1
|
Xue L, Fu Y, Gao X, Feng G, Qian S, Wei L, Li L, Zhuo C, Zhang H, Tian M. [ 18F]FDG PET integrated with structural MRI for accurate brain age prediction. Eur J Nucl Med Mol Imaging 2024; 51:3617-3629. [PMID: 38839623 DOI: 10.1007/s00259-024-06784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Brain aging is a complex and heterogeneous process characterized by both structural and functional decline. This study aimed to establish a novel deep learning (DL) method for predicting brain age by utilizing structural and metabolic imaging data. METHODS The dataset comprised participants from both the Universal Medical Imaging Diagnostic Center (UMIDC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). The former recruited 395 normal control (NC) subjects, while the latter included 438 NC subjects, 51 mild cognitive impairment (MCI) subjects, and 56 Alzheimer's disease (AD) subjects. We developed a novel dual-pathway, 3D simple fully convolutional network (Dual-SFCNeXt) to estimate brain age using [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and structural magnetic resonance imaging (sMRI) images of NC subjects as input. Several prevailing DL models were trained and tested using either MRI or PET data for comparison. Model accuracies were evaluated using mean absolute error (MAE) and Pearson's correlation coefficient (r). Brain age gap (BAG), deviations of brain age from chronologic age, was correlated with cognitive assessments in MCI and AD subjects. RESULTS Both PET- and MRI-based models achieved high prediction accuracy. The leading model was the SFCNeXt (the single-pathway version) for PET (MAE = 2.92, r = 0.96) and MRI (MAE = 3.23, r = 0.95) on all samples. By integrating both PET and MRI images, the Dual-SFCNeXt demonstrated significantly improved accuracy (MAE = 2.37, r = 0.97) compared to all single-modality models. Significantly higher BAG was observed in both the AD (P < 0.0001) and MCI (P < 0.0001) groups compared to the NC group. BAG correlated significantly with Mini-Mental State Examination (MMSE) scores (r=-0.390 for AD, r=-0.436 for MCI) and the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores (r = 0.333 for AD, r = 0.372 for MCI). CONCLUSION The integration of [18F]FDG PET with structural MRI enhances the accuracy of brain age prediction, potentially introducing a new avenue for related multimodal brain age prediction studies.
Collapse
Affiliation(s)
- Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Gang Feng
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ling Wei
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China
| | - Lanlan Li
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China.
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
3
|
Zhang D, She Y, Sun J, Cui Y, Yang X, Zeng X, Qin W. Brain Age Estimation from Overnight Sleep Electroencephalography with Multi-Flow Sequence Learning. Nat Sci Sleep 2024; 16:879-896. [PMID: 38974693 PMCID: PMC11227046 DOI: 10.2147/nss.s463495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose This study aims to improve brain age estimation by developing a novel deep learning model utilizing overnight electroencephalography (EEG) data. Methods We address limitations in current brain age prediction methods by proposing a model trained and evaluated on multiple cohort data, covering a broad age range. The model employs a one-dimensional Swin Transformer to efficiently extract complex patterns from sleep EEG signals and a convolutional neural network with attentional mechanisms to summarize sleep structural features. A multi-flow learning-based framework attentively merges these two features, employing sleep structural information to direct and augment the EEG features. A post-prediction model is designed to integrate the age-related features throughout the night. Furthermore, we propose a DecadeCE loss function to address the problem of an uneven age distribution. Results We utilized 18,767 polysomnograms (PSGs) from 13,616 subjects to develop and evaluate the proposed model. The model achieves a mean absolute error (MAE) of 4.19 and a correlation of 0.97 on the mixed-cohort test set, and an MAE of 6.18 years and a correlation of 0.78 on an independent test set. Our brain age estimation work reduced the error by more than 1 year compared to other studies that also used EEG, achieving the level of neuroimaging. The estimated brain age index demonstrated longitudinal sensitivity and exhibited a significant increase of 1.27 years in individuals with psychiatric or neurological disorders relative to healthy individuals. Conclusion The multi-flow deep learning model proposed in this study, based on overnight EEG, represents a more accurate approach for estimating brain age. The utilization of overnight sleep EEG for the prediction of brain age is both cost-effective and adept at capturing dynamic changes. These findings demonstrate the potential of EEG in predicting brain age, presenting a noninvasive and accessible method for assessing brain aging.
Collapse
Affiliation(s)
- Di Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Yichong She
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Jinbo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Yapeng Cui
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Xuejuan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, 710126, People’s Republic of China
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Vakli P, Weiss B, Rozmann D, Erőss G, Nárai Á, Hermann P, Vidnyánszky Z. The effect of head motion on brain age prediction using deep convolutional neural networks. Neuroimage 2024; 294:120646. [PMID: 38750907 DOI: 10.1016/j.neuroimage.2024.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024] Open
Abstract
Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.
Collapse
Affiliation(s)
- Pál Vakli
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| | - Béla Weiss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest 1034, Hungary.
| | - Dorina Rozmann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - György Erőss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs 7624, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
5
|
Pang Y, Cai Y, Xia Z, Gao X. Predicting brain age using Tri-UNet and various MRI scale features. Sci Rep 2024; 14:13742. [PMID: 38877107 PMCID: PMC11178849 DOI: 10.1038/s41598-024-63998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
In the process of human aging, significant age-related changes occur in brain tissue. To assist individuals in assessing the degree of brain aging, screening for disease risks, and further diagnosing age-related diseases, it is crucial to develop an accurate method for predicting brain age. This paper proposes a multi-scale feature fusion method called Tri-UNet based on the U-Net network structure, as well as a brain region information fusion method based on multi-channel input networks. These methods address the issue of insufficient image feature learning in brain neuroimaging data. They can effectively utilize features at different scales of MRI and fully leverage feature information from different regions of the brain. In the end, experiments were conducted on the Cam-CAN dataset, resulting in a minimum Mean Absolute Error (MAE) of 7.46. The results demonstrate that this method provides a new approach to feature learning at different scales in brain age prediction tasks, contributing to the advancement of the field and holding significance for practical applications in the context of elderly education.
Collapse
Affiliation(s)
- Yu Pang
- School of Science, Jilin Institute of Chemical Technology, Jilin, 130000, China.
| | - Yihuai Cai
- School of Science, Jilin Institute of Chemical Technology, Jilin, 130000, China.
| | - Zonghui Xia
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China
| | - Xujie Gao
- School of Information Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
6
|
Carvalho Macruz FBD, Dias ALMP, Andrade CS, Nucci MP, Rimkus CDM, Lucato LT, Rocha AJD, Kitamura FC. The new era of artificial intelligence in neuroradiology: current research and promising tools. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-12. [PMID: 38565188 PMCID: PMC10987255 DOI: 10.1055/s-0044-1779486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024]
Abstract
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
Collapse
Affiliation(s)
- Fabíola Bezerra de Carvalho Macruz
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
- Academia Nacional de Medicina, Rio de Janeiro RJ, Brazil.
| | | | | | - Mariana Penteado Nucci
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Carolina de Medeiros Rimkus
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Diagnósticos da América SA, São Paulo SP, Brazil.
| | | | - Felipe Campos Kitamura
- Diagnósticos da América SA, São Paulo SP, Brazil.
- Universidade Federal de São Paulo, São Paulo SP, Brazil.
| |
Collapse
|
7
|
Miron G, Müller PM, Hohmann L, Oltmanns F, Holtkamp M, Meisel C, Chien C. Cortical Thickness Patterns of Cognitive Impairment Phenotypes in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol 2024; 95:984-997. [PMID: 38391006 DOI: 10.1002/ana.26893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE In temporal lobe epilepsy (TLE), a taxonomy classifying patients into 3 cognitive phenotypes has been adopted: minimally, focally, or multidomain cognitively impaired (CI). We examined gray matter (GM) thickness patterns of cognitive phenotypes in drug-resistant TLE and assessed potential use for predicting postsurgical cognitive outcomes. METHODS TLE patients undergoing presurgical evaluation were categorized into cognitive phenotypes. Network edge weights and distances were calculated using type III analysis of variance F-statistics from comparisons of GM regions within each TLE cognitive phenotype and age- and sex-matched healthy participants. In resected patients, logistic regression models (LRMs) based on network analysis results were used for prediction of postsurgical cognitive outcome. RESULTS A total of 124 patients (63 females, mean age ± standard deviation [SD] = 36.0 ± 12.0 years) and 117 healthy controls (63 females, mean age ± SD = 36.1 ± 12.0 years) were analyzed. In the multidomain CI group (n = 66, 53.2%), 28 GM regions were significantly thinner compared to healthy controls. Focally impaired patients (n = 37, 29.8%) showed 13 regions, whereas minimally impaired patients (n = 21, 16.9%) had 2 significantly thinner GM regions. Regions affected in both multidomain and focally impaired patients included the anterior cingulate cortex, medial prefrontal cortex, medial temporal, and lateral temporal regions. In 69 (35 females, mean age ± SD = 33.6 ± 18.0 years) patients who underwent surgery, LRMs based on network-identified GM regions predicted postsurgical verbal memory worsening with a receiver operating curve area under the curve of 0.70 ± 0.15. INTERPRETATION A differential pattern of GM thickness can be found across different cognitive phenotypes in TLE. Including magnetic resonance imaging with clinical measures associated with cognitive profiles has potential in predicting postsurgical cognitive outcomes in drug-resistant TLE. ANN NEUROL 2024;95:984-997.
Collapse
Affiliation(s)
- Gadi Miron
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Manuel Müller
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Louisa Hohmann
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Frank Oltmanns
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Martin Holtkamp
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental Clinical and Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Jeon YJ, Park SE, Baek HM. Predicting Brain Age and Gender from Brain Volume Data Using Variational Quantum Circuits. Brain Sci 2024; 14:401. [PMID: 38672050 PMCID: PMC11048383 DOI: 10.3390/brainsci14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The morphology of the brain undergoes changes throughout the aging process, and accurately predicting a person's brain age and gender using brain morphology features can aid in detecting atypical brain patterns. Neuroimaging-based estimation of brain age is commonly used to assess an individual's brain health relative to a typical aging trajectory, while accurately classifying gender from neuroimaging data offers valuable insights into the inherent neurological differences between males and females. In this study, we aimed to compare the efficacy of classical machine learning models with that of a quantum machine learning method called a variational quantum circuit in estimating brain age and predicting gender based on structural magnetic resonance imaging data. We evaluated six classical machine learning models alongside a quantum machine learning model using both combined and sub-datasets, which included data from both in-house collections and public sources. The total number of participants was 1157, ranging from ages 14 to 89, with a gender distribution of 607 males and 550 females. Performance evaluation was conducted within each dataset using training and testing sets. The variational quantum circuit model generally demonstrated superior performance in estimating brain age and gender classification compared to classical machine learning algorithms when using the combined dataset. Additionally, in benchmark sub-datasets, our approach exhibited better performance compared to previous studies that utilized the same dataset for brain age prediction. Thus, our results suggest that variational quantum algorithms demonstrate comparable effectiveness to classical machine learning algorithms for both brain age and gender prediction, potentially offering reduced error and improved accuracy.
Collapse
Affiliation(s)
- Yeong-Jae Jeon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea;
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Shin-Eui Park
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
9
|
Kim MJ, Hong E, Yum MS, Lee YJ, Kim J, Ko TS. Deep learning-based, fully automated, pediatric brain segmentation. Sci Rep 2024; 14:4344. [PMID: 38383725 PMCID: PMC10881508 DOI: 10.1038/s41598-024-54663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual correction. Additionally, the volumes which were calculated with the DLS method between the patients and the control group. The volumes of total brain gray and white matter using DLS method were consistent with that volume which were measured by Freesurfer with manual correction in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas measured by DLS methods were significantly different from that measured by Freesurfer with manual correction, and the differences decreased with increasing age in the subgroup analysis. The subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy controls. In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect brain morphological changes in children with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | | | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yun-Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, South Korea
| | | | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
10
|
Bølling-Ladegaard E, Dreier JW, Christensen J. Identification of drug resistance in a validated cohort of incident epilepsy patients in the Danish National Patient Register. Epilepsia 2023; 64:2604-2616. [PMID: 37505892 DOI: 10.1111/epi.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE The main purposes of this study were to validate the epilepsy diagnosis in incident epilepsy cases in the Danish National Patient Registry (DNPR), which contains information on nearly 9 000 000 individuals, and to identify persons in the validated cohort who fulfilled the International League Against Epilepsy (ILAE) criteria for drug-resistant epilepsy (DRE). METHODS We reviewed a random sample of medical records from all individuals registered with a first diagnosis of epilepsy (International Classification of Diseases, 10th Revision [ICD-10]: G40) or seizures (ICD-10: G41, R56, or F445) in the Central Denmark Region from 2010 to 2019. In persons with a validated incident epilepsy diagnosis, we determined the proportion with DRE at the latest contact. We performed logistic regression analyses to identify clinical factors that correlated with risk of DRE. RESULTS Of 20 723 persons with a first diagnosis of epilepsy (n = 11 812) or seizures (n = 8911), we reviewed the medical records of n = 1067 with incident epilepsy and n = 610 with incident seizures. Among those with a register diagnosis of epilepsy, the diagnosis was confirmed in 838 cases (45% females, mean age at onset = 42.4 years), providing a positive predictive value (PPV) of 79% (95% confidence interval [CI] = 76%-81%). The PPV of focal epilepsy was 86% (95% CI = 82%-89%), and the PPV of generalized epilepsy was 71% (95% CI = 61%-80%). Of 740 patients with confirmed incident epilepsy and ≥1 year of follow-up, 103 (14%) fulfilled the definition of DRE, 476 (64%) were drug responsive, and 161 (22%) had undefined responsiveness. In multivariable logistic regression analysis, early age at epilepsy onset, cognitive impairment, and a history of status epilepticus were associated with DRE. SIGNIFICANCE In the DNPR, we found a PPV of the epilepsy diagnosis of 79%. Among persons with confirmed epilepsy, 14% fulfilled ILAE criteria for DRE. Early age at epilepsy onset, cognitive impairment, and a history of status epilepticus were independently associated with drug resistance.
Collapse
Affiliation(s)
| | - Julie W Dreier
- Department of Economics and Business Economics, Business and Social Science, National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Jakob Christensen
- Department of Clinical Medicine, Neurology, Aarhus University, Aarhus, Denmark
- Department of Economics and Business Economics, Business and Social Science, National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Reyes A, Schneider ALC, Kucharska-Newton AM, Gottesman RF, Johnson EL, McDonald CR. Cognitive phenotypes in late-onset epilepsy: results from the atherosclerosis risk in communities study. Front Neurol 2023; 14:1230368. [PMID: 37745655 PMCID: PMC10513940 DOI: 10.3389/fneur.2023.1230368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cognitive phenotyping is a widely used approach to characterize the heterogeneity of deficits in patients with a range of neurological disorders but has only recently been applied to patients with epilepsy. In this study, we identify cognitive phenotypes in older adults with late-onset epilepsy (LOE) and examine their demographic, clinical, and vascular profiles. Further, we examine whether specific phenotypes pose an increased risk for progressive cognitive decline. Methods Participants were part of the Atherosclerosis Risk in Communities Study (ARIC), a prospective longitudinal community-based cohort study of 15,792 individuals initially enrolled in 1987-1989. LOE was identified from linked Centers for Medicare and Medicaid Services claims data. Ninety-one participants with LOE completed comprehensive testing either prior to or after seizure onset as part of a larger cohort in the ARIC Neurocognitive Study in either 2011-2013 or 2016-2017 (follow-up mean = 4.9 years). Cognitive phenotypes in individuals with LOE were derived by calculating test-level impairments for each participant (i.e., ≤1 SD below cognitively normal participants on measures of language, memory, and executive function/processing speed); and then assigning participants to phenotypes if they were impaired on at least two tests within a domain. The total number of impaired domains was used to determine the cognitive phenotypes (i.e., Minimal/No Impairment, Single Domain, or Multidomain). Results At our baseline (Visit 5), 36.3% met criteria for Minimal/No Impairment, 35% for Single Domain Impairment (with executive functioning/ processing speed impaired in 53.6%), and 28.7% for Multidomain Impairment. The Minimal/No Impairment group had higher education and occupational complexity. There were no differences in clinical or vascular risk factors across phenotypes. Of those participants with longitudinal data (Visit 6; n = 24), 62.5% declined (i.e., progressed to a more impaired phenotype) and 37.5% remained stable. Those who remained stable were more highly educated compared to those that declined. Discussion Our results demonstrate the presence of identifiable cognitive phenotypes in older adults with LOE. These results also highlight the high prevalence of cognitive impairments across domains, with deficits in executive function/processing speed the most common isolated impairment. We also demonstrate that higher education was associated with a Minimal/No Impairment phenotype and lower risk for cognitive decline over time.
Collapse
Affiliation(s)
- Anny Reyes
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Andrea L. C. Schneider
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna M. Kucharska-Newton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD, United States
| | - Emily L. Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carrie R. McDonald
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Mendes SL, Pinaya WHL, Pan PM, Jackowski AP, Bressan RA, Sato JR. Generalizability of 3D CNN models for age estimation in diverse youth populations using structural MRI. Sci Rep 2023; 13:6886. [PMID: 37106035 PMCID: PMC10140022 DOI: 10.1038/s41598-023-33920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, several studies have investigated the neurodevelopment of psychiatric disorders using brain data acquired via structural magnetic resonance imaging (sMRI). These analyses have shown the potential of sMRI data to provide a relatively precise characterization of brain structural biomarkers. Despite these advances, a relatively unexplored question is how reliable and consistent a model is when assessing subjects from other independent datasets. In this study, we investigate the performance and generalizability of the same model architecture trained from distinct datasets comprising youths in diverse stages of neurodevelopment and with different mental health conditions. We employed models with the same 3D convolutional neural network (CNN) architecture to assess autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), brain age, and a measure of dimensional psychopathology, the Child Behavior Checklist (CBCL) total score. The investigated datasets include the Autism Brain Imaging Data Exchange II (ABIDE-II, N = 580), Attention Deficit Hyperactivity Disorder (ADHD-200, N = 922), Brazilian High-Risk Cohort Study (BHRCS, N = 737), and Adolescent Brain Cognitive Development (ABCD, N = 11,031). Models' performance and interpretability were assessed within each dataset (for diagnosis tasks) and inter-datasets (for age estimation). Despite the demographic and phenotypic differences of the subjects, all models presented significant estimations for age (p value < 0.001) within and between datasets. In addition, most models showed a moderate to high correlation in age estimation. The results, including the models' brain regions of interest (ROI), were analyzed and discussed in light of the youth neurodevelopmental structural changes. Among other interesting discoveries, we found that less confounded training datasets produce models with higher generalization capacity.
Collapse
Affiliation(s)
- Sergio Leonardo Mendes
- Center of Mathematics, Computing, and Cognition, Universidade Federal Do ABC, Rua Arcturus N. 03, São Bernardo Do Campo, SP, 09606-070, Brazil
| | | | - Pedro Mario Pan
- Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Maj. Maragliano (UNIFESP), 241-Vila Mariana, São Paulo, SP, 04017-030, Brazil
| | - Andrea Parolin Jackowski
- Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Maj. Maragliano (UNIFESP), 241-Vila Mariana, São Paulo, SP, 04017-030, Brazil
- Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Rodrigo Affonseca Bressan
- Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Maj. Maragliano (UNIFESP), 241-Vila Mariana, São Paulo, SP, 04017-030, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal Do ABC, Rua Arcturus N. 03, São Bernardo Do Campo, SP, 09606-070, Brazil
| |
Collapse
|
13
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
14
|
Busby N, Wilmskoetter J, Gleichgerrcht E, Rorden C, Roth R, Newman-Norlund R, Hillis AE, Keller SS, de Bezenac C, Kristinsson S, Fridriksson J, Bonilha L. Advanced Brain Age and Chronic Poststroke Aphasia Severity. Neurology 2023; 100:e1166-e1176. [PMID: 36526425 PMCID: PMC10074460 DOI: 10.1212/wnl.0000000000201693] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic poststroke language impairment is typically worse in older individuals or those with large stroke lesions. However, there is unexplained variance that likely depends on intact tissue beyond the lesion. Brain age is an emerging concept, which is partially independent from chronologic age. Advanced brain age is associated with cognitive decline in healthy older adults; therefore, we aimed to investigate the relationship with stroke aphasia. We hypothesized that advanced brain age is a significant factor associated with chronic poststroke language impairments, above and beyond chronologic age, and lesion characteristics. METHODS This cohort study retrospectively evaluated participants from the Predicting Outcomes of Language Rehabilitation in Aphasia clinical trial (NCT03416738), recruited through local advertisement in South Carolina (US). Primary inclusion criteria were left hemisphere stroke and chronic aphasia (≥12 months after stroke). Participants completed baseline behavioral testing including the Western Aphasia Battery-Revised (WAB-R), Philadelphia Naming Test (PNT), Pyramids and Palm Trees Test (PPTT), and Wechsler Adult Intelligence Scale Matrices subtest, before completing 6 weeks of language therapy. The PNT was repeated 1 month after therapy. We leveraged modern neuroimaging techniques to estimate brain age and computed a proportional difference between chronologic age and estimated brain age. Multiple linear regression models were used to evaluate the relationship between proportional brain age difference (PBAD) and behavior. RESULTS Participants (N = 93, 58 males and 35 females, average age = 61 years) had estimated brain ages ranging from 14 years younger to 23 years older than chronologic age. Advanced brain age predicted performance on semantic tasks (PPTT) and language tasks (WAB-R). For participants with advanced brain aging (n = 47), treatment gains (improvement on the PNT) were independently predicted by PBAD (T = -2.0474, p = 0.0468, 9% of variance explained). DISCUSSION Through the application of modern neuroimaging techniques, advanced brain aging was associated with aphasia severity and performance on semantic tasks. Notably, therapy outcome scores were also associated with PBAD, albeit only among participants with advanced brain aging. These findings corroborate the importance of brain age as a determinant of poststroke recovery and underscore the importance of personalized health factors in determining recovery trajectories, which should be considered during the planning or implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Natalie Busby
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom.
| | - Janina Wilmskoetter
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Ezequiel Gleichgerrcht
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Chris Rorden
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Rebecca Roth
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Roger Newman-Norlund
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Argye Elizabeth Hillis
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Simon S Keller
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Christophe de Bezenac
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Sigfus Kristinsson
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Julius Fridriksson
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Leonardo Bonilha
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| |
Collapse
|
15
|
Wei R, Xu X, Duan Y, Zhang N, Sun J, Li H, Li Y, Li Y, Zeng C, Han X, Zhou F, Huang M, Li R, Zhuo Z, Barkhof F, H Cole J, Liu Y. Brain age gap in neuromyelitis optica spectrum disorders and multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:31-37. [PMID: 36216455 DOI: 10.1136/jnnp-2022-329680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate the clinical significance of deep learning-derived brain age prediction in neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting multiple sclerosis (RRMS). METHODS This cohort study used data retrospectively collected from 6 tertiary neurological centres in China between 2009 and 2018. In total, 199 patients with NMOSD and 200 patients with RRMS were studied alongside 269 healthy controls. Clinical follow-up was available in 85 patients with NMOSD and 124 patients with RRMS (mean duration NMOSD=5.8±1.9 (1.9-9.9) years, RRMS=5.2±1.7 (1.5-9.2) years). Deep learning was used to learn 'brain age' from MRI scans in the healthy controls and estimate the brain age gap (BAG) in patients. RESULTS A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 years) groups compared with healthy controls. A higher baseline disability score and advanced brain volume loss were associated with increased BAG in both patient groups. A longer disease duration was associated with increased BAG in RRMS. BAG significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD and RRMS. CONCLUSIONS There is a clear BAG in NMOSD, although smaller than in RRMS. The BAG is a clinically relevant MRI marker in NMOSD and RRMS.
Collapse
Affiliation(s)
- Ren Wei
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
16
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
17
|
Kristinsson S, Busby N, Rorden C, Newman-Norlund R, den Ouden DB, Magnusdottir S, Hjaltason H, Thors H, Hillis AE, Kjartansson O, Bonilha L, Fridriksson J. Brain age predicts long-term recovery in post-stroke aphasia. Brain Commun 2022; 4:fcac252. [PMID: 36267328 PMCID: PMC9576153 DOI: 10.1093/braincomms/fcac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The association between age and language recovery in stroke remains unclear. Here, we used neuroimaging data to estimate brain age, a measure of structural integrity, and examined the extent to which brain age at stroke onset is associated with (i) cross-sectional language performance, and (ii) longitudinal recovery of language function, beyond chronological age alone. A total of 49 participants (age: 65.2 ± 12.2 years, 25 female) underwent routine clinical neuroimaging (T1) and a bedside evaluation of language performance (Bedside Evaluation Screening Test-2) at onset of left hemisphere stroke. Brain age was estimated from enantiomorphically reconstructed brain scans using a machine learning algorithm trained on a large sample of healthy adults. A subsample of 30 participants returned for follow-up language assessments at least 2 years after stroke onset. To account for variability in age at stroke, we calculated proportional brain age difference, i.e. the proportional difference between brain age and chronological age. Multiple regression models were constructed to test the effects of proportional brain age difference on language outcomes. Lesion volume and chronological age were included as covariates in all models. Accelerated brain age compared with age was associated with worse overall aphasia severity (F(1, 48) = 5.65, P = 0.022), naming (F(1, 48) = 5.13, P = 0.028), and speech repetition (F(1, 48) = 8.49, P = 0.006) at stroke onset. Follow-up assessments were carried out ≥2 years after onset; decelerated brain age relative to age was significantly associated with reduced overall aphasia severity (F(1, 26) = 5.45, P = 0.028) and marginally failed to reach statistical significance for auditory comprehension (F(1, 26) = 2.87, P = 0.103). Proportional brain age difference was not found to be associated with changes in naming (F(1, 26) = 0.23, P = 0.880) and speech repetition (F(1, 26) = 0.00, P = 0.978). Chronological age was only associated with naming performance at stroke onset (F(1, 48) = 4.18, P = 0.047). These results indicate that brain age as estimated based on routine clinical brain scans may be a strong biomarker for language function and recovery after stroke.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Natalie Busby
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Roger Newman-Norlund
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk B den Ouden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| | | | - Haukur Hjaltason
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Helga Thors
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
| | - Argye E Hillis
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MA 21218, USA
| | - Olafur Kjartansson
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Leonardo Bonilha
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julius Fridriksson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| |
Collapse
|
18
|
Escobar-Ipuz F, Torres A, García-Jiménez M, Basar C, Cascón J, Mateo J. Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings. Brain Res 2022; 1798:148131. [DOI: 10.1016/j.brainres.2022.148131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
19
|
Ioannou P, Foster DL, Sander JW, Dupont S, Gil-Nagel A, Drogon O'Flaherty E, Alvarez-Baron E, Medjedovic J. The burden of epilepsy and unmet need in people with focal seizures. Brain Behav 2022; 12:e2589. [PMID: 36017757 PMCID: PMC9480957 DOI: 10.1002/brb3.2589] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epilepsy is one of the most common neurological conditions worldwide. As a chronic condition, epilepsy imposes a significant burden on people with epilepsy and society. We aimed to assess the burden and unmet need of individuals with epilepsy and their caregivers, focusing on focal seizures, the main type of seizure in adults and children. METHODS A targeted evidence review of the burden of epilepsy, focusing on focal seizures, was conducted to identify articles reporting: epidemiology, mortality, morbidity, quality of life (QoL), and costs. RESULTS Focal seizures affect up to ∼61% of people with epilepsy. They are associated with an increased risk of injury and premature death than the general population. People with epilepsy also have high comorbidity, particularly depression, anxiety, and cognitive impairments. Higher seizure frequency, adverse treatment events, and employment concerns reduce QoL. A reduction in caregivers' QoL is also often reported. Epilepsy requires long-term treatment accounting for high individual costs. Hospitalizations and antiseizure medications (ASMs) are the leading cost drivers of inpatient management and indirect costs with high unemployment rates, particularly in drug-resistant populations. Despite the advent of new treatments, a high unmet need remains unaddressed; approximately 40% of people with epilepsy are drug-resistant, further increasing the risks associated with epilepsy. CONCLUSIONS Our findings highlight a substantial burden of illness and unmet needs in individuals with focal seizures, especially those with drug-resistant epilepsy. Suboptimal treatment options negatively impact QoL and, consequently, a sizeable economic burden indicating the need for new treatments and prioritizing this condition.
Collapse
Affiliation(s)
| | | | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | | | - Antonio Gil-Nagel
- Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Wagen AZ, Coath W, Keshavan A, James SN, Parker TD, Lane CA, Buchanan SM, Keuss SE, Storey M, Lu K, Macdougall A, Murray-Smith H, Freiberger T, Cash DM, Malone IB, Barnes J, Sudre CH, Wong A, Pavisic IM, Street R, Crutch SJ, Escott-Price V, Leonenko G, Zetterberg H, Wellington H, Heslegrave A, Barkhof F, Richards M, Fox NC, Cole JH, Schott JM. Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study. THE LANCET. HEALTHY LONGEVITY 2022; 3:e607-e616. [PMID: 36102775 PMCID: PMC10499760 DOI: 10.1016/s2666-7568(22)00167-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A neuroimaging-based biomarker termed the brain age is thought to reflect variability in the brain's ageing process and predict longevity. Using Insight 46, a unique narrow-age birth cohort, we aimed to examine potential drivers and correlates of brain age. METHODS Participants, born in a single week in 1946 in mainland Britain, have had 24 prospective waves of data collection to date, including MRI and amyloid PET imaging at approximately 70 years old. Using MRI data from a previously defined selection of this cohort, we derived brain-predicted age from an established machine-learning model (trained on 2001 healthy adults aged 18-90 years); subtracting this from chronological age (at time of assessment) gave the brain-predicted age difference (brain-PAD). We tested associations with data from early life, midlife, and late life, as well as rates of MRI-derived brain atrophy. FINDINGS Between May 28, 2015, and Jan 10, 2018, 502 individuals were assessed as part of Insight 46. We included 456 participants (225 female), with a mean chronological age of 70·7 years (SD 0·7; range 69·2 to 71·9). The mean brain-predicted age was 67·9 years (8·2, 46·3 to 94·3). Female sex was associated with a 5·4-year (95% CI 4·1 to 6·8) younger brain-PAD than male sex. An increase in brain-PAD was associated with increased cardiovascular risk at age 36 years (β=2·3 [95% CI 1·5 to 3·0]) and 69 years (β=2·6 [1·9 to 3·3]); increased cerebrovascular disease burden (1·9 [1·3 to 2·6]); lower cognitive performance (-1·3 [-2·4 to -0·2]); and increased serum neurofilament light concentration (1·2 [0·6 to 1·9]). Higher brain-PAD was associated with future hippocampal atrophy over the subsequent 2 years (0·003 mL/year [0·000 to 0·006] per 5-year increment in brain-PAD). Early-life factors did not relate to brain-PAD. Combining 12 metrics in a hierarchical partitioning model explained 33% of the variance in brain-PAD. INTERPRETATION Brain-PAD was associated with cardiovascular risk, and imaging and biochemical markers of neurodegeneration. These findings support brain-PAD as an integrative summary metric of brain health, reflecting multiple contributions to pathological brain ageing, and which might have prognostic utility. FUNDING Alzheimer's Research UK, Medical Research Council Dementia Platforms UK, Selfridges Group Foundation, Wolfson Foundation, Wellcome Trust, Brain Research UK, Alzheimer's Association.
Collapse
Affiliation(s)
- Aaron Z Wagen
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; Neurodegeneration Biology Laboratory, The Francis Crick Institute, London, UK
| | - William Coath
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sarah-Naomi James
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Thomas D Parker
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Christopher A Lane
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sarah M Buchanan
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sarah E Keuss
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Mathew Storey
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Kirsty Lu
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Amy Macdougall
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Tamar Freiberger
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Josephine Barnes
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Carole H Sudre
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK; Department of Computer Science, Centre for Medical Imaging Computing, University College London, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andrew Wong
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Ivanna M Pavisic
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Rebecca Street
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | | | - Ganna Leonenko
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Henrik Zetterberg
- Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrietta Wellington
- Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Amanda Heslegrave
- Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Frederik Barkhof
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; Department of Computer Science, Centre for Medical Imaging Computing, University College London, London, UK; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam, Netherlands
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK
| | - James H Cole
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Department of Computer Science, Centre for Medical Imaging Computing, University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, University College London Queen Square Institute of Neurology, London, UK; Dementia Research Institute, University College London Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
21
|
de Lange AG, Anatürk M, Rokicki J, Han LKM, Franke K, Alnæs D, Ebmeier KP, Draganski B, Kaufmann T, Westlye LT, Hahn T, Cole JH. Mind the gap: Performance metric evaluation in brain-age prediction. Hum Brain Mapp 2022; 43:3113-3129. [PMID: 35312210 PMCID: PMC9188975 DOI: 10.1002/hbm.25837] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022] Open
Abstract
Estimating age based on neuroimaging-derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine-learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age in two population-based datasets, and assessed the effects of age range, sample size and age-bias correction on the model performance metrics Pearson's correlation coefficient (r), the coefficient of determination (R2 ), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age-bias corrected metrics indicate high accuracy-also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study-specific data characteristics, and cannot be directly compared across different studies. Since age-bias corrected metrics generally indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance.
Collapse
Affiliation(s)
- Ann‐Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanne
- Department of PsychologyUniversity of OsloOslo
- Department of PsychiatryUniversity of OxfordOxford
| | - Melis Anatürk
- Department of PsychiatryUniversity of OxfordOxford
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Jaroslav Rokicki
- NORMENT, Institute of Clinical MedicineUniversity of Oslo, & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Centre of Research and Education in Forensic PsychiatryOslo University HospitalOsloNorway
| | - Laura K. M. Han
- Department of PsychiatryAmsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Katja Franke
- Structural Brain Mapping Group, Department of NeurologyJena University HospitalJenaGermany
| | - Dag Alnæs
- NORMENT, Institute of Clinical MedicineUniversity of Oslo, & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | | | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanne
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical MedicineUniversity of Oslo, & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Tübingen Center for Mental Health, Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOslo
- NORMENT, Institute of Clinical MedicineUniversity of Oslo, & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Tim Hahn
- Institute of Translational PsychiatryUniversity of MünsterMünsterGermany
| | - James H. Cole
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Dementia Research Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
22
|
Zeighami Y, Dadar M, Daoust J, Pelletier M, Biertho L, Bouvet-Bouchard L, Fulton S, Tchernof A, Dagher A, Richard D, Evans A, Michaud A. Impact of Weight Loss on Brain Age: Improved Brain Health Following Bariatric Surgery. Neuroimage 2022; 259:119415. [PMID: 35760293 DOI: 10.1016/j.neuroimage.2022.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Individuals living with obesity tend to have increased brain age, reflecting poorer brain health likely due to grey and white matter atrophy related to obesity. However, it is unclear if older brain age associated with obesity can be reversed following weight loss and cardiometabolic health improvement. The aim of this study was to assess the impact of weight loss and cardiometabolic improvement following bariatric surgery on brain health, as measured by change in brain age estimated based on voxel-based morphometry (VBM) measurements. We used three distinct datasets to perform this study: 1) CamCAN dataset to train the brain age prediction model, 2) Human Connectome Project (HCP) dataset to investigate whether individuals with obesity have greater brain age than individuals with normal weight, and 3) pre-surgery, as well as 4, 12, and 24 month post-surgery data from participants (n=87, age: 44.0±9.2 years, BMI: 43.9±4.2 kg/m2) who underwent a bariatric surgery to investigate whether weight loss and cardiometabolic improvement as a result of bariatric surgery lowers the brain age. As expected, our results from the HCP dataset showed a higher brain age for individuals with obesity compared to individuals with normal weight (T-value = 7.08, p-value < 0.0001). We also found significant improvement in brain health, indicated by a decrease of 2.9 and 5.6 years in adjusted delta age at 12 and 24 months following bariatric surgery compared to baseline (p-value < 0.0005 for both). While the overall effect seemed to be driven by a global change across all brain regions and not from a specific region, our exploratory analysis showed lower delta age in certain brain regions (mainly in somatomotor, visual, and ventral attention networks) at 24 months. This reduced age was also associated with post-surgery improvements in BMI, systolic/diastolic blood pressure, and HOMA-IR (T-valueBMI=4.29, T-valueSBP=4.67, T-valueDBP=4.12, T-valueHOMA-IR=3.16, all p-values < 0.05). In conclusion, these results suggest that obesity-related brain health abnormalities (as measured by delta age) might be reversed by bariatric surgery-induced weight loss and widespread improvements in cardiometabolic alterations.
Collapse
Affiliation(s)
- Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - Mahsa Dadar
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Justine Daoust
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Laurent Biertho
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Léonie Bouvet-Bouchard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Department of Nutrition, Université de Montréal, Montreal Diabetes Research Center, Montreal, QC, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Denis Richard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alan Evans
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andréanne Michaud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
23
|
Diagnosis of Idiopathic Premature Ovarian Failure by Color Doppler Ultrasound under the Intelligent Segmentation Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2645607. [PMID: 35664646 PMCID: PMC9159869 DOI: 10.1155/2022/2645607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the application value of transvaginal color Doppler ultrasound based on the improved mean shift algorithm in the diagnosis of idiopathic premature ovarian failure (POF). In this study, 80 patients with idiopathic POF were selected and included in the experimental group, and 40 volunteers who underwent health examinations during the same period were selected and included in the control group, who underwent transvaginal Doppler ultrasound examination. At the same time, an improved mean shift algorithm was proposed based on artificial intelligence technology and applied to ultrasound image processing. In addition, the ovarian artery parameters of patients were compared in two groups, including peak systolic flow rate (PSV), diastolic flow rate (EDV), resistance index (RI), and pulsatile index (PI). The results showed that the relative difference degree (RDD) of the segmentation results of the algorithm in this study was significantly lower than that of Snake, Live_wire, and the traditional mean shift algorithm, while the relative overlap degree (ROD) and Dice coefficient were opposite, and the differences were significant (P<0.05). The mediolateral diameter of control group was 2.87±0.31cm, and the anteroposterior diameter was 1.86±0.28 cm; while those were 2.11±0.36 cm and 1.13±0.34 cm, respectively, in the experimental group, showing significant differences between the groups (P<0.05). Of the 80 patients in the experimental group, 132 cases with ovarian arteries were found; among 40 patients in the experimental group, 76 cases were found with ovarian arteries, and the hemodynamic detection rate of the experimental group was significantly lower than that of the control group (P<0.05). The ovarian artery parameters PI, RI, and S/D of the experimental group were significantly higher than those of the control group, and the differences were statistically significant (P<0.05). The results showed that the segmentation results of the improved algorithm in this study were more superior to the segmentation results of other algorithms. The regional information loss of the segmentation results was not serious, and the resolution was higher and the definition was higher. The transvaginal color Doppler ultrasound based on the artificial intelligence segmentation algorithm can clearly show the functional status and hemodynamics of the patient's ovaries. The ovarian artery parameters PI and RI can be used as specific indicators for evaluating the POF.
Collapse
|
24
|
Wood DA, Kafiabadi S, Busaidi AA, Guilhem E, Montvila A, Lynch J, Townend M, Agarwal S, Mazumder A, Barker GJ, Ourselin S, Cole JH, Booth TC. Accurate brain-age models for routine clinical MRI examinations. Neuroimage 2022; 249:118871. [PMID: 34995797 DOI: 10.1016/j.neuroimage.2022.118871] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Convolutional neural networks (CNN) can accurately predict chronological age in healthy individuals from structural MRI brain scans. Potentially, these models could be applied during routine clinical examinations to detect deviations from healthy ageing, including early-stage neurodegeneration. This could have important implications for patient care, drug development, and optimising MRI data collection. However, existing brain-age models are typically optimised for scans which are not part of routine examinations (e.g., volumetric T1-weighted scans), generalise poorly (e.g., to data from different scanner vendors and hospitals etc.), or rely on computationally expensive pre-processing steps which limit real-time clinical utility. Here, we sought to develop a brain-age framework suitable for use during routine clinical head MRI examinations. Using a deep learning-based neuroradiology report classifier, we generated a dataset of 23,302 'radiologically normal for age' head MRI examinations from two large UK hospitals for model training and testing (age range = 18-95 years), and demonstrate fast (< 5 s), accurate (mean absolute error [MAE] < 4 years) age prediction from clinical-grade, minimally processed axial T2-weighted and axial diffusion-weighted scans, with generalisability between hospitals and scanner vendors (Δ MAE < 1 year). The clinical relevance of these brain-age predictions was tested using 228 patients whose MRIs were reported independently by neuroradiologists as showing atrophy 'excessive for age'. These patients had systematically higher brain-predicted age than chronological age (mean predicted age difference = +5.89 years, 'radiologically normal for age' mean predicted age difference = +0.05 years, p < 0.0001). Our brain-age framework demonstrates feasibility for use as a screening tool during routine hospital examinations to automatically detect older-appearing brains in real-time, with relevance for clinical decision-making and optimising patient pathways.
Collapse
Affiliation(s)
- David A Wood
- School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, United Kingdom
| | - Sina Kafiabadi
- King's College Hospital NHS Foundation Trust, United Kingdom
| | | | - Emily Guilhem
- King's College Hospital NHS Foundation Trust, United Kingdom
| | | | - Jeremy Lynch
- King's College Hospital NHS Foundation Trust, United Kingdom
| | | | - Siddharth Agarwal
- School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, United Kingdom
| | - Asif Mazumder
- Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, United Kingdom
| | - James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, United Kingdom; Dementia Research Centre, Institute of Neurology, University College London, United Kingdom; Centre for Medical Image Computing, Department of Computer Science, University College London, United Kingdom
| | - Thomas C Booth
- School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, United Kingdom; King's College Hospital NHS Foundation Trust, United Kingdom.
| |
Collapse
|
25
|
Luckett PH, Maccotta L, Lee JJ, Park KY, Dosenbach NU, Ances BM, Hogan RE, Shimony JS, Leuthardt EC. Deep learning resting state fMRI lateralization of temporal lobe epilepsy. Epilepsia 2022; 63:1542-1552. [PMID: 35320587 DOI: 10.1111/epi.17233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Localization of focal epilepsy is critical for surgical treatment of refractory seizures. There remains a great need for non-invasive techniques to localize seizures for surgical decision-making. We investigate the use of deep learning using resting state functional MRI (RS-fMRI) to identify the hemisphere of seizure onset in temporal lobe epilepsy (TLE) patients. METHODS 2132 healthy controls and 32 pre-operative TLE patients were studied. All participants underwent structural MRI and RS-fMRI. Healthy control data was used to generate training samples for a 3D convolutional neural network (3DCNN). RS-fMRI was synthetically altered in randomly lateralized regions in the healthy control participants. The model was then trained to classify the hemisphere containing synthetic noise. Finally, the model was tested on TLE patients to assess its performance for detecting biological seizure-onset zones, and gradient-weighted class activation mapping (Grad-CAM) identified the strongest predictive regions. RESULTS The 3DCNN classified healthy control hemispheres known to contain synthetic noise with 96% accuracy, and TLE hemispheres clinically identified to be seizure onset zones with 90.6% accuracy. Grad-CAM identified a range of temporal, frontal, parietal, and subcortical regions that were strong anatomical predictors of the seizure onset zone, while the resting state networks which colocalized with Grad-CAM results included default mode, medial temporal, and dorsal attention networks. Lastly, in an analysis of a subset of patients with post-surgical outcomes, the 3DCNN leveraged a more focal set of regions to achieve classification in patients with Engel class > 1 compared to Engel class 1. SIGNIFICANCE Non-invasive techniques capable of localizing the seizure-onset zone could improve pre-surgical planning in patients with intractable epilepsy. We have demonstrated the ability of deep learning to identify the correct hemisphere of the seizure onset zone in TLE patients using RS-fMRI with high accuracy. This approach represents a novel technique of seizure lateralization that could improve preoperative surgical planning.
Collapse
Affiliation(s)
- Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| | - Luigi Maccotta
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| | - Nico Uf Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| |
Collapse
|
26
|
Verma G, Jacob Y, Jha M, Morris LS, Delman BN, Marcuse L, Fields M, Balchandani P. Quantification of brain age using high-resolution 7 tesla MR imaging and implications for patients with epilepsy. Epilepsy Behav Rep 2022; 18:100530. [PMID: 35492510 PMCID: PMC9043661 DOI: 10.1016/j.ebr.2022.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 10/27/2022] Open
Abstract
Purpose Epilepsy patients exhibit morphological differences on neuroimaging compared to age-matched healthy controls, including cortical and sub-cortical volume loss and altered gray-white matter ratios. The objective was to develop a model of normal aging using the 7T MRIs of healthy controls. This model can then be used to determine if the changes in epilepsy patients resemble the changes seen in aging, and potentially give a marker for the severity of those changes. Methods Sixty-nine healthy controls (24F/45M, mean age 36.5 ± 10.5 years) and forty-four epilepsy patients (24F/20M, 33.2 ± 9.9 years) non-lesional at 3T were scanned with volumetric T1-MPRAGE at 7T. These images were segmented and quantified using FreeSurfer. A linear regression-based model trained on healthy controls was developed to predict ages using derived imaging features among the epilepsy patient cohort. The model used 114 features with significant linear correlation with age. Results The regression-based model estimated brain age with mean absolute error (MAE) of 6.6 years among controls. Comparable prediction accuracy of 6.9 years MAE was seen epilepsy patients. T-test of mean absolute error showed no difference in the prediction accuracy with controls and epilepsy patients (p = 0.68). However, average signed error showed elevated (+5.0 years, p = 0.0007) predicted age differences (PAD; brain-PAD=, predicted minus biological age) among epilepsy patients. Morphological metrics in the medial temporal lobe were major contributors to PAD. Additionally, patients with seizure frequency greater than once a week showed significantly elevated brain-PAD (+8.2 ± 5.3 years, n = 13) compared to patients with lower seizure frequency (3.7 ± 6.5 years, n = 31, p = 0.033). Major conclusions Morphological patterns suggestive of premature aging were observed in non-lesional epilepsy patients vs. controls and in high seizure frequency patients vs. low frequency patients. Modeling brain age with 7T MRI may provide a sensitive imaging marker to assess the differential effects of the aging process in diseases such as epilepsy.
Collapse
Affiliation(s)
- Gaurav Verma
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yael Jacob
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Manish Jha
- UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Laurel S. Morris
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Bradley N. Delman
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Lara Marcuse
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Madeline Fields
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
27
|
Beck D, de Lange AG, Pedersen ML, Alnæs D, Maximov II, Voldsbekk I, Richard G, Sanders A, Ulrichsen KM, Dørum ES, Kolskår KK, Høgestøl EA, Steen NE, Djurovic S, Andreassen OA, Nordvik JE, Kaufmann T, Westlye LT. Cardiometabolic risk factors associated with brain age and accelerate brain ageing. Hum Brain Mapp 2022; 43:700-720. [PMID: 34626047 PMCID: PMC8720200 DOI: 10.1002/hbm.25680] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Ann‐Marie G. de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- LREN, Centre for Research in Neurosciences‐Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Mads L. Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Bjørknes CollegeOsloNorway
| | - Ivan I. Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Anne‐Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Kristine M. Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Erlend S. Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Einar A. Høgestøl
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Srdjan Djurovic
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of Psychiatry and PsychotherapyUniversity of TübingenTubingenGermany
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| |
Collapse
|
28
|
Windhager PF, Marcu AV, Trinka E, Bathke A, Höller Y. Are High Frequency Oscillations in Scalp EEG Related to Age? Front Neurol 2022; 12:722657. [PMID: 35153968 PMCID: PMC8829347 DOI: 10.3389/fneur.2021.722657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND High-frequency oscillations (HFOs) have received much attention in recent years, particularly in the clinical context. In addition to their application as a marker for pathological changes in patients with epilepsy, HFOs have also been brought into context with several physiological mechanisms. Furthermore, recent studies reported a relation between an increase of HFO rate and age in invasive EEG recordings. The present study aimed to investigate whether this relation can be replicated in scalp-EEG. METHODS We recorded high-density EEG from 11 epilepsy patients at rest as well as during motor performance. Manual detection of HFOs was performed by two independent raters following a standardized protocol. Patients were grouped by age into younger (<25 years) and older (>50 years) participants. RESULTS No significant difference of HFO-rates was found between groups [U = 10.5, p = 0.429, r = 0.3]. CONCLUSIONS Lack of replicability of the age effect of HFOs may be due to the local propagation patterns of age-related HFOs occurring in deep structures. However, limitations such as small sample size, decreased signal-to-noise ratio as compared to invasive recordings, as well as HFO-mimicking artifacts must be considered.
Collapse
Affiliation(s)
- Philipp Franz Windhager
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,*Correspondence: Philipp Franz Windhager
| | - Adrian V. Marcu
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Arne Bathke
- Department of Mathematics, Paris Lodron University Salzburg, Salzburg, Austria
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
29
|
Beck D, de Lange AMG, Alnæs D, Maximov II, Pedersen ML, Leinhard OD, Linge J, Simon R, Richard G, Ulrichsen KM, Dørum ES, Kolskår KK, Sanders AM, Winterton A, Gurholt TP, Kaufmann T, Steen NE, Nordvik JE, Andreassen OA, Westlye LT. Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults. Neuroimage Clin 2022; 33:102949. [PMID: 35114636 PMCID: PMC8814666 DOI: 10.1016/j.nicl.2022.102949] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor cardiometabolic health and neurodegenerative conditions. Although research has demonstrated deleterious effects of obesity on brain structure and function, the majority of studies have used conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While sensitive to gross features of body composition, such global anthropometric features fail to describe regional differences in body fat distribution and composition. The sample consisted of baseline brain magnetic resonance imaging (MRI) acquired from 790 healthy participants aged 18-94 years (mean ± standard deviation (SD) at baseline: 46.8 ± 16.3), and follow-up brain MRI collected from 272 of those individuals (two time-points with 19.7 months interval, on average (min = 9.8, max = 35.6). Of the 790 included participants, cross-sectional body MRI data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, SD = 15.6). Adopting a mixed cross-sectional and longitudinal design, we investigated cross-sectional body magnetic resonance imaging measures of adipose tissue distribution in relation to longitudinal brain structure using MRI-based morphometry (T1) and diffusion tensor imaging (DTI). We estimated tissue-specific brain age at two time points and performed Bayesian multilevel modelling to investigate the associations between adipose measures at follow-up and brain age gap (BAG) - the difference between actual age and the prediction of the brain's biological age - at baseline and follow-up. We also tested for interactions between BAG and both time and age on each adipose measure. The results showed credible associations between T1-based BAG and liver fat, muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of the study period in people with higher measures of adipose tissue. The results show that specific measures of fat distribution are associated with brain ageing and that different compartments of adipose tissue may be differentially linked with increased brain ageing, with potential to identify key processes involved in age-related transdiagnostic disease processes.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Ann-Marie G de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; LREN, Centre for Research in Neurosciences-Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Adriano Winterton
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | | | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
30
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
32
|
Brusini I, MacNicol E, Kim E, Smedby Ö, Wang C, Westman E, Veronese M, Turkheimer F, Cash D. MRI-derived brain age as a biomarker of ageing in rats: validation using a healthy lifestyle intervention. Neurobiol Aging 2022; 109:204-215. [PMID: 34775211 DOI: 10.1016/j.neurobiolaging.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats (p=0.015 for the interaction term). Cox regression showed that older BrainAGE at 5 months was associated with higher mortality risk (p=0.03). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.
Collapse
Affiliation(s)
- Irene Brusini
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chunliang Wang
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Hong J, Yun HJ, Park G, Kim S, Ou Y, Vasung L, Rollins CK, Ortinau CM, Takeoka E, Akiyama S, Tarui T, Estroff JA, Grant PE, Lee JM, Im K. Optimal Method for Fetal Brain Age Prediction Using Multiplanar Slices From Structural Magnetic Resonance Imaging. Front Neurosci 2021; 15:714252. [PMID: 34707474 PMCID: PMC8542770 DOI: 10.3389/fnins.2021.714252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979, p < 0.001) and 3D (MAE = 1.114, p < 0.001) CNNs. The saliency maps from our method indicated that the anatomical information describing the cortex and ventricles was the primary contributor to brain age prediction. With the application of the proposed method to external MRIs from 21 healthy fetuses, we obtained an MAE of 0.508 weeks. Based on the external MRIs, we found that the stack-wise MAE of the 2D single-channel CNN (0.743 weeks) was significantly lower than those of the 2D multi-channel (1.466 weeks, p < 0.001) and 3D (1.241 weeks, p < 0.001) CNNs. These results demonstrate that our method with multiplanar slices accurately predicts fetal brain age without the need for increased dimensionality or complex MRI preprocessing steps.
Collapse
Affiliation(s)
- Jinwoo Hong
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gilsoon Park
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Seonggyu Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Yangming Ou
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Lana Vasung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Caitlin K. Rollins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Cynthia M. Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Emiko Takeoka
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Shizuko Akiyama
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Judy A. Estroff
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Patricia Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Baecker L, Garcia-Dias R, Vieira S, Scarpazza C, Mechelli A. Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine 2021; 72:103600. [PMID: 34614461 PMCID: PMC8498228 DOI: 10.1016/j.ebiom.2021.103600] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression machine learning model of age-related neuroanatomical changes in healthy people. This model is then applied to new subjects to predict their brain age. The difference between predicted brain age and chronological age in a given individual is known as ‘brain-age gap’. This value is thought to reflect neuroanatomical abnormalities and may be a marker of overall brain health. It may aid early detection of brain-based disorders and support differential diagnosis, prognosis, and treatment choices. These applications could lead to more timely and more targeted interventions in age-related disorders.
Collapse
Affiliation(s)
- Lea Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Rafael Garcia-Dias
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of General Psychology, University of Padua, Italy
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
35
|
Wrigglesworth J, Ward P, Harding IH, Nilaweera D, Wu Z, Woods RL, Ryan J. Factors associated with brain ageing - a systematic review. BMC Neurol 2021; 21:312. [PMID: 34384369 PMCID: PMC8359541 DOI: 10.1186/s12883-021-02331-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Brain age is a biomarker that predicts chronological age using neuroimaging features. Deviations of this predicted age from chronological age is considered a sign of age-related brain changes, or commonly referred to as brain ageing. The aim of this systematic review is to identify and synthesize the evidence for an association between lifestyle, health factors and diseases in adult populations, with brain ageing. Methods This systematic review was undertaken in accordance with the PRISMA guidelines. A systematic search of Embase and Medline was conducted to identify relevant articles using search terms relating to the prediction of age from neuroimaging data or brain ageing. The tables of two recent review papers on brain ageing were also examined to identify additional articles. Studies were limited to adult humans (aged 18 years and above), from clinical or general populations. Exposures and study design of all types were also considered eligible. Results A systematic search identified 52 studies, which examined brain ageing in clinical and community dwelling adults (mean age between 21 to 78 years, ~ 37% were female). Most research came from studies of individuals diagnosed with schizophrenia or Alzheimer’s disease, or healthy populations that were assessed cognitively. From these studies, psychiatric and neurologic diseases were most commonly associated with accelerated brain ageing, though not all studies drew the same conclusions. Evidence for all other exposures is nascent, and relatively inconsistent. Heterogenous methodologies, or methods of outcome ascertainment, were partly accountable. Conclusion This systematic review summarised the current evidence for an association between genetic, lifestyle, health, or diseases and brain ageing. Overall there is good evidence to suggest schizophrenia and Alzheimer’s disease are associated with accelerated brain ageing. Evidence for all other exposures was mixed or limited. This was mostly due to a lack of independent replication, and inconsistency across studies that were primarily cross sectional in nature. Future research efforts should focus on replicating current findings, using prospective datasets. Trial registration A copy of the review protocol can be accessed through PROSPERO, registration number CRD42020142817. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02331-4.
Collapse
Affiliation(s)
- Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Phillip Ward
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, 3168, Australia.,Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria , 3800, , Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, 3168, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Dinuli Nilaweera
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Zimu Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
36
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
37
|
de Bézenac CE, Adan G, Weber B, Keller SS. Association of Epilepsy Surgery With Changes in Imaging-Defined Brain Age. Neurology 2021; 97:e554-e563. [PMID: 34261787 PMCID: PMC8424496 DOI: 10.1212/wnl.0000000000012289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Objective To determine whether surgery in patients with mesial temporal lobe epilepsy (mTLE) is associated with reduced brain-predicted age as a neural marker overall brain health, we compared brain-predicted and chronologic age difference (brain age gap estimation [BrainAGE]) in patients before and after surgery with healthy controls. Methods We acquired 3D T1-weighted MRI scans for 48 patients with mTLE before and after temporal lobe surgery to estimate brain age using a gaussian processes regression model. We examined BrainAGE before and after surgery controlling for brain volume change, comparing patients to 37 age- and sex-matched controls. Results Preoperatively, patients showed an increased BrainAGE of more than 7 years compared to controls. However, surgery was associated with a mean BrainAGE reduction of 5 years irrespective of whether or not surgery resulted in complete seizure freedom. We observed a lateralization effect as patients with left mTLE had BrainAGE values that more closely resembled control group values following surgery. Conclusions Our findings suggest that while morphologic brain alterations linked to accelerated aging have been observed in mTLE, surgery may be associated with changes that reverse such alterations in some patients. This work highlights the advantages of resective surgery on overall brain health in patients with refractory focal epilepsy.
Collapse
Affiliation(s)
- Christophe E de Bézenac
- From the Department of Pharmacology and Therapeutics (C.E.d.B., G.A., S.S.K.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool; The Walton Centre NHS Foundation Trust (C.E.d.B., G.A., S.S.K.), Liverpool, UK; and Institute of Experimental Epileptology and Cognition Research (B.W.), University of Bonn, Germany.
| | - Guleed Adan
- From the Department of Pharmacology and Therapeutics (C.E.d.B., G.A., S.S.K.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool; The Walton Centre NHS Foundation Trust (C.E.d.B., G.A., S.S.K.), Liverpool, UK; and Institute of Experimental Epileptology and Cognition Research (B.W.), University of Bonn, Germany
| | - Bernd Weber
- From the Department of Pharmacology and Therapeutics (C.E.d.B., G.A., S.S.K.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool; The Walton Centre NHS Foundation Trust (C.E.d.B., G.A., S.S.K.), Liverpool, UK; and Institute of Experimental Epileptology and Cognition Research (B.W.), University of Bonn, Germany
| | - Simon S Keller
- From the Department of Pharmacology and Therapeutics (C.E.d.B., G.A., S.S.K.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool; The Walton Centre NHS Foundation Trust (C.E.d.B., G.A., S.S.K.), Liverpool, UK; and Institute of Experimental Epileptology and Cognition Research (B.W.), University of Bonn, Germany
| |
Collapse
|
38
|
Armanious K, Abdulatif S, Shi W, Salian S, Kustner T, Weiskopf D, Hepp T, Gatidis S, Yang B. Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1778-1791. [PMID: 33729932 DOI: 10.1109/tmi.2021.3066857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The concept of biological age (BA) - although important in clinical practice - is hard to grasp mainly due to the lack of a clearly defined reference standard. For specific applications, especially in pediatrics, medical image data are used for BA estimation in a routine clinical context. Beyond this young age group, BA estimation is mostly restricted to whole-body assessment using non-imaging indicators such as blood biomarkers, genetic and cellular data. However, various organ systems may exhibit different aging characteristics due to lifestyle and genetic factors. Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs. To this end, we propose a new imaging-based framework for organ-specific BA estimation. In this initial study we focus mainly on brain MRI. As a first step, we introduce a chronological age (CA) estimation framework using deep convolutional neural networks (Age-Net). We quantitatively assess the performance of this framework in comparison to existing state-of-the-art CA estimation approaches. Furthermore, we expand upon Age-Net with a novel iterative data-cleaning algorithm to segregate atypical-aging patients (BA [Formula: see text] CA) from the given population. We hypothesize that the remaining population should approximate the true BA behavior. We apply the proposed methodology on a brain magnetic resonance image (MRI) dataset containing healthy individuals as well as Alzheimer's patients with different dementia ratings. We demonstrate the correlation between the predicted BAs and the expected cognitive deterioration in Alzheimer's patients. A statistical and visualization-based analysis has provided evidence regarding the potential and current challenges of the proposed methodology.
Collapse
|
39
|
Butler ER, Chen A, Ramadan R, Le TT, Ruparel K, Moore TM, Satterthwaite TD, Zhang F, Shou H, Gur RC, Nichols TE, Shinohara RT. Pitfalls in brain age analyses. Hum Brain Mapp 2021; 42:4092-4101. [PMID: 34190372 PMCID: PMC8357007 DOI: 10.1002/hbm.25533] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
Over the past decade, there has been an abundance of research on the difference between age and age predicted using brain features, which is commonly referred to as the “brain age gap.” Researchers have identified that the brain age gap, as a linear transformation of an out‐of‐sample residual, is dependent on age. As such, any group differences on the brain age gap could simply be due to group differences on age. To mitigate the brain age gap's dependence on age, it has been proposed that age be regressed out of the brain age gap. If this modified brain age gap is treated as a corrected deviation from age, model accuracy statistics such as R2 will be artificially inflated to the extent that it is highly improbable that an R2 value below .85 will be obtained no matter the true model accuracy. Given the limitations of proposed brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation from normality.
Collapse
Affiliation(s)
- Ellyn R. Butler
- Brain Behavior Laboratory, Department of PsychiatryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew Chen
- Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology and BiostatisticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and AnalyticsDepartment of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rabie Ramadan
- Mathematics DepartmentTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Trang T. Le
- Department of Biostatistics, Epidemiology and InformaticsInstitute for Biomedical Informatics, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kosha Ruparel
- Brain Behavior Laboratory, Department of PsychiatryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tyler M. Moore
- Brain Behavior Laboratory, Department of PsychiatryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics & Neuroimaging Center, Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Fengqing Zhang
- Department of PsychologyDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology and BiostatisticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and AnalyticsDepartment of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Brain Behavior Laboratory, Department of PsychiatryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas E. Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUK
- FMRIB, Wellcome Centre for Integrative NeuroimagingOxfordUK
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology and BiostatisticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and AnalyticsDepartment of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
40
|
Sone D, Beheshti I. Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review. Front Neurosci 2021; 15:684825. [PMID: 34239413 PMCID: PMC8258163 DOI: 10.3389/fnins.2021.684825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and disabling seizures. An increasing number of clinical and experimental applications of machine learning (ML) methods for epilepsy and other neurological and psychiatric disorders are available. ML methods have the potential to provide a reliable and optimal performance for clinical diagnoses, prediction, and personalized medicine by using mathematical algorithms and computational approaches. There are now several applications of ML for epilepsy, including neuroimaging analyses. For precise and reliable clinical applications in epilepsy and neuroimaging, the diverse ML methodologies should be examined and validated. We review the clinical applications of ML models for brain imaging in epilepsy obtained from a PubMed database search in February 2021. We first present an overview of typical neuroimaging modalities and ML models used in the epilepsy studies and then focus on the existing applications of ML models for brain imaging in epilepsy based on the following clinical aspects: (i) distinguishing individuals with epilepsy from healthy controls, (ii) lateralization of the temporal lobe epilepsy focus, (iii) the identification of epileptogenic foci, (iv) the prediction of clinical outcomes, and (v) brain-age prediction. We address the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Franke K, Bublak P, Hoyer D, Billiet T, Gaser C, Witte OW, Schwab M. In vivo biomarkers of structural and functional brain development and aging in humans. Neurosci Biobehav Rev 2021; 117:142-164. [PMID: 33308708 DOI: 10.1016/j.neubiorev.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
Abstract
Brain aging is a major determinant of aging. Along with the aging population, prevalence of neurodegenerative diseases is increasing, therewith placing economic and social burden on individuals and society. Individual rates of brain aging are shaped by genetics, epigenetics, and prenatal environmental. Biomarkers of biological brain aging are needed to predict individual trajectories of aging and the risk for age-associated neurological impairments for developing early preventive and interventional measures. We review current advances of in vivo biomarkers predicting individual brain age. Telomere length and epigenetic clock, two important biomarkers that are closely related to the mechanistic aging process, have only poor deterministic and predictive accuracy regarding individual brain aging due to their high intra- and interindividual variability. Phenotype-related biomarkers of global cognitive function and brain structure provide a much closer correlation to age at the individual level. During fetal and perinatal life, autonomic activity is a unique functional marker of brain development. The cognitive and structural biomarkers also boast high diagnostic specificity for determining individual risks for neurodegenerative diseases.
Collapse
Affiliation(s)
- K Franke
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - P Bublak
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - D Hoyer
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - C Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - O W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Estimating Gender and Age from Brain Structural MRI of Children and Adolescents: A 3D Convolutional Neural Network Multitask Learning Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:5550914. [PMID: 34122531 PMCID: PMC8172319 DOI: 10.1155/2021/5550914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 01/10/2023]
Abstract
Despite recent advances, assessing biological measurements for neuropsychiatric disorders is still a challenge, where confounding variables such as gender and age (as a proxy for neurodevelopment) play an important role. This study explores brain structural magnetic resonance imaging (sMRI) from two public data sets (ABIDE-II and ADHD-200) with healthy control (HC, N = 894), autism spectrum disorder (ASD, N = 251), and attention deficit hyperactivity disorder (ADHD, N = 357) individuals. We used gray and white matter preprocessed via voxel-based morphometry (VBM) to train a 3D convolutional neural network with a multitask learning strategy to estimate gender, age, and mental health status from structural brain differences. Gradient-based methods were employed to generate attention maps, providing clinically relevant identification of most representative brain regions for models' decision-making. This approach resulted in satisfactory predictions for gender and age. ADHD-200-trained models, evaluated in 10-fold cross-validation procedures on test set, obtained a mean absolute error (MAE) of 1.43 years (±0.22 SD) for age prediction and an area under the curve (AUC) of 0.85 (±0.04 SD) for gender classification. In out-of-sample validation, the best-performing ADHD-200 models satisfactorily predicted age (MAE = 1.57 years) and gender (AUC = 0.89) in the ABIDE-II data set. The models' accuracy was in line with the current state-of-the-art machine learning applications in neuroimaging. Key regions for models' accuracy were presented as a meaningful graphical output. New implementations, such as the use of VBM along with a 3D convolutional neural network multitask learning model and a brain imaging graphical output, reinforce the relevance of the proposed workflow.
Collapse
|
43
|
Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging. Eur Radiol 2021; 31:9628-9637. [PMID: 34018056 DOI: 10.1007/s00330-021-08048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Although Rolandic epilepsy (RE) has been regarded as a brain developmental disorder, neuroimaging studies have not yet ascertained whether RE has brain developmental delay. This study employed deep learning-based neuroanatomic biomarker to measure the changed feature of "brain age" in RE. METHODS The study constructed a 3D-CNN brain age prediction model through 1155 cases of typically developing children's morphometric brain MRI from open-source datasets and further applied to a local dataset of 167 RE patients and 107 typically developing children. The brain-predicted age difference was measured to quantitatively estimate brain age changes in RE and further investigated the relevancies with cognitive and clinical variables. RESULTS The brain age estimation network model presented a good performance for brain age prediction in typically developing children. The children with RE showed a 0.45-year delay of brain age by contrast with typically developing children. Delayed brain age was associated with neuroanatomic changes in the Rolandic regions and also associated with cognitive dysfunction of attention. CONCLUSION This study provided neuroimaging evidence to support the notion that RE has delayed brain development. KEY POINTS • The children with Rolandic epilepsy showed imaging phenotypes of delayed brain development with increased GM volume and decreased WM volume in the Rolandic regions. • The children with Rolandic epilepsy had a 0.45-year delay of brain-predicted age by comparing with typically developing children, using 3D-CNN-based brain age prediction model. • The delayed brain age was associated with morphometric changes in the Rolandic regions and attentional deficit in Rolandic epilepsy.
Collapse
|
44
|
Dunås T, Wåhlin A, Nyberg L, Boraxbekk CJ. Multimodal Image Analysis of Apparent Brain Age Identifies Physical Fitness as Predictor of Brain Maintenance. Cereb Cortex 2021; 31:3393-3407. [PMID: 33690853 PMCID: PMC8196254 DOI: 10.1093/cercor/bhab019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Maintaining a youthful brain structure and function throughout life may be the single most important determinant of successful cognitive aging. In this study, we addressed heterogeneity in brain aging by making image-based brain age predictions and relating the brain age prediction gap (BAPG) to cognitive change in aging. Structural, functional, and diffusion MRI scans from 351 participants were used to train and evaluate 5 single-modal and 4 multimodal prediction models, based on 7 regression methods. The models were compared on mean absolute error and whether they were related to physical fitness and cognitive ability, measured both currently and longitudinally, as well as study attrition and years of education. Multimodal prediction models performed at a similar level as single-modal models, and the choice of regression method did not significantly affect the results. Correlation with the BAPG was found for current physical fitness, current cognitive ability, and study attrition. Correlations were also found for retrospective physical fitness, measured 10 years prior to imaging, and slope for cognitive ability during a period of 15 years. The results suggest that maintaining a high physical fitness throughout life contributes to brain maintenance and preserved cognitive ability.
Collapse
Affiliation(s)
- Tora Dunås
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Centre for Demographic and Ageing Research (CEDAR), Umeå University, S-901 87 Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden.,Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark.,Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, DK-2400 Copenhagen, Denmark
| |
Collapse
|
45
|
Wang F, Yin Y, Yang Y, Liang T, Huang T, He C, Hu J, Zhang J, Yang Y, Xing Q, Zhang T, Liu H. Connectome-based prediction of brain age in Rolandic epilepsy: a protocol for a multicenter cross-sectional study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:511. [PMID: 33850908 PMCID: PMC8039653 DOI: 10.21037/atm-21-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Rolandic epilepsy (RE) is a common pediatric idiopathic partial epilepsy syndrome. Children with RE display varying degrees of cognitive impairment. In epilepsy, age-related neuroanatomic and cognitive changes differ greatly from those observed in the healthy brain, and may be defined as accelerated brain aging. Connectome-based predictive modeling (CPM) is a recently developed machine learning approach that uses whole-brain connectivity measured with neuroimaging data ("neural fingerprints") to predict brain-behavior relationships. The aim of the study will be to develop and validate a CPM for predicting brain age in patients with RE. METHODS A multicenter, cross-sectional study will be conducted in 5 Chinese hospitals. A total of 100 RE patients (including 50 patients receiving anti-epileptic drugs and 50 drug-naïve patients) and 100 healthy children will be recruited to undergo a neuropsychological test using the Wechsler Intelligence Scale. Magnetic resonance images will also be collected. CPM will be applied to predict the brain age of children with RE based on brain functional connectivity. DISCUSSION The findings of the study will facilitate our understanding of developmental changes in the brain in children with RE and could also be an important milestone in the journey toward developing effective early interventions for this disorder. TRIAL REGISTRATION The study has been registered with Chinese Clinical Trial Registry (ChiCTR2000032984).
Collapse
Affiliation(s)
- Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yu Yin
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yang Yang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Ting Liang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tingting Huang
- Department of Radiology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng He
- Department of Radiology, Chongqing University Central Hospital, Chongqing, China
| | - Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Jingjing Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yanli Yang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Qianlu Xing
- Department of Pediatrics, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
46
|
Xifra-Porxas A, Ghosh A, Mitsis GD, Boudrias MH. Estimating brain age from structural MRI and MEG data: Insights from dimensionality reduction techniques. Neuroimage 2021; 231:117822. [PMID: 33549751 DOI: 10.1016/j.neuroimage.2021.117822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022] Open
Abstract
Brain age prediction studies aim at reliably estimating the difference between the chronological age of an individual and their predicted age based on neuroimaging data, which has been proposed as an informative measure of disease and cognitive decline. As most previous studies relied exclusively on magnetic resonance imaging (MRI) data, we hereby investigate whether combining structural MRI with functional magnetoencephalography (MEG) information improves age prediction using a large cohort of healthy subjects (N = 613, age 18-88 years) from the Cam-CAN repository. To this end, we examined the performance of dimensionality reduction and multivariate associative techniques, namely Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), to tackle the high dimensionality of neuroimaging data. Using MEG features (mean absolute error (MAE) of 9.60 years) yielded worse performance when compared to using MRI features (MAE of 5.33 years), but a stacking model combining both feature sets improved age prediction performance (MAE of 4.88 years). Furthermore, we found that PCA resulted in inferior performance, whereas CCA in conjunction with Gaussian process regression models yielded the best prediction performance. Notably, CCA allowed us to visualize the features that significantly contributed to brain age prediction. We found that MRI features from subcortical structures were more reliable age predictors than cortical features, and that spectral MEG measures were more reliable than connectivity metrics. Our results provide an insight into the underlying processes that are reflective of brain aging, yielding promise for the identification of reliable biomarkers of neurodegenerative diseases that emerge later during the lifespan.
Collapse
Affiliation(s)
- Alba Xifra-Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Canada
| | - Arna Ghosh
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Marie-Hélène Boudrias
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Canada; School of Physical and Occupational Therapy, McGill University, Montréal, Canada.
| |
Collapse
|
47
|
Hogan J, Sun H, Paixao L, Westmeijer M, Sikka P, Jin J, Tesh R, Cardoso M, Cash SS, Akeju O, Thomas R, Westover MB. Night-to-night variability of sleep electroencephalography-based brain age measurements. Clin Neurophysiol 2021; 132:1-12. [PMID: 33248430 PMCID: PMC7855943 DOI: 10.1016/j.clinph.2020.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Brain Age Index (BAI), calculated from sleep electroencephalography (EEG), has been proposed as a biomarker of brain health. This study quantifies night-to-night variability of BAI and establishes probability thresholds for inferring underlying brain pathology based on a patient's BAI. METHODS 86 patients with multiple nights of consecutive EEG recordings were selected from Epilepsy Monitoring Unit patients whose EEGs reported as within normal limits. While EEGs with epileptiform activity were excluded, the majority of patients included in the study had a diagnosis of chronic epilepsy. BAI was calculated for each 12-hour segment of patient data using a previously established algorithm, and the night-to-night variability in BAI was measured. RESULTS The within-patient night-to-night standard deviation in BAI was 7.5 years. Estimates of BAI derived by averaging over 2, 3, and 4 nights had standard deviations of 4.7, 3.7, and 3.0 years, respectively. CONCLUSIONS Averaging BAI over n nights reduces night-to-night variability of BAI by a factor of n, rendering BAI a more suitable biomarker of brain health at the individual level. A brain age risk lookup table of results provides thresholds above which a patient has a high probability of excess BAI. SIGNIFICANCE With increasing ease of EEG acquisition, including wearable technology, BAI has the potential to track brain health and detect deviations from normal physiologic function. The measure of night-to-night variability and how this is reduced by averaging across multiple nights provides a basis for using BAI in patients' homes to identify patients who should undergo further investigation or monitoring.
Collapse
Affiliation(s)
- Jacob Hogan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Luis Paixao
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mike Westmeijer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Pooja Sikka
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jing Jin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan Tesh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Madalena Cardoso
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
48
|
Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond. Mol Psychiatry 2021; 26:825-834. [PMID: 31160692 PMCID: PMC7910210 DOI: 10.1038/s41380-019-0446-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Epilepsy is a diverse brain disorder, and the pathophysiology of its various forms and comorbidities is largely unknown. A recent machine learning method enables us to estimate an individual's "brain-age" from MRI; this brain-age prediction is expected as a novel individual biomarker of neuropsychiatric disorders. The aims of this study were to estimate the brain-age for various categories of epilepsy and to evaluate clinical discrimination by brain-age for (1) the effect of psychosis on temporal lobe epilepsy (TLE), (2) psychogenic nonepileptic seizures (PNESs) from MRI-negative epilepsies, and (3) progressive myoclonic epilepsy (PME) from juvenile myoclonic epilepsy (JME). In total, 1196 T1-weighted MRI scans from healthy controls (HCs) were used to build a brain-age prediction model with support vector regression. Using the model, we calculated the brain-predicted age difference (brain-PAD: predicted age-chronological age) of the HCs and 318 patients with epilepsy. We compared the brain-PAD values based on the research questions. As a result, all categories of patients except for extra-temporal lobe focal epilepsy showed a significant increase in brain-PAD. TLE with hippocampal sclerosis presented a significantly higher brain-PAD than several other categories. The mean brain-PAD in TLE with inter-ictal psychosis was 10.9 years, which was significantly higher than TLE without psychosis (5.3 years). PNES showed a comparable mean brain-PAD (10.6 years) to that of epilepsy patients. PME had a higher brain-PAD than JME (22.0 vs. 9.3 years). In conclusion, neuroimaging-based brain-age prediction can provide novel insight into or clinical usefulness for the diverse symptoms of epilepsy.
Collapse
|
49
|
Burgos N, Bottani S, Faouzi J, Thibeau-Sutre E, Colliot O. Deep learning for brain disorders: from data processing to disease treatment. Brief Bioinform 2020; 22:1560-1576. [PMID: 33316030 DOI: 10.1093/bib/bbaa310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
In order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine.
Collapse
|
50
|
de Lange AMG, Anatürk M, Suri S, Kaufmann T, Cole JH, Griffanti L, Zsoldos E, Jensen DEA, Filippini N, Singh-Manoux A, Kivimäki M, Westlye LT, Ebmeier KP. Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study. Neuroimage 2020; 222:117292. [PMID: 32835819 PMCID: PMC8121758 DOI: 10.1016/j.neuroimage.2020.117292] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II (WHII) MRI cohort using machine learning and imaging-derived measures of gray matter (GM) morphology, white matter microstructure (WM), and resting state functional connectivity (FC). The results showed that the prediction accuracy improved when multiple imaging modalities were included in the model (R2 = 0.30, 95% CI [0.24, 0.36]). The modality-specific GM and WM models showed similar performance (R2 = 0.22 [0.16, 0.27] and R2 = 0.24 [0.18, 0.30], respectively), while the FC model showed the lowest prediction accuracy (R2 = 0.002 [-0.005, 0.008]), indicating that the FC features were less related to chronological age compared to structural measures. Follow-up analyses showed that FC predictions were similarly low in a matched sub-sample from UK Biobank, and although FC predictions were consistently lower than GM predictions, the accuracy improved with increasing sample size and age range. Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with brain aging in the WHII cohort. Blood pressure showed a stronger association with white matter compared to gray matter, while no differences in the associations of alcohol intake and stroke risk with these modalities were observed. In conclusion, machine-learning based brain age prediction can reduce the dimensionality of neuroimaging data to provide meaningful biomarkers of individual brain aging. However, model performance depends on study-specific characteristics including sample size and age range, which may cause discrepancies in findings across studies.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Melis Anatürk
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Ludovica Griffanti
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Daria E A Jensen
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicola Filippini
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Archana Singh-Manoux
- Epidemiology of Ageing and Neurodegenerative Diseases, Universit de Paris, INSERM U1153, Paris France; Department of Epidemiology and Public Health, University College London, London, UK
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | |
Collapse
|