1
|
Do LG, Sawyer A, John Spencer A, Leary S, Kuring JK, Jones AL, Le T, Reece CE, Ha DH. Early Childhood Exposures to Fluorides and Cognitive Neurodevelopment: A Population-Based Longitudinal Study. J Dent Res 2024:220345241299352. [PMID: 39692252 DOI: 10.1177/00220345241299352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
It is important to maintain confidence in the risk and benefit balance of major caries-preventive programs using fluoride. The ongoing debate about potential effects of early-life exposures to fluoride on cognitive neurodevelopment requires high-quality scientific evidence. This study aimed to investigate the potential effects of fluoride exposure on cognitive neurodevelopment assessed with the Wechsler Adult Intelligence Scale 4th edition (WAIS-IV) in an Australian population-based sample. The sample was selected from the National Child Oral Health Study (NCOHS) 2012-2014. NCOHS collected data on socioeconomic factors, oral health behaviors, and residential history to estimate percentage lifetime exposure to fluoridated water during the first 5 y of life (%LEFW). NCOHS children were also examined by trained and calibrated examiners to assess dental fluorosis (a reliable and valid individual biomarker of total fluoride intake during early childhood). The sample was followed up in 2022-2023 to collect data on cognitive neurodevelopment (intelligence quotient [IQ]) using the WAIS-IV, which was administered by trained and calibrated qualified psychologists. Multivariable regression models were generated to investigate associations between the 2 exposure measurements (%LEFW and dental fluorosis) with full-scale IQ (FSIQ) scores, controlling for important confounding effects. Hypotheses of noninferiority were also tested, contrasting different levels of exposure to fluoride. Some 357 participants aged 16 to 26 y completed the WAIS-IV, with a mean FSIQ score of 109.2 (95% confidence interval [CI]: 107.8-110.5). The estimates of the multivariable regression models demonstrated slightly higher FSIQ scores among the exposed than the nonexposed. The adjusted β of 100%LEFW versus 0%LEFW was 1.07 (95% CI: -2.86, 5.01) and of having dental fluorosis versus no fluorosis was 0.28 (95% CI: -3.00, 3.57). The hypothesis of noninferiority tests found that FSIQ scores of those exposed and nonexposed to fluoride were equivalent. The study provided consistent evidence that early childhood exposure to fluoride does not have effects on cognitive neurodevelopment.
Collapse
Affiliation(s)
- L G Do
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Australia
| | - A Sawyer
- School of Psychology, The University of Adelaide, Australia
| | - A John Spencer
- Adelaide Dental School, The University of Adelaide, Australia
| | - S Leary
- Bristol Dental School, University of Bristol, UK
| | - J K Kuring
- School of Psychology, The University of Adelaide, Australia
| | - A L Jones
- Sunshine Coast Health Institute, Sunshine Coast University Hospital, Australia
| | - T Le
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Australia
| | - C E Reece
- School of Psychology, The University of Adelaide, Australia
| | - D H Ha
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Australia
| |
Collapse
|
2
|
Chen N, Zhang J, Yin C, Liao Y, Song L, Hu T, Pan X. Abnormal methylation of Mill1 gene regulates osteogenic differentiation involved in various phenotypes of skeletal fluorosis in rats and methionine intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117519. [PMID: 39674021 DOI: 10.1016/j.ecoenv.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition. In a previous study, we screened eight genes with differential methylation associated with various phenotypes of skeletal fluorosis. By combining gene functions, Mill1 gene was selected for subsequent experiments. First, we found that the Mill1 gene was hypomethylated and upregulated in osteosclerosis skeletal fluorosis, whereas it was hypermethylated and downregulated in osteoporosis/osteomalacia skeletal fluorosis. Similar results were obtained in the cell experiments. Subsequently, we validated the regulation of Mill1 gene methylation using DNMT1 and TET2 enzyme inhibitors. Furthermore, we knockdown and overexpression experiments confirmed its downregulation inhibited osteogenic differentiation, whereas osteogenic differentiation was promoted by its overexpression. These findings imply that abnormal methylation of the Mill1 gene triggered by fluoride under diverse nutritional conditions, regulates its expression and participates in osteogenic differentiation, potentially resulting in various phenotypes of skeletal fluorosis. Eventually, we use methionine for interventions both in vivo and in vitro. The results indicated that under normal nutrition and fluoride exposure followed by methionine intervention, the methylation levels of the Mill1 gene increased, whereas its high expression and enhanced osteogenic differentiation were restrained. This study offers a theoretical foundation for understanding the mechanism behind the various phenotypes of skeletal fluorosis through the perspective of DNA methylation and for employing nutrients to intervene in skeletal fluorosis.
Collapse
Affiliation(s)
- Niannian Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Congyu Yin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yudan Liao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Lei Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Ting Hu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xueli Pan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
3
|
Xu J, Zhang B, Liu X, Du P, Wang W, Zhang C. Curcumin mitigates sodium fluoride toxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117372. [PMID: 39603217 DOI: 10.1016/j.ecoenv.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Fluoride, a naturally occurring element found in water, soil, food, and atmospheric precipitation, can lead to fluorosis and various health issues when consumed excessively. However, the mechanism of fluorosis is still under investigation. This study utilizes Caenorhabditis elegans as a model organism to investigate the effects of fluoride exposure on biological systems and to explore the mechanisms by which curcumin mitigates fluoride-induced toxicity. Three groups were established: a blank control, a sodium fluoride (NaF) exposure group (concentration 5 mmol/L), and a curcumin intervention group (concentration 25 μmol/L). Physiological parameters, lipofuscin levels, intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential, and mitochondrial copy numbers were measured to assess the effects of fluoride toxicity and curcumin protection. RNA-seq and qRT-PCR were utilized to investigate the molecular mechanisms underlying fluoride-induced damage and curcumin's mitigating effects. Results indicated that fluoride-exposed nematodes displayed physiological abnormalities, increased ROS production, higher lipofuscin levels, altered mitochondrial membrane potential and mitochondrial copy number, and activated MAPK signaling pathway genes. Curcumin exhibited protective effects on these parameters, suggesting its potential in preventing fluoride-induced harm by modulating oxidative stress and preserving mitochondrial function. This research enhances our understanding of the mechanisms of fluoride toxicity and highlights the potential benefits of curcumin.
Collapse
Affiliation(s)
- Jianing Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Rehabilitation, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Boning Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pengyun Du
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chenggang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
4
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
5
|
Zhang Y, Gao Y, Liu X. Focus on cognitive impairment induced by excessive fluoride: An update review. Neuroscience 2024; 558:22-29. [PMID: 39137871 DOI: 10.1016/j.neuroscience.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Fluorosis is a global public health concern. Prolonged exposure to excessive fluoride causes fluoride accumulation in the hippocampus, resulting in cognitive dysfunction. Cell death is necessary for maintaining tissue function and morphology, and changes in the external morphology of nerve cells and the function of many internal organelles are typical features of cell death; however, it is also a typical feature of cognitive impairment caused by fluorosis. However, the pathogenesis of cognitive impairment caused by different degrees of fluoride exposure varies. Herein, we provide an overview of cognitive impairment caused by excessive fluoride exposure in different age groups, and the underlying mechanisms for cognitive impairment in various model organisms. The mechanisms underlying these impairments include oxidative stress, synaptic and neurotransmission dysfunction, disruption of mitochondrial and energy metabolism, and calcium channel dysregulation. This study aims to provide potential insights that serve as a reference for subsequent research on the cognitive function caused by excessive fluoride.
Collapse
Affiliation(s)
- Yuhang Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
6
|
Lee WS, Kim JH, Han B, Lee GC, Jung HR, Shin YJ, Ha EK, Lee E, Lee S, Han MY. Association of fluoride exposure with disease burden and neurodevelopment outcomes in children in South Korea. World J Pediatr 2024; 20:1029-1042. [PMID: 38937407 DOI: 10.1007/s12519-024-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Community water fluoridation is an effective public health strategy for preventing dental caries, yet. Concerns exist about potential health problems. This study explores associations between tap water fluoride levels and pediatric disease burden, as well as neurodevelopmental outcomes at 6 years of age. METHODS This nationwide population-based cohort study included children born in Korean cities with and without tap water fluoridation projects, between 2006 and 2012, aiming for a fluoride concentration of 0.8 ± 0.2 mg/L in treated tap water. Data from the National Health Insurance Service were used, spanning from birth to 2018. The relationship between exposure to fluoridated tap water and incidence of 16 childhood diseases that were previously identified as potentially linked to fluoride exposure were examined. Additionally, we evaluated the neurodevelopmental outcomes across various domains, including gross motor, fine motor, cognition, language, social skills, and self-help functions. These assessments were performed using data from a comprehensive national health screening program for children aged six years. RESULTS A fluoride-unexposed group included 22,881 children, whereas a fluoride-exposed group comprised 29,991 children (52% males). Children in the fluoride-exposed group had a decreased risk of dental caries and bone fractures [hazard ratio (95% confidence interval, CI), 0.76 (0.63-0.93) and 0.89 (0.82-0.93), respectively] and increased risk of hepatic failures [1.85, (1.14-2.98)] compared to those in the unexposed group. Additionally, the risk ratio of abnormal neurodevelopmental screening outcomes increased by 9%, but this was statistically uncertain (95% CI, 0.95-1.26). CONCLUSIONS Fluoridated tap water was associated with an increased risk of hepatic failure but a decreased risk of bone fractures in children. The association between fluoridated tap water and neurodevelopmental screening outcomes at 6 years remains unclear, highlighting the need for further studies to clarify this association.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Boeun Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
- Multi-Omics Research Center, CHA Future Medicine Research Institute, Seongnam, Republic of Korea
| | - Gi Chun Lee
- Department of Computer Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hye Ri Jung
- School of Medicine, CHA University, Pocheon, Republic of Korea
| | - Ye Jin Shin
- School of Medicine, CHA University, Pocheon, Republic of Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
7
|
Bibi S, Kerbiriou C, Uzma, Mckirdy S, Kostrytsia A, Rasheed H, Eqani SAMAS, Gerasimidis K, Nurulain SM, Ijaz UZ. Gut microbiome and function are altered for individuals living in high fluoride concentration areas in Pakistan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116959. [PMID: 39232295 DOI: 10.1016/j.ecoenv.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern. OBJECTIVES Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected to adverse health outcomes prevailing with fluoride exposure. METHODS Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain fatty acids (SCFAs) quantification were carried out. RESULTS The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse health effects. CONCLUSIONS Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of metabolic deregulation and is implicated in various diseases. Our results may form the development of novel interventions and may have utility in diagnosis and monitoring.
Collapse
Affiliation(s)
- Sara Bibi
- Department of Biosciences, COMSATS University Islamabad, 45550, Pakistan; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Caroline Kerbiriou
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Uzma
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Shona Mckirdy
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Anastasiia Kostrytsia
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources (PCRWR), Islamabad, Pakistan
| | | | | | | | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK; National University of Ireland, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
8
|
Kong H, He Z, Li H, Xing D, Lin J. The Association between Fluoride and Bone Mineral Density in US Children and Adolescents: A Pilot Study. Nutrients 2024; 16:2948. [PMID: 39275266 PMCID: PMC11397378 DOI: 10.3390/nu16172948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this study was to examine the association between fluoride exposure and bone mineral density (BMD) in children and adolescents. We used data from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. The fluoride concentrations in the water samples, plasma samples, and urine samples were measured electrometrically using an ion-specific electrode. Total body less head BMD (TBLH BMD) was measured using dual-energy X-ray absorptiometry (DXA). Weighted generalized linear regression models and restricted cubic splines (RCS) regression models were used to analyze the relationships between the three types of fluoride exposure and TBLH BMD. We performed subgroup analyses stratified by sex. A total of 1413 US children and adolescents were included in our study. In our linear regression models, we found inverse associations between fluoride concentrations in water and plasma and TBLH BMD. Additionally, we discovered a non-linear association between fluoride concentrations in water and plasma and TBLH BMD. No significant association or non-linear relationship was found between urine fluoride levels and TBLH BMD. This nationally representative sample study provides valuable insight into the intricate connection between fluoride exposure and skeletal health in children and adolescents.
Collapse
Affiliation(s)
- Haichen Kong
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Zihao He
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Hui Li
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianhao Lin
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| |
Collapse
|
9
|
Ali S, Mehri F, Nasiri R, Limam I, Fakhri Y. Fluoride in Raw Rice (Oryza sativa): a Global Systematic Review and Probabilistic Health Risk Assessment. Biol Trace Elem Res 2024; 202:4324-4333. [PMID: 38103108 DOI: 10.1007/s12011-023-04004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Rice (Oryza sativa) is one of the essential staple foods highly consumed globally, with nearly 40% to 45% of the global population estimated to consume rice. Therefore, consumable rice should have low levels of harmful elements. This study investigates fluoride (F¯) content in raw rice (uncooked rice) and evaluates Probabilistic Health Risk Assessment (PHRA) through Monte Carlo simulation (MCS) due to the consumption of F¯ enriched rice. The literature review reveals that limited studies have been conducted on the investigation of F¯ in raw rice. The fluoride (F¯) concentration in raw rice varies across the studied countries, indicating the need for additional studies to facilitate a more accurate comparison. The F¯ content in raw rice varied among the studied countries, making it difficult to definitively state that the concentration of F¯ in one country is higher. However, the concentration of F¯ in raw rice in India is notably elevated. This study also highlighted the importance of investigating the F¯ content in raw rice. The study will be highly helpful for policymakers to formulate guidelines for water used for irrigation.
Collapse
Affiliation(s)
- Shakir Ali
- Department of Geology, University of Delhi, Delhi, 110007, India
- CAWTM, MRIIRS, Sector 43, Faridabad, Haryana, 121004, India
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasul Nasiri
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
10
|
Liu S, Yu X, Xing Z, Ding P, Cui Y, Liu H. The Impact of Exposure to Iodine and Fluorine in Drinking Water on Thyroid Health and Intelligence in School-Age Children: A Cross-Sectional Investigation. Nutrients 2024; 16:2913. [PMID: 39275229 PMCID: PMC11397114 DOI: 10.3390/nu16172913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Iodine and fluorine, as halogen elements, are often coexisting in water environments, with nearly 200 million people suffering from fluorosis globally, and, in 11 countries and territories, adolescents have iodine intakes higher than that required for the prevention of iodine deficiency disorders. It has been suggested that excess iodine and/or fluorine can affect thyroid health and intellectual development, especially in children, but their combined effect has been less studied in this population. This study investigated 399 school-age children in Tianjin, China, collected drinking water samples from areas where the school-age children lived, and grouped the respondents according to iodine and fluorine levels. Thyroid health was measured using thyroid hormone levels, thyroid volume, and the presence of thyroid nodules; intelligence quotient (IQ) was assessed using the Raven's Progressive Matrices (CRT) test; and monoamine neurotransmitter levels were used to explore the potential relationship between thyroid health and intelligence. Multiple linear regression and restricted cubic spline (RCS) analyses showed that iodine and fluorine were positively correlated with thyroid volume and the incidence of thyroid nodules in school-age children, and negatively correlated with IQ; similar results were obtained in the secondary subgroups based on urinary iodine and urinary fluoride levels. Interaction analyses revealed a synergistic effect of iodine and fluorine. A pathway analysis showed that iodine and fluorine were negatively associated with the secretion of free triiodothyronine (FT3) and free tetraiodothyronine (FT4), which in turn were negatively associated with the secretion of thyroid-stimulating hormone (TSH). Iodine and fluorine may affect IQ in school-aged children through the above pathways that affect thyroid hormone secretion; of these, FT3 and TSH were negatively correlated with IQ, whereas FT4 was positively correlated with IQ. The relationship between thyroid hormones and monoamine neurotransmitters may involve the hypothalamic-pituitary-thyroid axis, with FT4 hormone concentrations positively correlating with dopamine (DA), norepinephrine (NE), and 5-hydroxytryptophan (5-HT) concentrations, and FT3 hormone concentrations positively correlating with DA concentrations. Monoamine neurotransmitters may play a mediating role in the effects of iodine and fluoride on intelligence in schoolchildren. However, this study has some limitations, as the data were derived from a cross-sectional study in Tianjin, China, and no attention was paid to the reciprocal effects of iodine and fluorine at different doses on thyroid health and intelligence in schoolchildren in other regions.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaomeng Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Institute of Medicine Science, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Zhilei Xing
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Peisen Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yushan Cui
- Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Hongliang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
11
|
Veneri F, Filippini T, Consolo U, Vinceti M, Generali L. Ozone therapy in dentistry: An overview of the biological mechanisms involved (Review). Biomed Rep 2024; 21:115. [PMID: 38912169 PMCID: PMC11190636 DOI: 10.3892/br.2024.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
At low medically-relevant concentrations, ozone serves as an oxidant with a wide spectrum of antimicrobial activity and the ability to promote healing and reduce inflammation. Despite providing therapeutic benefits in a range of diseases, certain adverse effects and contraindications of ozone treatment must be considered. These are primarily related to toxicity from inhalation and systemic types of administration and can be avoided by following relevant guidelines and recommendations. Ozone therapy has been implemented in a number of fields of dentistry and the most commonly used formulations for the oral cavity are gaseous ozone, ozonized water and ozonized oil. The biological mechanisms underlying the molecular effects of ozone have been increasingly reported, but currently remain largely unknown. The aim of the present review was to provide an overview of the mechanisms involved in ozone interaction with dental tissues. The present review focused on relevant evidence regarding the effect of ozone on dental tissues, including periodontal structures, dental cells, enamel and dentine, considering in vitro studies in addition to animal and human studies. A variety of biological mechanisms acting through multiple biochemical target pathways were reported to be responsible for the therapeutic effects of ozone. The main beneficial effects of ozone occurred in the following domains: antimicrobial activity, remineralization and microstructural changes of hard dental tissues, immunomodulation and biostimulation of dental and periodontal cells. Additional research could provide further insights into the use of ozone, increase its use for broader clinical applications and assist in the selection of targeted protocols.
Collapse
Affiliation(s)
- Federica Veneri
- Unit of Dentistry and Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, I-41124 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Ugo Consolo
- Unit of Dentistry and Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Luigi Generali
- Unit of Dentistry and Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| |
Collapse
|
12
|
Cecchini M, Filippini T, Whelton PK, Iamandii I, Di Federico S, Boriani G, Vinceti M. Alcohol Intake and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Nonexperimental Cohort Studies. Hypertension 2024; 81:1701-1715. [PMID: 38864208 PMCID: PMC11251509 DOI: 10.1161/hypertensionaha.124.22703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND Alcohol consumption has been associated with higher blood pressure and an increased risk of hypertension. However, the possible exposure thresholds and effect-modifiers are uncertain. METHODS We assessed the dose-response relationship between usual alcohol intake and hypertension incidence in nonexperimental cohort studies. After performing a systematic literature search through February 20, 2024, we retrieved 23 eligible studies. We computed risk ratios and 95% CI of hypertension incidence using a nonlinear meta-analytic model based on restricted cubic splines, to assess the dose-response association with alcohol consumption. RESULTS We observed a positive and almost linear association between alcohol intake and hypertension risk with risk ratios of 0.89 (0.84-0.94), 1.11 (1.07-1.15), 1.22 (1.14-1.30), and 1.33 (1.18-1.49) for 0, 24, 36 and 48 g/d, respectively, using 12 g alcohol/d as the reference value. In sex-specific analyses, the association was almost linear in men over the entire range of exposure but only observed above 12 g/d in women, although with a steeper association at high levels of consumption compared with men. The increased risk of hypertension above 12 to 24 g alcohol/d was similar in Western and Asian populations and considerably greater in White than in Black populations, mainly due to the positive association in women at moderate-to-high intake. CONCLUSIONS Overall, our results lend support to a causal association between alcohol consumption and risk of hypertension, especially above an alcohol intake of 12 g/d, and are consistent with recommendations to avoid or limit alcohol intake. Sex and ethnicity appear to be major effect-modifiers of such association.
Collapse
Affiliation(s)
- Marta Cecchini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (M.C., T.F., I.I., S.D.F., M.V.), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (M.C., T.F., I.I., S.D.F., M.V.), University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA (T.F.)
| | - Paul K. Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (P.K.W.)
| | - Inga Iamandii
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (M.C., T.F., I.I., S.D.F., M.V.), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Di Federico
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (M.C., T.F., I.I., S.D.F., M.V.), University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Boriani
- Unit of Cardiology, Department of Biomedical, Metabolic and Neural Sciences (G.B.), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (M.C., T.F., I.I., S.D.F., M.V.), University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA (M.V.)
| |
Collapse
|
13
|
Tuomivaara ST, Fisher SJ, Hall SC, Goin DE, Mattis AN, Den Besten PK. Fluoride-related changes in the fetal cord blood proteome; a pilot study. Environ Health 2024; 23:66. [PMID: 39044276 PMCID: PMC11267808 DOI: 10.1186/s12940-024-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Fluoride exposure during pregnancy has been associated with various effects on offspring, including changes in behavior and IQ. To provide clues to possible mechanisms by which fluoride may affect human fetal development, we completed proteomic analyses of cord blood serum collected from second-trimester pregnant women residing in northern California, USA. OBJECTIVE To identify changes in cord blood proteins associated with maternal serum fluoride concentration in pregnant women. METHODS The proteomes of 19 archived second-trimester cord blood samples from women living in northern California, USA, and having varied serum fluoride concentrations, were analyzed by quantitative mass spectrometry. The 327 proteins that were quantified were characterized by their abundance relative to maternal serum fluoride concentration, and subjected to pathway analyses using PANTHER and Ingenuity Pathway Analysis processes. RESULTS Pathway analyses showed significant increases in process related to reactive oxygen species and cellular oxidant detoxification, associated with increasing maternal serum fluoride concentrations. Pathways showing significant decreases included complement cascade, suggesting alterations in alterations in process associated with inflammation. CONCLUSION Maternal fluoride exposure, as measured by serum fluoride concentrations in a small, but representative sample of women from northern California, USA, showed significant changes in the second trimester cord blood proteome relative to maternal serum fluoride concentration.
Collapse
Affiliation(s)
- Sami T Tuomivaara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Translational Research in Perinatal Biology and Medicine, University of California, San Francisco, CA, USA
| | - Steven C Hall
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Dana E Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Aras N Mattis
- Department of Pathology, University of Californa, San Francisco, CA, USA
| | - Pamela K Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
| |
Collapse
|
14
|
Malin AJ, Eckel SP, Hu H, Martinez-Mier EA, Hernandez-Castro I, Yang T, Farzan SF, Habre R, Breton CV, Bastain TM. Maternal Urinary Fluoride and Child Neurobehavior at Age 36 Months. JAMA Netw Open 2024; 7:e2411987. [PMID: 38767917 PMCID: PMC11107298 DOI: 10.1001/jamanetworkopen.2024.11987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 05/22/2024] Open
Abstract
Importance Recent studies in Canadian and Mexican populations suggest an association of higher prenatal fluoride exposure with poorer neurobehavioral development, but whether this association holds for US-based populations is unknown. Objective To examine associations of third trimester maternal urinary fluoride (MUF) with child neurobehavior at age 3 years in the US. Design, Setting, and Participants This prospective cohort study utilized urine samples archived from 2017 to 2020 and neurobehavioral data assessed from 2020 to 2023 from the Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) pregnancy cohort, which consisted of predominately Hispanic women residing in Los Angeles, California. Cohort eligibility criteria at recruitment included being 18 years of age or older, less than 30 weeks' gestation, and a fluent English or Spanish speaker. Exclusion criteria included having a disability preventing participation or provision of informed consent, being HIV positive or incarcerated, and having a multiple gestation pregnancy. There were 263 mother-child pairs who completed the 3-year study visit. In this analysis, women who reported prenatal smoking were excluded. Data analysis was conducted from October 2022 to March 2024. Exposure Specific gravity-adjusted MUF (MUFSG), a biomarker of prenatal fluoride exposure. Main Outcomes and Measures Neurobehavior was quantified using the Preschool Child Behavior Checklist (CBCL), which included composite scores for Total Problems, Internalizing Problems, and Externalizing Problems. CBCL composite T scores range from 28 to 100. T scores from 60 to 63 are in the borderline clinical range, whereas scores above 63 are in the clinical range. Linear and logistic regression models adjusted for covariates were conducted. Results A total of 229 mother-child pairs (mean [SD] maternal age, 29.45 [5.67] years; 116 female children [50.7%] and 113 male children [49.3%]) who had MUFSG measured were included in the study. Median (IQR) MUFSG was 0.76 (0.51-1.19) mg/L, and 32 participants (14.0%) had a Total Problems T score in the borderline clinical or clinical range. A 1-IQR (0.68 mg/L) increase in MUFSG was associated with nearly double the odds of the Total Problems T score being in the borderline clinical or clinical range (odds ratio, 1.83; 95% CI, 1.17-2.86; P = .008), as well as with a 2.29-point increase in T score for the Internalizing Problems composite (B = 2.29; 95% CI, 0.47-4.11; P = .01) and a 2.14-point increase in T score for the Total Problems composite (B = 2.14; 95% CI, 0.29-3.98; P = .02). Conclusions and Relevance In this prospective cohort study of mother-child pairs in Los Angeles, California, prenatal fluoride exposure was associated with increased neurobehavioral problems. These findings suggest that there may be a need to establish recommendations for limiting fluoride exposure during the prenatal period.
Collapse
Affiliation(s)
- Ashley J. Malin
- Department of Epidemiology, College of Public Health and Health Professions University of Florida, Gainesville
- College of Medicine, University of Florida, Gainesville
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - E. Angeles Martinez-Mier
- Department of Dental Public Health and Dental Informatics, School of Dentistry, Indiana University, Indianapolis
| | - Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| |
Collapse
|
15
|
Verzelloni P, Urbano T, Wise LA, Vinceti M, Filippini T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123462. [PMID: 38295933 DOI: 10.1016/j.envpol.2024.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exposure to toxic metals is a global public health threat. Among other adverse effects, exposure to the heavy metal cadmium has been associated with greater risk of cardiovascular disease (CVD). Nonetheless, the shape of the association between cadmium exposure and CVD risk is not clear. This systematic review summarizes data on the association between cadmium exposure and risk of CVD using a dose-response approach. We carried out a literature search in PubMed, Web of Science, and Embase from inception to December 30, 2023. Inclusion criteria were: studies on adult populations, assessment of cadmium exposure, risk of overall CVD and main CVD subgroups as endpoints, and observational study design (cohort, cross-sectional, or case-control). We retrieved 26 eligible studies published during 2005-2023, measuring cadmium exposure mainly in urine and whole blood. In a dose-response meta-analysis using the one-stage method within a random-effects model, we observed a positive association between cadmium exposure and risk of overall CVD. When using whole blood cadmium as a biomarker, the association with overall CVD risk was linear, yielding a risk ratio (RR) of 2.58 (95 % confidence interval-CI 1.78-3.74) at 1 μg/L. When using urinary cadmium as a biomarker, the association was linear until 0.5 μg/g creatinine (RR = 2.79, 95 % CI 1.26-6.16), after which risk plateaued. We found similar patterns of association of cadmium exposure with overall CVD mortality and risks of heart failure, coronary heart disease, and overall stroke, whereas for ischemic stroke there was a positive association with mortality only. Overall, our results suggest that cadmium exposure, whether measured in urine or whole blood, is associated with increased CVD risk, further highlighting the importance of reducing environmental pollution from this heavy metal.
Collapse
Affiliation(s)
- Pietro Verzelloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Teresa Urbano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Veneri F, Filippini T, Consolo U, Vinceti M, Generali L. Ozone Treatment for the Management of Caries in Primary Dentition: A Systematic Review of Clinical Studies. Dent J (Basel) 2024; 12:69. [PMID: 38534293 DOI: 10.3390/dj12030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Dental caries in children is a frequent and debilitating condition, whose management is often challenging. The aim of this systematic review was to investigate the effectiveness of ozone applications for the treatment of caries in primary dentition. According to PRISMA guidelines, a systematic literature search was performed up to 6 January 2024. Clinical studies using ozone to treat caries of deciduous teeth were considered for inclusion. Out of the 215 records retrieved, seven studies were eventually included in the review, all of which used gaseous ozone. Four studies were judged at high risk of bias, two at low risk, and one of some concerns. The great heterogeneity of designs, outcomes, and protocols made it impossible to conduct a meta-analysis. Despite some limitations, the evidence yielded by the included studies suggests that ozone application, regardless of the protocol applied, is comparable to other interventions in terms of clinical outcomes and anti-bacterial activity, with no reported adverse effects and good patient acceptance. Therefore, ozone application may be a non-invasive approach to treat caries in primary dentition, especially in very young and poorly cooperative patients. Further standardized and rigorous studies are, however, needed to identify the best clinical protocols for this specific field.
Collapse
Affiliation(s)
- Federica Veneri
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Ugo Consolo
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Luigi Generali
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
17
|
Urbano T, Filippini T, Malavolti M, Fustinoni S, Michalke B, Wise LA, Vinceti M. Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet and exposure to selenium species: A cross-sectional study. Nutr Res 2024; 122:44-54. [PMID: 38150803 DOI: 10.1016/j.nutres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Selenium is a trace element found in many chemical forms. Selenium and its species have nutritional and toxicologic properties, some of which may play a role in the etiology of neurological disease. We hypothesized that adherence to the Mediterranean-Dietary Approach to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet could influence intake and endogenous concentrations of selenium and selenium species, thus contributing to the beneficial effects of this dietary pattern. We carried out a cross-sectional study of 137 non-smoking blood donors (75 females and 62 males) from the Reggio Emilia province, Northern Italy. We assessed MIND diet adherence using a semiquantitative food frequency questionnaire. We assessed selenium exposure through dietary intake and measurement of urinary and serum concentrations, including speciation of selenium compound in serum. We fitted non-linear spline-based regression models to investigate the association between MIND diet adherence and selenium exposure concentrations. Adherence to the MIND diet was positively associated with dietary selenium intake and urinary selenium excretion, whereas it was inversely associated with serum concentrations of overall selenium and organic selenium, including serum selenoprotein P-bound selenium, the most abundant circulating chemical form of the metalloid. MIND diet adherence also showed an inverted U-shaped relation with inorganic selenium and particularly with its hexavalent form, selenate. Our results suggest that greater adherence to the MIND diet is non-linearly associated with lower circulating concentrations of selenium and of 2 potentially neurotoxic species of this element, selenoprotein P and selenate. This may explain why adherence to the MIND dietary pattern may reduce cognitive decline.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Iamandii I, De Pasquale L, Giannone ME, Veneri F, Generali L, Consolo U, Birnbaum LS, Castenmiller J, Halldorsson TI, Filippini T, Vinceti M. Does fluoride exposure affect thyroid function? A systematic review and dose-response meta-analysis. ENVIRONMENTAL RESEARCH 2024; 242:117759. [PMID: 38029816 DOI: 10.1016/j.envres.2023.117759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Fluoride exposure may have various adverse health effects, including affecting thyroid function and disease risk, but the pattern of such relation is still uncertain. METHODS We systematically searched human studies assessing the relation between fluoride exposure and thyroid function and disease. We compared the highest versus the lowest fluoride category across these studies, and we performed a one-stage dose-response meta-analysis for aggregated data to explore the shape of the association. RESULTS Most retrieved studies (27 of which with a cross-sectional design) were conducted in Asia and in children, assessing fluoride exposure through its concentrations in drinking water, urine, serum, or dietary intake. Twenty-four studies reported data on thyroid function by measuring thyroid-related hormones in blood (mainly thyroid-stimulating-hormone - TSH), 9 reported data on thyroid disease, and 4 on thyroid volume. By comparing the highest versus the lowest fluoride categories, overall mean TSH difference was 1.05 μIU/mL. Dose-response curve showed no change in TSH concentrations in the lowest water fluoride exposure range, while the hormone levels started to linearly increase around 2.5 mg/L, also dependending on the risk of bias of the included studies. The association between biomarkers of fluoride exposure and TSH was also positive, with little evidence of a threshold. Evidence for an association between fluoride exposure and blood concentrations of thyroid hormones was less evident, though there was an indication of inverse association with triiodothyronine. For thyroid disease, the few available studies suggested a positive association with goiter and with hypothyroidism in both children and adults. CONCLUSIONS Overall, exposure to high-fluoride drinking water appears to non-linearly affect thyroid function and increase TSH release in children, starting above a threshold of exposure, and to increase the risk of some thyroid diseases.
Collapse
Affiliation(s)
- Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lisa De Pasquale
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Edvige Giannone
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy; PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jacqueline Castenmiller
- Office for Risk Assessment & Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Thorhallur I Halldorsson
- Department of Epidemiology Research, Centre for Fetal Programming, Copenhagen, Denmark; Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
19
|
Villoz F, Filippini T, Ortega N, Kopp-Heim D, Voortman T, Blum MR, Del Giovane C, Vinceti M, Rodondi N, Chocano-Bedoya PO. Dairy Intake and Risk of Cognitive Decline and Dementia: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2024; 15:100160. [PMID: 38043604 PMCID: PMC10788406 DOI: 10.1016/j.advnut.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Dairy intake may influence cognition through several molecular pathways. However, epidemiologic studies yield inconsistent results, and no dose-response meta-analysis has been conducted yet. Therefore, we performed a systematic review with a dose-response meta-analysis about the association between dairy intake and cognitive decline or incidence of dementia. We investigated prospective studies with a follow-up ≥6 mo on cognitive decline or dementia incidence in adults without known chronic conditions through a systematic search of Embase, Medline, Cochrane Library, Web of Science, and Google Scholar from inception to 11 July 2023. We evaluated the dose-response association using a random-effects model. We identified 15 eligible cohort studies with >300,000 participants and a median follow-up of 11.4 y. We observed a negative nonlinear association between cognitive decline/dementia incidence and dairy intake as assessed through the quantity of consumption, with the nadir at ∼150 g/d (risk ratio: 0.88; 95% confidence interval: 0.78, 0.99). Conversely, we found an almost linear negative association when we considered the frequency of consumption (risk ratio for linear trend: 0.84; 95% confidence interval: 0.77, 0.92 for 1 time/d increase of dairy products). Stratified analysis by dairy products showed different shapes of the association with linear inverse relationship for milk intake, whereas possibly nonlinear for cheese. The inverse association was limited to Asian populations characterized by generally lower intake of dairy products, compared with the null association reported by European studies. In conclusion, our study suggests a nonlinear inverse association between dairy intake and cognitive decline or dementia, also depending on dairy types and population characteristics, although the heterogeneity was still high in overall and several subgroup analyses. Additional studies should be performed on this topic, including a wider range of intake and types of dairy products, to confirm a potential preventing role of dairy intake on cognitive decline and identify ideal intake doses. This review was registered at PROSPERO as CRD42020192395.
Collapse
Affiliation(s)
- Fanny Villoz
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tommaso Filippini
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Natalia Ortega
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Doris Kopp-Heim
- Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Manuel R Blum
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland; Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patricia O Chocano-Bedoya
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
20
|
Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T. Fluoride Exposure and Skeletal Fluorosis: a Systematic Review and Dose-response Meta-analysis. Curr Environ Health Rep 2023; 10:417-441. [PMID: 37861949 DOI: 10.1007/s40572-023-00412-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW We performed a systematic review and meta-analysis on the relation between fluoride exposure and skeletal fluorosis (SF) using a novel statistical methodology for dose-response modeling. RECENT FINDINGS Skeletal fluorosis, a major health issue that is endemic in some regions, affects millions of people worldwide. However, data regarding the dose-response relation between fluoride exposure and SF are limited and outdated. We included twenty-three studies in the meta-analysis. When comparing the highest versus the lowest fluoride category, the summary risk ratio (RR) for SF prevalence was 2.05 (95% CI 1.60; 2.64), with a value of 2.73 (95% CI 1.92; 3.90) for drinking water and 1.40 (95% CI 0.90; 2.17) for urinary fluoride. The RR by the risk of bias (RoB) was 2.37 (95% CI 1.56; 3.58) and 1.78 (95% CI 1.34; 2.36) for moderate and high RoB studies, respectively. The dose-response curve based on a one-stage cubic spline regression model showed an almost linear positive relation between exposure and SF occurrence starting from relatively low concentrations up to 5 mg/L and 2.5 mg/L, respectively, for water and urinary fluoride, with no substantial increase above this threshold. The RR for developing moderate-severe forms increases at 5.00 mg/L and 2.5 mg/L of water and urinary fluoride, respectively. Better-quality studies are needed to confirm these results, but greater attention should be given to water fluoride levels to prevent SF, in addition to the other potential adverse effects of fluoride exposure.
Collapse
Affiliation(s)
- Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02215, USA.
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
21
|
Wang L, Zhang Y, Wang L, Cheng Y, Yuan D, Zhai J, Xie X. Near-Infrared Fluoride Sensing Nano-Optodes and Distance-Based Hydrogels Containing Aluminum-Phthalocyanine. ACS Sens 2023; 8:4384-4390. [PMID: 37963263 DOI: 10.1021/acssensors.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Fluoride ions are highly relevant in environmental and biological sciences, and there is a very limited number of established fluoride chemical sensors. Previous fluoride-selective optodes were demonstrated with metal-porphyrin as the ionophore and required a chromoionophore for optical signal transduction. We demonstrate here novel optical fluoride sensing with nano-optodes containing an aluminum-phthalocyanine complex (AlClPc) as the single active sensing component, simplifying the conventional ion-selective optodes approach. The fluoride nano-optodes were interrogated in the absorbance and fluorescence modes in the near-infrared region, with absorption around 725 nm and emission peaks at 720 and 800 nm, respectively. The nano-optodes exhibited a lower detection limit around 0.1 μM and good selectivity over a range of common anions including ClO4-, Cl-, Br-, I-, SO42-, NO3-, and AcO-. Furthermore, the nano-optodes were physically entrapped in agarose hydrogels to allow distance-based point-of-care testing (POCT) applications. The 3D networks of the agarose hydrogel were able to filter off large particulates in the samples without stopping fluoride ions to reach the nano-optodes. The fluoride concentrations in real samples including river water, mineral water, and groundwater were successfully determined with the distance-based sensing hydrogel, and the results agreed well with those from commercial fluoride electrodes. Therefore, the results in this work lay the groundwork for the optical detection of fluoride in environmental samples without very sophisticated sample manipulation.
Collapse
Affiliation(s)
- Lanfei Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Liyuan Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dajing Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Hung M, Mohajeri A, Chiang J, Park J, Bautista B, Hardy C, Lipsky MS. Community Water Fluoridation in Focus: A Comprehensive Look at Fluoridation Levels across America. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7100. [PMID: 38063530 PMCID: PMC10706776 DOI: 10.3390/ijerph20237100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Objective: This study reports on the number and percentage of community water systems (CWSs) meeting fluoride concentration standards set by the U.S. Department of Health and Human Services (DHHS). The study also explored changes in the population exposed to optimally fluoridated water in these systems between 2006 and 2020. Methods: This study analyzed U.S. Centers for Disease Control and Prevention data from 2006 to 2020, tabulating state-specific CWS fluoridation rates, ranking them, and calculating the percent change. Results: In 2020, 72.7% of the US population received CWS water, with 62.9% of those individuals served by a CWS system meeting DHHS fluoridation standards. This compares to 69.2% receiving CWS water in 2006 and 74.6% in 2012. The overall change in those receiving fluoridated water was 1.4%, from 61.5% in 2006 to 62.9% in 2020. State-specific percentages ranged from 8.5% in Hawaii to 100% in Washington DC in 2020 (median: 76.4%). Conclusions: Although endorsed by the American Dental Association, the percentage of individuals receiving fluoridated water did not increase substantially from 2006 to 2020, indicating that there has not been much progress toward meeting the Healthy People 2030 goal that 77.1% of Americans receive water with enough fluoride to prevent tooth decay.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
- College of Social Work, University of Utah, Salt Lake City, UT 84112, USA
- Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Jody Chiang
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Jungweon Park
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Beatrice Bautista
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Chase Hardy
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- College of Dentistry, University of Texas Health Sciences, San Antonio, TX 78253, USA
| | - Martin S. Lipsky
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Institute on Aging, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
23
|
Mathur M, Rawat N, Saxena T, Khandelwal R, Jain N, Sharma MK, Mohan MK, Bhatnagar P, Flora SJS, Kaushik P. Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1. TOXICS 2023; 11:945. [PMID: 37999597 PMCID: PMC10675054 DOI: 10.3390/toxics11110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Fluoride (F) and arsenic (As) are two major contaminants of water and soil systems around the globe, causing potential toxicity to humans, plants, animals, and microbes. These contaminated soil systems can be restored by microorganisms that can tolerate toxic stress and provide rapid mineralization of soil, organic matter, and contaminants, using various tolerance mechanisms. Thus, the present study was undertaken with the arsenic hyper-tolerant bacterium Microbacterium paraoxydans strain IR-1 to determine its tolerance and toxicity to increasing doses of fluoride, either individually or in combination with arsenic, in terms of growth inhibition using a toxicity unit model. The minimum inhibitory concentration (MIC)and half maximal inhibitory concentration (IC50) values for fluoride increased, from 9 g/L to 11 g/L and from 5.91 ± 0.1 g/L to 6.32 ± 0.028 g/L, respectively, in the combination (F + As) group. The statistical comparison of observed and expected additive toxicities, with respect to toxicity unit (TU difference), using Student's t-test, was found to be highly significant (p < 0.001). This suggests the antagonistic effect of arsenic on fluoride toxicity to the strain IR-1. The unique stress tolerance of IR-1 ensures its survival as well as preponderance in fluoride and arsenic co-contaminated sites, thus paving the way for its possible application in the natural or artificial remediation of toxicant-exposed degraded soil systems.
Collapse
Affiliation(s)
- Megha Mathur
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi 110016, India;
| | - Neha Rawat
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Tanushree Saxena
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Renu Khandelwal
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Neha Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Mukesh K. Sharma
- Department of Zoology, S.P.C., Government College, Ajmer 305001, India
| | - Medicherla K. Mohan
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, C Scheme, Jaipur 302001, India;
| | - Pradeep Bhatnagar
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Swaran J. S. Flora
- National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Pallavi Kaushik
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
24
|
Di Federico S, Filippini T, Whelton PK, Cecchini M, Iamandii I, Boriani G, Vinceti M. Alcohol Intake and Blood Pressure Levels: A Dose-Response Meta-Analysis of Nonexperimental Cohort Studies. Hypertension 2023; 80:1961-1969. [PMID: 37522179 PMCID: PMC10510850 DOI: 10.1161/hypertensionaha.123.21224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Alcohol consumption may increase blood pressure but the details of the relationship are incomplete, particularly for the association at low levels of alcohol consumption, and no meta-analyses are available for nonexperimental cohort studies. METHODS We performed a systematic search of longitudinal studies in healthy adults that reported on the association between alcohol intake and blood pressure. Our end points were the mean differences over time of systolic (SBP) and diastolic blood pressure (DBP), plotted according to baseline alcohol intake, by using a dose-response 1-stage meta-analytic methodology. RESULTS Seven studies, with 19 548 participants and a median follow-up of 5.3 years (range, 4-12 years), were included in the analysis. We observed a substantially linear positive association between baseline alcohol intake and changes over time in SBP and DBP, with no suggestion of an exposure-effect threshold. Overall, average SBP was 1.25 and 4.90 mm Hg higher for 12 or 48 grams of daily alcohol consumption, compared with no consumption. The corresponding differences for DBP were 1.14 and 3.10 mm Hg. Subgroup analyses by sex showed an almost linear association between baseline alcohol intake and SBP changes in both men and women, and for DBP in men while in women we identified an inverted U-shaped association. Alcohol consumption was positively associated with blood pressure changes in both Asians and North Americans, apart from DBP in the latter group. CONCLUSIONS Our results suggest the association between alcohol consumption and SBP is direct and linear with no evidence of a threshold for the association, while for DBP the association is modified by sex and geographic location.
Collapse
Affiliation(s)
- Silvia Di Federico
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (S.D.F., T.F., M.C., I.I., M.V.), University of Modena and Reggio Emilia, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (S.D.F., T.F., M.C., I.I., M.V.), University of Modena and Reggio Emilia, Italy
- School of Public Health, University of California Berkeley, CA (T.F.)
| | - Paul K. Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (P.K.W.)
| | - Marta Cecchini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (S.D.F., T.F., M.C., I.I., M.V.), University of Modena and Reggio Emilia, Italy
| | - Inga Iamandii
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (S.D.F., T.F., M.C., I.I., M.V.), University of Modena and Reggio Emilia, Italy
| | - Giuseppe Boriani
- Unit of Cardiology, Department of Biomedical, Metabolic and Neural Sciences (G.B.), University of Modena and Reggio Emilia, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences (S.D.F., T.F., M.C., I.I., M.V.), University of Modena and Reggio Emilia, Italy
- Department of Epidemiology, Boston University School of Public Health, MA (M.V.)
| |
Collapse
|
25
|
Musa N, Allam BK, Singh NB, Banerjee S. Investigation on water defluoridation via batch and continuous mode using Ce-Al bimetallic oxide: Adsorption dynamics, electrochemical and LCA analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121639. [PMID: 37062400 DOI: 10.1016/j.envpol.2023.121639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
With variable atomic ratios, Ce-Al bimetallic oxides were fabricated using the sol-gel combustion method and utilized for efficient fluoride removal. The synthesized bimetallic oxides were extensively studied using advanced characterization techniques, including TGA, XRD, FTIR, BET surface area analysis, EDX-assisted FESEM, XPS and impedance analysis. These techniques facilitate the interpretation of the chemical and physical properties of the synthesized material. The Ce-Al (1:1) bimetallic oxide was selected as an adsorbent for the defluoridation. The Ce-Al (1:1) oxide demonstrates a moderately high surface area of 108.67 m2/g. The sorption behaviour of fluoride on Ce-Al (1:1) was thoroughly investigated using batch and column modes. The maximum fluoride removal efficiency (99.4%) was achieved at a temperature of 45 °C and pH of 7.0 using an adsorbent dose of 0.18 g/L for 35 min. Pseudo-second-order kinetic model appropriately describes the sorption process. Freundlich's adsorption isotherm was more pertinent in representing fluoride adsorption behaviour. The maximum fluoride adsorption capacity is 146.73 mg/g at 45 °C. Thermodynamics study indicates fluoride adsorption on Ce-Al (1:1) bimetallic oxide is spontaneous and feasible. The adsorption mechanism was interpreted through XPS spectra, indicating that the physisorption process is mainly responsible for fluoride adsorption. An in-depth investigation of the adsorption dynamics was carried out using mass transfer models and found that the external diffusion process limits the overall adsorption rate. An electrochemical investigation was performed to understand the effect of fluoride adsorption on the electrochemical behaviour of bimetallic oxide. The fixed-bed column adsorption study suggested that the lower flow rate and increased bed height favourably impacted the overall defluoridation process, and column adsorption results were suitably interpreted through both the Adam-Bohart model and Yoon-Nelson dynamics model. The sustainable aspect of the defluoridation process was elucidated in terms of carbon footprint measurement using life cycle assessment analysis. The carbon footprint of the entire treatment process was calculated as 0.094 tons/year.
Collapse
Affiliation(s)
- Neksumi Musa
- Department of Environmental Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Bharat Kumar Allam
- Department of Chemistry, Faculty of Basic Sciences, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh, Arunachal Pradesh, India
| | - Nakshatra Bahadur Singh
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India; Research Development Cell, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
26
|
Fiore G, Veneri F, Di Lorenzo R, Generali L, Vinceti M, Filippini T. Fluoride Exposure and ADHD: A Systematic Review of Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040797. [PMID: 37109754 PMCID: PMC10143272 DOI: 10.3390/medicina59040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Background and objectives: Attention deficit hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder characterized by two dimensions: inattentiveness and hyperactivity/impulsivity. ADHD may be the result of complex interactions between genetic, biological and environmental factors possibly including fluoride exposure. Materials and methods: A literature search was performed on 31 March 2023 in the following databases: PubMed, Embase and Web of Science. We defined the following inclusion criteria according to the PECOS statement: a healthy child and adolescent population (P), fluoride exposure of any type (E), comparison with low or null exposure (C), ADHD spectrum disorder (O), and ecological, cross-sectional, case-control and cohort studies (S). Results: We found eight eligible records corresponding to seven different studies investigating the effect of fluoride exposure on children and adolescents. One study had a cohort design and one a case-control one, while five were cross-sectional. Only three studies applied validated questionnaires for the purpose of ADHD diagnosis. As regards exposure assessment, levels of fluoride in urine and tap water were, respectively used in three and two studies, while two used both. Three studies reported a positive association with ADHD risk, all assessing exposure through fluoride levels. By using urinary fluoride, conversely, a positive correlation with inattention, internalizing symptoms, cognitive and psychosomatic problems was found in three studies, but no relation was found in the other one. Conclusions: The present review suggests that early exposure to fluoride may have neurotoxic effects on neurodevelopment affecting behavioral, cognitive and psychosomatic symptoms related to ADHD diagnosis. However, due to the heterogeneity of the studies included, current evidence does not allow to conclusively confirm that fluoride exposure is specifically linked to ADHD development.
Collapse
Affiliation(s)
- Gianluca Fiore
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences-University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rosaria Di Lorenzo
- Service of Psychiatric Diagnosis and Care (SPDC), Department of Mental Health and Drug Abuse, AUSL Modena, 41124 Modena, Italy
| | - Luigi Generali
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|