1
|
DuPlissis A, Medewar A, Hegarty E, Laing A, Shen A, Gomez S, Mondal S, Ben-Yakar A. vivoBodySeg: Machine learning-based analysis of C. elegans immobilized in vivoChip for automated developmental toxicity testing. RESEARCH SQUARE 2024:rs.3.rs-4796642. [PMID: 39281859 PMCID: PMC11398583 DOI: 10.21203/rs.3.rs-4796642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. While large animal tests are currently heavily relied on, the development of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate these novel assays. Several practical advantages have made C. elegansa useful model for rapid toxicity testing and studying developmental biology. Although the potential to study DevTox is promising, current low-resolution and labor-intensive methodologies prohibit the use of C. elegans for sub-lethal DevTox studies at high throughputs. With the recent availability of a large-scale microfluidic device, vivoChip, we can now rapidly collect 3D high-resolution images of ~ 1,000 C. elegans from 24 different populations. In this paper, we demonstrate DevTox studies using a 2.5D U-Net architecture (vivoBodySeg) that can precisely segment C. elegans in images obtained from vivoChip devices, achieving an average Dice score of 97.80. The fully automated platform can analyze 36 GB data from each device to phenotype multiple body parameters within 35 min on a desktop PC at speeds ~ 140x faster than the manual analysis. Highly reproducible DevTox parameters (4-8% CV) and additional autofluorescence-based phenotypes allow us to assess the toxicity of chemicals with high statistical power.
Collapse
|
2
|
Gu Y, Jiang Y, Chen X, Li L, Chen H, Chen J, Wang C, Yu J, Chen C, Li H. Generation of environmentally persistent free radicals on photoaged tire wear particles and their neurotoxic effects on neurotransmission in Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 186:108640. [PMID: 38608385 DOI: 10.1016/j.envint.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 μg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.
Collapse
Affiliation(s)
- Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinyu Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Li L, Li Y, Zeng K, Wang Q. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism. Food Chem Toxicol 2024; 186:114576. [PMID: 38458533 DOI: 10.1016/j.fct.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Cinnabar is the naturally occurring mercuric sulfide (HgS) and concerns about its safety have been grown. However, the molecular mechanism of HgS-related neurotoxicity remains unclear. S-phase kinase-associated protein 1 (Skp1), identified as the target protein of HgS, plays a crucial role in the development of neurological diseases. This study aims to investigate the neurotoxic effects and molecular mechanism of HgS based on Skp1 using the Caenorhabditis elegans (C. elegans) model. We prepared the HgS nanoparticles and conducted a comparative analysis of neurobehavioral differences in both wild-type C. elegans (N2) and a transgenic strain of C. elegans (VC1241) with a knockout of the SKP1 homologous gene after exposure to HgS nanoparticles. Our results showed that HgS nanoparticles could suppress locomotion, defecation, egg-laying, and associative learning behaviors in N2 C. elegans, while no significant alterations were observed in the VC1241 C. elegans. Furthermore, we conducted a 4D label-free proteomics analysis and screened 504 key proteins significantly affected by HgS nanoparticles through Skp1. These proteins play pivotal roles in various pathways, including SNARE interactions in vesicular transport, TGF-beta signaling pathway, calcium signaling pathway, FoxO signaling pathway, etc. In summary, HgS nanoparticles at high doses suppress the neurobehavioral functions of C. elegans through a Skp1-dependent mechanism.
Collapse
Affiliation(s)
- Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
4
|
Liu S, Wu Q, Zhong Y, He Z, Wang Z, Li R, Wang M. Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12522-12531. [PMID: 36112285 DOI: 10.1007/s11356-022-23010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
As a forceful nematicide, fosthiazate has been largely applied in the management of root-knot nematodes and other herbivorous nematodes. However, the toxicity of fosthiazate to nontarget nematodes is unclear. To explore the toxicity and the mechanisms of fosthiazate in nontarget nematodes, Caenorhabditis elegans was exposed to 0.01-10 mg/L fosthiazate. The results implied that treatment with fosthiazate at doses above 0.01 mg/L could cause injury to the growth, locomotion behavior, and reproduction of the nematodes. Moreover, L1 larvae were more vulnerable to fosthiazate exposure than L4 larvae. Reactive oxygen species (ROS) production and lipofuscin accumulation were fairly increased in 1 mg/L fosthiazate-exposed nematodes. Treatment with 0.1 mg/L fosthiazate significantly inhibited the activity of acetylcholinesterase (p < 0.01). Furthermore, subacute exposure to 10 mg/L fosthiazate strongly influenced the expression of genes related to oxidative stress, reproduction, and nerve function (e.g., gst-1, sod-1, puf-8, wee-1.3, and ace-1 genes). These findings suggested that oxidative stress, reproduction and nerve disorders could serve as key endpoints of toxicity induced by fosthiazate. The cyp-35a family gene was the main metabolic fosthiazate in C. elegans, and the cyp-35a5 subtype was the most sensitive, with a change in expression level of 2.11-fold compared with the control. These results indicate that oxidative stress and neurological and reproductive disorders played fundamental roles in the toxicity of fosthiazate in C. elegans and may affect the abundance and function of soil nematodes.
Collapse
Affiliation(s)
- Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Yanru Zhong
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China.
| |
Collapse
|
5
|
Gao J, Qian J, Ma N, Han J, Cui F, chen N, Tu Y. Protective Effects of Polydatin on Reproductive Injury Induced by Ionizing Radiation. Dose Response 2022; 20:15593258221107511. [PMID: 35783236 PMCID: PMC9244944 DOI: 10.1177/15593258221107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The reproductive system is vulnerable to ionizing radiation, which is a hot research topic at present. We tested the effect of polydatin on spermatocytes(GC-1 cells) after X-ray irradiation. The reproductive damage model of C.elegans was established by 60Coγ-ray, and the protective effect of polydatin on reproductive damage caused by ionizing radiation was evaluated. We quantified the ROS levels of GC-1 cells and C.elegans after irradiation with polydatin and evaluated the anti-apoptosis effect of polydatin at proper concentration. Differential genes of C.elegans reproductive damage were screened out from transcriptome sequencing results and comparable GEO datasets. It was proved that 100μM polydatin significantly reduced the apoptosis of GC-1 cells induced by 2 Gy X-ray. In addition, the longevity, reproductive capacity, germ cell apoptosis and spawning and hatching capacity of polydatin were tested. The results showed that 100 μM polydatin content significantly increased the influence of 50 Gy 60Coγ-ray on reproductive capacity of C.elegans. Quantitative analysis of mRNA and protein levels of apoptosis-related genes and reproductive-related genes by qRT-PCR and Western blotcon firmed that polydatin with appropriate dosage had good protective effects on reproductive damage caused by radiation, which laid a foundation for the application research of polydatin in radiation protection.
Collapse
Affiliation(s)
- Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jincheng Qian
- Department of Nuclear Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Ma
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfang Han
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Na chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
6
|
Fajardo C, Martín C, Garrido E, Sánchez-Fortún S, Nande M, Martín M, Costa G. Copper and Chromium toxicity is mediated by oxidative stress in Caenorhabditis elegans: The use of nanoparticles as an immobilization strategy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103846. [PMID: 35288336 DOI: 10.1016/j.etap.2022.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental contamination by heavy metals (HMs) has impelled searching for stabilization strategies, where the use of zero-valent iron nanoparticles (nZVI) is considered a promising option. We have evaluated the combined effect of Cu(II)-Cr(VI) on two Caenorhabditis elegans strains (N2 and RB1072 sod-2 mutant) in aqueous solutions and in a standard soil, prior and after treatment with nZVI (5% w/w). The results showed that HMs aqueous solutions had an intense toxic effect on both strains. Production of reactive oxygen species and enhanced expression of the heat shock protein Hsp-16.2 was observed, indicating increased HM-mediated oxidative stress. Toxic effects of HM-polluted soil on worms were higher for sod-2 mutant than for N2 strain. However, nZVI treatment significantly diminished all these effects. Our findings highlighted C. elegans as a sensitive indicator for HMs pollution and its usefulness to assess the efficiency of the nanoremediation strategy to decrease the toxicity of Cu(II)-Cr(VI) polluted environments.
Collapse
Affiliation(s)
- Carmen Fajardo
- Dpt. Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá, 28805 Madrid, Spain.
| | - Carmen Martín
- Dpt. of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid (UPM), 3 Complutense Ave., 28040 Madrid, Spain
| | - Elena Garrido
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Sebastian Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Mar Nande
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Margarita Martín
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Gonzalo Costa
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| |
Collapse
|
7
|
Chen H, Hua X, Yang Y, Wang C, Jin L, Dong C, Chang Z, Ding P, Xiang M, Li H, Yu Y. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126482. [PMID: 34186424 DOI: 10.1016/j.jhazmat.2021.126482] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are ubiquitous in all environments and exert toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of long-term exposure to MPs aged under UV radiation remain largely unclear. In this study, Caenorhabditis elegans was treated with 0.1-100 μg/L virgin and aged polystyrene microplastics (PS-MPs) for 10 d, with locomotion behavior, neuronal development, neurotransmitter content, and neurotransmission-related to gene expression as endpoints. Using locomotion behavior as an endpoint, chronic exposure to aged PS-MPs at low concentrations (1 μg/L) caused more severe neurotoxicity than that to virgin PS-MPs. In transgenic nematodes, exposure to 10-100 μg/L aged PS-MPs significantly influenced the fluorescence intensity and percentage of worms with neurodegeneration of dopaminergic, glutamatergic, and serotonergic neurons compared with control. Further investigations showed that the content of glutamate, serotonin, and dopamine was significantly influenced in nematodes chronically exposed to 100 μg/L of aged PS-MPs. Similarly, neurotransmission-related gene (e.g., eat-4, dat-1, and tph-1) expression was also altered in nematodes. These results indicate that aged PS-MPs exert neurotoxicity owing to their effects on dopamine, glutamate, and serotonin neurotransmission. This study provides insights into the underlying mechanisms and potential risks of PS-MPs after UV radiation.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lide Jin
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
8
|
Wakabayashi T, Nojiri Y, Takahashi-Watanabe M. Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biol Trace Elem Res 2021; 199:2764-2769. [PMID: 32914378 DOI: 10.1007/s12011-020-02375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
As rare earth (RE) metals are abundantly present in the soil, in spite of their name, it is conceivable that organisms may encounter and interact with RE ions. In the present study, we demonstrated that the soil nematode Caenorhabditis elegans avoids RE ions, such as yttrium and all examined lanthanide ions, which exhibit toxic effects on nematodes. We also demonstrated that the chemosensory system of this animal mediates avoidance behavior toward RE ions similar to heavy metal (HM) ion avoidance. The C. elegans dyf-11(pe554) mutant is unable to respond to chemosensory cues because it lacks all ciliated endings of the chemosensory neurons required for the detection of environmental chemicals. Cell-specific rescue of the dyf-11 mutant and cell-specific genetic ablation studies revealed that the avoidance behavior toward HM and RE ions was mediated by a partially overlapping but distinct subset of chemosensory neurons (ASH, ADL, ASE, ADF, and ASK). With the help of multiple chemosensory neurons, worms may improve the fidelity of avoidance behavior to evade RE ions. Among the chemosensory neurons in C. elegans, ADF and ASK neurons were involved in RE avoidance, but not in HM avoidance. These results suggested that ADF and ASK neurons in C. elegans have RE-selective mechanisms to mediate the avoidance response.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yui Nojiri
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Miwa Takahashi-Watanabe
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
9
|
Tang B, Williams PL, Xue KS, Wang JS, Tang L. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 260:127627. [PMID: 32673864 DOI: 10.1016/j.chemosphere.2020.127627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 05/19/2023]
Abstract
Nickel is the most prevailing metal allergen with the highest sensitization rate among the "TOP 25" contact allergens and can affect about 15% of the human population. It is an essential trace metal in plants, animals, and humans. However, the environmental levels of nickel are considerably higher than what is needed for human life. Exposure to high levels of nickel can lead to skin allergies, lung fibrosis, and carcinogenesis. Few existing studies have closely examined the toxicity of nickel, let alone investigated the effective detoxification pathways. Here, we developed a high-throughput screening platform to comprehensively evaluate the nickel toxicity in wild-type C. elegans and explore the underlying detoxification mechanisms in transgenic nematodes. We demonstrated that nickel exerted multiple toxic effects on growth, brood size, feeding, and locomotion in C. elegans. Of which, brood size is the most sensitive endpoint. Nickel was found to first bind to phytochelatin (PC) after entering the worms' body and this PC-Ni complex was further transported by the ABC transporter, CeHMT-1, into the coelomocytes for further detoxification. Our study also demonstrated that the high-throughput screening platform is a promising system for evaluation and investigation of the ecological risks of heavy metals.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Qiu Y, Liu Y, Li Y, Li G, Wang D. Effect of chronic exposure to nanopolystyrene on nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 256:127172. [PMID: 32470744 DOI: 10.1016/j.chemosphere.2020.127172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastic exposure could cause toxicity to Caenorhabditis elegans at various aspects. Nevertheless, the effects of chronic exposure to nanoplastics remain largely unclear in nematodes. In this study, we employed C. elegans as an animal model to determine the effects of nanopolystyrene (30 nm) exposure from adult day-1 for 8-day. After the exposure, only 1000 μg/L nanopolystyrene reduced the lifespan. In contrast, nanopolystyrene ≥1 μg/L decreased locomotion behavior and activated oxidative stress. Meanwhile, in 10 μg/L nanopolystyrene exposed nematodes, both expression of SOD-3, a Mn-SOD, and autophagy induction as indicated by LGG-1:GFP expression were significantly increased. RNAi knockdown of daf-2 encoding an insulin receptor enhanced the autophagy induction, and RNAi knockdown of daf-16 encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the autophagy induction in 10 μg/L nanopolystyrene exposed nematodes. Moreover, DAF-16 acted upstream of LGG-1, an ortholog of Atg8/LC3, to regulate the toxicity of nanopolystyrene toxicity in inducing ROS production and in decreasing locomotion behavior at adult day-9. Our data implied the potential toxicity of chronic exposure to nanoplastics at predicted environmental concentrations on organisms.
Collapse
Affiliation(s)
- Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yaqi Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yunhui Li
- School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Guojun Li
- Beijing Research Center for Prevention Medicine, Beijing, 100013, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China.
| |
Collapse
|
11
|
Wang J, Deng N, Wang H, Li T, Chen L, Zheng B, Liu RH. Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules 2020; 25:molecules25020351. [PMID: 31952185 PMCID: PMC7024185 DOI: 10.3390/molecules25020351] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Orange, with various bioactive phytochemicals, exerts various beneficial health effects, including anti-cancer, antioxidant, and anti-inflammatory properties. However, its anti-aging effects remain unclear. In this study, the Caenorhabditis elegans (C. elegans) model was used to evaluate the effects of orange extracts on lifespan and stress resistance. The results indicated that orange extracts dose-dependently increased the mean lifespan of C. elegans by 10.5%, 18.0%, and 26.2% at the concentrations of 100, 200, and 400 mg/mL, respectively. Meanwhile, orange extracts promoted the healthspan by improving motility, and decreasing the accumulation of age pigment and intracellular reactive oxygen species (ROS) levels without damaging fertility. The survival rates of orange extract-fed worms were obviously higher than those of untreated worms against thermal and ultraviolet-B (UV-B) stress. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly enhanced while malondialdehyde (MDA) contents were diminished. Further investigation revealed that worms supplemented with orange extracts resulted in upregulated levels of genes, including daf-16, sod-3, gst-4, sek-1, and skn-1, and the downregulation of age-1 expression. These findings revealed that orange extracts have potential anti-aging effects through extending the lifespan, enhancing stress resistance, and promoting the healthspan.
Collapse
Affiliation(s)
- Jing Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
| | - Na Deng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
| | - Hong Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
- Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China;
- Correspondence: (H.W.); (R.H.L.)
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA;
| | - Ling Chen
- Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China;
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
- Guangdong ERA Food & Life Health Research Institute, Guangzhou 510670, China
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (H.W.); (R.H.L.)
| |
Collapse
|
12
|
Tang B, Tong P, Xue KS, Williams PL, Wang JS, Tang L. High-throughput assessment of toxic effects of metal mixtures of cadmium(Cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. CHEMOSPHERE 2019; 234:232-241. [PMID: 31220657 DOI: 10.1016/j.chemosphere.2019.05.271] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals, a class of persistent environmental toxicants, are harmful to human health. Cd and Pb are two of the most common toxic heavy metals that have been linked with cancers and malfunction of the nervous system. Notably, contamination of Mn usually coexisted with Cd and Pb in environmental and occupational settings. Studies regularly examined the toxic effects on individual metals; however, potential health and toxic effects of mixtures containing two or more heavy metals are unknown. Here, we investigated toxic effects of Cd, Pb, Mn, and their binary and ternary mixtures in the nematode Caenorhabdities elegans. The toxic outcomes, including effects on growth, reproduction, and feeding, were measured via high-throughput platform analysis. The transgenic strain BY250 with GFP in dopaminergic neurons was used to explore the neurodegenerative effects induced by single metals or their mixtures. The combination index(CI) for mixtures effect was calculated using isobolograms methods. Following the exposure, we found significant toxic effects in C. elegans. For single metals, the toxicity order for growth, reproduction, and feeding were Pb > Cd > Mn. For mixtures, the mixture of Cd + Mn induced a less than addictive effect in C. elegans, whereas the mixtures of Cd + Pb, Pb + Mn, and Cd + Pb + Mn induced greater-than-additive effects. Both single metals and their mixtures induced abnormality in dopaminergic neurons. These results showed combinative toxic and neurodegenerative effects of heavy metal mixtures, and future studies will focus on characterization of concentration-response patterns and identification of potential molecular mechanisms in C. elegans model.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Wakabayashi T, Nakano Y. Stress Responses Against Rare Earth Ions Are Mediated by the JNK and p38 MAPK Pathways in Caenorhabditis elegans. Biol Trace Elem Res 2019; 190:550-555. [PMID: 30443708 DOI: 10.1007/s12011-018-1577-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Rare earth (RE) ions at high concentrations are toxic to many organisms as they induce oxidative stress and cause improper incorporation of the ions into calcium-binding proteins. Although the mechanism of action underlying the toxicity of REs has been identified, intracellular signaling pathways involved in stress responses against RE ions still remain unclear. In Caenorhabditis elegans, cellular responses against heavy metal stresses are primarily regulated by the c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) pathway with a minor contribution of the p38-like MAPK pathway. In this study, we found that both JNK- and p38-like MAPK pathways were involved in stress responses against RE. Unlike heavy metal responses, mutations in both the JNK and p38 pathways caused similar hypersensitivity to RE ions. Although the signaling pathways used for these stress responses were found to be similar, the degree of their respective contribution slightly differed between heavy metal and RE ions.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yuta Nakano
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
14
|
Xiao X, Zhang X, Zhang C, Li J, Zhao Y, Zhu Y, Zhang J, Zhou X. Toxicity and multigenerational effects of bisphenol S exposure to Caenorhabditis elegans on developmental, biochemical, reproductive and oxidative stress. Toxicol Res (Camb) 2019; 8:630-640. [PMID: 31559007 DOI: 10.1039/c9tx00055k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is a typical endocrine disruptor. Bisphenol S (BPS) has been widely used as a substitute for various plastic materials due to the limited application of BPA. However, it does not mean that BPS is a safe substitute due to the lack of effective evaluation of BPS. In this study, the clinical model of Caenorhabditis elegans (C. elegans) was used to study the effects of BPS on the locomotion behavior, growth, reproduction, lifespan and antioxidant system. Our study found that C. elegans exposed to 0.01 μM BPS could have significantly inhibited locomotion behavior and growth, as well as damaged reproductive and antioxidant systems and lifespan. It is interesting to note that in multi-generational exposure studies, we found that BPS exhibits complex genotoxicity. With the transmission to the offspring, BPS showed more significant inhibition of the head thrashes of the nematode, while the effect on the body bends and body length was gradually weakened. The effect of BPS on the brood size shows different rules according to different concentrations and offsprings. Therefore, the safety of BPS still needs further evaluation, especially the multi-generational genotoxicity.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Xiaowei Zhang
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Caiqin Zhang
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Jie Li
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Yansheng Zhao
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Ying Zhu
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Jiayan Zhang
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| | - Xinghua Zhou
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China . ; ; Tel: +86-511-88797202
| |
Collapse
|
15
|
Chen H, Wang C, Li H, Ma R, Yu Z, Li L, Xiang M, Chen X, Hua X, Yu Y. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:519-525. [PMID: 30825784 DOI: 10.1016/j.jenvman.2019.02.102] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Persistent organic pollutants (POPs) and endocrine disrupting compounds (EDCs) are almost ubiquitous in synthetic and natural sources; however these contaminants adversely impact ecosystems and humans. Owing to their potential toxicity, concerns have been raised about the effects of POPs and EDCs on ecological and human health. Therefore, toxicity evaluation and mechanisms actions of these contaminants are of great interest. The nematode Caenorhabditis elegans (C. elegans), an excellent model animal for environmental toxicology research, has been used widely for toxicity studies of POPs or EDCs from the whole-animal level to the single-cell level. In this review, we have discussed the toxicity of specific POPs or EDCs after acute, chronic, and multigenerational exposure in C. elegans. We have also introduced a discussion of the toxicological mechanisms of these compounds in C. elegans, with respect to oxidative stress, cell apoptosis, and the insulin/IGF-1 signaling pathway. Finally, we raised considered the perspectives and challenges of the toxicity assessments, multigenerational toxicity, and toxicological mechanisms.
Collapse
Affiliation(s)
- Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| |
Collapse
|
16
|
Liu F, Zaman WQ, Peng H, Li C, Cao X, Huang K, Cui C, Zhang W, Lin K, Luo Q. Ecotoxicity of Caenorhabditis elegans following a step and repeated chronic exposure to tetrabromobisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:273-281. [PMID: 30453175 DOI: 10.1016/j.ecoenv.2018.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
To better understand the toxicity of tetrabromobisphenol A (TBBPA), its effects on the model nematode Caenorhabditis elegans were investigated. Following a step and repeated chronic exposure from L4-larvae to day-10 adult, physiology endpoints (growth and locomotion behaviors including head thrashes, body bends and pumping rate), biochemical endpoints (reactive oxygen species, superoxide dismutase activity, catalase activity), and molecular stress-related gene expression were tested at environmentally relevant concentrations of TBBPA (0.01-100 µg/L). The results showed that concentrations of TBBPA greater than 10 µg/L, clearly influenced the physiology behaviors (growth and locomotion endpoints). Under repeated exposure, C. elegans exhibited adaptive responses in head thrashes and pumping rate. Compared to toxicity evaluation following repeated chronic exposure, a significantly greater response was induced at the same concentration following a step chronic exposure. Reactive oxygen species production was significantly enhanced following a step and repeated TBBPA exposure at the concentrations of 1 and 10 µg/L, respectively. qRT-PCR showed that ctl-1, ctl-2, ctl-3 and sod-3 expression significantly increased, which was obviously correlated with physiological and biochemical behaviors under both treatment conditions according to Pearson correlation test analysis. sod-3 and ctl-2 mutations were more sensitive than the wild-type N2 under a step chronic TBBPA exposure at a level of 10 µg/L. Thus, chronic exposure to TBBPA induces an oxidative stress response in C. elegans, with ctl-2 and sod-3 playing a vital role in TBBPA-induced toxicity in nematodes.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongjiang Peng
- Branch of Shanghai, Longking Environmental Protection Co., Ltd, Shanghai 200331, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China.
| |
Collapse
|
17
|
Cui F, Ma N, Han X, Chen N, Xi Y, Yuan W, Xu Y, Han J, Xu X, Tu Y. Effects of 60Co γ Irradiation on the Reproductive Function of Caenorhabditis elegans. Dose Response 2019; 17:1559325818820981. [PMID: 30733651 PMCID: PMC6343448 DOI: 10.1177/1559325818820981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022] Open
Abstract
The effects of ionizing radiation on the reproductive system have always been a matter of great interest. Both artificial and naturally occurring ionizing radiation can directly or indirectly affect the reproductive system via the introduction of DNA single-strand and double-strand breaks, the excitation of water molecules, and the generation of free radicals. In order to quantitatively investigate the effects of ionizing radiation on reproductive function, 60Co γ irradiation was applied on a model organism, Caenorhabditis elegans (C. elegans). The egg-laying and embryo-hatching activities were observed for the parent (F0) and the first 2 progeny (F1 and F2) generations. The incidence rate of ovipositor malformation was also recorded. Acridine orange was used to detect the number of apoptotic germ cells. With the above metrics, the effects of 60Co γ irradiation on the reproductive function of C. elegans were systematically evaluated. The results showed that the postirradiation egg-laying and embryo-hatching activities of the F0 generation were increasingly suppressed by increasing doses of 60Co γ irradiation. Those of the F1 generation showed a trend toward recovery although also suppressed by the radiation to the F0 generation compared with the control. Those activities were restored to normal or near-normal levels for the F2 generation. The incidence rate of ovipositor malformation was greatly increased by 60Co γ irradiation according to radiation doses. Gamma irradiation by 60Co also substantially induced germ cell apoptosis, and the apoptosis rate increased with increasing radiation doses. Therefore, 60Co γ irradiation affects the reproductive function of C. elegans. The suppression on its reproductive function increases with increasing radiation doses. The reproductive functions of progeny generations are also affected and weakened.
Collapse
Affiliation(s)
- Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Nan Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Xiaojing Han
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Hematology and Oncology, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yue Xi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weiye Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yufan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfang Han
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Xiaoyan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
18
|
Li K, Xu YQ, Feng L, Liu SS. Assessing the influence of the genetically modified factor on mixture toxicological interactions in Caenorhabditis elegans: Comparison between wild type and a SOD type. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:872-879. [PMID: 30041160 DOI: 10.1016/j.envpol.2018.06.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/11/2018] [Accepted: 06/30/2018] [Indexed: 05/03/2023]
Abstract
How to evaluate the ecological risk of transgenic technology is a focus of scientists because of the safety concerns raised by genetically modified (GM) organisms. Nevertheless, most studies are based on individual chemicals and always analyze the GM organism as a type of toxicant. In this study, we changed the approach and used GM organisms as the test objects with normal chemical exposure. Three types of chemicals (two substituted phenols, 4-chlorophenol and 4-nitrophenol; two ionic liquids, 1-butylpyridinium chloride and 1-butylpyridinium bromide; two pesticides, dichlorvos and glyphosate) were used to construct a six-component mixture system. The lethality to wild-type (N2) and sod-3::GFP (SOD-3) Caenorhabditis elegans was determined when they were exposed to the same mixture system after 12 and 24 h. The results showed that the pEC50 values of all of the single chemicals on SOD-3 were greater than those on N2 at 24 h. The toxicities of the single chemicals and nine mixture rays on the two strains increased with time. Notably, we discovered a significant difference between the two strains; time-dependent synergism occurred in mixtures on N2, but time-dependent antagonism occurred in mixtures on SOD-3. Finally, the strength of the synergism or antagonism turned to additive action on the two strains as the exposure time increased. These findings illustrated that the GM factor of the nematode influenced the mixture toxicological interaction at some exposure times. Compared with N2, SOD-3 were more sensitive to stress or toxic reactions. Therefore, the influence of the GM factor on mixture toxicological interactions in environmental risk assessment must be considered.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Li Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Zhou D. Ecotoxicity of bisphenol S to Caenorhabditis elegans by prolonged exposure in comparison with bisphenol A. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2560-2565. [PMID: 29923629 DOI: 10.1002/etc.4214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Because of increasing concerns about its toxic effects, bisphenol A (BPA) has been gradually replaced in industrial applications by analogs such as bisphenol S (BPS). Few comparative toxicity evaluations of bisphenol analogs have been done. In the present study, 72-h exposure in L1 larvae of the model animal Caenorhabditis elegans was used to evaluate low-concentration BPS toxicity. Multiple indicators at the physiological, biochemical, and molecular levels were tested. At the physiological level, BPS exposure resulted in significantly negative effects at treatments >1 µM, with head thrash being the most sensitive endpoint. At the biochemical level, BPS exposure induced no significant oxidative stress, but significantly increased apoptosis at 1 µM. At the molecular level, BPS exposure induced small but significant variations in most stress-related gene expressions at all doses. In addition, the transgenic nematode TJ375 cell line with the green fluorescent protein-based reporter hsp-16.2 was used to determine stress responses; it was found that TJ375 was not sensitive to BPS exposure. Compared with the effects of BPA shown in our previous 2016 study, the overall results showed that BPS was less noxious to C. elegans than BPA. These toxicity data for BPS could provide a foundation to evaluate the comparative toxicity of BPA alternatives. Environ Toxicol Chem 2018;37:2560-2565. © 2018 SETAC.
Collapse
Affiliation(s)
- Dong Zhou
- Research Institute of Wastes and Soil Remediation, Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Wang X, Yang J, Li H, Guo S, Tariq M, Chen H, Wang C, Liu Y. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 208:31-39. [PMID: 29860142 DOI: 10.1016/j.chemosphere.2018.05.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to gain insights into the chronic effects and mechanisms of hexabromocyclododecane (HBCD), the animal model Caenorhabditis elegans (C. elegans) was chosen for toxicity study. Multiple endpoints, including the physiological (growth and locomotion behaviors), biochemical (reactive oxygen species (ROS) production, lipofuscin accumulation, and cell apoptosis), and molecular (stress-related gene expressions) levels, were tested by chronic exposure for 10 d to low concentrations of HBCD (0.2 nM-200 nM). The results revealed that chronic exposure to HBCD at concentrations more than 20 nM would significantly influence the growth, locomotion behaviors, ROS formation, lipofuscin accumulation, and cell apoptosis of nematodes. Treatment with antioxidants of ascorbate and N-acetyl-l-cysteine (NAC) suppressed the toxicity induced by HBCD. The integrated gene expression profiles showed that the chronic exposure to 200 nM of HBCD significantly increased the expression levels of stress-related genes (e.g., hsp-16.2, hsp-16.48, sod-1, sod-3, and cep-1 genes). Among these genes, the sod-1, sod-3, and cep-1 gene expressions were significantly correlated with HBCD-induced physiological effects by the Pearson correlation test. The mutations of sod-3 and cep-1 induced more severe toxicity compared to wild-type nematodes. Therefore, HBCD exposure induced oxidative stress by ROS accumulation and cell apoptosis, which resulted in HBCD-induced toxicity on nematodes, and sod-3 and cep-1 played important roles in protecting nematodes against HBCD-induced toxicity.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jie Yang
- Research Institute of Wastes and Soil Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute of Environmental Pollution and Health, Shanghai University, Shanghai, 201800, PR China.
| | - Shu Guo
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou, 510535, PR China
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Chen
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou, 510535, PR China.
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
21
|
García-Espiñeira M, Tejeda-Benitez L, Olivero-Verbel J. Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:216-222. [PMID: 29550685 DOI: 10.1016/j.ecoenv.2018.02.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/04/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Atrazine and Glyphosate are herbicides massively used in agriculture for crop protection. Upon application, they are available to the biota in different ecosystems. The aim of this research was to evaluate the toxicity of Glyphosate and Atrazine based formulations (GBF and ABF, respectively). Caenorhabditis elegans was exposed to different concentrations of each single formulation, and to the mixture. Lethality, locomotion, growth, and fertility were measured as endpoints. Effects on gene expression were monitored utilizing green fluorescence protein transgenic strains. ABF caused lethality of 12%, 15%, and 18% for 6, 60, and 600 μM, respectively, displaying a dose dependence trend. GBF produced lethality of 20%, 50%, and 100% at 0.01, 10, and 100 μM, respectively. Locomotion inhibition ranged from 21% to 89% at the lowest and maximum tested concentrations for Atrazine; whereas for Glyphosate, exposure to 10 μM inhibited 87%. Brood size was decreased by 67% and 93% after treatment to 0.06 and 6 μM Atrazine, respectively; and by 23% and 93% after exposure to 0.01 and 10 μM Glyphosate, respectively. There were no significant differences in growth. Changes in gene expression occurred in all genes, highlighting the expression of sod-1, sod-4, and gpx-4 that increased more than two-fold after exposure to 600 μM ABF and 10 μM GBF. The effects observed for the mixture of these formulations were additive for lethality, locomotion and fertility. In short, GBF, ABF, and their mixture induced several toxic responses related to oxidative stress on C. elegans.
Collapse
Affiliation(s)
- María García-Espiñeira
- Environmental and Computational Chemistry Group, Zaragocilla Campus. School of Pharmaceutical Sciences. University of Cartagena, Cartagena 130015, Colombia.
| | - Lesly Tejeda-Benitez
- Development and Use of Biomass Research Group, Piedra de Bolivar Campus, School of Engineering, Universidad de Cartagena, Cartagena, 130015, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Zaragocilla Campus. School of Pharmaceutical Sciences. University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
22
|
Toxic Effects of Bisphenol A, Propyl Paraben, and Triclosan on Caenorhabditis elegans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040684. [PMID: 29621162 PMCID: PMC5923726 DOI: 10.3390/ijerph15040684] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous plasticizer which is absorbed by ingestion and dermal contact; propyl paraben (PPB) inhibits the microbiome and extends the shelf life of many personal care products, whereas triclosan (TCS) is commonly found in antiseptics, disinfectants, or additives. In this work, Caenorhabditis elegans was used as a biological model to assess the toxic effects of BPA, PPB, and TCS. The wild type strain, Bristol N2, was used in bioassays with the endpoints of lethality, growth, and reproduction; green fluorescent protein (GFP) transgenic strains with the hsp-3, hsp-4, hsp-16.2, hsp-70, sod-1, sod-4, cyp-35A4, cyp-29A2, and skn-1 genes were evaluated for their mRNA expression through fluorescence measurement; and quick Oil Red O (q ORO) was utilized to stain lipid deposits. Lethality was concentration-dependent, while TCS and PPB showed more toxicity than BPA. BPA augmented worm length, while PPB reduced it. All toxicants moderately increased the width and the width–length ratio. BPA and PPB promoted reproduction, in contrast to TCS, which diminished it. All toxicants affected the mRNA expression of genes related to cellular stress, control of reactive oxygen species, and nuclear receptor activation. Lipid accumulation occurred in exposed worms. In conclusion, BPA, PPB, and TCS alter the physiology of growth, lipid accumulation, and reproduction in C. elegans, most likely through oxidative stress mechanisms.
Collapse
|
23
|
Tejeda-Benítez L, Noguera-Oviedo K, Aga DS, Olivero-Verbel J. Toxicity profile of organic extracts from Magdalena River sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1519-1532. [PMID: 29098576 DOI: 10.1007/s11356-017-0364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The Magdalena River, the main river of Colombia, receives contaminated effluents from different anthropogenic activities along its path. However, the Magdalena River is used as drinking water source for approximately 30 million inhabitants, as well as a major source of fish for human consumption. Only a few studies have been conducted to evaluate the environmental and toxicological quality of the Magdalena River. To evaluate sediment toxicity, wild-type and GFP transgenic Caenorhabditis elegans were exposed to methanolic extracts, and effects on lethality, locomotion, growth, and gene expression were determined based on fluorescence spectroscopy. These biological and biochemical parameters were correlated with measured pollutant concentrations (PAHs and trace elements), identifying patterns of toxicity along the course of the river. Effects on lethality, growth, and locomotion were observed in areas influenced by industrial, gold mining, and petrochemical activities. Changes in gene expression were evident for cyp-34A9, especially in the sampling site located near an oil refinery, and at the seaport, in Barranquilla City. Body bend movements were moderately correlated with Cr and As concentrations. The expression of mtl-1, mtl-2, hsp-6, and hsp-70 were significantly associated with Pb/U, Pb, Sr, and As/Sr/Pb/U, respectively. Interestingly, toxicity of methanolic as well as aqueous extracts were more prone to be dependent on Cd, Zn, and Th. In general, ecological risk assessment showed sediments display low environmental impact in terms of evaluated metals and PAHs. Different types of waste disposal on the Magdalena River, as a result of mining, domestic, agricultural, and industrial activities, incorporate toxic pollutants in sediments, which are capable of generating a toxic response in C. elegans.
Collapse
Affiliation(s)
- Lesly Tejeda-Benítez
- Development and Use of Biomass Research Group, School of Engineering, University of Cartagena, Cartagena, Colombia
| | - Katia Noguera-Oviedo
- Department of Chemistry, Office: 611 Natural Sciences Complex, University at Buffalo, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, Office: 611 Natural Sciences Complex, University at Buffalo, Buffalo, New York, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
24
|
Zhou D, Yang J, Li H, Cui C, Yu Y, Liu Y, Lin K. The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. CHEMOSPHERE 2016; 154:546-551. [PMID: 27085314 DOI: 10.1016/j.chemosphere.2016.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
To investigate biological effects of bisphenol A (BPA) over the long term, the model animal Caenorhabditis elegans was used to conduct the chronic exposure. C. elegans were exposed to BPA (0.0001-10 μM) from L4 larvae to day-10 adult in the present chronic toxicity assay system. Multiple endpoints at the physiological (growth, locomotion behaviors and lifespan), biochemical (lipofuscin accumulation), molecular (stress-related genes expressions), and population (population size) levels were examined. At the physiological level, BPA exposure induced significant negative effects on the indicators. Among the endpoints, head thrash was most sensitive and the detection limit was 0.001 μM. At the biochemical level, BPA exposure induced no significant effects on lipofuscin accumulation. At the molecular level, BPA induced strong stress responses in vivo. At the population level, the population size was significantly decreased in the treatment groups from 0.1 to 10 μM. Compared to the previous short-term toxicity evaluation, long-term exposure to BPA induced a more obvious response at the same concentration, and the phenomenon might be due to cumulative toxic effects. By the Pearson correlation analyses, cep-1 was speculated to act as an important role in BPA-induced chronic toxicity on C. elegans.
Collapse
Affiliation(s)
- Dong Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Yang
- Research Institute of Wastes and Soil Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunjiang Yu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
25
|
Tejeda-Benitez L, Flegal R, Odigie K, Olivero-Verbel J. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:238-250. [PMID: 26851980 DOI: 10.1016/j.envpol.2016.01.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, 130014, Colombia.
| | - Russell Flegal
- Environmental Toxicology, WIGS Laboratory, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Kingsley Odigie
- Environmental Toxicology, WIGS Laboratory, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
26
|
Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans. PLoS One 2016; 11:e0153513. [PMID: 27078872 PMCID: PMC4831763 DOI: 10.1371/journal.pone.0153513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Jitendra Kumar
- The Buck Institute for Research on Aging, Novato, California, United States of America
- DBT-PU-IPLS Programme, Department of Botany/Biotechnology, Patna University, Patna- 800005, Bihar, India
- * E-mail: (PK); (DWK); (JK)
| | - Tracy Barhydt
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Anjali Awasthi
- Department of Biological Sciences, Birla Institute of Technology and Science, Rajasthan, India
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - David W. Killilea
- Nutrition & Metabolism Center, Children’s Hospital of Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| |
Collapse
|
27
|
Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. CHEMOSPHERE 2016; 144:2392-400. [PMID: 26610299 DOI: 10.1016/j.chemosphere.2015.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/24/2015] [Accepted: 11/08/2015] [Indexed: 05/16/2023]
Abstract
Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Quli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Kai Liao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Peihang Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qiuhong Cui
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
28
|
Tejeda-Benitez L, Olivero-Verbel J. Caenorhabditis elegans, a Biological Model for Research in Toxicology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 237:1-35. [PMID: 26613986 DOI: 10.1007/978-3-319-23573-8_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode. Overall, almost every type of known toxicant has been tested with this animal model. In the near future, the available knowledge on the life cycle of C. elegans should allow more studies on reproduction and transgenerational toxicity for newly developed chemicals and materials, facilitating their introduction in the market. The great diversity of endpoints and possibilities of this animal makes it an easy first-choice for rapid toxicity screening or to detail signaling pathways involved in mechanisms of toxicity.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
29
|
Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M. Residual impact of aged nZVI on heavy metal-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:79-84. [PMID: 25863574 DOI: 10.1016/j.scitotenv.2015.03.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
In the present study, the residual toxicity and impact of aged nZVI after a leaching experiment on heavy metal (Pb, Zn) polluted soils was evaluated. No negative effects on physico-chemical soil properties were observed after aged nZVI exposure. The application of nZVI to soil produced a significant increase in Fe availability. The impact on soil biodiversity was assessed by fluorescence in situ hybridization (FISH). A significant effect of nZVI application on microbial structure has been recorded in the Pb-polluted soil nZVI-treated. Soil bacteria molecular response, evaluated by RT-qPCR using exposure biomarkers (pykA, katB) showed a decrease in the cellular activity (pykA) due to enhanced intracellular oxidative stress (katB). Moreover, ecotoxicological standardised test on Caenorhabditis elegans (C. elegans) showed a decrease in the growth endpoint in the Pb-polluted soil, and particularly in the nZVI-treated. A different pattern has been observed in Zn-polluted soils: no changes in soil biodiversity, an increase in biological activity and a significant decrease of Zn toxicity on C. elegans growth were observed after aged nZVI exposure. The results reported indicated that the pollutant and its nZVI interaction should be considered to design soil nanoremediation strategies to immobilise heavy metals.
Collapse
Affiliation(s)
- C Fajardo
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - M Gil-Díaz
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - G Costa
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - J Alonso
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - A M Guerrero
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - M Nande
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - M C Lobo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - M Martín
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, Fei J, Abdukerim K. Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:285. [PMID: 26282848 PMCID: PMC4539661 DOI: 10.1186/s12906-015-0783-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 07/16/2015] [Indexed: 12/02/2022]
Abstract
Background Aiweixin (AWX) is a traditional Uyghur medicine prescription, and has been mainly used to treat heart and brain diseases for a long time. Previous studies indicated that AWX had therapeutic effects in a rat model of myocardial ischemia reperfusion injury. In this study, we investigate whether AWX has protective effects against chromium toxicity in Caenorhabditis elegans (C. elegans). Methods The AWX decoction was the conventional product for clinical use. It was added into M9 buffer in a certain volume for the treatment to the wild-type C. elegans and mutational worms, daf-16, glp-1(notch), daf-2, rsks-1 and eat-2. Assays for hexavalent chromium {Cr(VI)} stress and reactive oxygen species (ROS) production were used. Results We found that AWX at moderate contents (0.083, 0.1, 0.125 volume of AWX/total volume) increased resistance of C. elegans to Cr(VI) exposure, although higher contents of AWX are toxic for C. elegans. The protective effect of AWX was DAF-16-dependent, but independent on the DAF-2, GLP-1, RSKS-1 and EAT-2. AWX (0.1 volume of AWX/total volume) significantly reduced ROS production of C. elegans induced by Cr(VI) exposure. Conclusion These results indicated the AWX protected against the toxicity of Cr(VI) in C. elegans, and the oxidative stress protective mechanism in worms should be involved.
Collapse
|
31
|
Charão MF, Souto C, Brucker N, Barth A, Jornada DS, Fagundez D, Ávila DS, Eifler-Lima VL, Guterres SS, Pohlmann AR, Garcia SC. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomedicine 2015; 10:5093-106. [PMID: 26300641 PMCID: PMC4536844 DOI: 10.2147/ijn.s84909] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Caenorhabditis elegans is an alternative in vivo model that is being successfully used to assess the pharmacological and toxic effects of drugs. The exponential growth of nanotechnology requires the use of alternative in vivo models to assess the toxic effects of theses nanomaterials. The use of polymeric nanocapsules has shown promising results for drug delivery. Moreover, these formulations have not been used in cases of intoxication, such as in treatment of paraquat (PQ) poisoning. Thus, the use of drugs with properties improved by nanotechnology is a promising approach to overcome the toxic effects of PQ. This research aimed to evaluate the absorption of rhodamine B-labeled melatonin (Mel)-loaded lipid-core nanocapsules (LNC) by C. elegans, the application of this model in nanotoxicology, and the protection of Mel-LNC against PQ damage. The formulations were prepared by self-assembly and characterized by particle sizing, zeta potential, drug content, and encapsulation efficiency. The results demonstrated that the formulations had narrow size distributions. Rhodamine B-labeled Mel-LNC were orally absorbed and distributed in the worms. The toxicity assessment of LNC showed a lethal dose 50% near the highest dose tested, indicating low toxicity of the nanocapsules. Moreover, pretreatment with Mel-LNC significantly increased the survival rate, reduced the reactive oxygen species, and maintained the development in C. elegans exposed to PQ compared to those worms that were either untreated or pretreated with free Mel. These results demonstrated for the first time the uptake and distribution of Mel-LNC by a nematode, and indicate that while LNC is not toxic, Mel-LNC prevents the effects of PQ poisoning. Thus, C. elegans may be an interesting alternative model to test the nanocapsules toxicity and efficacy.
Collapse
Affiliation(s)
- Mariele Feiffer Charão
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Souto
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Brucker
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anelise Barth
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denise S Jornada
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Department of Production and Control of Drugs, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daiandra Fagundez
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCE), Federal University of Pampa - UNIPAMPA, Uruguaiana, RS, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCE), Federal University of Pampa - UNIPAMPA, Uruguaiana, RS, Brazil
| | - Vera L Eifler-Lima
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Laboratory of Medical Synthesis Organic (LaSOM), Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Silvia S Guterres
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Department of Production and Control of Drugs, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana R Pohlmann
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ; Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Kumar R, Pradhan A, Khan FA, Lindström P, Ragnvaldsson D, Ivarsson P, Olsson PE, Jass J. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture. PLoS One 2015; 10:e0132896. [PMID: 26168046 PMCID: PMC4500601 DOI: 10.1371/journal.pone.0132896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention.
Collapse
Affiliation(s)
- Ranjeet Kumar
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Ajay Pradhan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | | | | | | | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1401-10. [DOI: 10.1016/j.nano.2014.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
|
34
|
Zhao Y, Lin Z, Jia R, Li G, Xi Z, Wang D. Transgenerational effects of traffic-related fine particulate matter (PM₂.₅) on nematode Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:106-114. [PMID: 24769847 DOI: 10.1016/j.jhazmat.2014.03.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Numerous studies have demonstrated the toxic effects of fine particle matter less than 2.5 μm (PM2.5) on health of human. However, little information is available on PM2.5 ecotoxicity. We employed Caenorhabditis elegans to investigate the adverse effects of traffic-related PM2.5 on exposed animals and their progeny. Acute exposure to high concentrations of PM2.5 in the range of mg/L caused adverse effects on development, lifespan, reproduction, and locomotion behavior of nematodes. In contrast, prolonged exposure to low concentrations of PM2.5 in the range of μg/L resulted in adverse effects on development, lifespan, reproduction, locomotion behavior, and intestinal development of nematodes. Prolonged exposure to PM2.5 could even cause adverse effects on lifespan, reproduction, locomotion behavior, and intestinal development in progeny of exposed nematodes. PM2.5 toxicity was only partially recovered in progeny of exposed nematodes. For the PM2.5 toxicity on nematodes and their progeny, we hypothesize that it might be the combinational effects of oxidative stress, damage on intestinal barrier, and abnormal defecation behavior. Our data here imply the potential toxic effects of long-term exposure to traffic-related PM2.5 on environmental organisms. Our results further highlight the possible crucial roles of biological barrier and defecation behavior in regulating the PM2.5 toxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Zhiqing Lin
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China
| | - Ruhan Jia
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Guojun Li
- Beijing Research Center for Prevention Medicine, Beijing 100013, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
35
|
Wu Q, Zhao Y, Fang J, Wang D. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. NANOSCALE 2014; 6:5894-5906. [PMID: 24756229 DOI: 10.1039/c4nr00699b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| | | | | | | |
Collapse
|
36
|
Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. CHEMOSPHERE 2014; 104:184-9. [PMID: 24287264 DOI: 10.1016/j.chemosphere.2013.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 05/20/2023]
Abstract
Nanosized zero-valent iron (nZVI) is a new option for the remediation of contaminated soil and groundwater, but the effect of nZVI on soil biota is mostly unknown. In this work, nanotoxicological studies were performed in vitro and in two different standard soils to assess the effect of nZVI on autochthonous soil organisms by integrating classical and molecular analysis. Standardised ecotoxicity testing methods using Caenorhabditis elegans were applied in vitro and in soil experiments and changes in microbial biodiversity and biomarker gene expression were used to assess the responses of the microbial community to nZVI. The classical tests conducted in soil ruled out a toxic impact of nZVI on the soil nematode C. elegans in the test soils. The molecular analysis applied to soil microorganisms, however, revealed significant changes in the expression of the proposed biomarkers of exposure. These changes were related not only to the nZVI treatment but also to the soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. Furthermore, due to the temporal shift between transcriptional responses and the development of the corresponding phenotype, the molecular approach could anticipate adverse effects on environmental biota.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; Moncloa Campus of International Excellence (UCM-UPM), 28040 Madrid, Spain
| | - Carmen Fajardo
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gonzalo Costa
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carmen Lobo
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca "El Encín" Km 38, 2 A-II Apdo 127, 28800 Madrid, Spain
| | - Mar Nande
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Margarita Martin
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
37
|
Rui Q, Zhao Y, Wu Q, Tang M, Wang D. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. CHEMOSPHERE 2013; 93:2289-2296. [PMID: 24001673 DOI: 10.1016/j.chemosphere.2013.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L(-1) reflecting predicted environmental relevant concentration and 25 mg L(-1) reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L(-1) of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L(-1) of TiO2-NPs for 24-h and 25 mg L(-1) of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.
Collapse
Affiliation(s)
- Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
38
|
Zhang W, Lv T, Li M, Wu Q, Yang L, Liu H, Sun D, Sun L, Zhuang Z, Wang D. Beneficial effects of wheat gluten hydrolysate to extend lifespan and induce stress resistance in nematode Caenorhabditis elegans. PLoS One 2013; 8:e74553. [PMID: 24040279 PMCID: PMC3767650 DOI: 10.1371/journal.pone.0074553] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023] Open
Abstract
Previous studies have showed that wheat gluten hydrolysate (WGH) has the anti-oxidative property. In the present study, we examined the possible safety property of WGH and the beneficial effects of WGH to extend lifespan and induce stress resistance using nematode Caenorhabditis elegans as the in vivo assay system. We found that WGH at concentrations of 0.1–1 mg/mL did not cause lethality, influence development, alter locomotion behavior and brood size, and induce significant intestinal autofluorescence and reactive oxygen species (ROS) production in young adults. Treatment with 0.1–1 mg/mL of WGH significantly extended lifespans of nematodes under the normal conditions. Moreover, WGH treatment significantly inhibited the induction of intestinal autofluorescence and suppressed the decrease in locomotion behavior during the aging process of nematodes. Furthermore, pre-treatment with 1 mg/mL of WGH significantly suppressed the adverse effects caused by heat-stress or oxidative stress on nematodes as indicated by the alterations of both lifespan and intestinal ROS production. Therefore, WGH treatment is relatively safe and has beneficial effects on nematodes under both the normal conditions and the stress conditions.
Collapse
Affiliation(s)
- Weiming Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Ting Lv
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Min Li
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Linsong Yang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Hui Liu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Dafeng Sun
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Lingmei Sun
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
- * E-mail: (ZZ); (DW)
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
- * E-mail: (ZZ); (DW)
| |
Collapse
|
39
|
Dutilleul M, Lemaire L, Réale D, Lecomte C, Galas S, Bonzom JM. Rapid phenotypic changes in Caenorhabditis elegans under uranium exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:862-868. [PMID: 23821126 DOI: 10.1007/s10646-013-1090-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Pollutants can induce selection pressures on populations, and the effects may be concentration-dependant. The main ways to respond to the stress are acclimation (i.e. plastic changes) and adaptation (i.e. genetic changes). Acclimation provides a short-term response to environmental changes and adaptation can have longer-term implications on the future of the population. One way of studying these responses is to conduct studies on the phenotypic changes occurring across generations in populations experimentally subjected to a selective factor (i.e. multigenerational test). To our knowledge, such studies have not been performed with uranium (U). Here, the phenotypic changes were explored across three generations in experimental Caenorhabditis elegans populations exposed to different U-concentrations. Significant negative effects of U were detected on survival, generation time, brood size, body length and body bend. At lower U-concentrations, the negative effects were reduced in the second or the third generation, indicating an improvement by acclimation. In contrast, at higher U-concentrations, the negative effects on brood size were amplified across generations. Consequently, under high U-concentrations acclimation may not be sufficient, and adaptation of individuals would be required, to permit the population to avoid extinction. The results highlight the need to consider changes across generations to enhance environmental risk assessment related to U pollution.
Collapse
Affiliation(s)
- Morgan Dutilleul
- Laboratoire d'écotoxicologie des radionucléides, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, Bat 190, BP3 13115, Saint-Paul-lez-Durance Cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Goussen B, Parisot F, Beaudouin R, Dutilleul M, Buisset-Goussen A, Péry ARR, Bonzom JM. Consequences of a multi-generation exposure to uranium on Caenorhabditis elegans life parameters and sensitivity. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:869-878. [PMID: 23670266 DOI: 10.1007/s10646-013-1078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
The assessment of toxic effects at biologically and ecologically relevant scales is an important challenge in ecosystem protection. Indeed, stressors may impact populations at much longer term than the usual timescale of toxicity tests. It is therefore important to study the evolutionary response of a population under chronic stress. We performed a 16-generation study to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, survival, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. Our experiment showed an adaptation of individuals to experimental conditions (increase of maximal length and decrease of fecundity) for both populations. We also observed an increase of adverse effects (reduction of growth and fertility) as a function of uranium concentration. We pointed out the emergence of population differentiation for reproduction traits. In contrast, no differentiation was observed on growth traits. Our results confirm the importance of assessing environmental risk related to pollutant through multi-generational studies.
Collapse
Affiliation(s)
- Benoit Goussen
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil en Halatte, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. CHEMOSPHERE 2013; 90:1123-1131. [PMID: 23062833 DOI: 10.1016/j.chemosphere.2012.09.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/06/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Nematode Caenorhabditis elegans has been developed in a variety of environmental studies to address adverse effects of a wide range of toxicants. In the present study, we compared the toxicities of three metal oxide nanoparticles (NPs) including TiO(2)-NPs, ZnO-NPs, and SiO(2)-NPs with the same nanosize (30 nm) after prolonged exposure from L1-larvae to adult at environmental relevant concentrations. Our data indicated that the adverse effects were detected in nematodes exposed to TiO(2)-NPs and ZnO-NPs at concentrations more than 0.05 μg/L and SiO(2)-NPs at concentrations more than 5 μg/L with locomotion behavior and ROS production as endpoints. With growth, locomotion behavior, reproduction, and ROS production as endpoints, toxicity order for the examined metal oxide NPs was: ZnO-NPs>TiO(2)-NPs>SiO(2)-NPs. In nematodes exposed to the examined metal oxide NPs, ROS production was significantly correlated with lethality, growth, reproduction, and locomotion behavior. Moreover, treatment with antioxidants of ascorbate or NAC effectively inhibited the formation of oxidative stress and retrieved the adverse effects of TiO(2)-NPs, ZnO-NPs, and SiO(2)-NPs on survival, growth, reproduction and locomotion behaviors in nematodes. Our data demonstrated the subtle toxicity differences of different NPs exposure at environmental relevant concentrations in C. elegans.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu Q, Wang W, Li Y, Li Y, Ye B, Tang M, Wang D. Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. JOURNAL OF HAZARDOUS MATERIALS 2012; 243:161-168. [PMID: 23127274 DOI: 10.1016/j.jhazmat.2012.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
In Caenorhabditis elegans, although acute toxicity of TiO(2) nanoparticles (TiO(2)-NPs) at high concentrations has been investigated, we still know little about chronic toxicity of TiO(2)-NPs. Our data here showed that acute TiO(2)-NPs exposure in the range of μg/L had no obviously adverse effects on nematodes, but the chronic toxicities of large sizes (60 nm and 90 nm) of TiO(2)-NPs in the range of μg/L were detected in nematodes in a modified chronic toxicity assay system. Moreover, chronic toxicities of small sizes (4 nm and 10nm) of TiO(2)-NPs in the range of ng/L were observed in nematodes with locomotion behavior and ROS production as endpoints. In nematodes chronically exposed to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations, locomotion behavior was significantly (P<0.01) correlated with ROS production. Furthermore, treatment with antioxidants (ascorbate and N-acetyl-l-cysteine) inhibited both the induction of ROS production and the decrease of locomotion behaviors observed in nematodes chronically exposed to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations. Therefore, chronic exposure to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations can cause adverse effects on nematodes, and formation of such adverse effects may be largely due to the induction of oxidative stress.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Hsu PCL, O'Callaghan M, Al-Salim N, Hurst MRH. Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2366-2374. [PMID: 22847876 DOI: 10.1002/etc.1967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/31/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) are an increasingly important class of nanoparticle, but little ecotoxicological data for QDs has been published to date. The effects of mercaptosuccinic acid (MSA)-capped QDs (QDs-MSA) and equivalent concentrations of cadmium (Cd) from cadmium chloride on growth and reproduction of the nematode Caenorhabditis elegans (Rhabditidae) were assessed in laboratory experiments. Growth from larvae to adults of C. elegans was unaffected by exposure to 1 µM fluorescent QDs-MSA, but adults produced more embryos and laid them prematurely. Furthermore, C. elegans exposed to QDs-MSA (1 µM) showed a high percentage of embryo mortality (19.2 ± 0.5, p < 0.001, percentage ± standard deviation) compared with unexposed nematodes (11.6 ± 0.4). An egg-laying defect phenotype was also observed at high frequency in response to 1 µM QDs-MSA exposure (38.3 ± 3.6%, p < 0.01; control 10.0 ± 2.2%). This resulted in a reduced mean life span (20.5 ± 1.1 d, p < 0.05) compared with the control (24.6 ± 1.0 d). Cadmium also caused reduced life span in C. elegans, but a low incidence of egg-laying defects was observed, suggesting that Cd and QDs-MSA affected C. elegans by different mechanisms. Furthermore, egg-laying defects caused by QDs-MSA responded to the addition of the anticonvulsant ethosuximide and to a lesser extent to the neurotransmitter serotonin, suggesting that QDs-MSA might have disrupted motor neurons during the reproduction process.
Collapse
|
44
|
Molecular control of TiO₂-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 2012; 7:e44688. [PMID: 22973466 PMCID: PMC3433426 DOI: 10.1371/journal.pone.0044688] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/07/2012] [Indexed: 01/29/2023] Open
Abstract
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes.
Collapse
|
45
|
Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA Coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One 2012; 7:e43729. [PMID: 22912902 PMCID: PMC3422352 DOI: 10.1371/journal.pone.0043729] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Dimercaptosuccinic acid (DMSA) coating improves the uptake efficiency presumably by engendering the Fe(2)O(3)-NPs. In the present study, we investigated the possible environmental safety concentrations of Fe(2)O(3)-NPs using different assay systems in nematode Caenorhabditis elegans with lethality, development, reproduction, locomotion behavior, pharyngeal pumping, defecation, intestinal autofluorescence and reactive oxygen species (ROS) production as the endpoints. After exposure from L4-larvae for 24-hr, DMSA coated Fe(2)O(3)-NPs at concentrations more than 50 mg/L exhibited adverse effects on nematodes. After exposure from L1-larvae to adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 500 μg/L had adverse effects on nematodes. After exposure from L1-larvae to day-8 adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 100 μg/L resulted in the adverse effects on nematodes. Accompanied with the alterations of locomotion behaviors, ROS production was pronouncedly induced by exposure to DMSA coated Fe(2)O(3)-NPs in the examined three assay systems, and the close associations of ROS production with lethality, growth, reproduction, locomotion behavior, pharyngeal pumping, defecation, or intestinal autofluorescence in nematodes exposed to DMSA coated Fe(2)O(3)-NPs were confirmed by the linear regression analysis. Moreover, mutations of sod-2 and sod-3 genes, encoding Mn-SODs, showed more susceptible properties than wild-type when they were used for assessing the DMSA coated Fe(2)O(3)-NPs-induced toxicity, and the safety concentrations for DMSA coated Fe(2)O(3)-NPs should be defined as concentrations lower than 10 μg/L in sod-2 and sod-3 mutant nematodes.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Yiping Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Meng Tang
- School of Public Health, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
46
|
Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:221-230. [PMID: 22521136 DOI: 10.1016/j.jhazmat.2012.03.083] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
To date, knowledge on mechanisms regarding the chronic nanotoxicity is still largely minimal. In the present study, the effect of chronic (10-day) Al(2)O(3)-nanoparticles (NPs) toxicity on locomotion behavior was investigated in the nematode Caenorhabditis elegans. Exposure to 0.01-23.1 mg/L of Al(2)O(3)-NPs induced a decrease in locomotion behavior, a severe stress response, and a severe oxidative stress; however, these effects were only detected in nematodes exposed to 23.1 mg/L of bulk Al(2)O(3). Formation of significant oxidative stress in nematodes exposed to Al(2)O(3)-NPs was due to both the increase in ROS production and the suppression of ROS defense mechanisms. More pronounced increases in ROS, decreases in SOD activity, and decrease in expression of genes encoding Mn-SODs (sod-2 and sod-3) were detected in nematodes exposed to Al(2)O(3)-NPs compared with bulk Al(2)O(3). Moreover, treatment with antioxidants or SOD-3 overexpression not only suppressed oxidative stress but also prevented adverse effects on locomotion behaviors from Al(2)O(3)-NPs exposure. Thus, chronic exposure to Al(2)O(3)-NPs may have adverse effects on locomotion behaviors by both induction of ROS production and disruption of ROS defense mechanisms. Furthermore, sod-2 and sod-3 mutants were more susceptible than the wild-type to chronic Al(2)O(3)-NPs-induced neurotoxicity inhibition.
Collapse
Affiliation(s)
- Yinxia Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
47
|
Wu Q, Qu Y, Li X, Wang D. Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. CHEMOSPHERE 2012; 87:1281-1287. [PMID: 22336735 DOI: 10.1016/j.chemosphere.2012.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/21/2011] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
Here we investigated whether the assay system (10-d) in Caenorhabditis elegans can be used to evaluate chronic toxicity of chromium (Cr(VI)) at environmental relevant concentrations ranging from 5.2 μg L(-1) to 260 μg L(-1). The results indicated that lethality, locomotion behavior as revealed by head thrash, body bend, and forward turn, metabolism as revealed by pumping rate and mean defecation cycle length, intestinal autofluorescence, and ROS production were severely altered in Cr chronically exposed nematodes at environmental relevant concentrations. The most surprising observations were that head thrash, body bend, intestinal autofluorescence, and ROS production in 13 μg L(-1) Cr exposed nematodes were significantly influenced. The observed adverse effects of Cr on survival, locomotion behavior, and metabolism were largely due to forming severe intestinal autofluorescence and ROS production. Therefore, our findings demonstrate the usefulness of chronic toxicity assay system in C. elegans in evaluating the chronic toxicity of toxicants at environmental relevant concentrations.
Collapse
Affiliation(s)
- Quili Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | |
Collapse
|
48
|
Ellegaard-Jensen L, Jensen KA, Johansen A. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:216-223. [PMID: 22475389 DOI: 10.1016/j.ecoenv.2012.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28nm (AgNP28, PVP coated), respectively. Tests were performed with and without presence of Escherichia coli to evaluate how the presence of a food bacterium affects the AgNP toxicity. A pre-exposure experiment was also conducted with nematodes pre-exposed to 0 and 1mgAgNPL(-1), respectively, for 20 h prior to exposure at higher concentrations of AgNP. Both AgNP1 and AgNP28 showed adverse dose-response effects and mortality on C. elegans. LC(50) for AgNP28 was lower than for AgNP1 and, hence, at the present test conditions the PVP-coated AgNP28 was more toxic than AgNP1. Including E. coli in the test medium as a food source increased AgNPs toxicity towards nematodes compared to when bacteria were not present. Pre-exposure to a low-level AgNP1 concentration made the nematodes slightly more sensitive to further exposure at higher concentrations compared to no pre-exposure, indicating that nematodes have no efficient physiological ability to counteract nano-silver toxicity by acclimation. The amount of dissolved Ag(+) was 0.18 to 0.21 mg L(-1) after 20 h at the highest AgNP1 (10 mg L(-1)) and AgNP28 (3 mg L(-1)) doses in the exposure medium, respectively. The upper limit of Ag(+) solubility cannot immediately explain the dose-response-related toxic effects of the AgNP nor the difference between AgNP1 and AgNP28. Higher toxicity of AgNP28 than AgNP1 may be explained by a combination of effects of coating, Ag-solubility and higher uptake rates due to agglomeration into μm-size agglomerates in the exposure medium.
Collapse
Affiliation(s)
- Lea Ellegaard-Jensen
- Department of Biology, Copenhagen University, Øster Farimagsgade 2D, DK-1353 Copenhagen K, Denmark
| | | | | |
Collapse
|
49
|
Yu S, Rui Q, Cai T, Wu Q, Li Y, Wang D. Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al(2)O(3)-nanoparticle. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:233-241. [PMID: 21843804 DOI: 10.1016/j.etap.2011.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 05/14/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
In nematodes, acute exposure (24-h) to 8.1-30.6 mg/L Al(2)O(3)-nanoparticles (NPs) or Al(2)O(3) did not influence intestinal autofluorescence, whereas chronic exposure (10-d) to Al(2)O(3)-NPs at concentrations of 8.1-30.6 mg/L or Al(2)O(3) at concentrations of 23.1-30.6 mg/L induced significant increases of intestinal lipofuscin accumulation, and formation of severe stress response and oxidative damage in intestines. Moreover, significant differences of intestinal autofluorescence, stress response and oxidative damage in intestines of Al(2)O(3)-NPs exposed nematodes from those in Al(2)O(3) exposed nematodes were detected at examined concentrations. Oxidative damage in intestine was significantly correlated with intestinal autofluorescence in exposed nematodes, and oxidative damage in intestine was more closely associated with intestinal autofluorescence in nematodes exposed to Al(2)O(3)-NPs than exposed to Al(2)O(3). Thus, chronic exposure to Al(2)O(3)-NPs may cause adverse effects on intestinal lipofuscin accumulation by inducing the formation of more severe oxidative stress in intestines than exposure to Al(2)O(3) in nematodes.
Collapse
Affiliation(s)
- Shunhui Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
50
|
Wu S, Lu J, Rui Q, Yu S, Cai T, Wang D. Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:179-188. [PMID: 21787684 DOI: 10.1016/j.etap.2010.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/17/2010] [Indexed: 05/31/2023]
Abstract
Toxicity of Al(2)O(3)-NPs, as compared to that of Al(2)O(3), to L1-larval, L4-larval or young adult nematodes was evaluated. When exposure was performed at L1-larval stage, the significant increases of lethality, stress response, and intestinal lipofuscin autofluorescence were observed in 6.3-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. In contrast, when exposure was performed at L4-larval or young adult stage, the significant increases of lethality and intestinal lipofuscin autofluorescence were observed in 12.7-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes, and the significant inductions of stress response were detected in 25.5-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. Moreover, the lethality was significantly correlated with the stress response and the intestinal lipofuscin autofluorescence in Al(2)O(3)-NPs exposed nematodes. These data imply that Al(2)O(3)-NPs exposure in L1 larvae causes more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes.
Collapse
Affiliation(s)
- Si Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|