relative humidity, building confinement, and CO2 concentration) and immunology effects of indoor microorganisms (inflammatory cytokines and pattern recognition receptors) are briefly reviewed to provide new insights for disease prevention and treatment. Widely used tools in indoor microbiome studies are introduced to facilitate standard practice and the precise identification of health-related targets.
Collapse
Affiliation(s)
- Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
20
|
Dockx Y, Täubel M, Bijnens EM, Witters K, Valkonen M, Jayaprakash B, Hogervorst J, Nawrot TS, Casas L. Indoor green can modify the indoor dust microbial communities. INDOOR AIR 2022; 32:e13011. [PMID: 35347789 DOI: 10.1111/ina.13011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Little is known about the potential role of indoor plants in shaping the indoor microbiota. Within the ENVIRONAGE birth cohort, we collected settled dust and performed 16S and ITS amplicon sequencing and qPCR measurements to characterize the indoor microbiota, including bacterial and fungal loads and Chao1 richness, Shannon, and Simpson diversity indices. For 155 households, we obtained information on the number of indoor plants. We performed linear regression models adjusted for several a priori chosen covariables. Overall, an increase in indoor plants and density was associated with increased microbial diversity, but not load. For example, we found an increase of 64 (95%CI:3;125) and 26 (95%CI:4;48) units of bacterial and fungal taxa richness, respectively, in households with more than three plants compared to no plants. Our results support the hypothesis that indoor plants can enrich indoor microbial diversity, while impacts on microbial loads are not obvious.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martin Täubel
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maria Valkonen
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | | | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Center for Environment and Health, Department of Public Health and Primary Care, Leuven University (KU Leuven), Leuven, Belgium
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, Leuven University (KU Leuven), Leuven, Belgium
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Dockx Y, Bijnens EM, Luyten L, Peusens M, Provost E, Rasking L, Sleurs H, Hogervorst J, Plusquin M, Casas L, Nawrot TS. Early life exposure to residential green space impacts cognitive functioning in children aged 4 to 6 years. ENVIRONMENT INTERNATIONAL 2022; 161:107094. [PMID: 35074632 PMCID: PMC8885429 DOI: 10.1016/j.envint.2022.107094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
INTRODUCTION During early childhood, neuronal networks are highly susceptible to environmental factors. Previous research suggests that green space exposure is beneficial for cognitive functioning. Here, we investigate the associations between residential green space exposure and behavioral problems and cognitive development in children aged four to six years. METHOD We included children participating in the ENVIRONAGE birth cohort. Residential green spaces were calculated based on high-resolution land cover data within several buffers (50-1,000 m) around the residence. The children's behavior was assessed with the Strengths and Difficulties Questionnaire (SDQ) among 411 children. In addition, to evaluate cognitive function, 456 children completed four tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB). We used multivariate logistic and linear regression models while accounting for potential confounders and covariables. RESULTS An interquartile (IQR) increase of residential green space within 50 m was associated with a 38% (95% CI: 56;14) lower odds of a child having hyperactivity problems. Additionally, we found a beneficial influence of residential green space in close proximity (50-100 m) on the attention and psychomotor speed, represented by the Motor Screening Task. For example, we found a decrease of 0.45 (95% CI: -0.82;-0.09) pixel units from target center with an IQR increase of residential green space in a 50 m buffer. In addition, we observed an improved visual recognition/working memory, represented by the Delayed Matching to Sample Task within all included buffers (50-1000 m). For example, we observed a decrease of 4.91% (95 %CI: -7.46;-2.36) probability of an error occurring if the previous trial was correct and a 2.02% (95 %CI: 0.08; 3.97) increase of correct trials with an IQR increase of green space within a 100 m buffer. CONCLUSION This study provides additional indications for a beneficial influence of green space exposure on the development of behavioral problems and cognitive function as young as four years of age.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Leen Luyten
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Martien Peusens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Eline Provost
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Lidia Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Belgium; Insitute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium; Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven)
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven).
| |
Collapse
|