1
|
Zhao H, Ren Y, Ni J, Fang L, Zhang T, Wang M, Cai G, Ma Y, Pan F. Sex-specific association of per- and polyfluoroalkyl substances (PFAS) exposure with vitamin D concentrations in older adults in the USA: an observational study. Environ Health 2024; 23:100. [PMID: 39551762 PMCID: PMC11571557 DOI: 10.1186/s12940-024-01140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are commonly utilized in consumer products. While earlier studies have suggested potential impacts of certain PFAS on serum concentrations of vitamin D, these investigations were constrained to a limited set of conventional PFAS. Moreover, they did not specifically focus on populations with longer duration of PFAS exposure and potentially higher blood PFAS levels, such as older adults, and lacked adequate evidence to examine sex-related disparities. METHODS This observational investigation utilized cross-sectional data obtained from the U.S. NHANES spanning the years 2003 to 2018. Survey-weighted multiple regression models were employed to evaluate the relationship between PFAS exposure and vitamin D concentrations. Multi-pollutant models were employed to evaluate the association between PFAS mixtures and vitamin D concentrations. Subsequently, environmental risk scores (ERS) were constructed to gauge associations with vitamin D concentrations. ERS was computed through a weighted linear combination of PFAS, utilizing calculations from ridge regression and adaptive elasticity network (adENET) methodologies. All analyses were stratified by sex. RESULTS The study encompassed 3,853 older adults. Our analysis revealed a negative association between PFOA, PFOS, PFNA, and MeFOSAA and serum vitamin D concentrations. In analyses examining mixed exposures, various models consistently indicated an inverse association between PFAS mixed exposure and vitamin D concentrations. Moreover, an increase in ERS of PFAS across the interquartile range was associated with a decrease in vitamin D concentrations (Q4 vs. Q1, adENET: β: -0.083, 95% CI: -0.117, -0.048; ridge regression: β: -0.077, 95% CI: -0.111, -0.042). Notably, these associations were exclusively observed within the female population. CONCLUSIONS Our study indicates that heightened exposure to PFAS correlates with diminished serum vitamin D concentrations in females aged 60 years and older, evident in both single and mixed exposures. These findings find support in in vitro mechanistic studies, suggesting that PFAS may impact the metabolism of 25(OH)D, consequently affecting vitamin D concentrations.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yuxin Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
3
|
Xu Y, Sui X, Li J, Zhang L, Wang P, Liu Y, Shi H, Zhang Y. Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins. ECO-ENVIRONMENT & HEALTH 2024; 3:308-316. [PMID: 39258237 PMCID: PMC11385757 DOI: 10.1016/j.eehl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placenta and adversely affect fetal development. However, there is a lack of comparison of legacy and emerging PFAS levels among different biosamples in pregnant women and their offspring. This study, based on the Shanghai Maternal-Child Pairs Cohort, analyzed the concentrations of 16 PFAS in the maternal serum, cord serum, and breast milk samples from 1,076 mother-child pairs. The placental and breastfeeding transfer efficiencies of PFAS were determined in maternal-cord and maternal-milk pairs, respectively. The binding affinities of PFAS to five transporters were simulated using molecular docking. The results suggested that PFAS were frequently detected in different biosamples. The median concentration of perfluorooctane sulfonate (PFOS) was the highest at 8.85 ng/mL, followed by perfluorooctanoic acid (PFOA) at 7.13 ng/mL and 6:2 chlorinated polyfluorinated ether sulfonate at 5.59 ng/mL in maternal serum. The median concentrations of PFOA were highest in cord serum (4.23 ng/mL) and breast milk (1.08 ng/mL). PFAS demonstrated higher placental than breastfeeding transfer efficiencies. The transfer efficiencies and the binding affinities of most PFAS to proteins exhibited alkyl chain length-dependent patterns. Furthermore, we comprehensively assessed the estimated daily intakes (EDIs) of PFAS in breastfeeding infants of different age groups and used the hazard quotient (HQ) to characterize the potential health risk. EDIs decreased with infant age, and PFOS had higher HQs than PFOA. These findings highlight the significance of considering PFAS exposure, transfer mechanism, and health risks resulting from breast milk intake in early life.
Collapse
Affiliation(s)
- Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Zhou R, Peng J, Zhang L, Sun Y, Yan J, Jiang H. Association between the dietary inflammatory index and serum perfluoroalkyl and polyfluoroalkyl substance concentrations: evidence from NANHES 2007-2018. Food Funct 2024; 15:7375-7386. [PMID: 37779497 DOI: 10.1039/d3fo01487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Diet is an important source of perfluoroalkyl and polyfluoroalkyl substance (PFAS) exposure, and the dietary inflammatory index (DII) is a tool used to assess the inflammatory potential of an individual's diet. However, limited research has explored the association between the DII and PFAS exposure in humans. This study is the first to analyze the association between the five PFASs and DII using the National Health and Nutrition Examination Survey (NHANES) 2007-2018 database. Additionally, we assessed the interaction between the DII and PFASs regarding oxidative stress and inflammatory markers, including alkaline phosphatase, albumin, neutrophil count, lymphocyte count, total bilirubin, and serum iron based on a previous study. A series of covariates were included in the analysis to reduce the confounding bias. The study included 7773 and 5933 participants based on the different models. The DII was significantly associated with serum perfluorooctanoic acid, perfluorononanoic acid, perfluorooctane sulfonic acid, and sum-PFAS. Some of the food parameters used to calculate the DII also showed associations with special PFAS serum concentrations. Specifically, dietary fiber, n-3 polyunsaturated fatty acids, energy intake, and vitamin D were associated with more than three PFASs. Higher DII levels in participants were linked to a more significant association between bilirubin (the interaction P-value is not significant), alkaline phosphatase, serum iron, neutrophil counts, and some PFASs. In conclusion, this study clarified the association between the three PFASs and DII, highlighting the diverse effects of PFASs on oxidative stress and inflammatory markers across different DII levels.
Collapse
Affiliation(s)
- Ren Zhou
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Jiali Peng
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Yu Sun
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Jia Yan
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Hong Jiang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| |
Collapse
|
5
|
Buckley JP, Zhou J, Marquess KM, Lanphear BP, Cecil KM, Chen A, Sears CG, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Kuiper JR. Per- and polyfluoroalkyl substances and bone mineral content in early adolescence: Modification by diet and physical activity. ENVIRONMENTAL RESEARCH 2024; 252:118872. [PMID: 38580001 PMCID: PMC11156547 DOI: 10.1016/j.envres.2024.118872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substance (PFAS) exposures may negatively impact bone mineral accrual, but little is known about potential mitigators of this relation. We assessed whether associations of PFAS and their mixture with bone mineral content (BMC) in adolescence were modified by diet and physical activity. METHODS We included 197 adolescents enrolled in a prospective pregnancy and birth cohort in Cincinnati, Ohio (2003-2006). At age 12 years, we collected serum for PFAS measurements and used dual-energy x-ray absorptiometry to measure BMC. We calculated dietary calcium intake and Health Eating Index (HEI) scores from repeated 24-h dietary recalls, physical activity scores using the Physical Activity Questionnaire for Older Children (PAQ-C), and average moderate to vigorous physical activity (MVPA) based on accelerometry. We estimated covariate-adjusted differences in BMC z-scores per interquartile range (IQR) increase of individual PFAS concentrations using linear regression and per simultaneous IQR increase in all four PFAS using g-computation. We evaluated effect measure modification (EMM) using interaction terms between each modifier and PFAS. RESULTS Higher serum perfluorooctanoic acid, perfluorooctanesulfonic acid, and perfluorononanoic acid concentrations and the PFAS mixture were associated with lower BMC z-scores. An IQR increase in all PFAS was associated with a 0.27 (-0.54, 0.01) lower distal radius BMC z-score. Associations with lower BMC were generally stronger among adolescents classified as < median for calcium intake, HEI scores, or MVPA compared to those ≥ median. The difference in distal radius BMC z-score per IQR increase in all PFAS was -0.38 (-0.72, -0.04) for those with CONCLUSION Healthy, calcium-rich diets and higher intensity physical activity may mitigate the adverse impact of PFAS on adolescent bone health.
Collapse
Affiliation(s)
- Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Junyi Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Katherine M Marquess
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Clara G Sears
- Christina Lee Brown Envirome Institute, Department of Medicine, Division of Environmental Medicine, University of Louisville, KY, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, USA
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| |
Collapse
|
6
|
Butler AE, Sathyapalan T, Das P, Brennan E, Atkin SL. Association of Vitamin D with Perfluorinated Alkyl Acids in Women with and without Non-Obese Polycystic Ovary Syndrome. Biomedicines 2024; 12:1255. [PMID: 38927462 PMCID: PMC11201284 DOI: 10.3390/biomedicines12061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Perfluorinated alkyl acids (PFAAs) are persistent organic pollutants affected by BMI and ethnicity, with contradictory reports of association with vitamin D deficiency. METHODS Twenty-nine Caucasian women with non-obese polycystic ovary syndrome (PCOS) and age- and BMI-matched Caucasian control women (n = 30) were recruited. Paired serum samples were analyzed for PFAAs (n = 13) using high-performance liquid chromatography-tandem mass spectrometry. Tandem mass spectrometry determined levels of 25(OH)D3 and the active 1,25(OH)2D3. RESULTS Women with and without PCOS did not differ in age, weight, insulin resistance, or systemic inflammation (C-reactive protein did not differ), but the free androgen index was increased. Four PFAAs were detected in all serum samples: perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Serum PFOS was higher in PCOS versus controls (geometric mean [GM] 3.9 vs. 3.1 ng/mL, p < 0.05). Linear regression modeling showed that elevated PFHxS had higher odds of a lower 25(OH)D3 (OR: 2.919, 95% CI 0.82-5.75, p = 0.04). Vitamin D did not differ between cohorts and did not correlate with any PFAAs, either alone or when the groups were combined. When vitamin D was stratified into sufficiency (>20 ng/mL) and deficiency (<20 ng/mL), no correlation with any PFAAs was seen. CONCLUSIONS While the analyses and findings here are exploratory in light of relatively small recruitment numbers, when age, BMI, and insulin resistance are accounted for, the PFAAs do not appear to be related to 25(OH)D3 or the active 1,25(OH)2D3 in this Caucasian population, nor do they appear to be associated with vitamin D deficiency, suggesting that future studies must account for these factors in the analysis.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Priya Das
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Edwina Brennan
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen 15503, Bahrain; (P.D.); (E.B.); (S.L.A.)
| |
Collapse
|
7
|
Gao Y, Zhang Y, Luo J, Mao D, Lei X, Liu C, Zhang S, Yao Q, Li J, Zhang J, Yu X, Tian Y. Effect modification by maternal vitamin D status in the association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in 2-year-old children. ENVIRONMENT INTERNATIONAL 2024; 185:108563. [PMID: 38461776 DOI: 10.1016/j.envint.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.
Collapse
Affiliation(s)
- Yu Gao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, United States
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Shanyu Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Qian Yao
- Clinical Research Unit, Shanghai Pulmonary Hospital, 200433 Shanghai, PR China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Epidemiology, School of Public Health, Nanjing Medical University, 211166 Nanjing, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, PR China.
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
8
|
Liao J, Sun B, Wang C, Cao Z, Wu Z, An X, Liang Z, Huang X, Lu Y. Uptake and cellular responses of Microcystis aeruginosa to PFOS in various environmental conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116041. [PMID: 38350213 DOI: 10.1016/j.ecoenv.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.
Collapse
Affiliation(s)
- Jieming Liao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhaoyang Wu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zi'an Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xinyi Huang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Berger K, Bradshaw PT, Poon V, Kharrazi M, Eyles D, Ashwood P, Lyall K, Volk HE, Ames J, Croen LA, Windham GC, Pearl M. Mixture of air pollution, brominated flame retardants, polychlorinated biphenyls, per- and polyfluoroalkyl substances, and organochlorine pesticides in relation to vitamin D concentrations in pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122808. [PMID: 37923052 PMCID: PMC10841600 DOI: 10.1016/j.envpol.2023.122808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Over two-thirds of pregnant women in the U.S. have insufficient 25(OH)D (Vitamin D) concentrations, which can adversely impact fetal health. Several pollutants have been associated with 25(OH)D, but have not been considered in the context of chemical co-exposures. We aimed to determine associations between a broad mixture of prenatal environmental chemical exposures and 25(OH)D concentrations in mid-pregnancy. Stored mid-pregnancy serum samples were assayed from 421 women delivering live births in Southern California in 2000-2003. 25(OH)D, six BFRs, eleven polychlorinated biphenyls (PCBs), six per- and polyfluoroalkyl substances, and two organochlorine pesticides were detected in ≥60% of specimens. Gestational exposures to airborne particulate matter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5), nitrogen monoxide (NO), nitrogen dioxide (NO2), and ozone concentrations were derived from monitoring station data. Bayesian Hierarchical Modeling (BHM) and Bayesian Kernel Machine Regression (BKMR) analyses estimated overall mixture and individual chemical associations accounting for co-exposures and covariates with mean 25(OH)D levels, and BHM was used to estimate associations with insufficient (<75 nMol/L) 25(OH)D levels. Non-mixture associations for each chemical were estimated with linear and logistic models. PM10 [BHM estimate: -0.133 nmol/l 95% Credible Interval (-0.240, -0.026)] was associated with lower 25(OH)D in BHM and BKMR. Higher quantiles of combined exposures were associated with lower 25(OH)D, though with wide credible intervals. In non-mixture models, PM10, PM2.5, NO, and NO2 were associated with lower concentrations, while O3 and PBDE153 were associated with higher 25(OH)D and/or lower insufficiency. While some chemicals were associated with increased and others with decreased 25(OH)D concentrations, the overall mixture was associated with lower concentrations. Mixture analyses differed from non-mixture regressions, highlighting the importance of mixtures approaches for estimating real-world associations.
Collapse
Affiliation(s)
| | - Patrick T Bradshaw
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Darryl Eyles
- Queensland Brain Institute and the Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jenn Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Michelle Pearl
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| |
Collapse
|
10
|
Huang JK, Chuang YS, Wu PH, Tai CJ, Lin JR, Kuo MC, Chiu YW, Hsu PC, Wu MT, Salihovic S, Lin YT. Decreased levels of perfluoroalkyl substances in patients receiving hemodialysis treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165184. [PMID: 37391133 DOI: 10.1016/j.scitotenv.2023.165184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Perfluoroalkyl substances (PFAS) have been reported to be harmful to multiple organs in the human body. Based on a previous study suggesting that hemodialysis (HD) may be a means of eliminating PFAS from the human body, we aimed to compare the serum PFAS concentrations of patients undergoing regular HD, patients with chronic kidney disease (CKD) and controls. Additionally, we also investigated the correlation between PFAS and biochemical data, as well as concurrent comorbidities. We recruited 301 participants who had been on maintenance dialysis for >90 days, 20 participants with stage 5 non-dialysis CKD, and 55 control participants who did not have a diagnosis of kidney disease, with a mean creatinine level of 0.77 mg/dl. Eight different PFAS, namely perfluorooctanoic acid (PFOA), total and linear perfluorooctanesulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Spearman correlation and multivariable linear regression with 5 % false discovery rate were used to evaluate the relationships between PFAS and clinical parameters in HD patients and controls. Circulating concentrations of seven PFAS, including total and linear PFOS (T-PFOS and L-PFOS) PFDA, PFNA, PFHxS, PFOA, and PFUnDA, were significantly lower in the HD group compared to the CKD and control group. For the interplay between biochemical data and PFAS, all of the studied PFAS were positively correlated with aspartate aminotransferase, alanine aminotransferase, glucose, blood urea nitrogen, ferritin, and vitamin D in the controls, while in HD patients, the PFAS were all positively correlated with albumin, uric acid, iron, and vitamin D. These findings may offer valuable insights for future studies seeking to eliminate PFAS.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung city, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung city, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Jung Tai
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan; Center for Long-Term Care Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jye-Ru Lin
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yi-Ting Lin
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung city, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
12
|
Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, Kannan K, Ryan PB, Schroder M, Rushing B, Fennell T, Chang CJ, Tan Y, Marsit CJ, Jones DP, Liang D. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun 2023; 14:3120. [PMID: 37253729 PMCID: PMC10229585 DOI: 10.1038/s41467-023-38710-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States.
Collapse
Grants
- R01 NR014800 NINR NIH HHS
- U2C ES026542 NIEHS NIH HHS
- P50 ES026071 NIEHS NIH HHS
- R01 MD009064 NIMHD NIH HHS
- UH3 OD023318 NIH HHS
- R01 MD009746 NIMHD NIH HHS
- R21 ES032117 NIEHS NIH HHS
- U2C ES026560 NIEHS NIH HHS
- P30 ES019776 NIEHS NIH HHS
- R24 ES029490 NIEHS NIH HHS
- U24 ES029490 NIEHS NIH HHS
- UG3 OD023318 NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- Research reported in this publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Numbers 5U2COD023375-05/A03-3824, the National Institute of Health (NIH) research grants [R21ES032117, R01NR014800, R01MD009064, R24ES029490, R01MD009746], NIH Center Grants [P50ES02607, P30ES019776, UH3OD023318, U2CES026560, U2CES026542], and Environmental Protection Agency (USEPA) center grant [83615301].
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuan-Yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madison Schroder
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Blake Rushing
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Fennell
- Analytical Chemistry and Pharmaceuticals, RTI International, Research Triangle Park, Durham, NC, USA
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Han JW, Park HJ. Perfluorooctanoic acid induces cell death in TM3 cells via the ER stress-mitochondrial apoptosis pathway. Reprod Toxicol 2023; 118:108383. [PMID: 37044272 DOI: 10.1016/j.reprotox.2023.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally ubiquitous synthetic chemical highly persistent in organisms. PFOA exposure is pernicious to reproductive health as indicated by reports of male infertility. However, the PFOA toxicity mechanism to Leydig cells remains poorly understood. Therefore, this study aimed to investigate the toxicological events occurring in TM3 Leydig cells treated with PFOA (250, 500, 750µM) for 24h. PFOA was shown to significantly decrease cell viability resulting from inhibition of proliferation and elevation of apoptotic ratio in a dose dependent manner. Upregulation of pro-apoptotic gene expressions such as Bax, Bad, and p53, was observed in combination with an increase in the apoptosis-related protein levels of Bax, cleaved caspase-3, cleaved caspase-8, and phosphorylated p53. Furthermore, exposure of PFOA lead to mitochondrial damage involving mitochondrial membrane permeabilization. A release of cytochrome c and collapse of the mitochondrial membrane potential (∆Ψm) were observed compared to the untreated control. Additionally, PFOA stimulated unfolded protein response (UPR) upregulating ER stress marker, Bip/GRP78, and upregulated protein levels of UPR signal molecules IRE1, p-JNK, p-ERK1/2, p-p53, CHOP, and ERO1. Overall, the present study elucidated the ER stress-mitochondrial apoptosis pathway-related molecular mechanisms involved in PFOA-induced cell death in TM3 Leydig cells.
Collapse
Affiliation(s)
- Jong-Won Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
14
|
Liu H, Huang Y, Pan Y, Cheng R, Li X, Li Y, Lu S, Zhou A, Dai J, Xu S. Associations between per and polyfluoroalkyl ether sulfonic acids and vitamin D biomarker levels in Chinese newborns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161410. [PMID: 36621489 DOI: 10.1016/j.scitotenv.2023.161410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Skeleton develops extremely fast during fetal and neonatal stages; thus, fetuses and newborns exhibit unique vulnerabilities to vitamin D metabolism dysregulation, giving vitamin D's principal role in calcium homeostasis. Previous studies linked legacy per and polyfluoroalkyl ether sulfonic acids (PFAS) with vitamin D biomarker status in adults and children; however, how PFAS, especially emerging CI-PFESAs, influence vitamin D among newborns is unknown. This study focused on the epidemiological linkages between PFAS and vitamin D biomarkers. Eleven PFAS, including legacy PFAS and emerging CI-PFESAs, as well as two vitamin D metabolites [25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 (25(OH)D3)], were determined in cord sera of 992 newborns from a birth cohort in Wuhan, China. The cord serum levels of 25(OH)D2 and 25(OH)D3 were summed as total 25(OH)D, which is a reliable biomarker of vitamin D status. The associations of separated PFAS with vitamin D biomarker levels were analyzed via multiple linear models, whereas the mixture effect was estimated by utilizing the weighted quantile sum (WQS) regression. We observed that per doubling changes in perfluorotridecanoate (PFTrDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were associated with a 6.04 to 9.05 % change in total 25(OH)D levels. PFHxS contributed over half of the PFAS mixture effect on total 25(OH)D. Stratified analysis indicated that the associations of certain PFAS with vitamin D biomarkers were more pronounced among boys. The emerging CI-PFESAs were not robustly related to vitamin D biomarker levels. The results suggested that exposure to legacy PFAS might disturb vitamin D status in newborns. Future epidemiological studies are required to confirm the association and to determine healthy implications at a later age.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China.
| | - Yun Huang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yitao Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Rongrong Cheng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Xiaojun Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Wuhan, PR China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Jiayin Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| |
Collapse
|
15
|
Liang Y, Lu J, Yi W, Cai M, Shi W, Li B, Zhang Z, Jiang F. 1α,25-dihydroxyvitamin D 3 supplementation alleviates perfluorooctanesulfonate acid-induced reproductive injury in male mice: Modulation of Nrf2 mediated oxidative stress response. ENVIRONMENTAL TOXICOLOGY 2023; 38:322-331. [PMID: 36321694 DOI: 10.1002/tox.23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanesulfonate acid (PFOS) is a typical persistent organic pollutant that widely exists in the environment. To clarify the toxic effects and mechanisms of PFOS and to find effective intervention strategies have been attracted global attention. Here, we investigated the effects of PFOS on the male reproductive system and explored the potential protective role of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ). Our results showed that 1α,25(OH)2 D3 intervention significantly improved PFOS-induced sperm quality decline and testicular damage. Moreover, 1α,25(OH)2 D3 aggrandized the total antioxidant capacity. Furthermore, after PFOS exposure, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1, NQO1, and SOD2. Meanwhile, 1α,25(OH)2 D3 ameliorated PFOS-induced augment of Nrf2 and target genes. These findings indicated that 1α,25(OH)2 D3 might attenuate PFOS-induced reproductive injury in male mice via Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yongchao Liang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingjing Lu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenjie Yi
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ming Cai
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Lu Y, Zhang X, Wu S, Zhang S, Tan J. A bibliometric analysis of global research on vitamin D and reproductive health between 2012 and 2021: Learning from the past, planning for the future. Front Nutr 2022; 9:973332. [PMID: 36159484 PMCID: PMC9493010 DOI: 10.3389/fnut.2022.973332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Vitamin D plays an invaluable role in reproductive health, but vitamin D insufficiency and deficiency are generally common among couples of childbearing age and pregnant women. This study aimed to evaluate the evolution, development trend, and research hotspot of publications on vitamin D and reproductive health. Methods The literature on vitamin D and reproductive health between 2012 and 2021 was retrieved from the Web of Science Core Collection (WoSCC). We used VOSviewer and CiteSpace to analyze publication years, countries, institutions, journals, highly cited authors and publications, and co-occurrence and citation bursts of keywords. Results A total of 1,828 articles and reviews on vitamin D and reproductive health published between 2012 and 2021 were identified. The annual publication outputs showed steady growth, with the most publications (272) and citations (7,097) in 2021. The United States contributed the most publications (458) and had the highest h-index (58). In terms of the number of publications and h-index, the journal named Nutrients ranked first. Nutrition dietetics, obstetrics gynecology, and endocrinology metabolism were three well-represented disciplines in research on vitamin D and reproductive health. Hollis BW, Wagner CL, and Litonjua AA were the top three most productive authors in this field during the last decade. Apart from vitamin D, the five keywords with the most frequent occurrence were vitamin D deficiency, pregnancy, risk, vitamin D supplementation, and 25-hydroxyvitamin D. Keyword citation burst analysis revealed that low birth weight, adipose tissue, marker, and embryo had a citation burst lasting until 2021. Conclusion In conclusion, vitamin D has received continuous attention in the field of reproductive health, and there appears to have a higher level of research in North America. Multidisciplinary intersection contributed to the in-depth exploration in this field. And the effect of maternal vitamin D levels on fetal lipid metabolism and the prediction of fertility by vitamin D-related markers might be hotspots for the research.
Collapse
Affiliation(s)
- Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
17
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
18
|
Du Y, Cai Z, Zhou G, Liang W, Man Q, Wang W. Perfluorooctanoic acid exposure increases both proliferation and apoptosis of human placental trophoblast cells mediated by ER stress-induced ROS or UPR pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113508. [PMID: 35427876 DOI: 10.1016/j.ecoenv.2022.113508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoate acid (PFOA) is a highly persistent and widespread chemical in the environment. PFOA serum levels in pregnant women are positively associated with an increased risk of placenta-related disorders. However, the mechanism of PFOA cytotoxicity involved in placental cells and cellular responses such as ER stress remains poorly understood. In this study, we studied the cellular toxicity of PFOA with a focus on proliferation and apoptosis in a human placental trophoblast cell line. Cell viability, number, apoptosis, stress response, activation of the involved signaling pathways were assessed. Our results showed PFOA affected cell viability, proliferation and also resulted in apoptosis. Besides, both pro-proliferation and pro-apoptosis effects were attenuated by endoplasmic reticulum (ER) stress inhibitors. Further experiments demonstrated that two different signaling pathways were activated by PFOA-induced ER stress and involved in PFOA toxicity: the reactive oxygen species (ROS)-dependent ERK signaling triggered trophoblast proliferation, while the ATF4-dependent C/EBP homologous protein (CHOP) signaling was the trigger of apoptosis. We conclude that PFOA-induced ER stress is the trigger of proliferation and apoptosis of trophoblast via ROS or UPR signaling pathway, which leads to the altered balance critical to the normal development and function of the placenta.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
19
|
Chang CJ, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu K, Kannan K, Yakimavets V, Tan Y, Ly V, Marsit CJ, Jones DP, Corwin EJ, Dunlop AL, Liang D. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. ENVIRONMENT INTERNATIONAL 2022; 158:106964. [PMID: 34735953 PMCID: PMC8688254 DOI: 10.1016/j.envint.2021.106964] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, Georgia. METHODS Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling were conducted in 313 pregnant African American women at 8-14 weeks gestation. Multiple linear regression models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was performed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth relationship. RESULTS Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA (OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and pathways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism perturbations. CONCLUSION In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportunities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.
Collapse
Affiliation(s)
- Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa M Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Ly
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Anne L Dunlop
- Woodruff Health Sciences Center, School of Medicine and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|