1
|
Banaee M, Zeidi A, Haghi BN, Beitsayah A. The toxicity effects of imidacloprid and chlorpyrifos on oxidative stress and blood biochemistry in Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109979. [PMID: 39033793 DOI: 10.1016/j.cbpc.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to assess the toxicity effects of chlorpyrifos and imidacloprid, alone and in combination, on oxidative biomarkers and blood biochemistry of Cyprinus carpio. A total of 324 common carp (Cyprinus carpio) were distributed among 27 tanks and exposed to concentrations of 0.0, 100, and 200 μg L-1 of chlorpyrifos and 0.0, 10.0, and 20.0 μg L-1 of imidacloprid for 28 days. Changes in enzyme activities in the plasma of fish exposed to chlorpyrifos depended on the dose. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), gamma-glutamyl transferase (GGT) activities were significantly increased in fish exposed to imidacloprid, alone and in combination with chlorpyrifos. However, the activity of butyrylcholinesterase (BChE) was significantly decreased. Exposure to imidacloprid and chlorpyrifos, alone and in combination, increased glucose, urea, cholesterol, triglycerides, and creatinine levels, whereas total protein and albumin levels were significantly decreased. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) was significantly increased, while glutathione reductase (GR) was significantly decreased. Additionally, although the total antioxidant capacity (TAN) was significantly decreased, malondialdehyde (MDA) levels increased after exposure to imidacloprid and chlorpyrifos, alone and in combination. In conclusion, exposure to imidacloprid and chlorpyrifos, alone and in combination, induced oxidative stress and altered blood biochemistry in carp fish. Moreover, imidacloprid and chlorpyrifos had synergistic effects on some oxidative and biochemical biomarkers.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Naserabad SS, Zarei S, Rahimi J, Ghafouri Z, Mouludi-Saleh A, Banaee M. Protective effects of Allium jesdianum essential oil on rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal toxicity of cypermethrin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107051. [PMID: 39154627 DOI: 10.1016/j.aquatox.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to investigate the protective effects of Allium jesdianum essential oil (AJEO) in decreasing cypermethrin toxicity for rainbow trout. First, the safety of the 0%, 0.5%, 1%, and 1.5% AJEO supplements was assayed after 60 days. Then, the protective effects of AJEO were studied on fish exposed to 12.5% 96h LC50 cypermethrin after 14 days. Results showed that 1 and 1.5% AJEO administration enhanced protease and lipase activities in the intestine and improved growth performance. Moreover, feeding fish with 1 and 1.5% AJEO increased catalase (CAT) and superoxide dismutase activities (SOD) and decreased malondialdehyde (MDA). Also, AJEO increased glutathione peroxidase (GPx) activity in serum. However, exposure to cypermethrin significantly decreased these enzyme activities and increased MDA. The oxidative biomarkers remained normal in fish fed with AJEO after exposure to cypermethrin. The administration of 1 and 1.5% AJEO significantly decreased cortisol and glucose levels, alkaline phosphatase (ALP), lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. Although exposure to cypermethrin significantly increased these biochemical biomarkers, AJEO could adjust them. A significant effect of 1% AJEO on total protein and globulin was observed before and after exposure to cypermethrin. Exposure to cypermethrin decreased all immunological parameters in the serum and mucus. However, administration of 1% AJEO increased protease, lysozyme (LYS) activities, total immunoglobulin (Ig), complement C3 and C4, and nitroblue tetrazolium (NBT) in the serum and ALP, LYS, protease activities and Ig in mucus. In conclusion, results showed that AJEO could potentially decrease the toxicity effects of cypermethrin in fish.
Collapse
Affiliation(s)
| | - Sarallah Zarei
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Jamal Rahimi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Zaniar Ghafouri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Atta Mouludi-Saleh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
3
|
Banaee M, Beitsayah A, Zeidi A, Haghi BN, Piccione G, Faggio C, Multisanti CR, Impellitteri F. Toxicity of cigarette butts (CBs) leachate on Nile tilapia (Oreochromis niloticus): Blood biochemical parameters, oxidative stress biomarkers, and metabolic profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116514. [PMID: 38810286 DOI: 10.1016/j.ecoenv.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study is to evaluate the toxic effects of different concentrations of cigarette butt leachate (CBL) (0.0, 0.5, 1, 1.5, and 2.0 µL L-1) on blood biochemistry, oxidative stress biomarkers, and the biochemical profile of the liver and muscle of Nile tilapia fish (Oreochromis niloticus) after 21 days. Increased activity of lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) in plasma, and decreased activity of alkaline phosphatase (ALP) in fish exposed to CBL, indicated cytotoxicity. Elevated cholesterol, triglycerides, and glucose levels, coupled with reduced total protein, albumin, and globulin levels in the plasma, indicated impaired liver function in the fish. An increase in creatinine showed kidney damage. Increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, along with the decrease in liver glutathione (GSH) content and total antioxidant capacity in the hepatocytes of fish exposed to CBL, indicated the occurrence of oxidative stress. Malondialdehyde (MDA) elevation indicated heightened lipid peroxidation in CBL-exposed fish hepatocytes. Raman spectroscopy revealed altered biochemical profiles in fish liver and muscle post-CBL exposure. The results demonstrated that exposure to CBL led to a decrease in phospholipid levels, collagen destruction, changes in phenylalanine levels, and a decrease in the levels of lipids, proteins, and nucleic acids in fish liver and muscle tissue. Furthermore, the metabolites and compounds of cigarette butt juice were detectable in the liver and muscle tissue of fishes. In conclusion, this study showed that exposure to CBL can have adverse effects on fish health.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina 98168, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina 98168, Italy.
| |
Collapse
|
4
|
Mikula P, Hollerova A, Hodkovicova N, Doubkova V, Marsalek P, Franc A, Sedlackova L, Hesova R, Modra H, Svobodova Z, Blahova J. Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at "environmentally relevant" concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170296. [PMID: 38301789 DOI: 10.1016/j.scitotenv.2024.170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.
Collapse
Affiliation(s)
- Premysl Mikula
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Sedlackova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Helena Modra
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic; Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, 613 00 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic.
| |
Collapse
|
5
|
Wang W, Mou S, Xiu W, Li Y, Liu Z, Feng Y, Ma J, Li X. Fenpropathrin disrupted the gills of common carp (Cyprinus carpio L.) through oxidative stress, inflammatory responses, apoptosis, and transcriptional alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116007. [PMID: 38280339 DOI: 10.1016/j.ecoenv.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Fenpropathrin (FEN) is an extensively utilized synthetic pyrethroid insecticide frequently found in aquatic ecosystems. However, the adverse effects and potential mechanisms of FEN on aquatic species are poorly understood. In this work, common carp were treated with FEN at concentrations of 0.45 and 1.35 μg/L FEN for 14 days, after which the tissue structure, physiological alterations, and mRNA transcriptome of the gills were evaluated. Specifically, FEN exposure caused pathological damage to the gills of carp, downregulated the levels of claudin-1, occludin, and zonula occluden-1 (ZO-1), and inhibited Na+-K+-ATPase activity in the gills. In addition, FEN exposure promoted an increase in reactive oxygen species (ROS) levels and significantly upregulated the levels of malondialdehyde (MDA), 8-hydroxy-2 deoxyguanosine (8-OHdG), and protein carbonyl (PC) in the gills. Moreover, the inflammation-related indices (TNF-α, IL-1β, and IFN-γ) and the apoptosis-related parameter caspase-3 were generally increased, especially in the 1.35 μg/L FEN group, and these indices were significantly greater than those in the control group. These findings suggest that FEN exposure can cause oxidative stress, the inflammatory response, and apoptosis in carp gills. Importantly, the results of RNA-seq analysis showed that 0.45 and 1.35 μg/L FEN could significantly interfere with multiple immune and metabolic pathways, including the phagosome, NOD-like receptor (NLR) signalling pathway, Toll-like receptor (TLR) signalling pathway, necroptosis, and arachidonic acid metabolism pathways, indicating that the effects of FEN on the gills of fish are intricate. In summary, our findings confirm the toxic effects of FEN on common carp gills and provide additional comprehensive information for evaluating the toxicity and underlying molecular mechanisms of FEN in aquatic organisms.
Collapse
Affiliation(s)
- Wenhua Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenyao Xiu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Xiu W, Ding W, Mou S, Li Y, Sultan Y, Ma J, Li X. Adverse effects of fenpropathrin on the intestine of common carp (Cyprinus carpio L.) and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105799. [PMID: 38458669 DOI: 10.1016/j.pestbp.2024.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Fenpropathrin (FEN), a pyrethroid pesticide, is frequently detected in natural water bodies, unavoidable pose adverse effects to aquatic organisms. However, the harmful effects and potential mechanisms of FEN on aquatic species are poorly understood. In this study, common carp were treatment with FEN at 0.45 and 1.35 μg/L for 14 d, and the toxic effects and underlying mechanisms of FEN on the intestine of carp were revealed. RNA-seq results showed that FEN exposure cause a wide range of transcriptional alterations in the intestine and the differentially expressed genes were mainly enrichment in the pathways related to immune and metabolism. Specifically, FEN exposure induced pathological damage and altered submicroscopic structure of the intestine, elevated the levels of Bacteroides fragilis enterotoxin, altered the contents of claudin-1, occludin, and zonula occluden-1 (ZO-1), and causing injury to the intestinal barrier. In addition, inflammation-related index TNF-α in the serum and IL-6 in the intestinal tissues were generally increased after FEN exposure. Moreover, FEN exposure promoted an increase in reactive oxygen species (ROS), altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), upregulated the contents of malondialdehyde (MDA) in the intestines. The apoptosis-related parameter cytochrome c, caspase-9, and caspase-3 were significantly altered, indicating that inflammation reaction, oxidative stress, and apoptosis may be involved in the toxic mechanism of FEN on carp. Moreover, FEN treatment also altered the intestinal flora community significantly, which may affect the intestinal normal physiological function and thus affect the growth of fish. Overall, the present study help to clarify the intestinal reaction mechanisms after FEN treatment, and provide a basis for the risk assessment of FEN.
Collapse
Affiliation(s)
- Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Ma J, Zhu P, Wang W, Zhang X, Wang P, Sultan Y, Li Y, Ding W, Li X. Environmental impacts of chlorpyrifos: Transgenerational toxic effects on aquatic organisms cannot be ignored. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167311. [PMID: 37742960 DOI: 10.1016/j.scitotenv.2023.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorpyrifos (CPF) has been extensively used in the world and frequently found in natural environments, might cause a range of environmental issues and pose a health risk to aquatic species. However, investigation of its toxic effects on offspring after parental exposure has been neglected, especially for aquatic organisms such as fish. In the current study, the effects of chronic CPF exposure (3 and 60 μg/L) on adult zebrafish (F0) was investigated to determine its influence on adult reproductive capacity and offspring (F1 and F2). The results showed the existence of CPF both in F0 ovaries and F1 embryos and larvae, indicating that CPF could be transferred directly from the F0 adult fish to F1 offspring. After 90 d exposure, we observed that F0 female fish showed increased proportion of perinucleolar oocyte in the ovaries, decreased proportion of mature oocyte, and decreased egg production, but not in F1 adult. The transcriptomic analysis revealed that the disruption of metabolism during oocyte maturation in the CPF treatment zebrafish might interfere with F0 oocytes development and quality and ultimately influence offspring survival. For the larvae, the parental CPF exposure distinctly inhibited heart rate at 72 and 120 hpf and increased the mortality of F1 but not F2 larvae. The changes of biochemical indicators confirmed a disturbance in the oxidative balance, induced inflammatory reaction and apoptosis in F1 larvae. Furthermore, the changing profiles of mRNA revealed by RNA-seq confirmed an increased susceptibility in F1 larvae and figured out potential disruptions of ROS metabolism, immune system, apoptosis, and metabolism pathways. Taken together, these results show that chronic CPF treatment can induce reproductive toxicity, and parental transfer of CPF occurs in fish, resulting in transgenerational alters in F1 generation survival and transcription that raising concerns on the ecological risk of CPF in the natural environment.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Penglin Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenhua Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaodan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Banaee M, Badr AA, Multisanti CR, Haghi BN, Faggio C. The toxicity effects of the individual and combined exposure of methyl tert-butyl ether (MTBE) and tire rubber powder (RP) on Nile tilapia fish (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109759. [PMID: 37778452 DOI: 10.1016/j.cbpc.2023.109759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Methyl tert-butyl ether (MTBE) is soluble in water and can contaminate water sources when it spills during transportation or leaks from underground storage tanks. Incomplete combustion releases MTBE as exhaust fumes that can be deposited on urban surfaces. Meanwhile, car tires erosion emits of large amounts of rubber dust (RP), easily transported to water bodies. Therefore, this study has the objective of assessing the toxicity of varying concentrations of MTBE (0, 2.5, 5.0 μL L-1) and RP (0, 5.0, 10.0 mg L-1 RP), both individually and in combination, over a period of 28 days on Nile tilapia (Oreochromis niloticus). MTBE and PR decreased fish growth performance. Blood biochemical analytes indicated that MTBE and RP led to increasing Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatinine phosphokinase (CPK), alkaline phosphatase and gamma-glutamyl transferase (GGT) activities. Alterations related to glucose, triglycerides, cholesterol, and creatinine, plasma contents, were also observed. Increased antioxidant biomarkers, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA), was observed. Exposure fish to MTBE and PR changed metabolic profile of muscle tissue. Moreover, results showed that MTBE, its metabolites, and PR could accumulate in the muscle tissue of fish. Results suggest that MTBE and RP can impact fish health, both individually and when combined. The presence of MTBE enhances the toxicity of RP, indicating a synergistic effect. Nevertheless, further studies are needed to understand the impact of toxic compounds on aquatic environments and organisms' health.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Ahmad Ali Badr
- Biology Department, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
9
|
Shiry N, Derakhshesh N, Alavinia SJ, Pouladi M, Falco F, Faggio C. Anodonta cygnea, a freshwater swan mussel, exposed to diazinon: toxicity thresholds in behaviour and physiology. Vet Res Commun 2023; 47:1303-1319. [PMID: 36763184 DOI: 10.1007/s11259-023-10078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Swan mussels (Anodonta cygnea) have been suggested as suitable bioindicators for the presence of pollutants in the environment. Application of the physiological and behavioral markers in these sessile species can be beneficial for environmental monitoring. The present study aimed to investigate the relationship between the behavioral disorders of movement and siphoning associated with the inhibition of tissue Acetylcholinesterase (AChE). For experiments, overally 120 bivalves of Anodonta cygnea (mean total length 80.33 ± 6.7 mm) were transported from the agricultural drains and canals in Sari county (Mazandaran Province, Iran) to our laboratory. First, the LC50-96 h of diazinon was estimated according to the Organization for Economic Co-operation and Development (OECD 1992) guideline with static water conditions. The sub-lethal toxicity pesticide experiments were conducted on the basis of the lowest observed effect concentration (LOEC) and the maximum acceptable toxicant concentration (MATC). The LC50-96 h, LOEC, and MATC values of diazinon were 85.2, 42.1, and 8.5 mg L- 1, respectively. Based on the observations of mussels' movement, the burrowing and displacement decreased with the concentration of toxicant in water. Moreover, the presence of diazinon in water and its exposure to experimental animals significantly reduces their siphoning rate. The RDA showed that the AChE activity had a higher correlation with the siphoning behavior than the movement behavior. The comparison of enzyme activity at different exposure and recovery times showed that there was a significant difference among the groups affected by the consumed pesticide (p = 0.001, between contrasts). The most remarkable morphometric characteristic was the siphon opening that was inversely correlated with the enzymatic activity. Studies in bioethics might benefit from paying attention to these traits that are directly related to the level of toxicity and behavioral adaptations required for animal survival.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Negin Derakhshesh
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Pouladi
- Iran Fisheries Organization, Administration of Bushehr Province, Bushehr, Iran
| | - Francesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
10
|
Banaee M, Impellitteri F, Multisanti CR, Sureda A, Arfuso F, Piccione G, Faggio C. Evaluating Silymarin Extract as a Potent Antioxidant Supplement in Diazinon-Exposed Rainbow Trout: Oxidative Stress and Biochemical Parameter Analysis. TOXICS 2023; 11:737. [PMID: 37755747 PMCID: PMC10535037 DOI: 10.3390/toxics11090737] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the effects of diazinon on fish, focusing on hepatotoxic biomarkers and the potential protective effects of silymarin supplementation. One hundred eighty rainbow trout were randomly assigned to four groups: control, diazinon exposed (0.1 mg L-1), silymarin supplemented (400 mg kg-1), and diazinon + silymarin. Blood samples and liver tissue were collected after 7, 14, and 21 days of exposure to analyze biochemical parameters and oxidative biomarkers. Diazinon exposure in fish resulted in liver damage, as indicated by increased antioxidant enzyme activities in the hepatocytes. Silymarin showed the potential to mitigate this damage by reducing oxidative stress and restoring enzyme activities. Nevertheless, diazinon increased creatine phosphokinase activity, which may not be normalized by silymarin. Exposure to diazinon increased glucose, triglyceride, and cholesterol levels, whereas total protein, albumin, and globulin levels were significantly decreased in fish. However, silymarin controlled and maintained these levels within the normal range. Diazinon increased creatinine, urea, uric acid, and ammonia contents. Silymarin could regulate creatinine, urea, and uric acid levels while having limited effectiveness on ammonia excretion. Furthermore, diazinon increased malondialdehyde in hepatocytes, whereas administration of silymarin could restore normal malondialdehyde levels. Overall, silymarin showed potential as a therapeutic treatment for mitigating oxidative damage induced by diazinon in fish, but its effectiveness on creatine phosphokinase, glutathione reductase, and ammonia may be limited.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
11
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
12
|
Carrillo-Godoy N, Rondón-Barragán IS. Molecular Characterization of High Mobility Group Box 1a ( HMGB1a) Gene in Red-Bellied Pacu, Piaractus brachypomus. Vet Med Int 2023; 2023:2774528. [PMID: 37325273 PMCID: PMC10264711 DOI: 10.1155/2023/2774528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a chromosomal protein in the nucleus and a potent extracellular proinflammatory cytokine, widely described in mammals, nevertheless, with scarce reports in fish. In this study, full open reading frame of HMGB1a gene from Piaractus brachypomus is reported as well as its molecular characterization, including tissue gene expression. At predicted protein level, HMGB1a showed similarities with its orthologs in teleosts and higher vertebrates. The relative gene expression of HMGB1a mRNA was measured in several tissues including the brain, where a differential expression appeared in brain regions, i.e., higher expression in the cerebellum and telencephalon. In addition, in an assay of sublethal exposure to chlorpyrifos, upregulation of HMGB1a was detected in optic chiasm. Furthermore, in a traumatic brain injury model, upregulation of HMGB1a expression was evident 24 hours after lesion and remained higher up to 14 days. These findings suggest a role for HMGB1a in brain damage and its candidature as biomarker of brain injury; however, more studies are required to elucidate the functions of HMGB1a and its regulation in P. brachypomus.
Collapse
Affiliation(s)
- Nicolas Carrillo-Godoy
- Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Ibagué-Tolima 730006299, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Ibagué-Tolima 730006299, Colombia
| |
Collapse
|
13
|
Banaee M, Beitsayah A, Prokić MD, Petrović TG, Zeidi A, Faggio C. Effects of cadmium chloride and biofertilizer (Bacilar) on biochemical parameters of freshwater fish, Alburnus mossulensis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109614. [PMID: 36940894 DOI: 10.1016/j.cbpc.2023.109614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Fish in wild are often faced with various types of xenobiotics, that may display synergistic or antagonistic effects. In this study, we aim to examine how exposure to agrochemical compound (Bacilar) and cadmium (CdCl2) alone and in combination affect biochemical parameters (lactate dehydrogenase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, alanine aminotransferase; creatine phosphokinase (CKP), cholinesterase) and oxidative stress (total antioxidant capacity, catalase, malondialdehyde and protein carbonyl concentrations) of freshwater fish Alburnus mossulensis. Fish were exposed to two concentrations of Bacilar (0.3, and 0.6 mL L-1) and to 1 mg L-1 cadmium chloride alone and in combination for 21 days. Results showed that fish accumulate Cd in their body, with the highest rate in individuals exposed to Cd in combination with Bacilar. Both xenobiotics in fish liver induced the activation of liver enzymes suggesting hepatotoxic effects, with the greatest impact in co-exposed groups. A significant decrease in the hepatocyte's total antioxidant capacity indicates the collapse of the antioxidant defense in fish exposed to Cd and Bacilar. A decrease in the antioxidant biomarkers was followed by increased oxidative damage of lipids and proteins. We also reported altered function in the muscle of individuals exposed to Bacilar and Cd seen as decreased activities in CKP and butyrylcholinesterase. Overall, our results point to the toxicity of both Bacilar and Cd on fish but also to their synergistic effects on Cd bioaccumulation, oxidative stress, and liver and muscle damage. This study highlights the need for evaluating the use of agrochemicals and their possible additive effects on non-target organisms.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno, d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
14
|
Banaee M, Sagvand S, Sureda A, Amini M, Haghi BN, Sopjani M, Faggio C. Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109597. [PMID: 36889533 DOI: 10.1016/j.cbpc.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Mancozeb and metalaxyl are fungicidal agents frequently used in combination to control fungi in crops that may affect non-target organisms when entering ecosystems. This study aims to evaluate the environmental effects of Mancozeb (MAN) and Metalaxyl (MET), alone and in combination, on zebrafish (Danio rerio) as an experimental model. The oxidative stress biomarkers and the transcription of genes involved in detoxification in zebrafish (Danio rerio) were assessed after co-exposure to MAN (0, 5.5, and 11 μg L-1) and MET (0, 6.5, and 13 mg L-1) for 21 days. Exposure to MAN and MET induced a significant increase in the expression of genes related to detoxification mechanisms (Ces2, Cyp1a, and Mt2). Although Mt1 gene expression increased in fish exposed to 11 μg L-1 of MAN combined with 13 mg L-1 of MET, Mt1 expression was down-regulated significantly in other experimental groups (p < 0.05). The combined exposure to both fungicides showed synergistic effects in the expression levels that are manifested mainly at the highest concentration. Although a significant (p < 0.05) increase in alkaline phosphatase (ALP) and transaminases (AST and ALT), catalase activities, the total antioxidant capacity, and malondialdehyde (MDA) contents in the hepatocytes of fish exposed to MAN and MET alone and in combination was detected, lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) activities, and hepatic glycogen content decreased significantly (p < 0.05). Overall, these results emphasize that combined exposure to MET and MAN can synergistically affect the transcription of genes involved in detoxification (except Mt1 and Mt2) and biochemical indicators in zebrafish.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Shiva Sagvand
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mentor Sopjani
- Faculty of Medicine of the University of Prishtina, Prishtina, Kosovo.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Cui J, Hao Z, Zhou Q, Qiu M, Liu Y, Liu Y, Teng X, Kang L. Chlorpyrifos induced autophagy and mitophagy in common carp livers through AMPK pathway activated by energy metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114983. [PMID: 37148751 DOI: 10.1016/j.ecoenv.2023.114983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Water pollution caused by widely used agricultural pesticide chlorpyrifos (CPF) has aroused extensive public concern. While previous studies have reported on toxic effect of CPF on aquatic animal, little is known about its effect on common carp (Cyprinus carpio L.) livers. In this experiment, we exposed common carp to CPF (11.6 μg/L) for 15, 30, and 45 days to establish a poisoning model. Histological observation, biochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and integrated biomarker response (IBR) were applied to assess the hepatotoxicity of CPF in common carp. Our results displayed that CPF exposure damaged histostructural integrity and induced liver injury in common carp. Furthermore, we found that CPF-induced liver injury may be associated with mitochondrial dysfunction and autophagy, as evidenced by swollen mitochondria, broken mitochondrial ridges, and increased the number of autophagosomes. Moreover, CPF exposure decreased the activities of ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase), altered glucose metabolism-related genes (GCK, PCK2, PHKB, GYS2, PGM1, and DLAT), and activated energy-sensing AMPK, indicating that CPF caused energy metabolism disorder. The activation of AMPK further induced mitophagy via AMPK/Drp1 pathway, and induced autophagy via AMPK/mTOR pathway. Additionally, we found that CPF induced oxidative stress (abnormal levels of SOD, GSH, MDA, and H2O2) in common carp livers, which further contributed to the induction of mitophagy and autophagy. Subsequently, we confirmed a time-dependent hepatotoxicity caused by CPF in common carp via IBR assessment. Our findings presented a new insight into molecular mechanism of CPF induced-hepatotoxicity in common carp, and provided a theoretical basis for evaluating CPF toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, People's Republic of China.
| |
Collapse
|
16
|
Ravi R, Athisuyambulingam M, Kanagaraj S, Tresnakova N, Impellitteri F, Viswambaran G, Faggio C. Impact of Chlorpyrifos on Cytopathological Indices in Mangrove Crab, Episesarma tetragonum (Fabricius). Vet Sci 2023; 10:vetsci10010053. [PMID: 36669054 PMCID: PMC9861349 DOI: 10.3390/vetsci10010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Chlorpyrifos is an organophosphate insecticide occurring in aquatic ecosystems. Due to exposure to xenobiotics, several harmful effects on aquatic organisms are noticed worldwide. Mangrove crabs are an ecologically important aquatic invertebrate species in food web interactions and in the mangrove ecosystem. Therefore, this study aimed to evaluate the cytotoxic effects of chlorpyrifos on the mangrove crab, Episesarma tetragonum. Crabs were exposed to 0.0294 and 0.0588 ppm of chlorpyrifos for 7 and 28 days. Cytopathologic effects on the gill, hepatopancreas, and muscle were investigated, and observations were compared with a control group. The results suggest that chlorpyrifos induces time- and concentration-dependent cytopathological alternations in the gill and exhibited epithelial lifting, oedema, necrosis, and a fusion of secondary lamellae and haemorrhage. The deceased hepatopancreas showed infiltration, a large lumen formation, and the disappearance of haemocytes, while the muscle tissue showed atrophy, necrosis, a wavy appearance, an accumulation of granular material between muscle fibres, and fragmentation in a mangrove crab. This study shows the great potential of cytopathological investigations, allows us to assess the sensitivity of various aquatic animal species to potentially dangerous compounds, and calculates safe concentrations with which to reduce pesticide use.
Collapse
Affiliation(s)
- Rajesh Ravi
- PG & Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tiruchirappalli, Thanjavur Dist, Adirampattinam 614701, India
| | - Maharajan Athisuyambulingam
- PG & Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tiruchirappalli, Thanjavur Dist, Adirampattinam 614701, India
| | - Shanmugavel Kanagaraj
- PG & Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tiruchirappalli, Thanjavur Dist, Adirampattinam 614701, India
| | - Nikola Tresnakova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Ganapiriya Viswambaran
- PG & Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Tiruchirappalli, Thanjavur Dist, Adirampattinam 614701, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d’Alcontres 31, 98166 Messina, Italy
- Correspondence:
| |
Collapse
|
17
|
Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, Musthafa MS, Faggio C. Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109492. [PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
Collapse
Affiliation(s)
- Kannayiram Muthukumaravel
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | | | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Natarajan Vasanthi
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 S.Agata-Messina, Italy.
| |
Collapse
|
18
|
Santos KPED, Ferreira Silva I, Mano-Sousa BJ, Duarte-Almeida JM, Castro WVD, Azambuja Ribeiro RIMD, Santos HB, Thomé RG. Abamectin promotes behavior changes and liver injury in zebrafish. CHEMOSPHERE 2023; 311:136941. [PMID: 36272627 DOI: 10.1016/j.chemosphere.2022.136941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The indiscriminate use of pesticides is a worldwide concern due to the environment contamination since it can cause deleterious effects to non-target organisms including the fishes. The effects of abamectin, a pesticide from the avermectin family, were evaluated in adult zebrafish (Danio rerio) after exposure to a commercial formula commonly used in Brazil. The animals were submitted to acute (96 h) and to a short-term chronic exposure (15 days) of distinct concentrations of abamectin. LC50 was determined and a histological study followed by an immunohistochemistry analysis for P-gp and HSP70 identification were performed on livers of the animals submitted to the acute and chronic treatment, respectively. Moreover, behavior patterns were observed daily in both trials. A LC50 value of 105.68 μg/L was determined. The histological analysis revealed a morphological alteration of the hepatocytes, glycogen accumulation, degeneration, and disorganization of the cytoplasm, and a pyknotic, irregular, and laterally located nuclei. The immunohistochemistry for HSP70 and P-gp showed strong staining in the hepatocytes of the control groups and progressive decrease as the concentration of abamectin increased. Changes were observed in body posture, movement around the aquarium, opercular activity, body color and search for food in the groups treated with abamectin. The results presented suggest that abamectin can affect the behavioral pattern of the animals, promote morphological changes, and decrease the expression of HSP70 and P-gp in zebrafish liver.
Collapse
Affiliation(s)
- Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Isabella Ferreira Silva
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Brayan Jonas Mano-Sousa
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Joaquim Maurício Duarte-Almeida
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Whocely Victor de Castro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório Central Analítica, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Patologia Experimental, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Hélio Batista Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|