1
|
Chen D, Sun W, Liu H, Wang K, Gao M, Guo L, Xu S. SeMet alleviates LPS-induced eggshell gland necroptosis mediated inflammation by regulating the Keap1/Nrf2/HO-1 pathway. Arch Biochem Biophys 2024; 751:109847. [PMID: 38052383 DOI: 10.1016/j.abb.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Exposure to lipopolysaccharide (LPS) can lead to inflammation in a variety of tissues and organs. Selenium (Se) plays a crucial role in mitigating inflammatory damage. Compared with inorganic selenium, organic selenium, such as selenomethionine (SeMet), has the advantages of a higher absorption rate and lower toxicity in animals. This study examined the protective effects of SeMet on eggshell gland tissue damage caused by LPS. Hy-Line Brown laying hens were chosen as the experimental animals and were randomly assigned to four groups: control group (C), lipopolysaccharide group (LPS), SeMet group (Se), and SeMet + lipopolysaccharide group (Se + LPS). H&E staining and transmission electron microscope were performed to observe the pathological changes of eggshell glands, oxidative stress related indicators were measured using relevant kits, qRT‒PCR and western blotting were used to evaluate the mRNA and protein levels of the Nrf2 pathway, necroptosis, and inflammation related indicators. The results showed that LPS treatment increased the content of malondialdehyde (MDA), decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and decreased the content of glutathione (GSH). LPS increased the levels of Keap1, RIPK1, RIPK3, MLKL, TNF-α, COX-2, and NF-κB, while decreasing the levels of HO-1, NQO1, Nrf2, and Caspase-8. However, SeMet treatment effectively reversed the changes of the above indicators, indicating that SeMet alleviates eggshell gland cell necroptosis-mediated inflammation induced by LPS via regulating the Keap1/Nrf2/HO-1 pathway. This study elucidated the mechanism by which SeMet alleviates LPS-induced eggshell gland tissue damage in Hy-Line Brown laying hens and provided a new direction for expanding the application of SeMet in the feeding and production of laying hens.
Collapse
Affiliation(s)
- Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Linlin Guo
- SCIEX Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Hassan S, Hassan M, Soliman F, Safwat A. Influence of hot red pepper oil in broiler diets on blood, antioxidant, immunological parameters and intestinal bacteria counts. Anim Biotechnol 2023; 34:1295-1304. [PMID: 34974793 DOI: 10.1080/10495398.2021.2020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study aimed to examine the impacts of supplementing hot red pepper oil (HRPO) to broiler diets. One hundred and twenty Arbor Acres chicks were divided randomly into four experimental groups as three supplementation levels of HRPO (0.25, 0.5 and 1.0 mL/kg diet) and the control group. Results showed that HRPO supplementation exhibited significantly (p < 0.001) higher red blood cells (RBCs) count, hemoglobin (Hb) and packed cells volume (PCV) percentage, while insignificant effects were shown for white blood cells (WBCs) count or its differentiation. Diets supplemented with different levels of HRPO influenced significantly (p < 0.001) the total protein (TP), albumin (Alb) and glucose (Glo) values of the studied birds. Results also indicated that different levels of HRPO supplementations significantly (p < 0.01) decreased total lipid, triglycerides (Trig), cholesterol (Cho) and low-density lipoprotein (LDL), but did not affect high density lipoprotein (HDL) values. Data revealed that supplementing broiler diets with different levels of HRPO enhanced their liver function. The bactericidal activity index was significantly increased (p < 0.02) compared with control. HRPO supplemented groups had beneficial effects (p < 0.02) on cecal microbiota count. It could be concluded that dietary HRPO supplementation could improve the general internal health status of Arbor Acres broiler chicks.
Collapse
Affiliation(s)
- Saber Hassan
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mohamed Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRAT- City), Alexandria, Egypt
| | - Farid Soliman
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Assem Safwat
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Shalan MG. Amelioration of mercuric chloride-induced physiologic and histopathologic alterations in rats using vitamin E and zinc chloride supplement. Heliyon 2022; 8:e12036. [PMID: 36544834 PMCID: PMC9761730 DOI: 10.1016/j.heliyon.2022.e12036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
The drastic effects of mercuric chloride and the protective efficiency of vitamin E and zinc chloride co-supplementation were clearly investigated in this study. Male rats were divided into four groups. The first was the control. The second received vitamin E (100 mg/kg) and zinc chloride (30 mg/kg) daily. In comparison, the third received mercuric chloride (1 mg/kg) daily, and the fourth received the same mercuric chloride dose supplemented with the same vitamin E and zinc chloride doses. Mercury promotes a significant decline in body weight. It causes a considerable reduction in total red blood cells (RBCs) count and hemoglobin concentration; however, white blood cells (WBCs) increased significantly. Significant mercury-induced elevations in hepatic and renal functions were observed. Mercury induced substantial reductions in catalase (CAT) and superoxide dismutase (SOD). Mercury caused apoptotic DNA fragmentation. It induced degeneration and necrosis in the liver and kidney. It induced necrosis, leukocyte infiltration and blood vessel congestion in the cerebral cortex. Shrinkage and deterioration of Purkinje cells of the cerebellum were observed in response to mercuric chloride toxicity. Mercuric chloride enhanced shrinking in seminiferous tubules and Leydig cells. It reduced sperm count, sperm motility, and testosterone concentration; however, it promoted abnormal sperm morphology. Administration of vitamin E and zinc chloride showed marked improvement in different parameters under investigation, however, further research is needed to determine fate of mercury.
Collapse
|
4
|
Hassan MA, Hozien ST, Abdel Wahab MM, Hassan AM. Risk assessment of glyphosate and malathion pollution and their potential impact on Oreochromis niloticus: role of organic selenium supplementation. Sci Rep 2022; 12:9992. [PMID: 35705587 PMCID: PMC9200714 DOI: 10.1038/s41598-022-13216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
A field survey was conducted on five fish farms to trace glyphosate and malathion pollution with some physicochemical parameters. A precise half-life time, LC50-96h, of these agrochemicals on Oreochromis niloticus, as well as chronic exposure with organic selenium (OS) supplementation, were experimentally investigated. Oreochromis niloticus was subjected to the following: (negative control); (2 mg L-1 glyphosate); (0.5 mg L-1 malathion); (glyphosate 1.6 mg L-1 and 0.3 mg L-1 malathion); (glyphosate 2 mg L-1 and OS 0.8 g kg-1 diet); (malathion 0.5 mg L-1 and OS 0.8 g kg-1 diet) and (glyphosate 1.6 mg L-1; malathion 0.3 mg L-1 and OS 0.8 g kg-1 diet). Furthermore, data from the analyzed pond revealed a medium risk quotient (RQ) for both agrochemicals. The detected agrochemicals were related to their application, and vegetation type surrounding the farms, also their biodegradation was correlated to water pH, temperature, and salinity. Glyphosate and malathion had half-lives of 2.8 and 2.3 days and LC50-96h of 2.331 and 0.738 mg L-1, respectively. The severest nervous symptoms; increased oxidative stress markers, as well as high bacterial count in the livers and kidneys of fish challenged with Aeromonas hydrophila, were observed in the combined exposure, followed by a single exposure to malathion and then glyphosate. Organic selenium mitigated these impacts.
Collapse
Affiliation(s)
- Marwa A Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samaa T Hozien
- Animal Health Research Institute, Ismailia, 41522, Egypt
| | | | - Ahmed M Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
5
|
Hassan MA, Hozien ST, Abdel Wahab MM, Hassan AM. Ameliorative effect of selenium yeast supplementation on the physio-pathological impacts of chronic exposure to glyphosate and or malathion in Oreochromis niloticus. BMC Vet Res 2022; 18:159. [PMID: 35501865 PMCID: PMC9063350 DOI: 10.1186/s12917-022-03261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pesticide exposure is thought to be a major contributor to living organism health deterioration, as evidenced by its impact on both cultured fish species and human health. Commercial fish diets are typically deficient in selenium (Se); hence, supplementation may be necessary to meet requirements during stress. Therefore, this study was conducted to investigate the protective role of selenium yeast (SY) supplementation for 60 days against the deleterious effects of glyphosate and or malathion chronic toxicity at sublethal concentrations in Oreochromis niloticus . METHODS Two hundred and ten fish were divided into seven groups (n = 30/group) as follows: G1 (negative control); G2 (2 mg L- 1 glyphosate); G3 (0.5 mg L- 1 malathion); G4 (glyphosate 1.6 mg L- 1 and malathion 0.3 mg L- 1); G5 (glyphosate 2 mg L- 1 and SY 3.3 mg kg- 1); G6 (malathion 0.5 mg L- 1 and SY 3.3 mg kg- 1); and G7 (glyphosate 1.6 mg L- 1; malathion 0.3 mg L- 1 and SY 3.3 mg kg- 1). RESULTS Results revealed significant alteration in growth performance parameters including feed intake (FI), body weight (BW), body weight gain (BWG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). G4 has the highest documented cumulative mortalities (40%), followed by G3 (30%). Additionally, the greatest impact was documented in G4, followed by G3 and then G2 as severe anemia with significant thrombocytopenia; leukocytosis; hypoproteinemia; increased Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST), urea, and creatinine, as well as malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Considering the previously mentioned parameters, selenium yeast (Saccharomyces cerevisiae) (3.3 mg kg- 1 available selenium) mitigated the negative impact of both the agrochemicals, whether exposed singly or in combination, in addition to their antioxidative action. CONCLUSIONS In conclusion, our study found that organophosphorus agrochemicals, single or combined, had negative impacts on Oreochromis niloticus regarding growth performance, biochemical and hematological changes in the serum, as well as induced oxidative damage in liver and kidney tissues. Supplementation of SY at the rate of 3.3 mg kg- 1 diet (2.36 mg kg- 1 selenomethionine and 0.94 mg organic selenium) ameliorated the fish performance and health status adversely affected by organophosphorus agrochemical intoxication.
Collapse
Affiliation(s)
- Marwa A Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samaa T Hozien
- Animal Health Research Institute, Ismailia, 41522, Egypt
| | | | - Ahmed M Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
6
|
Gul ST, Khan RL, Saleemi MK, Ahmad M, Hussain R, Khan A. Amelioration of toxicopathological effects of thiamethoxam in broiler birds with vitamin E and selenium. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1864647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shfaia Tehseen Gul
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Liaquat Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - M. Kashif Saleemi
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Maqbool Ahmad
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University Bahawalpur, Pakistan
| | - Ahrar Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| |
Collapse
|
7
|
Anwar M, Muhammad F, Akhtar B, Ur Rehman S, Saleemi MK. Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14771-14779. [PMID: 32056099 DOI: 10.1007/s11356-020-08051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Cypermethrin, a pyrethroid insecticide, may cause several adverse effects including nephrotoxicity. Curcumin is a nutraceutical with many pharmacological effects including nephroprotective effects. But its effective clinical use is limited due to poor bioavailability, physicochemical instability, low bioactive absorption, quick metabolization, less penetration, and targeting efficacy. To resolve these issues, curcumin is incorporated in chitosan nanoparticles. The focus of the study was to prepare and characterize curcumin loaded chitosan nanoparticles and evaluate their nephroprotective activity in a cypermethrin induced renal toxicity. The curcumin loaded chitosan nanoparticles were prepared by using solvent displacement method and characterized by particle size, zeta potential, polydispersity index, entrapment efficiency, and FTIR. The prepared formulation was stable and lies within nanometer range (264.8 nm), and possessed high drug loading capacity (84.64%). Cypermethrin (24 mg/kg body weight) and Curcumin loaded chitosan nanoparticles (15 mg/kg and 30 mg/kg body weight) were orally administered to 20 rabbits (4 groups) for 28 days. It was found that cypermethrin significantly increased the serum levels of creatinine, urea, and BUN and decreased glutathione S-transferase and superoxide dismutase. Co-administration of curcumin loaded chitosan nanoparticles provided pronounced beneficial effects against cypermethrin-induced biochemical alterations and oxidative damage in the kidneys of rabbits. 30 mg/kg body weight of curcumin loaded chitosan nanoparticles have better nephroprotective effects as compared to 15 mg/kg body weight.
Collapse
Affiliation(s)
- Maira Anwar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Faqir Muhammad
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.
| | - Bushra Akhtar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rehman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Use of red pepper oil in quail diets and its effect on performance, carcass measurements, intestinal microbiota, antioxidant indices, immunity and blood constituents. Animal 2019; 14:1025-1033. [PMID: 31826776 DOI: 10.1017/s1751731119002891] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plant-derived additives are used to maintain the health and growth performance of livestock. The use of red pepper oil (RPO) has recently attracted considerable scientific interest mainly due to its potential benefits for animals and humans. The present study was conducted to evaluate the effect of dietary supplementation with RPO on growth performance, carcass measurements, antioxidant status and immunity of growing quails between 1 and 5 weeks of age. A total of 240 growing quails (1-week old) were distributed into 5 equal groups consisting of 48 birds (4 replicates of 12 birds each). The first group was fed a basal diet without RPO (0 g/kg diet), and the second, third, fourth and fifth groups received diets containing RPO (0.4, 0.8, 1.2, 1.6 g/kg diet, respectively). The experiment lasted for 5 weeks. At age of 5 weeks, quails were slaughtered for carcass examinations, microbiological analysis of intestine and to determine blood constituents. Data were statistically analyzed by one-way ANOVA. Quails fed with 0.8 g RPO/kg diet showed 12.14%, 14.4% and 15% improvement in live BW, body weight gain and feed conversion ratio, respectively, compared with the control group. Quails that received diets with 1.2 g RPO consumed more feed than the others during the total period (1 to 5 weeks). Plasma globulin levels were significantly decreased (P = 0.0102), but albumin/globulin ratio was significantly increased (P = 0.0009) in birds fed diets containing RPO (0.4 and 1.2 g/kg) compared with those in the control group. Activity of liver enzymes in the plasma was nonsignificantly decreased in quails supplemented with 0.8 g RPO/kg diet compared with those in the control group. Activities of antioxidant enzymes (glutathione and catalase) in the group fed on diets supplemented with RPO (0.8 g/kg) were significantly higher than those in the control group. The inclusion of RPO (0.8 g/kg diet) in quail diets improved (P < 0.05) plasma lipid profile and also decreased pH of the caecal content (P = 0.0280) compared with those in the control group. The caecal bacterial population, Salmonella spp., coliform and Escherichia coli, were lowered (P < 0.05) in the groups treated with RPO (0.8, 1.2 and 1.6 g/kg) compared with those in the control group. In conclusion, dietary supplementation of RPO (0.8 g/kg) can enhance the performance and antioxidant indices and decrease intestinal pathogens and thus improve the health status of Japanese quail.
Collapse
|
9
|
Abdus Sallam M, Zubair M, Tehseen Gul S, Ullah Q, Idrees M. Evaluating the protective effects of vitamin E and selenium on hematology and liver, lung and uterus histopathology of rabbits with cypermethrin toxicity. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1518335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Muhammad Zubair
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Shafia Tehseen Gul
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Qudrat Ullah
- Department of Theriogenology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Idrees
- Department of Theriogenology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Uzunhisarcikli M, Aslanturk A, Kalender S, Apaydin FG, Bas H. Mercuric chloride induced hepatotoxic and hematologic changes in rats. Toxicol Ind Health 2016; 32:1651-62. [DOI: 10.1177/0748233715572561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study focuses on investigating the possible protective effect of sodium selenite (Na2SeO3) and/or vitamin E against mercuric chloride (HgCl2)-induced hepatotoxicity in rat. Male rats were given HgCl2 (1 mg/kg body weight (bw)) and HgCl2 plus Na2SeO3 (0.25 mg/kg bw) and/or vitamin E (100 mg/kg bw) daily via gavage for 4 weeks. HgCl2-treated groups had significantly higher white blood cell and thrombocyte counts than the control group. Serum activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl-transferase, and lactate dehydrogenase significantly increased and serum levels of total protein, albumin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol significantly decreased in the HgCl2-treated groups compared with control group. Malondialdehyde level significantly increased and superoxide dismutase, catalase, and glutathione peroxidase activities decreased in liver tissue of HgCl2-treated rats. Also, HgCl2 exposure resulted in histopathological changes. Supplementation of Na2SeO3 and/or vitamin E provided partial protection in hematological and biochemical parameters that were altered by HgCl2. As a result, Na2SeO3 and/or vitamin E significantly reduced HgCl2-induced hepatotoxicity, but not protected completely.
Collapse
Affiliation(s)
| | - Ayse Aslanturk
- Vocational High School of Health Services, Gazi University, Ankara, Turkey
| | - Suna Kalender
- Department of Science Education, Gazi Faculty of Education, Gazi University, Ankara, Turkey
| | | | - Hatice Bas
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| |
Collapse
|
11
|
Vardavas AI, Fragkiadaki P, Alegakis AK, Kouretas D, Goutzourelas N, Tsiaoussis J, Tsitsimpikou C, Stivaktakis PD, Carvalho F, Tsatsakis AM. Downgrading the systemic condition of rabbits after long term exposure to cypermethrin and piperonyl butoxide. Life Sci 2015; 145:114-20. [PMID: 26690741 DOI: 10.1016/j.lfs.2015.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022]
Abstract
AIM The aimof this study is to clarify the effect of cypermethrin (CY) on the oxidative stress (OS) and inflammation status of animals exposed to it and the synergistic role of piperonyl butoxide (PB0). MAIN METHODS Markers of oxidative stress, such as total antioxidant activity (TAC), protein carbonyls, hemoglobin (Hb), reduced glutathione (GSH), thiobarbituric-acid reactive substances (TBARS), along with the telomerase activity in PBMCs (peripheral blood mononuclear cells) were analyzed. KEY FINDINGS Oxidative stress markers showed statistically significant differences between groups in TAC (p b 0.001), GSH (p = 0.018) and CAT activity (p = 0.029), which depended on dose and combined effect of both compounds. Telomerase activity also showed a statistically significant difference between all groups (F = 43.48, df=6, 14, p b 0.001)with cypermethrin, piperonyl butoxide and the co-exposed groups being significantly different fromthe control group (p b 0.05). Significance: The observed results for TBARS, GSH, Hb, TAC, Crbnls and CAT from our exposed groups showed altered levels compared to control groups that could be linked to doses and combined effects of each chemical substance (cypermethrin and piperonyl butoxide). Oxidative stress markers suggest that cypermethrin, piperonyl butoxide and the co-exposed groups, induce oxidative stress as well as induction of telomerase activity.
Collapse
Affiliation(s)
- Alexander I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Athanasios K Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou St., Larissa 41221, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou St., Larissa 41221, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy, Medical School, University of Crete, Voutes, 71110, Crete, Greece
| | - Christina Tsitsimpikou
- General Chemical State Laboratory of Greece, Department of Hazardous Substances, Mixtures and Articles, 16 An. Tsocha Str, 1152 Athens, Greece
| | - Polychronis D Stivaktakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| |
Collapse
|
12
|
Dar SA, Kaur R. Hematobiochemical evaluation of dermal subacute cypermethrin toxicity in buffalo calves. Toxicol Int 2015; 21:283-7. [PMID: 25948967 PMCID: PMC4413411 DOI: 10.4103/0971-6580.155364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dermal exposure of cypermethrin, a type II synthetic pyrethroid insecticide, at dose rate of 0.25% for 14 consecutive days produced mild signs of toxicity in buffalo calves. It produced significant elevation in the levels of alanine aminotransferase (ALT; 39.5%), aspartate aminotransferase (AST; 32.0%), blood urea nitrogen (BUN; 57.7%), and plasma creatinine (30.0%). Cypermethrin also produced significant decrease in the hemoglobin (Hb) concentration (5.4%), packed cell volume (PCV; 3.4%), and total erythrocytic count (4.0%). Additionally, there was a significant increase in erythrocytic sedimentation rate (ESR; 3.1%). On the basis of the present study, it can be concluded that cypermethrin induces significant biochemical and hematological alterations in buffalo calves when exposed dermally.
Collapse
Affiliation(s)
- Shabir Ahmad Dar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Rajdeep Kaur
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
13
|
Amara IB, Soudani N, Hakim A, Troudi A, Zeghal KM, Boudawara T, Zeghal N. Protective effects of vitamin E and selenium against dimethoate-induced cardiotoxicity in vivo: biochemical and histological studies. ENVIRONMENTAL TOXICOLOGY 2013; 28:630-643. [PMID: 21887815 DOI: 10.1002/tox.20759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
There is considerable interest in the study of free radical-mediated damage to biological systems due to pesticide exposure. However, there is a lack of consensus as to which determinations are best used to quantify future risks arising from xenobiotic exposure and natural antioxidant interventions. Our study investigated the potential ability of selenium and/or vitamin E, used as nutritional supplements, to alleviate cardiotoxicity induced by dimethoate. Female Wistar rats were exposed for 30 days either to dimethoate (0.2 g L⁻¹ of drinking water), dimethoate+selenium (0.5 mg kg⁻¹ of diet), dimethoate+vitamin E (100 mg kg⁻¹ of diet), or dimethoate+selenium+vitamin E. The exposure of rats to dimethoate promoted oxidative stress with a rise in malondialdehyde, advanced protein oxidation, and protein carbonyl levels. An increase of glutathione peroxidase, superoxide dismutase, and catalase activities was also noted. A fall in acetylcholinesterase and Na⁺ K⁺-ATPase activities, glutathione, nonprotein thiols, vitamins C and E levels was observed. Plasma levels of cholesterol, triglycerides, and low density lipoprotein-cholesterol increased and those of high density lipoprotein-cholesterol decreased. Coadministration of selenium or vitamin E to the diet of dimethoate-treated rats ameliorated the biochemical parameters cited above. The histopathological findings confirmed the biochemical results and the potential protective effects of selenium and vitamin E against cardiotoxicity induced by dimethoate.
Collapse
Affiliation(s)
- Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Science, BP1171, 3000 Sfax, University of Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
14
|
Chernaki-L AM, Bueno R, Raspantini LE, Gorniak SL. Effects of Exposure of Higher Doses of Cypermethrin in Layers Hens. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ijps.2013.362.366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Całkosiński I, Rosińczuk-Tonderys J, Bronowicka-Szydełko A, Dzierzba K, Bazan J, Dobrzyński M, Majda J, Gamian A. Effect of tocopherol on biochemical blood parameters in pleuritis-induced rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Ind Health 2013; 31:510-22. [PMID: 23406955 DOI: 10.1177/0748233713475497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the effect of tocopherol on pleuritis-induced rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rats were treated with a single TCDD dose of 5 μg/kg body weight (b.w.) and then for 3 weeks they were daily supplemented with tocopherol at a dose of 30 mg/kg b.w. The inflammation was initiated by intrapleural injection of a single dose of 1% carrageenin solution in a volume of 0.15 ml. Changes in biochemical blood parameters were measured three times at the 24th, 72nd and 120th hour of pleuritis and the blood was collected from 20 animals of each group of rats (group with the control inflammation; group treated with TCDD and with control inflammation; group treated with TCDD, supplemented with tocopherol and with the inflammation). The following biochemical parameters were measured: tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-2, IL-4, IL-6, procollagen, telopeptide, fibrinogen, cholesterol, urea, creatinine, aspartate aminotransferase (AspAT) and alanine aminotransferase (AlAT). Daily supplementation of tocopherol caused significant changes in the level of TNF, IL-1, IL-4, IL-6, urea, creatinine, AspAT and AlAT. According to the results of these studies, we suggest that tocopherol supplementation in high doses could act as a protective treatment to improve liver metabolism.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland
| | - Joanna Rosińczuk-Tonderys
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland
| | | | | | - Justyna Bazan
- Department of Medical Biochemistry, Wroclaw Medical University, Poland Department of Medical Biochemistry, Wroclaw Medical University, Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Poland
| | - Jacek Majda
- Department of Diagnostics Laboratory, 4th Military Academic Hospital in Wroclaw, Poland
| | - Andrzej Gamian
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland Polish Academy of Sciences, Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
16
|
Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson's disease. Int J Mol Sci 2012; 13:10608-10629. [PMID: 22949883 PMCID: PMC3431881 DOI: 10.3390/ijms130810608] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/21/2023] Open
Abstract
Parkinson’s disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD.
Collapse
|
17
|
Al-Awthan YS, Al-Douis MA, El-Sokkary GH, M. Aqlan E. Dimethoate-induced Oxidative Stress and Morphological Changes in the Liver of Guinea Pig and the Protective Effect of Vitamin C and E. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajbs.2012.9.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Amara IB, Soudani N, Hakim A, Bouaziz H, Troudi A, Zeghal KM, Zeghal N. Dimethoate-induced oxidative damage in erythrocytes of female adult rats. Toxicol Ind Health 2011; 28:222-37. [DOI: 10.1177/0748233711410909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pesticide hazards have been accentuated by the sharp rise in their agricultural, industrial and domestic use. Acute exposure to pesticides can cause oxidative damage. Our study investigated the potential ability of selenium (Se) and/or vitamin E, used as nutritional supplements, to alleviate erythrocyte oxidative damage induced by dimethoate (DM), an organophosphate pesticide. Female Wistar rats were exposed to DM (0.2g/L−1 of drinking water), DM + Se (0.5 mg/kg of diet), DM + vitamin E (100 mg/kg of diet), or DM + Se + vitamin E. Rats exposed to DM for 30 days showed an increase in malondialdehyde levels, superoxide dismutase and glutathione peroxidase activities in their erythocytes, while Na+,K+-ATPase and catalase activities, glutathione, non-protein thiol, vitamin E and vitamin C levels decreased. We also noted an increase in lactate dehydrogenase activity, marker of haemolysis and a decrease in acetylcholinesterase, the principal mode of organophosphorus action. Co-administration of Se or vitamin E to the diet of DM-treated rats ameliorated the biochemical parameters cited above. But the combined effect of Se and vitamin E was more powerful in antagonizing DM-induced oxidative stress. Therefore, our investigation revealed that both Se and vitamin E were useful elements in preventing DM-induced erythrocytes damage.
Collapse
Affiliation(s)
- Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Ahmed Hakim
- Laboratory of Pharmacology, Medicine Faculty, University of Sfax, Sfax, Tunisia
| | - Hanen Bouaziz
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Afef Troudi
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | | | - Najiba Zeghal
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Aboul-Soud MAM, Al-Othman AM, El-Desoky GE, Al-Othman ZA, Yusuf K, Ahmad J, Al-Khedhairy AA. Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats. J Toxicol Sci 2011; 36:285-96. [PMID: 21628957 DOI: 10.2131/jts.36.285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study is undertaken to evaluate the protective effect of vitamin E (α-tocopherol) and selenium (Se) against malathion (MTN)-induced oxidative stress and hepatic injuries in experimental rats. Male rats were randomly divided into eight groups comprised of 10 rats each. The 1(st) group served as a negative control (C(N)), whereas the 2(nd) was supplemented with a combination of α-tocopherol (100 mg kg(-1) body weight, b.w.)/Se (0.1 mg kg(-1) bw). The 3(rd), 4(th) and 5(th) groups were respectively administered with increasing doses of MTN equivalent to (1/50 )LD(50) (M(1/50)), (1/25) LD(50) (M(1/25)) and (1/10) LD(50) (M(1/10)), respectively. The 6(th), 7(th) and 8(th) groups were administered the same doses of MTN as in the 3(rd), 4(th) and 5(th) groups with a concomitant supplementation with α-tocopherol/Se. Subchronic exposure of rats to MTN for 45 days resulted in statistical dose-dependent decrease in acetylcholinestrase (AChE) activity, increase in oxidative stress marker lipid peroxidation (LPO) and reduction in reduced glutathione (GSH) level. Moreover, the levels of glutathione persoxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were significantly decline in response to MTN exposure in a dose-dependent fashion. Furthermore, histopathological studies of liver in the rats which received MTN exhibited, moderate to severe degenerative and necrotic changes in the hepatocytes. Notably, the administration of α-tocopherol/Se protected the liver of rats exposed to MTN as evidenced by the appearance of normal histological structures, significant attenuation of the decline in all antioxidant enzymes tested (i.e. GPx, SOD and CAT), significant recovery in the GSH level and statistical reduction in LPO, as compared to the experimental rat. The effect of α-tocopherol/Se supplementation on transcriptional activity of three key stress and apoptosis-related genes (i.e., Tp53, CASP3 and CASP9), in response to MTN exposure in rats, was investigated. Results revealed a significant concentration-dependent up-regulation in the level of expression for the three genes examined, in response to MTN exposure, compared with the control. Interestingly, the supplementation of MTN-treated rats with α-tocopherol/Se modulates the observed significant dose-dependent up-regulation in the level of expression for three selected genes, indicative of an interfering role in the signaling transduction process of MTN-mediated poisoning. Taken together, these data suggest that the administration of α-tocopherol/Se may partially protect against MTN-induced hepatic oxidative stress and injuries.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Abdul Rahman Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, Riyadh 11451, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Basir A, Khan A, Mustafa R, Zargham Khan M, Rizvi F, Mahmood F, Yousaf A. Toxicopathological effects of lambda-cyhalothrin in female rabbits (Oryctolagus cuniculus). Hum Exp Toxicol 2010; 30:591-602. [DOI: 10.1177/0960327110376550] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate effects of lambda-cyhalothrin (LCT) on clinical, hematological, biochemical and pathological alterations in rabbits (Oryctolagus cuniculus). New Zealand white female rabbits (n = 24) of 4-5 months age having 997.92 ± 32.83 g weight were divided into four equal groups. Group A (control) received normal saline intraperitoneally (ip). Animals in groups B, C and D were treated with LCT 1.0, 4.0 and 8.0 mg/kg bw ip. Each group received seven consecutive doses at an interval of 48 hours. Blood and serum samples were collected at an interval of 96 hours. Blood analysis revealed a significant (p < 0.05) decrease in red blood cell and white blood cell counts, hemoglobin concentration and lymphocytes, while mean corpuscular hemoglobin concentration, mean corpuscular volume, neutrophils, monocytes and eosinophils were increased. Serum biochemical analysis revealed significant (p < 0.05) decrease in serum total proteins and serum albumin, while an increase was seen in serum alanine aminotransferase and aspartate aminotransferase activities compared with the control group. Serum globulin values varied non-significantly in all treatment groups as compared to control group. A dose-dependent increase in the incidence of micronucleated polychromatic erythrocyte was observed. All gross and histopathological lesions observed in LCT-treated rabbits were dose-dependent. Liver of the treated rabbits exhibited extensive perihepatitis, hyperplasia of bile duct, necrosis, hemorrhages and congestion. In lungs, there were hemorrhages, thickened alveolar walls, congestion, emphysema, collapsed alveoli and accumulation of extensive inflammatory cells. Kidneys were congested and hemorrhagic whereas renal parenchyma and stroma were normal. Microscopically, heart showed congestion of blood vessels and nuclear pyknosis, myodegeneration. It was concluded from the study that LCT produced toxicopathological alterations in rabbits in a dose-dependent manner. On the basis of the results, it can be suggested that overdosing of LCT be avoided while treating animals for ectoparasites.
Collapse
Affiliation(s)
- Abdul Basir
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ahrar Khan
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan,
| | - Riaz Mustafa
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | | | - Farzana Rizvi
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Fazal Mahmood
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Arfan Yousaf
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|