1
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Feng Y, Wu J, Lei R, Zhang Y, Qiao M, Zhou J, Xu Z, Li Z, Sun H, Peng X, Mei S. N-Acetyl-L-Cysteine Ameliorates BPAF-Induced Porcine Sertoli Cell Apoptosis and Cell Cycle Arrest via Inhibiting the ROS Level. TOXICS 2023; 11:923. [PMID: 37999575 PMCID: PMC10675769 DOI: 10.3390/toxics11110923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol AF (BPAF) is a newly identified contaminant in the environment that has been linked to impairment of the male reproductive system. However, only a few studies have systematically studied the mechanisms underlying BPAF-induced toxicity in testicular Sertoli cells. Hence, this study primarily aims to explore the toxic mechanism of BPAF on the porcine Sertoli cell line (ST cells). The effects of various concentrations of BPAF on ST cell viability and cytotoxicity were evaluated using the Counting Kit-8 (CCK-8) assay. The results demonstrated that exposure to a high concentration of BPAF (above 50 μM) significantly inhibited ST cell viability due to marked cytotoxicity. Flow cytometry analysis further confirmed that BPAF facilitated apoptosis and induced cell cycle arrest in the G2/M phase. Moreover, BPAF exposure upregulated the expression of pro-apoptotic markers BAD and BAX while downregulating anti-apoptotic and cell proliferation markers BCL-2, PCNA, CDK2, and CDK4. BPAF exposure also resulted in elevated intracellular levels of reactive oxygen species (ROS) and malondialdehyde (MDA), alongside reduced activities of the antioxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Furthermore, the ROS scavenger N-acetyl-L-cysteine (NAC) effectively blocked BPAF-triggered apoptosis and cell cycle arrest. Therefore, this study suggests that BPAF induces apoptosis and cell cycle arrest in ST cells by activating ROS-mediated pathways. These findings enhance our understanding of BPAF's role in male reproductive toxicity and provide a foundation for future toxicological assessments.
Collapse
Affiliation(s)
- Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Runyu Lei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Hua H, Zhao Q, Xia J, Dai QL, Bai SR, Wang XB, Zhou M. Peficitinib ameliorates doxorubicin-induced cardiotoxicity by suppressing cellular senescence and enhances its antitumor activity. Int Immunopharmacol 2023; 122:110630. [PMID: 37451017 DOI: 10.1016/j.intimp.2023.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Irreversible cardiotoxicity limits the clinical applications of doxorubicin (DOX). Cardiotoxicity can be detected early using clinical assessment; however, effective preventive measures are still lacking. Peficitinib (ASP015K), a JAK (Janus kinase) inhibitor, is a potent anti-inflammatory agent in autoimmune diseases. Nevertheless, little research has been conducted on anti-ageing and anti-tumour therapies. In this study, we investigated whether ASP015K could attenuate DOX-induced cardiotoxicity through its anti-ageing effects and whether it would affect the tumour treatment effect of DOX by establishing senescence, acute heart injury, and xenograft models. We observed that ASP015K could antagonise the senescence induced by various factors, including hydrogen peroxide and DOX. In addition, ASP015K treatment significantly alleviated cardiac function damage, histopathological deterioration, myocardial fibrosis, and oxidative damage in acute injury mouse models. ASP015K enhanced the sensitivity of tumour cells to DOX therapy and significantly slowed down the tumour growth rate and tumour volume in the xenograft mouse model. Therefore, ASP015K is expected to be developed as a potential cardioprotective agent to prevent or reduce the cardiotoxic side effects of anthracyclines in chemotherapy.
Collapse
Affiliation(s)
- Hui Hua
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qi Zhao
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Jing Xia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qian-Long Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Shi-Rui Bai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
5
|
Dorostkar H, Haghiralsadat BF, Hemati M, Safari F, Hassanpour A, Naghib SM, Roozbahani MH, Mozafari MR, Moradi A. Reduction of Doxorubicin-Induced Cardiotoxicity by Co-Administration of Smart Liposomal Doxorubicin and Free Quercetin: In Vitro and In Vivo Studies. Pharmaceutics 2023; 15:1920. [PMID: 37514106 PMCID: PMC10385381 DOI: 10.3390/pharmaceutics15071920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/30/2023] Open
Abstract
Doxorubicin is one of the most effective chemotherapeutic agents; however, it has various side effects, such as cardiotoxicity. Therefore, novel methods are needed to reduce its adverse effects. Quercetin is a natural flavonoid with many biological activities. Liposomes are lipid-based carriers widely used in medicine for drug delivery. In this study, liposomal doxorubicin with favorable characteristics was designed and synthesized by the thin-film method, and its physicochemical properties were investigated by different laboratory techniques. Then, the impact of the carrier, empty liposomes, free doxorubicin, liposomal doxorubicin, and quercetin were analyzed in animal models. To evaluate the interventions, measurements of cardiac enzymes, oxidative stress and antioxidant markers, and protein expression were performed, as well as histopathological studies. Additionally, cytotoxicity assay and cellular uptake were carried out on H9c2 cells. The mean size of the designed liposomes was 98.8 nm, and the encapsulation efficiency (EE%) was about 85%. The designed liposomes were anionic and pH-sensitive and had a controlled release pattern with excellent stability. Co-administration of liposomal doxorubicin with free quercetin to rats led to decreased weight loss, creatine kinase (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA), while it increased the activity of glutathione peroxidase, catalase, and superoxide dismutase enzymes in their left ventricles. Additionally, it changed the expression of NOX1, Rac1, Rac1-GTP, SIRT3, and Bcl-2 proteins, and caused tissue injury and cell cytotoxicity. Our data showed that interventions can increase antioxidant capacity, reduce oxidative stress and apoptosis in heart tissue, and lead to fewer complications. Overall, the use of liposomal doxorubicin alone or the co-administration of free doxorubicin with free quercetin showed promising results.
Collapse
Affiliation(s)
- Hamidreza Dorostkar
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Bibi Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, Faculty of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Azam Hassanpour
- Department of Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, IUST, ACECR, Tehran 1684613114, Iran
| | | | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Ali Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| |
Collapse
|
6
|
Ermis N, Ulutas Z, Ozhan O, Yildiz A, Vardi N, Colak C, Parlakpinar H. Angiotensin II type 2 receptor agonist treatment of doxorubicin induced heart failure. Biotech Histochem 2023:1-10. [PMID: 36938690 DOI: 10.1080/10520295.2023.2187461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline derivative used for treatment of malignancies; however, its clinical use is limited by its cardiotoxicity. We investigated the effects of angiotensin II type 2 receptor agonist compound 21 (C21) on DOX induced heart failure in rat heart. We compared C21 with losartan (LOS), an AT 1 receptor antagonist used for treating heart failure. We allocated 40 rats into five groups of eight: saline treated control group, DOX group administered a single 20 mg/kg dose of DOX, DOX + C21 group administered 0.3 mg/kg C21 for 21 days following the 20 mg/kg dose of DOX, DOX + losartan (LOS) group administered a 21 day regimen of 20 mg/kg LOS following the single dose of DOX, and a DOX + LOS + C21 group administered 0.3 mg/kg C21 and 20 mg/kg LOS for 21 days following the single dose of DOX. We assessed histopathology and conducted echocardiograpic and hemodynamic measurements. Left ventricular ejection fraction (EF) was reduced only in the DOX treated group. C21, LOS and C21 + LOS therapy prevented decreased EF due to DOX. Less histopathology was observed in the DOX + LOS + C21 group than for the other treatment groups. Application of C21 decreased DOX induced cardiac injury similar to LOS. Combined use of C21 and LOS was most beneficial for DOX induced heart failure.
Collapse
Affiliation(s)
- Necip Ermis
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Zeynep Ulutas
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J 2023; 290:1235-1255. [PMID: 35015342 PMCID: PMC10952275 DOI: 10.1111/febs.16351] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
- Wellcome Trust / National Institute of Health Research 4i Clinical Research FellowLondonUK
| | - Stuart A. Cook
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| |
Collapse
|
8
|
Chen JJ, Yan QL, Bai M, Liu Q, Song SJ, Yao GD. Deoxyelephantopin, a germacrane-type sesquiterpene lactone from Elephantopus scaber, induces mitochondrial apoptosis of hepatocarcinoma cells by targeting Hsp90α in vitro and in vivo. Phytother Res 2023; 37:702-716. [PMID: 36420857 DOI: 10.1002/ptr.7654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Hepatocellular carcinoma has been known as the most frequent subtype of liver cancer with a high rate of spread, metastases, and recurrence, also dismal treatment effects. However, effective therapies for HCC are still required. Nowadays, natural products have been known as a valuable source for drug discovery. In this research, 44 sesquiterpene lactones isolated from the Elephantopus scaber Linn. (Asteraceae) were tested by MTT assay for the antitumor activities. Deoxyelephantopin (DET) was found to exert significant cytotoxicity on HepG2 and Hep3B cells. Moreover, we found that DET treatment markedly reduced the growth of HCC cells in a concentration-dependent manner, which was better than sorafenib. Furthermore, DET induced mitochondrial dysfunction, oxidative stress, and cellular apoptosis. Additionally, we found that DET and sorafenib synergistically induced apoptosis and mitochondrial dysfunction in HCC cells. DET combined with sorafenib was also efficacious in tumor xenograft model. Molecular docking experiments revealed that DET had a potentially high binding affinity with Hsp90α. Moreover, Drug Affinity Responsive Target Stability assay suggested that DET could directly target Hsp90α. Additionally, the expression of Hsp90α was both decreased in vitro and in vivo. Altogether, this study revealed that DET might be a promising agent for HCC therapy by targeting Hsp90α.
Collapse
Affiliation(s)
- Jing-Jie Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Jadhav R, Kulkarni YA. Neuroprotective Effect of Quercetin and Memantine against AlCl 3-Induced Neurotoxicity in Albino Wistar Rats. Molecules 2023; 28:417. [PMID: 36615626 PMCID: PMC9824229 DOI: 10.3390/molecules28010417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Recent evidences indicate that there is a substantial increase in worldwide cases of dementia. Alzheimer's disease is the leading cause of dementia and may contribute to 60-70% of cases. Quercetin is a unique bioflavonoid that has numerous therapeutic benefits such as anti-allergy, anti-ulcer, anti-inflammatory, anti-hypertensive, anti-cancer, immuno-modulatory, anti-infective, antioxidant, acetylcholinesterase inhibitory activity, neuroprotective effects, etc. In the present study, we evaluated the neuroprotective effect of orally administered quercetin with memantine in albino Wistar rats after inducing neurotoxicity through AlCl3 (100 mg/kg, p.o.). Chronic administration of AlCl3 resulted in poor retention of memory and significant oxidative damage. Various behavioral parameters, such as locomotor activity, Morris water maze, elevated plus maze, and passive avoidance test, were assessed on days 21 and 42 of the study. The animals were euthanatized following the completion of the last behavioral assessment. Various oxidative stress parameters were assessed to know the extent of oxidative damage to brain tissue. Quercetin with memantine has shown significant improvement in behavioral studies, inhibition of AChE activity, and reduction in oxidative stress parameters. Histopathological studies assessed for cortex and hippocampus using hematoxylin and eosin (H&E), and Congo red stain demonstrated a reduction in amyloid-β plaque formation after treatment of quercetin with memantine. Immunohistochemistry showed that quercetin with memantine treatment also improved the expression of brain-derived neurotrophic factor (BDNF) and inhibited amyloid-β plaque formation. The present study results demonstrated protective effects of treatment of quercetin with memantine in the neurotoxicity linked to aluminum chloride in albino Wistar rats.
Collapse
Affiliation(s)
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| |
Collapse
|
10
|
Malik A, Khan A, Mahmood Q, Nawaz Marth MM, Riaz M, Tabassum T, Rasool G, Rehman MFU, Batool AI, Kanwal F, Cai R. In Vivo and In Silico Assessment of the Cardioprotective Effect of Thymus linearis Extract against Ischemic Myocardial Injury. ACS OMEGA 2022; 7:43635-43646. [PMID: 36506215 PMCID: PMC9730472 DOI: 10.1021/acsomega.2c04544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Myocardial infarction is irreversible cardiac tissue necrosis due to the blockage of one of the arteries. It leads to an insufficient supply of oxygen and nutrients, creating muscular damage in the affected regions. In the present study, aqueous methanolic extract of Thymus linearis was prepared to evaluate its activity against ischemic stress due to free radical production. GC-MS analysis was performed to evaluate the phytochemicals present in the plant extract. A chemical database of 30 compounds was virtually screened against NF-κB, COX2, and MCL, where γ-cadinene, β-bisabolene, and β-caryophyllene were found to be the best interacting ligands. To systematically assess cardioprotective activity against ischemia, isoproterenol and doxorubicin were used to induce cardiotoxicity in rats. The prepared extract of T. linearis (100 mg/kg) was given daily to animals for 21 days before injecting isoproterenol (85 mg/kg of animal weight) subcutaneously in two doses on the 20th and 21st days. In the case of doxorubicin, cardiotoxicity was induced in rats by a single injection (15 mg/kg) on the seventh day, and the extract was given to animals for 10 consecutive days. Animals' blood samples were used to monitor cardiac, liver, and other marker enzymes, including LDH, CPK, and AST. Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were also assayed in blood plasma to determine the degree of oxidative stress. H&E staining was performed to evaluate cardioprotection by plant extract, showing significant preventive effects in reducing cardiac injury induced by isoproterenol and doxorubicin.
Collapse
Affiliation(s)
- Abdul Malik
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Ajmal Khan
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Qaisar Mahmood
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
- Mukabbir
College of Pharmacy, Gujrat 50700, Pakistan
| | | | - Muhammad Riaz
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | - Tahira Tabassum
- Department
of Pathology, Sargodha Medical College, Sargodha 40100, Pakistan
| | - Ghulam Rasool
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | | | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | - Fariha Kanwal
- Department
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rujie Cai
- Shanghai
Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
11
|
The Preventive Effects of Naringin and Naringenin against Paclitaxel-Induced Nephrotoxicity and Cardiotoxicity in Male Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8739815. [PMID: 36212979 PMCID: PMC9546692 DOI: 10.1155/2022/8739815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
This study assessed the preventive properties of naringin and naringenin on paclitaxel-induced nephrotoxicity and cardiotoxicity in adult male Wistar rats. Intraperitoneal injection of paclitaxel 2 mg/kg body weight, two days/week on the 2nd and 5th days of each week, with or without oral administration of naringin and/or naringenin 10 mg/kg body weight every other day, was continued for six weeks. Treatment of rats with naringin and/or naringenin significantly reversed elevated serum creatinine, urea, and uric acid levels caused by paclitaxel, reflecting improved kidney function. Similarly, heart dysfunction induced by paclitaxel was alleviated after treatment with naringin and/or naringenin, as evidenced by significant decreases in elevated CK-MB and LDH activities. After drug administration, histopathological findings and lesion scores in the kidneys and heart were markedly decreased by naringin and/or naringenin. Moreover, the treatments reversed renal and cardiac lipid peroxidation and the negative impacts on antioxidant defenses via raising GSH, SOD, and GPx. The preventive effects of naringin and naringenin were associated with suppressing oxidative stress and reestablishing antioxidant defenses. A combination of naringin and naringenin was the most efficacious in rescuing organ function and structure.
Collapse
|
12
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
13
|
Barary M, Hosseinzadeh R, Kazemi S, Liang JJ, Mansoori R, Sio TT, Hosseini M, Moghadamnia AA. The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Sci Rep 2022; 12:8661. [PMID: 35606482 PMCID: PMC9127097 DOI: 10.1038/s41598-022-12735-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents used in treating solid tumors, and the 5-FU-induced cardiotoxicity is the second cause of cardiotoxicity induced by chemotherapeutic drugs. Propolis (Pro) has vigorous anti-inflammatory activity. Its cardio-protective characteristic against doxorubicin-induced cardiotoxicity was previously proven. The current study aimed to appraise the effect of Pro on 5-FU-induced cardiotoxicity in rats. Twenty-four male Wistar rats were divided into four groups: Control, 5-FU, 5-FU + Pro 250 mg/kg, and 5-FU + Colchicine (CLC) 5 mg/kg. Different hematological, serological, biochemical, histopathological, and molecular assays were performed to assess the study's aim. Moreover, a rat myocardium (H9C2(2-1)) cell line was also used to assess this protective effect in-vitro. 5-FU resulted in significant cardiotoxicity represented by an increase in malondialdehyde (MDA) levels, cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) expression, cardiac enzyme levels, and histopathological degenerations. 5-FU treatment also decreased bodyweight, total anti-oxidant capacity (TAC), catalase (CAT) levels, blood cell counts, and hemoglobin (Hb) levels. In addition, 5-FU disrupted ECG parameters, including increased elevation in the ST-segment and increased QRS complex and QTc duration. Treating with Pro reduced oxidative stress, cardiac enzymes, histopathological degenerations, and COX-2 expression in cardiac tissue alleviated ECG disturbances and increased the number of blood cells and TAC levels. Moreover, 5-FU-induced bodyweight loss was ameliorated after treatment with Pro. Our results demonstrated that treatment with Pro significantly improved cardiotoxicity induced by 5-FU in rats.
Collapse
Affiliation(s)
- Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Jackson J Liang
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Service, University of Michigan, Ann Arbor, MI, USA
| | - Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Mohammad Hosseini
- Department of Veterinary Parasitology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
14
|
Agostinucci K, Grant MKO, Seelig D, Yücel D, van Berlo J, Bartolomucci A, Dyck JRB, Zordoky BN. Divergent Cardiac Effects of Angiotensin II and Isoproterenol Following Juvenile Exposure to Doxorubicin. Front Cardiovasc Med 2022; 9:742193. [PMID: 35402534 PMCID: PMC8990895 DOI: 10.3389/fcvm.2022.742193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most significant risk factor for heart failure in doxorubicin (DOX)-treated childhood cancer survivors. We previously developed a two-hit mouse model of juvenile DOX-induced latent cardiotoxicity that is exacerbated by adult-onset angiotensin II (ANGII)-induced hypertension. It is still not known how juvenile DOX-induced latent cardiotoxicity would predispose the heart to pathologic stimuli that do not cause hypertension. Our main objective is to determine the cardiac effects of ANGII (a hypertensive pathologic stimulus) and isoproterenol (ISO, a non-hypertensive pathologic stimulus) in adult mice pre-exposed to DOX as juveniles. Five-week-old male C57BL/6N mice were administered DOX (4 mg/kg/week) or saline for 3 weeks and then allowed to recover for 5 weeks. Thereafter, mice were administered either ANGII (1.4 mg/kg/day) or ISO (10 mg/kg/day) for 14 days. Juvenile exposure to DOX abrogated the hypertrophic response to both ANGII and ISO, while it failed to correct ANGII- and ISO-induced upregulation in the hypertrophic markers, ANP and BNP. ANGII, but not ISO, worsened cardiac function and exacerbated cardiac fibrosis in DOX-exposed mice as measured by echocardiography and histopathology, respectively. The adverse cardiac remodeling in the DOX/ANGII group was associated with a marked upregulation in several inflammatory and fibrotic markers and altered expression of Ace, a critical enzyme in the RAAS. In conclusion, juvenile exposure to DOX causes latent cardiotoxicity that predisposes the heart to a hypertensive pathologic stimulus (ANGII) more than a non-hypertensive stimulus (ISO), mirroring the clinical scenario of worse cardiovascular outcome in hypertensive childhood cancer survivors.
Collapse
Affiliation(s)
- Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Marianne K. O. Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Doğacan Yücel
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jop van Berlo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jason R. B. Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
15
|
Investigation of the Antiremodeling Effects of Losartan, Mirabegron and Their Combination on the Development of Doxorubicin-Induced Chronic Cardiotoxicity in a Rat Model. Int J Mol Sci 2022; 23:ijms23042201. [PMID: 35216317 PMCID: PMC8877618 DOI: 10.3390/ijms23042201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced cardiotoxicity model. The DOXO-induced overexpression of Il1 and Il6 was markedly decreased by losartan and mirabegron. Mirabegron and the combination treatment improved systolic and diastolic dysfunction and significantly decreased overexpression of Smad2 and Smad3 in our DOXO-induced cardiotoxicity model. Only mirabegron reduced DOXO-induced cardiac fibrosis significantly. Mirabegron and its combination with losartan seem to be promising therapeutic tools against DOXO-induced chronic cardiotoxicity.
Collapse
|
16
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
17
|
Waseem M, Kaushik P, Dutta S, Chakraborty R, Hassan MI, Parvez S. Modulatory Role of Quercetin in Mitochondrial Dysfunction in Titanium Dioxide Nanoparticle-Induced Hepatotoxicity. ACS OMEGA 2022; 7:3192-3202. [PMID: 35128232 PMCID: PMC8811893 DOI: 10.1021/acsomega.1c04740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Background : Titanium dioxide (TiO2) nanoparticles are among the largely manmade nanomaterials worldwide and are broadly used as both industrial and user products. The primary target site for several nanoparticles is the liver, including TiO2 nanoparticles (TNPs), exposed directly or indirectly through ingestion of contaminated water, food, or animals and elevated environmental contamination. Oxidative stress is a known facet of nanoparticle-induced toxicity, including TNPs. Mitochondria are potential targets for nanoparticles in several types of toxicity, such as hepatotoxicity. Nevertheless, its causal mechanism is still controversial due to scarcity of literature linking the role of mitochondria-mediated TNP-induced hepatotoxicity. Aim : The objective of the current study was to evaluate the relation of mitochondrial oxidative stress and respiratory chain mechanisms with TNP-induced mitochondrial dysfunction in vitro, and explore the hepatoprotective effect of quercetin (QR), which is a polyphenolic flavonoid abundant in fruits and vegetables with known antioxidant properties, on TNP-induced mitochondrial oxidative stress and disturbance in respiratory chain complex enzymes in the liver of rats. Results: Enzymatic and non-enzymatic antioxidant levels, oxidative stress markers, and mitochondrial complexes were assessed with regard to TNP-induced hepatotoxicity. The depleted lipid peroxidation levels and protein carbonyl content, in mitochondria, induced by TNPs were restored significantly by pretreatment with QR. QR modulated the altered non-enzymatic and enzymatic antioxidants and mitochondrial complex enzymes. Conclusion : Based on the findings, we conclude that QR, which mitigates oxidative stress caused by mitochondrial dysfunction, holds promising capability to potentially diminish TNP-induced adverse effects in the liver.
Collapse
Affiliation(s)
- Mohd Waseem
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shamita Dutta
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rohan Chakraborty
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
18
|
Waz S, Matouk AI. Cardioprotective effect of allyl isothiocyanate in a rat model of doxorubicin acute toxicity. Toxicol Mech Methods 2021; 32:194-203. [PMID: 34635025 DOI: 10.1080/15376516.2021.1992064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is an effective anthracycline chemotherapeutic drug. Nevertheless, the cardiotoxicity adverse effect restricts its clinical benefit. Allyl isothiocyanate (AITC) is a natural antioxidant and anti-inflammatory agent. In the present study, we investigated the effect of AITC on cardiotoxicity of DOX. Thirty-two adult male albino rats were divided into four groups; control, AITC, DOX, and AITC + DOX. AITC was administrated orally (25 mg/kg/day) for 7 days, and DOX was given as a single i.p. injection (15 mg/kg) on the third day. Mortality rate was observed during the experiment. Cardiac toxicity markers (lactate dehydrogenase (LDH), creatine kinase (CK-MB), and cardiac Troponin I (cTn-I)) were evaluated in serum samples obtained from all groups after 48 hours of DOX injection. DOX-treated group showed 40% mortality and a significant increase in cardiac enzymes. This increase was accompanied by degenerated cardiomyocytes, and inflammatory cells infiltrates. Interestingly, AITC administration alleviated myocardial oxidative stress induced by DOX as attenuated the increase in malondialdehyde (MDA), and nitric oxide (NO) while resulted in elevations of the antioxidant reduced glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Furthermore, the inflammatory cytokine, TNF-α, was reduced upon administration of AITC with DOX. The cardio-protection of AITC is attributed to increase the expression of cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, heme oxygenase 1 (HO-1) level was elevated by AITC to correct the oxidative stress induced by DOX in the heart. Accordingly, AITC ameliorated acute cardiotoxicity associated with DOX treatment via attenuation of oxidative stress and the induced-tissue inflammatory injury. Abbreviations: DOX: doxrubicin; Nrf2: nuclear factor erythroid 2-related factor 2; HO-1: heme oxygenase 1; AITC: ally isothiocyanate; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: reduced glutathione; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
19
|
Saleh Ahmed AS. Potential protective effect of catechin on doxorubicin-induced cardiotoxicity in adult male albino rats. Toxicol Mech Methods 2021; 32:97-105. [PMID: 34427160 DOI: 10.1080/15376516.2021.1972375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Doxorubicin (DOX) is the most effective and frequently used anticancer drug but its cardiotoxicity is the most important side effect that limits the clinical use of it. This study was designed to investigate the protective role of catechin (CAT) on DOX induced cardiotoxicity. Rats were randomly divided into three groups. Group (I) served as the control. Group (II) served as toxic group, (1.66 mg/kg; i.p.). Group (III) served as protective group, was pretreated with (400 mg CAT/kg; p.o.) for 2 weeks then received DOX with CAT for 12 days. In the present study, administration of DOX induced significant (p < 0.001) reductions in cardiac tissue level of reduced glutathione (GSH) and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and glutathione-S- transferase (GST)). Moreover, it resulted in a significant (p < 0.001) increase in cardiac tissue concentrations of nitric oxide (NO), H2O2 and malondialdehyde (MDA) as well as serum levels of cardiac injury biomarkers (lactate dehydrogenase (LDH), creatine kinase (CK), and creatine kinase-MB (CK-MB)) which were reversed by treatment with CAT. DOX administration induced the loss of myofibrils, hemorrhage, and congested blood vessels. Ultrastructural results revealed loss of myofibrils and intercalated disks and mitochondrial degeneration. All histopathological alterations were reversed by the treatment with CAT. Catechin, as an antioxidant, showed protective effects against DOX cardiotoxicity via reducing lipid peroxidation, inflammation, and alleviating apoptosis.
Collapse
Affiliation(s)
- Aml Salem Saleh Ahmed
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Elazab ST, Samir O, Abass ME. Synergistic effects of sitagliptin and losartan against fipronil-induced hepatotoxicity in rats. Vet World 2021; 14:1901-1907. [PMID: 34475715 PMCID: PMC8404120 DOI: 10.14202/vetworld.2021.1901-1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023] Open
Abstract
Background and Aim Fipronil (FPN) is a potent pesticide that is heavily used around the world in agriculture. However, its irrational use could potentially have deleterious effects on animals and humans. The present study aimed to investigate the ability of sitagliptin (Sit) and losartan (LOS), when used both individually or concurrently, to guard rat liver against the acute hepatotoxicity caused by FPN. Materials and Methods Forty-two adult male Wistar rats were equally divided into seven groups (6/group). Group I (control) received normal saline (0.5 mL/rat, vehicle for all treatments) by gavage once daily for 10 days. Group II received oral Sit (10 mg/kg body weight [BW]) daily for 10 days and Group III received oral LOS (5 mg/kg BW) daily for 10 days. Group IV received oral FPN (19.4 mg/kg BW; 1/5 of the oral LD50) for the past 5 days of the study. Groups V and VI received oral Sit (10 mg/kg BW) and LOS (5 mg/kg BW) daily, respectively, 5 days prior and 5 days during FPN administration (19.4 mg/kg BW). Group VII received oral Sit (10 mg/kg BW) and LOS (5 mg/kg BW) for 10 days with daily FPN during the past 5 days. After the end of the treatment period, the rats were humanely sacrificed and blood and liver tissue samples were collected for biochemical analysis and histopathological and immunohistochemical investigations. Results FPN administration resulted in elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase serum concentrations as well as increased malondialdehyde levels and reduced catalase, superoxide dismutase, glutathione peroxidase, and glutathione activity. The histopathological investigation showed disorganization of the hepatic cords and focal necrosis of the hepatocytes in FPN-intoxicated rats. Furthermore, the immunohistochemical examination showed that hepatic caspase-3 was overexpressed in the FPN-treated rats. The administration of Sit and LOS before and alongside FPN markedly mitigated the alterations caused by FPN and the hepatoprotective effects were more prominent in the combination group. Conclusion Sit and LOS, both individually or in combination, confers considerable hepatoprotection against FPN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura,35516, Egypt
| | - Omar Samir
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa E Abass
- Department of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
22
|
Russo M, Bono E, Ghigo A. The Interplay Between Autophagy and Senescence in Anthracycline Cardiotoxicity. Curr Heart Fail Rep 2021; 18:180-190. [PMID: 34081265 PMCID: PMC8342382 DOI: 10.1007/s11897-021-00519-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Doxorubicin (DOXO) is a highly effective chemotherapeutic drug employed for the treatment of a wide spectrum of cancers, spanning from solid tumours to haematopoietic malignancies. However, its clinical use is hampered by severe and dose-dependent cardiac side effects that ultimately lead to heart failure (HF). RECENT FINDINGS Mitochondrial dysfunction and oxidative stress are well-established mechanisms of DOXO-induced cardiotoxicity, although recent evidence suggests that deregulation of other biological processes, like autophagy, could be involved. It is increasingly recognized that autophagy deregulation is intimately interconnected with the initiation of detrimental cellular responses, including autosis and senescence, raising the possibility of using autophagy modulators as well as senolytics and senomorphics for preventing DOXO cardiotoxicity. This review aims at providing an overview of the signalling pathways that are common to autophagy and senescence, with a special focus on how the relationship between these two processes is deregulated in response to cardiotoxic treatments. Finally, we will discuss the potential therapeutic utility of drugs modulating autophagy and/or senescence for counteracting DOXO cardiotoxicity.
Collapse
Affiliation(s)
- Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Enrico Bono
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
23
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
24
|
Navarro-Hortal MD, Varela-López A, Romero-Márquez JM, Rivas-García L, Speranza L, Battino M, Quiles JL. Role of flavonoids against adriamycin toxicity. Food Chem Toxicol 2020; 146:111820. [PMID: 33080329 DOI: 10.1016/j.fct.2020.111820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX), or adriamycin, is an anthracycline antineoplastic drug widely used in the chemotherapy of a large variety of cancers due to its potency and action spectrum. However, its use is limited by the toxicity on healthy cells and its acute and chronic side effects. One of the developed strategies to attenuate DOX toxicity is the combined therapy with bioactive compounds such as flavonoids. This review embraces the role of flavonoids on DOX treatment side effects. Protective properties of some flavonoidss against DOX toxicity have been investigated and observed mainly in heart but also in liver, kidney, brain, testis or bone marrow. Protective mechanisms involve reduction of oxidative stress by decrease of ROS levels and/or increase antioxidant defenses and interferences with autophagy, apoptosis and inflammation. Studies in cancer cells have reported that the anticancer activity of DOX was not compromised by the flavonoids. Moreover, some of them increased DOX efficiency as anti-cancer drug even in multidrug resistant cells.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Alfonso Varela-López
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Lorenzo Rivas-García
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain.
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, CH, Italy.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - José L Quiles
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| |
Collapse
|
25
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
26
|
Despite Blocking Doxorubicin-Induced Vascular Damage, Quercetin Ameliorates Its Antibreast Cancer Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8157640. [PMID: 33728016 PMCID: PMC7939741 DOI: 10.1155/2020/8157640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Quercetin is a naturally occurring flavonol present in many foods. Doxorubicin is an effective anticancer agent despite its dose-limiting cardiovascular toxicity. Herein, we investigated the potential protective effects of quercetin against doxorubicin-induced vascular toxicity and its effect on the therapeutic cytotoxic profile of doxorubicin in breast cancer cell lines. The incubation of isolated aortic rings with doxorubicin produced concentration-dependent exaggeration of vasoconstriction responses to phenylephrine but impaired vasodilation responses to acetylcholine. Coincubation with quercetin completely blocked the exaggerated vasoconstriction responses and the impaired vasodilation. In addition, doxorubicin incubation increased reactive oxygen species generation from the isolated aorta, while coincubation with quercetin inhibited ROS generation back to normal values. On the other hand, quercetin in combination with doxorubicin, doubled the IC50 of doxorubicin alone in MCF-7 cells from 0.4 ± 0.03 to 0.8 ± 0.06 μM. To a lesser extent, the IC50 of doxorubicin did not change after combination with quercetin in MDA-MB-231 cells. These findings indicate a significant antagonistic interaction between quercetin and doxorubicin in the aforementioned cell lines. Only in T47D cells, quercetin combination with doxorubicin was an additive interaction (CI − value = 1.17). Yet, quercetin significantly impaired the immediate phase of intracellular ROS generation by doxorubicin within breast cancer cells from 125.2 ± 3.6% to 102.5 ± 3.9% of control cells. Using annexin-V/FITC staining technique, the quercetin/doxorubicin combination showed a significantly lower percent of apoptotic cells compared to doxorubicin alone treated cells. Cell cycle distribution in breast cancer cells was performed using DNA content flowcytometry after propidium iodide staining. Quercetin induced significant accumulation of cells in the S phase as well as in the G2/M phase within both MCF-7 and MDA-MB-231 cell lines and interfered with doxorubicin-induced cell cycle effects. Interestingly, quercetin was found to inhibit the P-glycoprotein ATPase subunit with a consequent enhanced intracellular concentration of doxorubicin in MDA-MB-231 and T47D cells. In conclusion, quercetin, despite its potent vascular protective activity against doxorubicin, was found to influence doxorubicin-induced antibreast cancer effects via pharmacodynamic as well as cellular pharmacokinetic aspects.
Collapse
|
27
|
Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020; 27:295-319. [PMID: 32472524 PMCID: PMC8739307 DOI: 10.1007/s10741-020-09977-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Czerwińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
28
|
Gacem MA, Ould El Hadj-Khelil A, Boudjemaa B, Gacem H. Phytochemistry, Toxicity and Pharmacology of Pistacia lentiscus, Artemisia herba-alba and Citrullus colocynthis. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-38881-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
30
|
Shabanah OA, Ahmed LA, Qunebet RA, Yousuf WA, Mustafa R, Rejaie SA. Losartan and/or Naringenin Ameliorates Doxorubicin Induced Cardiac, Hepatic and Renal Toxicities in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.675.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Yu J, Chen H, Jiang L, Wang J, Dai J, Wang J. Codelivery of Adriamycin and P-gp Inhibitor Quercetin Using PEGylated Liposomes to Overcome Cancer Drug Resistance. J Pharm Sci 2019; 108:1788-1799. [DOI: 10.1016/j.xphs.2018.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|
32
|
Ziziphora clinopodioides Flavonoids Protect Myocardial Cell Damage from Myocardial Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8495010. [PMID: 30622614 PMCID: PMC6304612 DOI: 10.1155/2018/8495010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/11/2018] [Indexed: 01/12/2023]
Abstract
To investigate effects of Ziziphora clinopodioides Lam. flavonoids on ischemia-reperfusion injury of myocardial cells. After application of 6.25, 25, and 100 μg/mL Ziziphora clinopodioides Lam. flavonoids to H9C2 myocardial cells for 24H, they were treated for 4 hours with hydrogen peroxide to induce oxidative damage, whereas controls were cells without treatment and cells only incubated with hydrogen peroxide. Cell viability, lactate dehydrogenase release and mitochondrial membrane potential, intracellular Na+/K+-ATPase activity and ATP content, and reactive oxygen species formation were monitored. An ischemia-reperfusion injury rat model was established by left anterior descending coronary artery ligature in 48 Sprague-Dawley rats, which were divided into positive control with isosorbide mononitrate (10 mg/kg) injection (n=8), model (ischemia-reperfusion, n=8), sham-operated (n=8), and Ziziphora clinopodioides Lam. flavonoids low (75 mg/kg, n=8), medium (150 mg/kg, n=8), and high concentration (300 mg/kg, n=8) groups. Superoxide dismutase activity and malondialdehyde content in homogenized hearts were measured and ischemic and infarction areas were triphenyl tetrazolium chloride and H&E stained for pathological and morphological examinations. Ziziphora clinopodioides Lam. flavonoids preconditioning improved cell viability (P<0.01), intracellular Na/K ATPase activity (P<0.001), and intracellular ATP content (P<0.001) and maintained mitochondrial membrane potential (P<0.05) in hydrogen peroxide treated H9C2 cells as well as rescued superoxide dismutase activity (P<0.01), decreased the malondialdehyde content (P<0.001), and reduced myocardial damage in the ischemia-reperfusion rat model (P<0.001) compared to the controls. Ziziphora clinopodioides Lam. flavonoids may be an effective drug for protecting myocardial tissue from ischemia-reperfusion injury by reducing reactive oxygen species related damage.
Collapse
|
33
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Abstract
Recent advances in cancer prevention and management have led to an exponential increase of cancer survivors worldwide. Regrettably, cardiovascular disease has risen in the aftermath as one of the most devastating consequences of cancer therapies. In this work, we define cancer therapeutics-induced cardiotoxicity as the direct or indirect cardiovascular injury or injurious effect caused by cancer therapies. We describe four progressive stages of this condition and four corresponding levels of prevention, each having a specific goal, focus, and means of action. We subsequently unfold this didactic framework, surveying mechanisms of cardiotoxicity, risk factors, cardioprotectants, biomarkers, and diagnostic imaging modalities. Finally, we outline the most current evidence-based recommendations in this area according to multidisciplinary expert consensus guidelines.
Collapse
Affiliation(s)
- J. Emanuel Finet
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, and Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, USA
| | - W. H. Wilson Tang
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, and Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University; Center for Clinical Genomics; Cleveland Clinic, Cleveland, USA
| |
Collapse
|
35
|
Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother 2018; 101:228-243. [PMID: 29494960 DOI: 10.1016/j.biopha.2018.02.088] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline group of antibiotic available for the treatment of broad spectrum of human cancers. However, patient receiving DOX-therapy, myelosuppression and genotoxicity which may lead to secondary malignancy and dose dependent cardiotoxicity is an imperative adverse effect. Mechanisms behind the DOX-induced toxicities are increased level of oxidative damage, inflammation and apoptosis. Therefore, in search of a potential chemoprotectant, naturally occurring glucosinolate breakdown product Indole-3-Carbinol (I3C) was evaluated against DOX-induced toxicities in Swiss albino mice. DOX was administered (5 mg/kg b.w., i.p.) and I3C was administered (20 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results of the present study showed that I3C appreciably mitigated DOX-induced chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in bone marrow niche. Histopathological observations revealed that DOX-intoxication resulted in massive structural and functional impairment of heart and bone marrow niche. However, oral administration of I3C significantly attenuated DOX-induced oxidative stress in the cardiac tissues as evident from decreased levels of ROS/RNS and lipid peroxidation, and by increased level of glutathione (reduced) and the activity of phase-II antioxidant enzymes. Additionally, administration of I3C significantly (P < 0.05) stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of cytoprotective proteins heme oxygenase 1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1) and GSTπ in bone marrow and cardiac tissues. In connection with that, I3C significantly attenuated DOX-induced inflammation by downregulation of pro-inflammatory mediators, viz., NF-kβ(p50), iNOS, COX-2 and IL-6 expression. Moreover, I3C attenuate DOX-induced apoptosis by up-regulation of Bcl2 and down-regulation of Bax and caspase-3 expression in bone marrow cells. Thus, this study suggests that I3C has promising chemoprotective efficacy against DOX-induced toxicities and indicates its future use as an adjuvant in chemotherapy.
Collapse
|
36
|
Hajra S, Basu A, Singha Roy S, Patra AR, Bhattacharya S. Attenuation of doxorubicin-induced cardiotoxicity and genotoxicity by an indole-based natural compound 3,3'-diindolylmethane (DIM) through activation of Nrf2/ARE signaling pathways and inhibiting apoptosis. Free Radic Res 2017; 51:812-827. [PMID: 28922986 DOI: 10.1080/10715762.2017.1381694] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most crucial complication related to doxorubicin (DOX) therapy is nonspecific cytotoxic effect on healthy normal cells. The clinical use of this broad-spectrum chemotherapeutic agent is restricted due to development of severe form of cardiotoxicity, myelosuppression, and genotoxicity which interfere with therapeutic schedule, compromise treatment outcome and may lead to secondary malignancy. 3,3'-diindolylmethane (DIM) is a naturally occurring plant alkaloid formed by the hydrolysis of indolylmethyl glucosinolate (glucobrassicin). Therefore, the present study was undertaken to investigate the protective role of DIM against DOX-induced toxicity in mice. DOX was administered (5 mg/kg b.w., i.p.) and DIM was administered (25 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results showed that DIM significantly attenuated DOX-induced oxidative stress in the cardiac tissues by reducing the levels of free radicals and lipid peroxidation, and by enhancing the level of glutathione (reduced) and the activity of antioxidant enzymes. The chemoprotective potential of DIM was confirmed by histopathological evaluation of heart and bone marrow niche. Moreover, DIM considerably mitigated DOX-induced clastogenicity, DNA damage, apoptosis, and myeloid hyperplasia in bone marrow niche. In addition, oral administration of DIM significantly (p < .05) stimulated the Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of ARE-driven cytoprotective proteins, HO-1, NQO1, and glutathione-S-transferase (GST). In connection with that, DIM significantly attenuated DOX-induced apoptosis by upregulation of Bcl-2 expression and downregulation of Bax and caspase-3 expression. Thus, this study suggests that DIM has promising chemoprotective efficacy against DOX-induced toxicity and indicates its future use as an adjuvant in chemotherapy.
Collapse
Affiliation(s)
- Subhadip Hajra
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Abhishek Basu
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Somnath Singha Roy
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India.,b Centre of Biomedical Research, SGPGIMS Campus , Lucknow , India
| | - Arup Ranjan Patra
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Sudin Bhattacharya
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| |
Collapse
|
37
|
Waseem M, Parvez S, Tabassum H. Mitochondria As the Target for the Modulatory Effect of Curcumin in Oxaliplatin-induced Toxicity in Isolated Rat Liver Mitochondria. Arch Med Res 2017; 48:55-63. [PMID: 28577870 DOI: 10.1016/j.arcmed.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS To explore hepatoprotective action of curcumin (CMN, a bioflavonoid) on oxaliplatin (Oxa)-triggered mitochondrial oxidative stress and respiratory chain complexes in liver of rats. Oxa is a ubiquitously utilized platinum-based chemotherapeutic agent commonly used for the treatment of colorectal cancer. Mitochondria have recently emerged as targets for anticancer drugs in several kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. There is a dearth of evidence involving the role of mitochondria in mediating Oxa-evoked hepatotoxicity and its underlying mechanism is still debatable. METHODS The study was performed in mitochondria isolated from liver of Wistar rats. Oxa (200 μg/mL) and CMN (5 μmol) were incubated under in vitro conditions. RESULTS Oxa evoked a significant increase in the membrane lipid peroxidation (LPO) levels, protein carbonyl (PC) contents, decrease in reduced glutathione (GSH) and nonprotein thiol (NP-SH) levels. Oxa also caused a marked decline in the activities of enzymatic antioxidants and respiratory chain enzymes (I, II, III and V) in liver mitochondria. CMN pre-treatment significantly prevented the activities of enzymatic antioxidants and mitochondrial respiratory chain enzymes. CMN also restored the LPO and PC contents, GSH and NP-SH levels in liver mitochondria. CONCLUSION CMN intake might be effective in regulation of Oxa-evoked mitotoxicity during chemotherapy. Moreover, it is included in the armamentarium for anticancer agent-induced oxidative stress.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Heena Tabassum
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, India.
| |
Collapse
|
38
|
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180:160-170. [DOI: 10.1016/j.lfs.2017.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|
39
|
Ameliorative efficacy of quercetin against cisplatin-induced mitochondrial dysfunction: Study on isolated rat liver mitochondria. Mol Med Rep 2017; 16:2939-2945. [DOI: 10.3892/mmr.2017.6860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/21/2016] [Indexed: 11/05/2022] Open
|
40
|
Wang HL, Cui XH, Yu HL, Wu R, Xu X, Gao JP. Synergistic effects of polydatin and vitamin C in inhibiting cardiotoxicity induced by doxorubicin in rats. Fundam Clin Pharmacol 2017; 31:280-291. [DOI: 10.1111/fcp.12258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Hui-Lin Wang
- Department of Pharmacology; School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xiao-Hua Cui
- Department of Pharmacology; School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Hai-Lun Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
| | - Rong Wu
- Department of Pharmacology; School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xu Xu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
| | - Jian-Ping Gao
- Department of Pharmacology; School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| |
Collapse
|
41
|
Elshazly SM, Mahmoud AA, Barakat W. Pentoxifylline abrogates cardiotoxicity induced by the administration of a single high dose or multiple low doses of doxorubicin in rats. Can J Physiol Pharmacol 2016; 94:1170-1177. [DOI: 10.1139/cjpp-2016-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) possesses a broad-spectrum antineoplastic activity; however, its clinical application is impeded by cardiotoxicity. This study aimed to investigate the protective effect of pentoxifylline (PXF), which possesses antioxidant and anti-inflammatory properties against cardiotoxicity induced by a single high dose (15 mg/kg, i.p.) or multiple low doses (2.5 mg/kg, i.p., three times per week for 2 weeks) of DOX. At the end of the experimental period, the serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) activities were measured. The hearts were then removed for evaluating TNF-α, NO, malondialdehyde (MDA), and reduced glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and the expression of iNOS, NF-κB, Fas ligand (FasL), and caspase-3. The administration of DOX in both dose regimens caused increases in serum CK-MB and LDH activities, in cardiac TNF-α, NO and MDA levels, as well as in the cardiac expression of iNOS, NF-κB, FasL and caspase-3, whereas it significantly reduced the cardiac GSH level, as well as SOD and CAT activities (P < 0.05). Prophylactic treatment of rats with PXF diminished DOX-induced alterations in theses parameters. Our results warrant the clinical use of PXF as an adjuvant therapy to abrogate cardiotoxicity of DOX and extend its clinical applications.
Collapse
Affiliation(s)
- Shimaa M. Elshazly
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amr A.A. Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Barakat
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Carresi C, Gliozzi M, Giancotta C, Scarcella A, Scarano F, Bosco F, Mollace R, Tavernese A, Vitale C, Musolino V. Studies on the protective role of Bergamot polyphenols in doxorubicin-induced cardiotoxicity. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, Shirani K, Karimi G. The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review. Nutr Cancer 2016; 68:892-917. [PMID: 27341037 DOI: 10.1080/01635581.2016.1187280] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although doxorubicin (DOX) is among the most widely used anticancer agents, its clinical application is hampered owing to its cardiotoxicity. Adjuvant therapy with an antioxidant has been suggested as a promising strategy to reduce DOX-induced adverse effects. In this context, many phenolic compounds have been reported to protect against DOX-induced cardiotoxicity. The cardioprotective effects of phenolic compounds are exerted via multiple mechanisms including inhibition of reactive oxygen species generation, apoptosis, NF-κB, p53, mitochondrial dysfunction, and DNA damage. In this review, we present a summary of the in vitro, in vivo, and clinical findings on the protective mechanisms of phenolic compounds against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kamal Razavi-Azarkhiavi
- a Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Milad Iranshahy
- b Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Sahebkar
- c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Kobra Shirani
- d Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Gholamreza Karimi
- e Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,f Pharmaceutical Research Center and Pharmacy School, Mashhad University of Medical Sciences
| |
Collapse
|
44
|
Yapislar H, Taskin E, Ozdas S, Akin D, Sonmez E. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite. Biol Trace Elem Res 2016; 170:373-81. [PMID: 26306587 DOI: 10.1007/s12011-015-0476-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/10/2015] [Indexed: 12/27/2022]
Abstract
Growing evidence has been reported on adriamycin (ADR) hepatotoxicity in literature. Hepatotoxicity caused by the use of drugs has a serious undesirable effect in the cure of cancer patients that needs to be eliminated. The exact mechanism of ADR on non-cancerous tissue still remains to be a mystery. The zeolite (clinoptilolite) minerals form a complex group of aluminosilicates that often occur as accessory minerals in intermediate and basic rocks. In light of this information, we investigated the possible anti-inflammatory and anti-apoptotic effects of clinoptilolite in ADR that is inducing the toxicity in primary liver cell culture. Primary liver cell culture from rat was used in the study. We had three experiment groups including the following: (1) cells treated only with 50 μM ADR for 24 h, (2) cells treated with the 50 μM ADR for 24 h and then treated with 10(-4) M zeolite for 1 h, and (3) cells were incubated with 50 μM ADR for 24 h and then incubated with 10(-4) M zeolite for 24 h to test its long-term effects. After that, western blotting was performed in order to evaluate protein expression levels of several inflammation markers including IL-1β, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB), and immunohistochemistry was carried out to detect apoptosis in liver cell culture. Also, TdT-dUTP Terminal Nick-End Labeling (TUNEL) method was used for detecting apoptosis. We found elevated levels of inflammatory protein and apoptotic markers in ADR-administered cells (p < 0.05). Inflammatory and apoptotic markers decreased significantly after treated with zeolite (p < 0.05). The present study was pointed out that ADR causes hepatotoxicity via apoptosis and/or inflammation processes resulting from initiator NF-κB and TNF which causes proinflammatory mediators such as IL-1β. Elevation of inflammation might give rise to trigger apoptosis. Clinoptilolite counteracted the apoptosis and inflammation induced by ADR arising from the decrease in NF-κB, TNF-α, and IL-1β protein levels.
Collapse
Affiliation(s)
| | | | - Sule Ozdas
- Istanbul Bilim University, Istanbul, Turkey
| | - Demet Akin
- Istanbul Bilim University, Istanbul, Turkey
| | - Emine Sonmez
- Department of Clinical Microbiology and Infectious Diseases, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
45
|
Waseem M, Parvez S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. PROTOPLASMA 2016; 253:417-30. [PMID: 26022087 DOI: 10.1007/s00709-015-0821-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/15/2015] [Indexed: 05/19/2023]
Abstract
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
46
|
Najmanová I, Pourová J, Vopršalová M, Pilařová V, Semecký V, Nováková L, Mladěnka P. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol Nutr Food Res 2016; 60:981-91. [PMID: 26790841 DOI: 10.1002/mnfr.201500761] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
There are reports of positive effects of quercetin on cardiovascular pathologies, however, mainly due to its low biovailability, the mechanism remains elusive. Here, we report that one metabolite formed by human microflora (3-(3-hydroxyphenyl)propionic acid)relaxed isolated rat aorta and decreased arterial blood pressure in rats.
Collapse
Affiliation(s)
- Iveta Najmanová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Semecký
- Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
47
|
Kwatra M, Kumar V, Jangra A, Mishra M, Ahmed S, Ghosh P, Vohora D, Khanam R. Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. PHARMACEUTICAL BIOLOGY 2015; 54:637-647. [PMID: 26471226 DOI: 10.3109/13880209.2015.1070879] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Doxorubicin (Dox) is one of the most active chemotherapeutic agents used to treat various types of cancers. Its clinical utility is compromised due to fatal cardiac toxicity characterized by an irreversible cardiomyopathy. OBJECTIVE This study evaluates the cardioprotective potential of naringin (NR) against Dox-induced acute cardiac toxicity in rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into five groups. NR (50 and 100 mg/kg) was administered intraperitoneally (i.p.) daily from 0 to 14 d. Doxorubicin (15 mg/kg, i.p.) was given as a single dose on the 10th day. On the 14th day, all animals were sacrificed and oxidative stress parameters that include malondialdehyde (MDA), glutathione (GSH) level, superoxide dismutase (SOD), catalase (CAT) activities, and all mitochondrial complexes (I-IV) activities were evaluated along with histopathological studies of the heart. RESULTS Doxorubicin-induced cardiotoxicity was confirmed by increased (p < 0.05) MDA, decreased (p < 0.05) GSH levels, SOD, and CAT activities, mitochondrial complexes (I-IV) activities in the heart tissue. NR (100 mg/kg) showed cardioprotection as evident from significant decreased MDA (p < 0.001) level, raised (p < 0.001) GSH level, SOD and CAT activities and increased mitochondrial complexes I (p < 0.01), II (p < 0.001), III (p < 0.001), and IV (p < 0.05) activities. Further, Dox-induced cardiotoxicity was confirmed by histopathological studies. These obtained results indicated the protective role of NR against Dox-induced cardiac toxicity in rats. CONCLUSION NR can be used in combination with Dox due to its high cardioprotective effect against Dox-induced cardiomyopathy.
Collapse
Affiliation(s)
- Mohit Kwatra
- a Pharmacology Research Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Vikas Kumar
- a Pharmacology Research Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Ashok Jangra
- b Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research Guwahati , Guwahati , Assam , India
| | - Murli Mishra
- c Department of Toxicology and Cancer Biology , College of Medicine, University of Kentucky , Lexington , KY , USA
| | - Sahabuddin Ahmed
- b Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research Guwahati , Guwahati , Assam , India
| | - Pinaki Ghosh
- d Department of Pharmacology , Bharati Vidyapeeth University, Poona College of Pharmacy , Erandwane , Pune , Maharashtra , India , and
| | - Divya Vohora
- a Pharmacology Research Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Razia Khanam
- a Pharmacology Research Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi , India
- e Department of Pharmacology , Gulf Medical University , Ajman , United Arab Emirates
| |
Collapse
|
48
|
Yang D, Liu X, Liu M, Chi H, Liu J, Han H. Protective effects of quercetin and taraxasterol against H 2O 2-induced human umbilical vein endothelial cell injury in vitro. Exp Ther Med 2015; 10:1253-1260. [PMID: 26622474 PMCID: PMC4578013 DOI: 10.3892/etm.2015.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022] Open
Abstract
Due to the association between inflammation and endothelial dysfunction in atherosclerosis, the blockage of the inflammatory process that occurs on the endothelial cells may be a useful way of preventing atherosclerosis. In the present study, human umbilical vein endothelial cells (HUVECs) were used to investigate the protective effects of quercetin and taraxasterol against H2O2-induced oxidative damage and inflammation. HUVECs were pretreated with quercetin or taraxasterol at concentrations ranging between 0 and 210 µM for 12 h, prior to being administered different concentrations of H2O2 for 4 h. Cell viability and levels of apoptosis were assessed through cell counting kit-8 (CCK-8) and terminal deoxynucleotidyl transferase dUTP nick end labeling assays, respectively, to determine the injury to the HUVECs. The viability loss in the H2O2-induced HUVECs was markedly restored in a concentration-dependent manner by pretreatment with quercetin or taraxasterol. This effect was accompanied by significantly decreased expression of vascular cell adhesion molecule 1 (VCAM-1) and cluster of differentiation (CD)80 for taraxasterol and that of CD80 for quercetin. In conclusion, the present study showed the protective effects of quercetin and taraxasterol against cell injury and inflammation in HUVECs and indicated that the effects were mediated via the downregulation of VCAM-1 and CD80 expression. This study has therefore served as a preliminary investigation on the anti-atherosclerotic and cardiovascular protective effects of quercetin and taraxasterol as dietary supplements.
Collapse
Affiliation(s)
- Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Min Liu
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Hao Chi
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jirong Liu
- Department of Internal Medicine, North China Electric Power University Hospital, Beijing 102206, P.R. China
| | - Huamin Han
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
49
|
Wang HL, Gao JP, Han YL, Xu X, Wu R, Gao Y, Cui XH. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:553-559. [PMID: 25981921 DOI: 10.1016/j.phymed.2015.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Polydatin and resveratrol are extractives of radix or rhizoma of Polygonum cuspidatum, and as the glycoside forms, it is a natural precursor of resveratrol. PURPOSE In this study, we aimed to explore the mutual transformation between polydatin and resveratrol in rats, and to compare the antioxidative effect of them in vivo. STUDY DESIGN In this study, we analyzed the serum molar concentration of polydatin and resveratrol after oral administration in rats and evaluated the anti-oxidative stress effects of them using a mouse model. METHODS Rats were orally administered polydatin or resveratrol and the concentration of them in serum were analyzed by high performance liquid chromatography (HPLC). Their antioxidative effect was compared in mice with oxidative stress cardiomyopathy induced by doxorubicin (DOX). RESULTS The results showed that polydatin and resveratrol could mutually transform in vivo, the molar concentration of polydatin in serum was always averagely 3.35 and 4.28 times as much as resveratrol after oral administration of polydatin and resveratrol at 200 mg/kg, respectively. Both polydatin and resveratrol could significantly decrease the content of malonydialdehyde (MDA), promote the activities of total superoxide dismutase (T-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in plasma, and increase the content of glutathione (GSH) in myocardial tissue. The effect of polydatin surpassed resveratrol, particularly embodied in increasing the activities of T-SOD and CAT, and the content of GSH. CONCLUSION It illustrates that polydatin is the main substance in serum after intragastric administration with polydatin or resveratrol, and the mutual transformation between polydatin and resveratrol keeps balance; they both have the ability of antioxidative stress in vivo, and polydatin has a better effect than resveratrol, which hints that polydatin may be a substitute for resveratrol in antioxidant for clinical use.
Collapse
Affiliation(s)
- Hui-Lin Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Jian-Ping Gao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Yu-Liang Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Rong Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Yan Gao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Xiao-Hua Cui
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
50
|
In Vitro and In Vivo Cytogenotoxic Effects of Hot Aqueous Extract of Achyrocline satureioides (Lam.) DC. BIOMED RESEARCH INTERNATIONAL 2015; 2015:270973. [PMID: 26078941 PMCID: PMC4442415 DOI: 10.1155/2015/270973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/01/2015] [Accepted: 02/01/2015] [Indexed: 11/17/2022]
Abstract
In this work we extend the toxicological studies of hot aqueous extract of A. satureioides (As-HAE) evaluating cytotoxic and apoptotic effects on human peripheral blood mononuclear cells (PBMCs). We also determine genotoxic action of this extract in vivo. In addition, the extract was chemically characterized. Finally, we established a comparison with previous data of cold aqueous extract. The As-HAE induced cytotoxicity on PBMCs determined by trypan blue dye exclusion (CC50 = 653 μg/mL) and MTT (CC50 = 588 μg/mL) assays being more toxic than cold extract. However, As-HAE as well as cold extract did not induce apoptosis measured by Hoechst 33258 staining, TUNEL assay, and DNA fragmentation analysis. The in vivo micronucleus test showed that As-HAE exerted cytogenotoxic effects on bone marrow of mice, contrary to what was observed with cold extract. The chemical study of As-HAE allowed identifying the flavonoids found in cold extract: luteolin, quercetin, and 3-O-methylquercetin, but at higher concentrations. We suggest that toxic effects induced by As-HAE could be due to high concentrations of these flavonoids. Given that As-HAE is the most used in folkloric medicine, its administration should be controlled in order to prevent potential cell damage.
Collapse
|