1
|
Speranza L, Filiz KD, Lippiello P, Ferraro MG, Pascarella S, Miniaci MC, Volpicelli F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024; 12:1978. [PMID: 39335492 PMCID: PMC11429222 DOI: 10.3390/biomedicines12091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stress profoundly affects physical and mental health, particularly when experienced early in life. Early-life stress (ELS) encompasses adverse childhood experiences such as abuse, neglect, violence, or chronic poverty. These stressors can induce long-lasting changes in brain structure and function, impacting areas involved in emotion regulation, cognition, and stress response. Consequently, individuals exposed to high levels of ELS are at an increased risk for mental health disorders like depression, anxiety, and post-traumatic stress disorders, as well as physical health issues, including metabolic disorders, cardiovascular disease, and cancer. This review explores the biological and psychological consequences of early-life adversity paradigms in rodents, such as maternal separation or deprivation and limited bedding or nesting. The study of these experimental models have revealed that the organism's response to ELS is complex, involving genetic and epigenetic mechanisms, and is associated with the dysregulation of physiological systems like the nervous, neuroendocrine, and immune systems, in a sex-dependent fashion. Understanding the impact of ELS is crucial for developing effective interventions and preventive strategies in humans exposed to stressful or traumatic experiences in childhood.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Kardelen Dalim Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Silvia Pascarella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| |
Collapse
|
2
|
Achterberg EJM, Burke CJ, Pellis SM. When the individual comes into play: The role of self and the partner in the dyadic play fighting of rats. Behav Processes 2023; 212:104933. [PMID: 37643663 DOI: 10.1016/j.beproc.2023.104933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Social play in rats is rewarding and important for the development of brain and social skills. There are differences in the amount of play behavior displayed among individuals, with earlier studies suggesting that, despite variation across trials, individual differences tend to be consistent. In the present study, juvenile Lister-hooded rats were paired with a different, unfamiliar same-sex partner on three days and based on the amount of play each individual initiated, it was characterized as a high, medium or low player. Using this categorization, we explored three features related to individual differences. First, we show that by increasing the number of test days from two, as was done in a previous study (Lesscher et al., 2021), to three, characterization was effectively improved. Secondly, while the earlier study only used males, the present study showed that both sexes exhibit a similar pattern of individual differences in the degree of playfulness. Even though low players consistently initiated less play than medium and high players, all rats varied in how much play they initiated from one trial to the next. Thirdly, we assessed two potential mechanisms by which the playfulness of one rat can modify the level of playfulness of the other rat (i.e., emotional contagion vs homeostasis). Analyses of individuals' contribution to the play of dyads suggest that rats consistently adjust their play behavior depending on the behavior displayed by the partner. Since this adjustment can be positive or negative, our data support a homeostatic mechanism, whereby individuals increase or decrease the amount of play they initiate, which results in the experience of an overall stable pattern of play across trials. Future research will investigate the neural bases for individual differences in play and how rats maintain a preferred level of play.
Collapse
Affiliation(s)
- E J M Achterberg
- Behavioural Neuroscience Division, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - C J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada; Department of Pharmacology, McGill University, Montreal, Canada
| | - S M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
3
|
Achterberg EJM, Vanderschuren LJMJ. The neurobiology of social play behaviour: Past, present and future. Neurosci Biobehav Rev 2023; 152:105319. [PMID: 37454882 DOI: 10.1016/j.neubiorev.2023.105319] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social play behaviour is a highly energetic and rewarding activity that is of great importance for the development of brain and behaviour. Social play is abundant during the juvenile and early adolescent phases of life, and it occurs in most mammalian species, as well as in certain birds and reptiles. To date, the majority of research into the neural mechanisms of social play behaviour has been performed in male rats. In the present review we summarize studies on the neurobiology of social play behaviour in rats, including work on pharmacological and genetic models for autism spectrum disorders, early life manipulations and environmental factors that influence play in rats. We describe several recent developments that expand the field, and highlight outstanding questions that may guide future studies.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Louk J M J Vanderschuren
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
4
|
Siviy SM, Martin MA, Campbell CM. Noradrenergic modulation of play in Sprague-Dawley and F344 rats. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06419-2. [PMID: 37428218 DOI: 10.1007/s00213-023-06419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
RATIONALE For many mammals, engaging in social play behavior as a juvenile is important for cognitive, social, and emotional health as an adult. A playful phenotype reflects a dynamic interplay between genetic framework and experiences that operate on hard-wired brain systems so the relative lack of play in an otherwise playful species may be useful for identifying neural substrates that modulate play behavior. The inbred F344 rat has been identified as a strain that is consistently less playful than other strains commonly used in behavioral research. Norepinephrine (NE) acting on alpha-2 receptors has an inhibitory effect on play and F344 rats differ from a number of other strains in NE functioning. As such, the F344 rat may be particularly useful for gaining insight into NE involvement in play. OBJECTIVE The objective of this study was to determine whether the F344 rat is differentially sensitive to compounds that affect NE functioning and that are known to affect play behavior. METHODS Using pouncing and pinning to quantify play, the effects of the NE reuptake inhibitor atomoxetine, the NE alpha-2 receptor agonist guanfacine, and the NE alpha-2 receptor antagonist RX821002 on play behavior were assessed in juvenile Sprague-Dawley (SD) and F344 rats. RESULTS Atomoxetine and guanfacine reduced play in both SD and F344 rats. RX821002 increased pinning to a comparable extent in both strains but F344 rats were more sensitive to the play-enhancing effects of RX821002 on pounces. CONCLUSIONS Strain differences in NE alpha-2 receptor dynamics may contribute to the lower levels of play in F344 rats.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA.
| | - Michelle A Martin
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA
| | - Celeste M Campbell
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA
| |
Collapse
|
5
|
Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats. Int J Mol Sci 2023; 24:ijms24043920. [PMID: 36835329 PMCID: PMC9968168 DOI: 10.3390/ijms24043920] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.
Collapse
|
6
|
Henning JSL, Fernandez EJ, Nielsen T, Hazel S. Play and welfare in domestic cats: Current knowledge and future directions. Anim Welf 2022. [DOI: 10.7120/09627286.31.4.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Play and welfare have long been linked within animal research literature, with play considered as both a potential indicator and promoter of welfare. An indicator due to observations that play is exhibited most frequently in times when an animal's fitness is not under threat and when
immediate needs such as food, water and adequate space are met. And a promoter, because of observations that animals who play more also have better welfare outcomes. However, limited research has been undertaken to investigate this link, especially in companion animals. The domestic cat (
Felis catus) is one of the most popular companion animals in the world, yet little is known about the impact of play behaviour on cat welfare. We review the current literature on play and welfare in cats. This includes examining the role of cat play in mitigating negative welfare outcomes,
such as reducing problem behaviours, one of the leading reasons for guardian dissatisfaction and cat relinquishment to shelters. Play is also discussed as a potential tool to provide environmental enrichment and to improve cat-human relationships. Future areas for research are suggested. We
find that further research is needed that uses a multifaceted approach to assess how quantity, type and quality of play impact subsequent cat behaviour and welfare. Future research could also assess cat play needs and preferences as well as investigate the role of play in mitigating threats
to cat welfare such as reducing problem behaviour and improving human-cat relationships. If play is an indicator and promoter of welfare, studies into the impact of play may offer an accessible approach for monitoring and improving domestic cat welfare.
Collapse
Affiliation(s)
- JSL Henning
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - EJ Fernandez
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - T Nielsen
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| | - S Hazel
- University of Adelaide, School of Animal and Veterinary Sciences, South Australia, Australia
| |
Collapse
|
7
|
Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal Circuits guiding Social Preference: Implications in Autism Spectrum Disorder. Neurosci Biobehav Rev 2022; 141:104803. [PMID: 35908593 PMCID: PMC10122914 DOI: 10.1016/j.neubiorev.2022.104803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits. Therefore, an improved understanding of neural circuit-level dysfunction in ASD may be a more productive path to developing broader treatments that are effective across a greater spectrum of ASD. Given the social preference behavioral deficits commonly seen in ASD, dysfunction in circuits mediating social preference may contribute to the atypical development of social cognition. We discuss some of the animal models used to study ASD and examine the function and effects of dysregulation of the social preference circuits, notably the medial prefrontal cortex-amygdala and the medial prefrontal cortex-nucleus accumbens circuits, in these animal models. Using the common circuits underlying similar behavioral disruptions of social preference behaviors as an example, we highlight the importance of identifying disruption in convergent circuits to improve the translational success of animal model research for ASD treatment development.
Collapse
Affiliation(s)
- Abigail V Fortier
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, Developmental Biology, New Haven, CT 06520, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Morris LS, Grehl MM, Rutter SB, Mehta M, Westwater ML. On what motivates us: a detailed review of intrinsic v. extrinsic motivation. Psychol Med 2022; 52:1801-1816. [PMID: 35796023 PMCID: PMC9340849 DOI: 10.1017/s0033291722001611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Abstract
Motivational processes underlie behaviors that enrich the human experience, and impairments in motivation are commonly observed in psychiatric illness. While motivated behavior is often examined with respect to extrinsic reinforcers, not all actions are driven by reactions to external stimuli; some are driven by 'intrinsic' motivation. Intrinsically motivated behaviors are computationally similar to extrinsically motivated behaviors, in that they strive to maximize reward value and minimize punishment. However, our understanding of the neurocognitive mechanisms that underlie intrinsically motivated behavior remains limited. Dysfunction in intrinsic motivation represents an important trans-diagnostic facet of psychiatric symptomology, but due to a lack of clear consensus, the contribution of intrinsic motivation to psychopathology remains poorly understood. This review aims to provide an overview of the conceptualization, measurement, and neurobiology of intrinsic motivation, providing a framework for understanding its potential contributions to psychopathology and its treatment. Distinctions between intrinsic and extrinsic motivation are discussed, including divergence in the types of associated rewards or outcomes that drive behavioral action and choice. A useful framework for understanding intrinsic motivation, and thus separating it from extrinsic motivation, is developed and suggestions for optimization of paradigms to measure intrinsic motivation are proposed.
Collapse
Affiliation(s)
- Laurel S. Morris
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mora M. Grehl
- Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| | - Sarah B. Rutter
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Marishka Mehta
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Margaret L. Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
9
|
Effects of endocannabinoid system modulation on social behaviour: A systematic review of animal studies. Neurosci Biobehav Rev 2022; 138:104680. [PMID: 35513169 DOI: 10.1016/j.neubiorev.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.
Collapse
|
10
|
Kim Y, Kojima S. Contribution of Endocannabinoids to Intrinsic Motivation for Undirected Singing in Adult Zebra Finches. Front Physiol 2022; 13:882176. [PMID: 35492606 PMCID: PMC9039130 DOI: 10.3389/fphys.2022.882176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
Songbirds, such as zebra finches, spontaneously produce many song renditions for vocal practice even in the absence of apparent recipients throughout their lives. Such “undirected singing” is driven by intrinsic motivation, which arises within individuals for internal satisfaction without immediate external rewards. Intrinsic motivation for undirected singing in adult zebra finches was previously demonstrated to be critically regulated by dopamine through D2 receptors. Here, we further investigate the mechanisms of intrinsic motivation for undirected singing by focusing on endocannabinoids, which modulate dopamine signaling and contribute to motivation and reward in mammals. In songbirds, endocannabinoids have been shown to be involved in the production of undirected songs, but whether they are involved in the intrinsic motivation for undirected singing remains unknown. Using latencies of the first song production following temporary singing suppression as a measure of intrinsic motivation for undirected singing, we demonstrate that systemic administration of the direct cannabinoid agonist WIN55212-2 decreases intrinsic motivation for singing and that those effects are largely reversed by the cannabinoid antagonist SR141716A co-administered with WIN55212-2. Administration of SR141716A alone or that of two indirect cannabinoid agonists did not significantly affect intrinsic singing motivation. These results suggest that endocannabinoids are critically involved in regulating intrinsic motivation for undirected singing and provide new insights into the neural mechanisms of intrinsically motivated motor behaviors.
Collapse
|
11
|
Grillo L. A Possible Anti-anxiety Effect of Appetitive Aggression and a Possible Link to the Work of Donald Winnicott. Scand J Child Adolesc Psychiatr Psychol 2022; 10:102-113. [PMID: 36133733 PMCID: PMC9454322 DOI: 10.2478/sjcapp-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various pleasant sensations that give a particularly intense pleasure are able to improve anxiety. In the present study I consider the possibility that their anti-anxiety action depends on the strong pleasure they provide, and I propose a possible mechanism of this action. According to some studies, also appetitive aggression (an aggression that provokes a strong pleasure and that is performed only for the pleasure it provides) can improve anxiety, and in this article I consider the possibility that the pleasure of appetitive aggression is able to reduce anxiety by the same mechanism I have proposed for other intense pleasurable sensations. The aggression performed by a child against the mother or against a substitute for the mother in the first period of life (a period in which this aggression is not dangerous) is a recurring theme throughout the work of of Donald Winnicott. Winnicott stresses that this aggression is necessary for the normal development of the child, and that the child must be free to practise it. According to Winnicott, this aggression is highly pleasurable and is not a response to unpleasant or hostile external situations. For these characteristics it seems to correspond to appetitive aggression in the adult that has been found to be able to reduce anxiety. Consequently, aggression performed by the child in the first period of life may also relieve anxiety, in the same way that appetitive aggression helps against anxiety in the adult. In his writings, Winnicott returns several times to an unthinkable or archaic anxiety that children experience when they feel abandoned by their mother for a period that is too long for them, and all children, according to Winnicott, live on the brink of this anxiety. In this study I propose the hypothesis that aggression in the early period of life may be necessary for children because the intense pleasure it provides may help them against this continuously impending anxiety.
Collapse
Affiliation(s)
- Luigi Grillo
- San Giorgio su Legnano via Ragazzi del 99Milano MI, Italy
| |
Collapse
|
12
|
Kellman J, Radwan K. Towards an expanded neuroscientific understanding of social play. Neurosci Biobehav Rev 2021; 132:884-891. [PMID: 34767879 DOI: 10.1016/j.neubiorev.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Play has been recognized as a complex and diverse set of behaviors that has been difficult to define. Play can range from rough and tumble play among rats to a human child playing a computer game. Play has been understood to exist in multiple forms such as social, object, and locomotor (Burghardt, 2005). In this article we review the literatures on the neural basis of social play, on heart rate variability, on behavioral switching and set-shifting, on prepulse inhibition of the acoustic startle reflex, and on learning at the level of the basal ganglia. Each of these neuronal pathways, aside from heart rate variability, is rooted in the parafascicular nucleus of the thalamus, an important neural substrate for social play. We argue that social play optimally balances a number of opposing neural pathways by engaging systems involved in safety versus danger (heart rate variability), automatized reactions versus learned reactions to new stimuli (behavioral switching and set-shifting), and gating relevant versus less relevant stimuli (prepulse inhibition of the acoustic startle reflex). The idea that play, in addition to its role in interpersonal adaptation to social life, may have a central role in optimizing flexibility and creativity in individual response to novelty has been explored by previous authors (Huizinga, 1955; Spinka et al., 2001; Pellegrini et al., 2007; Pellis and Pellis, 2017). In this paper we explore the possible underlying neural basis for this function of play, having to do with balancing various neural networks, and in doing so propose an expanded understanding of the nature and function of social play.
Collapse
Affiliation(s)
- Joshua Kellman
- The University of Chicago, Department of Psychiatry and Behavioral Neuroscience, 5841 S. Maryland Ave., MC 3077, Chicago, IL, 60637, United States
| | - Karam Radwan
- The University of Chicago, Department of Psychiatry and Behavioral Neuroscience, 5841 S. Maryland Ave., MC 3077, Chicago, IL, 60637, United States.
| |
Collapse
|
13
|
Stark RA, Pellis SM. Using the 'stranger test' to assess social competency in adult female Long Evans rats reared with a Fischer 344 partner. Behav Processes 2021; 192:104492. [PMID: 34478804 DOI: 10.1016/j.beproc.2021.104492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022]
Abstract
Rats reared with limited access to a play partner during the juvenile period develop into adults with impairments in various cognitive, emotional, and social skills. The present study assesses the consequences of play deprivation on adult social skills in female Long Evans (LE) rats that were reared with a low-playing Fischer 344 rat over the juvenile period. As adults, their social skills were assessed using the stranger paradigm, by pairing the deprived LE rats with a novel LE partner in a neutral arena. While the deprived rat engages its partner in play there were alterations in key aspects of play, such as reduced pinning and a longer latency to begin playing, that suggest there are impairments in the social ability of the deprived rat. Most notable were the changes in the behaviour of the typically reared partner, a reduction in the amount of play it initiated and fewer actions that produced reciprocal and prolonged interactions. The changes in the behaviour of the normally reared partner suggest that it detected subtle changes in the play deprived LE rats. These findings support the hypothesis that peer-peer play experiences during the juvenile period are important for the development of socio-cognitive skills.
Collapse
Affiliation(s)
- Rachel A Stark
- University of Lethbridge, 4401 Univerisity Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Sergio M Pellis
- University of Lethbridge, 4401 Univerisity Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
14
|
Ahmed M, Boileau I, Le Foll B, Carvalho AF, Kloiber S. The endocannabinoid system in social anxiety disorder: from pathophysiology to novel therapeutics. ACTA ACUST UNITED AC 2021; 44:81-93. [PMID: 34468550 PMCID: PMC8827369 DOI: 10.1590/1516-4446-2021-1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.
Collapse
Affiliation(s)
- Mashal Ahmed
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia, 3216
| | - Stefan Kloiber
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Zantut PRA, Veras MM, Benevenutto SGM, Safatle AMV, Pecora RA, Yariwake VY, Torres JI, Sakuno G, Martins MAG, Bolzan AA, Takahashi WY, Saldiva PHN, Damico FM. Lasting effects of prenatal exposure to Cannabis in the retina of the offspring: an experimental study in mice. Int J Retina Vitreous 2021; 7:45. [PMID: 34193310 PMCID: PMC8246684 DOI: 10.1186/s40942-021-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background Prenatal exposure to Cannabis is a worldwide growing problem. Although retina is part of the central nervous system, the impact of maternal Cannabis use on the retinal development and its postnatal consequences remains unknown. As the prenatal period is potentially sensitive in the normal development of the retina, we hypothesized that recreational use of Cannabis during pregnancy may alter retina structure in the offspring. To test this, we developed a murine model that mimics human exposure in terms of dose and use. Methods Pregnant BalbC mice were exposed daily for 5 min to Cannabis smoke (0.2 g of Cannabis) or filtered air, from gestational day 5 to 18 (N = 10/group). After weaning period, pups were separated and examined weekly. On days 60, 120, 200, and 360 after birth, 10 pups from each group were randomly selected for Spectral Domain Optical Coherence Tomography (SD-OCT) analysis of the retina. All retina layers were measured and inner, outer, and total retina thickness were calculated. Other 37 mice from both groups were sacrificed on days 20, 60, and 360 for retinal stereology (total volume of the retina and volume fraction of each retinal layer) and light microscopy. Means and standard deviations were calculated and MANOVA was performed. Results The retina of animals which mother was exposed to Cannabis during gestation was 17% thinner on day 120 (young adult) than controls (P = 0.003) due to 21% thinning of the outer retina (P = 0.001). The offspring of mice from the exposed group presented thickening of the IS/OS in comparison to controls on day 200 (P < 0.001). In the volumetric analyzes by retinal stereology, the exposed mice presented transitory increase of the IS/OS total volume and volume fraction on day 60 (young adult) compared to controls (P = 0.008 and P = 0.035, respectively). On light microscopy, exposed mice presented thickening of the IS/OS on day 360 (adult) compared to controls (P = 0.03). Conclusion Gestational exposure to Cannabis smoke may cause structural changes in the retina of the offspring that return to normal on mice adulthood. These experimental evidences suggest that children and young adults whose mothers smoked Cannabis during pregnancy may require earlier and more frequent clinical care than the non-exposed population. Supplementary Information The online version contains supplementary material available at 10.1186/s40942-021-00314-8.
Collapse
Affiliation(s)
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Sarah Gomes Menezes Benevenutto
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Angélica Mendonça Vaz Safatle
- Ophthalmology Service, Department of Surgery, Veterinary Medicine College and Zootechny, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ricardo Augusto Pecora
- Ophthalmology Service, Department of Surgery, Veterinary Medicine College and Zootechny, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Janaina Iannicelli Torres
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Gustavo Sakuno
- Retina Service, Department of Ophthalmology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Marco Antonio Garcia Martins
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Aline Adriana Bolzan
- Ophthalmology Service, Department of Surgery, Veterinary Medicine College and Zootechny, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Walter Yukihiko Takahashi
- Retina Service, Department of Ophthalmology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Paulo Hilario Nascimento Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Francisco Max Damico
- Retina Service, Department of Ophthalmology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil.
| |
Collapse
|
16
|
Hughes EM, Calcagno P, Sanchez C, Smith K, Kelly JP, Finn DP, Roche M. Mu-opioid receptor agonism differentially alters social behaviour and immediate early gene expression in male adolescent rats prenatally exposed to valproic acid versus controls. Brain Res Bull 2021; 174:260-267. [PMID: 34197938 DOI: 10.1016/j.brainresbull.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023]
Abstract
Mu-opioid receptors (MOPs) mediate and modulate social reward and social interaction. However, few studies have examined the functionality of this system in rodent models of social impairment. Deficits in social motivation and cognition are observed in rodents following pre-natal exposure to the anti-epileptic valproic acid (VPA), however it is not known whether MOP functionality is altered in these animals. The present study examined the effects of acute administration of the prototypical MOP agonist morphine (1 mg/kg) on social behavioural responding in the 3-chamber test and immediate early gene expression in adolescent rats (postnatal day 28-43) prenatally exposed to VPA vs saline-exposed controls. Pharmacokinetic analysis of morphine concentration, MOP binding and expression were also examined. The data revealed that sociability and social novelty preference in the 3-chamber test were reduced in rats prenatally exposed to VPA compared to saline-exposed control counterparts. Morphine reduced both sociability and social novelty preference behaviour in saline-, but not VPA-, exposed rats. Analysis of immediate early gene expression revealed that morphine reduced the expression of cfos in the prefrontal cortex of both saline- and VPA-exposed rats and reduced expression of cfos and junb in the hippocampus of VPA-exposed rats only. Pharmacokinetic analysis revealed similar concentrations of morphine in the plasma and brain of both saline- and VPA-exposed rats and similar thalamic MOP occupancy levels. Gene and protein expression of MOP in prefrontal cortex and hippocampus did not differ between saline and VPA-exposed rats. These data indicate differential effects of morphine on social responding and immediate early gene expression in the hippocampus of VPA-exposed rats compared with saline-exposed controls. This study provides support for altered MOP functionality in rats prenatally exposed to VPA, which may underlie the social deficits observed in the model.
Collapse
Affiliation(s)
- Edel M Hughes
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Patricia Calcagno
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | - John P Kelly
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centre for Pain Research, National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Schiavi S, Melancia F, Carbone E, Buzzelli V, Manduca A, Peinado PJ, Zwergel C, Mai A, Campolongo P, Vanderschuren LJ, Trezza V. Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats. Neuropsychopharmacology 2020; 45:2012-2019. [PMID: 32506112 PMCID: PMC7547114 DOI: 10.1038/s41386-020-0729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone.
Collapse
Affiliation(s)
- Sara Schiavi
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Francesca Melancia
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Emilia Carbone
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | | | - Clemens Zwergel
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,Department of precision medicine, “Luigi Vanvitelli”, Università della Campania, Naples, Italy
| | - Antonello Mai
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,grid.7841.aIstituto Pasteur—Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Louk J.M.J. Vanderschuren
- grid.5477.10000000120346234Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy.
| |
Collapse
|
18
|
Martins GW, Chagas GS, Patrício FC, Lira ADO, Fragoso J, Santos AB, Leandro CG. Can the frequency of defensive posture adoption influence the expression of active behavior of adult rats? Behav Processes 2020; 177:104151. [PMID: 32473278 DOI: 10.1016/j.beproc.2020.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 05/24/2020] [Indexed: 11/29/2022]
Abstract
During the youth, rats spend a long time in play fighting (PF), and asymmetries are observed in terms of the frequency of adoption of the supine posture. This study investigated the effects of asymmetry in adopting supine posture during PF on the time spent in locomotor activity-related contextual behaviors during youth and adulthood. Male Wistar rats were divided into three groups according to the number of times of their adoption of a defensive supine (S) posture: low (LS, n = 10), intermediary (IS, n = 10) and high (HS, n = 10). Rats aged 21-62 days were placed in voluntary physical active cages (VPAC) with running wheels. The time spent in social play (SP), play fighting (PF), voluntary physical activity (VPA), spontaneous physical activity (SPA) and resting (Rest) were recorded daily. During adulthood (63-92 days of age), rats were placed individually in the VPAC, with daily quantification of VPA. The average time spent in PF was not different among the groups, but was age-dependent. LS and IS rats spent more time in VPA than the HS rats, between days 49-62 (intragroup analyses) and 72-78 (individual analyses) days of age. However, LS and IS animals spent less time in SPA than HS rats from 42-48 days of age. In conclusion, the expressions of VPA and SPA are influenced by the asymmetries in adoption of the supine posture of members within a social group, remaining even after the separation of the social groups.
Collapse
Affiliation(s)
- Gerffeson Willian Martins
- Department of Physical Education and Sports Science, CAV, Federal University of Pernambuco, 55608-680, Recife, PE, Brazil; Laboratory of Nutrition, Physical Activity and Neuroplasticity - Academic Center of Vitória - Federal University of Pernambuco, Vitória De Santo Antão, 55608-680, PE, Brazil.
| | - Guilherme Souza Chagas
- Department of Physical Education and Sports Science, CAV, Federal University of Pernambuco, 55608-680, Recife, PE, Brazil
| | - Franciele Conceição Patrício
- Department of Physical Education and Sports Science, CAV, Federal University of Pernambuco, 55608-680, Recife, PE, Brazil
| | - Allan de Oliveira Lira
- Department of Nutrition, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil
| | - Jéssica Fragoso
- Department of Nutrition, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil
| | - Adriano Bento Santos
- Department of Physical Education and Sports Science, CAV, Federal University of Pernambuco, 55608-680, Recife, PE, Brazil
| | - Carol Gois Leandro
- Department of Physical Education and Sports Science, CAV, Federal University of Pernambuco, 55608-680, Recife, PE, Brazil; Laboratory of Nutrition, Physical Activity and Neuroplasticity - Academic Center of Vitória - Federal University of Pernambuco, Vitória De Santo Antão, 55608-680, PE, Brazil.
| |
Collapse
|
19
|
Zhao C, Chang L, Auger AP, Gammie SC, Riters LV. Mu opioid receptors in the medial preoptic area govern social play behavior in adolescent male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12662. [PMID: 32388931 DOI: 10.1111/gbb.12662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1-labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA-mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liza Chang
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Løseth GE, Eikemo M, Leknes S. Effects of opioid receptor stimulation and blockade on touch pleasantness: a double-blind randomised trial. Soc Cogn Affect Neurosci 2020; 14:411-422. [PMID: 30951167 PMCID: PMC6523440 DOI: 10.1093/scan/nsz022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/21/2019] [Accepted: 03/23/2019] [Indexed: 11/23/2022] Open
Abstract
The μ-opioid receptor (MOR) system has long been thought to underpin the rewarding properties of pleasant touch. Numerous non-human animal studies implicate MORs in social behaviours involving touch, but little is currently known about MOR involvement in human touch reward. Here, we employed a bi-directional pharmacological double-blind crossover design to assess the role of the human MOR system for touch pleasantness and motivation. Forty-nine male volunteers received 10 mg per-oral morphine, 50 mg per-oral naltrexone and placebo before being brushed on their forearm at three different velocities (0.3, 3 and 30 cm/s). In a touch liking task, pleasantness ratings were recorded after each 15 s brushing trial. In a touch wanting task, participants actively manipulated trial duration through key presses. As expected, 3 cm/s was the preferred velocity, producing significantly higher pleasantness ratings and wanting scores than the other stimuli. Contrary to our hypothesis, MOR drug manipulations did not significantly affect either touch pleasantness or wanting. The null effects were supported by post hoc Bayesian analyses indicating that the models with no drug effect were more than 25 times more likely than the alternative models given the data. We conclude that μ-opioid signalling is unlikely to underpin non-affiliative touch reward in humans.
Collapse
Affiliation(s)
- Guro E Løseth
- Department of Psychology, University of Oslo, Blindern, N Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Blindern, N Oslo, Norway.,Department of Diagnostic Physics, Oslo University Hospital, Nydalen, N Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Blindern, N Oslo, Norway
| |
Collapse
|
21
|
Carr RL, Alugubelly N, de Leon K, Loyant L, Mohammed AN, Patterson ME, Ross MK, Rowbotham NE. Inhibition of fatty acid amide hydrolase by chlorpyrifos in juvenile rats results in altered exploratory and social behavior as adolescents. Neurotoxicology 2020; 77:127-136. [PMID: 31931040 DOI: 10.1016/j.neuro.2020.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
The organophosphorus insecticide chlorpyrifos (CPF) is suspected to cause developmental neurotoxicity in children leading to long term effects. Developmental exposure of rat pups to CPF at low levels disrupts degradation of the brain endocannabinoids through the inhibition of fatty acid amide hydrolase (FAAH) and decreases the reactivity of juvenile rats in an emergence test. In this study, we further investigated the effects of developmental CPF exposure on behavior but also included exposure to PF-04457845, a specific inhibitor of FAAH, for comparison of behavior altered by FAAH inhibition with behavior altered by CPF. Ten day old rat pups were exposed orally either to 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 daily for 7 days. In an open field (day 23), the high CPF and PF-04457845 groups exhibited increased motor activity but no differences in the time spent in the field's center. In an elevated plus maze (day 29), all treatment groups had increased open arm activity but ethological behaviors associated with anxiety were not altered. Behaviors in the maze associated with increased general activity and exploratory drive were increased. Social interactions (day 36) were measured and all treatment groups exhibited increased levels of play behavior. The similarities in behavior between PF-04457845 and CPF suggest that enhanced endocannabinoid signaling during the exposure period plays a role in the persistent alteration of behavior observed following developmental CPF exposure.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Navatha Alugubelly
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Kathryne de Leon
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Louise Loyant
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Afzaal N Mohammed
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - M Elizabeth Patterson
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Nicole E Rowbotham
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
22
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
23
|
Manwell LA, Miladinovic T, Raaphorst E, Rana S, Malecki S, Mallet PE. Chronic nicotine exposure attenuates the effects of Δ 9 -tetrahydrocannabinol on anxiety-related behavior and social interaction in adult male and female rats. Brain Behav 2019; 9:e01375. [PMID: 31583843 PMCID: PMC6851810 DOI: 10.1002/brb3.1375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Anxiogenic and anxiolytic effects of cannabinoids are mediated by different mechanisms, including neural signaling via cannabinoid receptors (CBRs) and nicotinic cholinergic receptors (nAChRs). This study examined the effects of prior nicotine (the psychoactive component in tobacco) exposure on behavioral sensitivity to delta-9-tetrahydrocannabinol (THC; the psychoactive component of cannabis) challenge in animals. METHODS Male and female adult Sprague-Dawley rats (N = 96) were injected daily with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14-day drug-free period. On test day, rats were injected with THC (0.5, 2.0, or 5.0 mg/kg, i.p.) or vehicle and anxiety-related behavior was assessed in the emergence (EM), elevated plus maze (EPM), and social interaction (SI) tests. RESULTS Chronic nicotine pretreatment attenuated some of the anxiogenic effects induced by THC challenge which can be summarized as follows: (a) THC dose-dependently affected locomotor activity, exploratory behavior, and social interaction in the EM, EPM, and SI tests of unconditioned anxiety; (b) these effects of acute THC challenge were greater in females compared with males except for grooming a conspecific; (c) prior nicotine exposure attenuated the effects of acute THC challenge for locomotor activity in the EPM test; and (d) prior nicotine exposure attenuated the effects of THC challenge for direct but not indirect physical interaction in the SI tests. CONCLUSIONS The ability of nicotine prior exposure to produce long-lasting changes that alter the effects of acute THC administration suggests that chronic nicotine may induce neuroplastic changes that influence the subsequent response to novel THC exposure.
Collapse
Affiliation(s)
| | | | - Elana Raaphorst
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Shadna Rana
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Sarah Malecki
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Paul E. Mallet
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| |
Collapse
|
24
|
Alugubelly N, Mohammad AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL. Proteomic and transcriptional profiling of rat amygdala following social play. Behav Brain Res 2019; 376:112210. [PMID: 31493430 DOI: 10.1016/j.bbr.2019.112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammad
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, KY, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, KY, USA; KBRIN Bioinformatics Core, University of Louisville, KY, USA.
| | - Russell L Carr
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
25
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
26
|
Tanaka K, Osako Y, Takahashi K, Hidaka C, Tomita K, Yuri K. Effects of post-weaning social isolation on social behaviors and oxytocinergic activity in male and female rats. Heliyon 2019; 5:e01646. [PMID: 31193027 PMCID: PMC6513811 DOI: 10.1016/j.heliyon.2019.e01646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 11/26/2022] Open
Abstract
Aims Post-weaning social deprivation is known to induce behavioral and neuronal alterations associated with anxiety and stress responses in adulthood. However, the effects of social deprivation on the development of sociability are poorly understood. We examined the effects of social deprivation on subsequent social behaviors and oxytocinergic activity using socially-isolated (approximately two months post-weaning) male and female rats. Main methods The behaviors were analyzed using a social preference test and a social approach test. Immunohistochemical investigations were conducted in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) to examine the effects of social isolation on oxytocinergic activity in these regions. Oxytocinergic activity was measured by quantifying the number of oxytocin neurons expressing Fos following exposure to a novel conspecific. In all of the experiments of this study, ovariectomized females were used for social stimuli. Key findings The behavioral results show that isolation-reared females, but not males, displayed impaired social preference and decreased social approach towards ovariectomized females, compared with the pair-reared group, suggesting low priority of processing social versus non-social stimuli and low motivation for contact with a stranger, respectively. The immunohistochemical results show that social isolation decreased both the number and the ratio of Fos-positive cells in oxytocin neurons in the PVN in females, but not in males, following exposure to ovariectomized females. In the SON, the Fos-positive ratio was decreased in isolation-reared females, but not in males, compared with the pair-reared group. Significance Post-weaning social isolation changed social behaviors and oxytocinergic activity in female rats, suggesting that in female rats post-weaning social experiences contribute to the development of sociability. These findings could impact the treatment of social dysfunction in humans.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Yoji Osako
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Kou Takahashi
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Chiharu Hidaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Koichi Tomita
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
27
|
Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci 2019; 13:23. [PMID: 30890922 PMCID: PMC6411818 DOI: 10.3389/fnbeh.2019.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.
Collapse
Affiliation(s)
- Milene Borsoi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Antonia Manduca
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anissa Bara
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Olivier Lassalle
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Conception, Service de Psychiatrie, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J Manzoni
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| |
Collapse
|
28
|
Effect of Morphine Administration on Social andNon-Social Play Behaviour in Calves. Animals (Basel) 2019; 9:ani9020056. [PMID: 30759872 PMCID: PMC6406493 DOI: 10.3390/ani9020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Play can be used as an indicator of welfare in animals, because animals play more when all their basic needs are met. Opioids have a modulatory effect on social play behaviour in rodents and primates, however little is known regarding the central mechanisms involved in play behaviour in ruminants. In ruminants, we need to know more about what factors influence play behaviour, to determine which elements of play may more accurately be used as indicators of positive welfare. Therefore, the objective of this study was to evaluate the effect of morphine on social and non-social play behaviour in calves. In an arena test, morphine administration increased the performance of social play events but had no effect on locomotor play in calves. Similar to research in rodents and primates, morphine administration appears to increase social but not non-social elements of play in calves, suggesting that increased social play may be more indicative of a positive affective state. Abstract The objective of this study was to evaluate the effect of morphine on social and non-social play behaviour in calves. Twelve calves experienced four treatments in a cross over 2 × 2 factorial design: Calves received an intravenous injection of morphine or saline 10 min prior to being tested individually or in pairs in an arena for 20 min. Play behaviour was continuously recorded in the arena test. Lying times were recorded in the home pen. Cortisol concentrations were measured before and after testing. In the arena test, calves given morphine tended to perform more social play events than calves given saline, however, morphine administration had no effect on locomotor play. Calves given morphine spent less time lying than calves given saline during the first 4 h after returning to the home pen. Cortisol concentrations were suppressed in calves given morphine. Administration of morphine appeared to increase social play but had no effect on locomotor play in calves. This study highlights the importance of investigating different aspects of play behaviour in animals as some may be more indicative of a positive affective state than others. More studies investigating the effects of morphine on play are needed to confirm the results found in this study.
Collapse
|
29
|
Opioid modulation of social play reward in juvenile rats. Neuropharmacology 2018; 159:107332. [PMID: 30218673 DOI: 10.1016/j.neuropharm.2018.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Social play behaviour is a vigorous form of social interaction abundant during the juvenile and adolescent phases of life in many mammalian species, including rats and humans. Social play is thought to be important for social, emotional and cognitive development. Being a rewarding activity, the expression of social play depends on its pleasurable and motivational properties. Since opioids have been widely implicated in reward processes, in the present study we investigated the role of opioids in the pleasurable and motivational properties of social play behaviour in rats. To assess social play motivation, an operant conditioning setup was used in which rats responded for social play under a progressive ratio schedule of reinforcement. Treatment with the opioid receptor agonist morphine reduced responding for social play at the highest dose tested, likely due to its rate-limiting effects. Morphine treatment increased the expression of social play behaviour during reinforced periods. The acquisition of social play-induced conditioned place preference (CPP) in a subeffective conditioning protocol was enhanced by treatment with morphine. Morphine treatment alone also induced CPP. In contrast, antagonizing opioid receptors with naloxone reduced responding for social play, the expression of social play and blocked the development of social play-induced CPP. These data implicate opioid neurotransmission in both the pleasurable and the motivational aspects of social play behaviour in rats. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
30
|
Effect of repeated juvenile exposure to Δ9‑tetrahydrocannabinol on anxiety-related behavior and social interactions in adolescent rats. Neurotoxicol Teratol 2018; 69:11-20. [DOI: 10.1016/j.ntt.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/24/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
|
31
|
Lian J, Deng C. The effects of antipsychotics on the density of cannabinoid receptors in selected brain regions of male and female adolescent juvenile rats. Psychiatry Res 2018; 266:317-322. [PMID: 29576413 DOI: 10.1016/j.psychres.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 01/16/2023]
Abstract
Antipsychotic drugs have been increasingly prescribed to children and adolescents for treating various mental disorders, such as childhood-onset schizophrenia. The abnormality of endocannabinoid system is involved in the pathophysiology of these disorders in juveniles. This study investigated the effect of antipsychotics on the cannabinoid (CB) receptors in the brain of both male and female juvenile rats. The postnatal rats (PD23±1) were administered aripiprazole (1 mg/kg), olanzapine (1 mg/kg), risperidone (0.3 mg/kg) or vehicle (control) for 3 weeks. Quantitative autoradiography was used to investigate the binding densities of [3H]CP-55940 (an agonist for CB1R and CB2R) and [3H]SR141716A (a selective CB1R antagonist) in the rat brains. Risperidone significantly upregulated the [3H]CP55940 and [3H]SR141716A bindings in the prefrontal cortex (PFC), nucleus accumbens core (NAcC), nucleus accumbens shell (NAcS), cingulate cortex (Cg), and the caudate putamen (CPu) in male rats. Moreover, aripiprazole significantly elevated the [3H]SR141716A binding in the Cg and NAcS of female rats. Furthermore, there is an overall higher [3H]SR141716A binding level in the brain of female rats than male rats. Therefore, treatment with aripiprazole, olanzapine and risperidone could induce differential and gender specific effects on the binding density of cannabinoid receptors in the selected brain regions of childhood/adolescent rats.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
32
|
Achterberg EM, Damsteegt R, Vanderschuren LJ. On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behav Brain Res 2018. [DOI: 10.1016/j.bbr.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Monoacylglycerol lipase inhibition alters social behavior in male and female rats after post-weaning social isolation. Behav Brain Res 2017; 341:146-153. [PMID: 29292159 DOI: 10.1016/j.bbr.2017.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in rats. The present study sought to determine whether this phenotype would be normalized by increasing levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) using pharmacological inhibition of monoacylglycerol lipase (MAGL). Male and female Sprague-Dawley rats were exposed to either 4 weeks of PSI or social rearing (SR) starting on postnatal day 21, then underwent a 15 min trial of social interaction with a novel, same-sex juvenile rat. Rats were administered an acute injection of the MAGL inhibitor MJN110 or vehicle prior to the social interaction. Rats received either 0 mg/kg (vehicle), 1 mg/kg, or 5 mg/kg of MJN110. Both doses of MJN110 decreased aggressive grooming, a measure of agonistic behavior, in both males and females, largely driven by decreased aggressive grooming in PSI rats. There were no effects of MJN110 on overall social behavior or play behavior, while modest effects were observed on locomotor activity in SR rats only. While social interaction increased c-Fos expression in the mPFC of both males and females, MJN110 reduced c-Fos preferentially in females. These results suggest that 2-AG can modulate specific social behaviors during adolescence, and may affect mPFC function differentially in males and females.
Collapse
|
34
|
Riters LV, Spool JA, Merullo DP, Hahn AH. Song practice as a rewarding form of play in songbirds. Behav Processes 2017; 163:91-98. [PMID: 29031813 DOI: 10.1016/j.beproc.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
In adult songbirds, the primary functions of song are mate attraction and territory defense; yet, many songbirds sing at high rates as juveniles and outside these primary contexts as adults. Singing outside primary contexts is critical for song learning and maintenance, and ultimately necessary for breeding success. However, this type of singing (i.e., song "practice") occurs even in the absence of immediate or obvious extrinsic reinforcement; that is, it does not attract mates or repel competitors. Here we review studies that support the hypothesis that song practice is stimulated and maintained by intrinsic reward mechanisms (i.e., that it is associated with a positive affective state). Additionally, we propose that song practice can be considered a rewarding form of play behavior similar to forms of play observed in multiple young animals as they practice sequences of motor events that are used later in primary adult reproductive contexts. This review highlights research suggesting at least partially overlapping roles for neural reward systems in birdsong and mammalian play and evidence that steroid hormones modify these systems to shift animals from periods of intrinsically rewarded motor exploration (i.e., singing in birds and play in mammals) to the use of similar motor patterns in primary reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| |
Collapse
|
35
|
Esposito E, Drechsler M, Mariani P, Carducci F, Servadio M, Melancia F, Ratano P, Campolongo P, Trezza V, Cortesi R, Nastruzzi C. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomed Microdevices 2017; 19:44. [DOI: 10.1007/s10544-017-0188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Melancia F, Servadio M, Schiavi S, Campolongo P, Giusti-Paiva A, Trezza V. Testing the correlation between experimentally-induced hypothyroidism during pregnancy and autistic-like symptoms in the rat offspring. Behav Brain Res 2017; 321:113-122. [DOI: 10.1016/j.bbr.2016.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
|
37
|
Manduca A, Lassalle O, Sepers M, Campolongo P, Cuomo V, Marsicano G, Kieffer B, Vanderschuren LJMJ, Trezza V, Manzoni OJJ. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play. Front Behav Neurosci 2016; 10:211. [PMID: 27899885 PMCID: PMC5110529 DOI: 10.3389/fnbeh.2016.00211] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.
Collapse
Affiliation(s)
- Antonia Manduca
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Olivier Lassalle
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Marja Sepers
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Giovanni Marsicano
- NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Institut National De La Santé Et De La Recherche Médicale U862Bordeaux, France; NeuroCentre Magendie U862, University of BordeauxBordeaux, France
| | - Brigitte Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg Illkirch, France
| | - Louk J M J Vanderschuren
- Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre Rome, Italy
| | - Olivier J J Manzoni
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| |
Collapse
|
38
|
Karhson DS, Hardan AY, Parker KJ. Endocannabinoid signaling in social functioning: an RDoC perspective. Transl Psychiatry 2016; 6:e905. [PMID: 27676446 PMCID: PMC5048207 DOI: 10.1038/tp.2016.169] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Core deficits in social functioning are associated with various neuropsychiatric and neurodevelopmental disorders, yet biomarker identification and the development of effective pharmacological interventions has been limited. Recent data suggest the intriguing possibility that endogenous cannabinoids, a class of lipid neuromodulators generally implicated in the regulation of neurotransmitter release, may contribute to species-typical social functioning. Systematic study of the endogenous cannabinoid signaling could, therefore, yield novel approaches to understand the neurobiological underpinnings of atypical social functioning. This article provides a critical review of the major components of the endogenous cannabinoid system (for example, primary receptors and effectors-Δ9-tetrahydrocannabinol, cannabidiol, anandamide and 2-arachidonoylglycerol) and the contributions of cannabinoid signaling to social functioning. Data are evaluated in the context of Research Domain Criteria constructs (for example, anxiety, chronic stress, reward learning, motivation, declarative and working memory, affiliation and attachment, and social communication) to enable interrogation of endogenous cannabinoid signaling in social functioning across diagnostic categories. The empirical evidence reviewed strongly supports the role for dysregulated cannabinoid signaling in the pathophysiology of social functioning deficits observed in brain disorders, such as autism spectrum disorder, schizophrenia, major depressive disorder, posttraumatic stress disorder and bipolar disorder. Moreover, these findings indicate that the endogenous cannabinoid system holds exceptional promise as a biological marker of, and potential treatment target for, neuropsychiatric and neurodevelopmental disorders characterized by impairments in social functioning.
Collapse
Affiliation(s)
- D S Karhson
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - A Y Hardan
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - K J Parker
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Zuena AR, Zinni M, Giuli C, Cinque C, Alemà GS, Giuliani A, Catalani A, Casolini P, Cozzolino R. Maternal exposure to environmental enrichment before and during gestation influences behaviour of rat offspring in a sex-specific manner. Physiol Behav 2016; 163:274-287. [DOI: 10.1016/j.physbeh.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
|
40
|
Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry 2016; 6:e902. [PMID: 27676443 PMCID: PMC5048215 DOI: 10.1038/tp.2016.182] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.
Collapse
|
41
|
Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev 2016; 70:86-105. [PMID: 27587003 DOI: 10.1016/j.neubiorev.2016.07.025] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
42
|
Chelnokova O, Laeng B, Løseth G, Eikemo M, Willoch F, Leknes S. The µ-opioid system promotes visual attention to faces and eyes. Soc Cogn Affect Neurosci 2016; 11:1902-1909. [PMID: 27531386 DOI: 10.1093/scan/nsw116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/17/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
Paying attention to others' faces and eyes is a cornerstone of human social behavior. The µ-opioid receptor (MOR) system, central to social reward-processing in rodents and primates, has been proposed to mediate the capacity for affiliative reward in humans. We assessed the role of the human MOR system in visual exploration of faces and eyes of conspecifics. Thirty healthy males received a novel, bidirectional battery of psychopharmacological treatment (an MOR agonist, a non-selective opioid antagonist, or placebo, on three separate days). Eye-movements were recorded while participants viewed facial photographs. We predicted that the MOR system would promote visual exploration of faces, and hypothesized that MOR agonism would increase, whereas antagonism decrease overt attention to the information-rich eye region. The expected linear effect of MOR manipulation on visual attention to the stimuli was observed, such that MOR agonism increased while antagonism decreased visual exploration of faces and overt attention to the eyes. The observed effects suggest that the human MOR system promotes overt visual attention to socially significant cues, in line with theories linking reward value to gaze control and target selection. Enhanced attention to others' faces and eyes represents a putative behavioral mechanism through which the human MOR system promotes social interest.
Collapse
Affiliation(s)
- Olga Chelnokova
- Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Guro Løseth
- Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Oslo N-0317, Norway.,Norwegian Center for Addiction Research, University of Oslo, Oslo N-0318, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo N-0318, Norway
| | - Frode Willoch
- Department of Medicine, University of Oslo, Oslo N-0316, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo N-0317, Norway.,Department of Medicine, University of Oslo, Oslo N-0316, Norway.,The Intervention Centre, Oslo University Hospital, Oslo N-0424, Norway
| |
Collapse
|
43
|
Achterberg EJM, van Swieten MMH, Driel NV, Trezza V, Vanderschuren LJMJ. Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacol Res 2016; 110:151-158. [PMID: 27154553 DOI: 10.1016/j.phrs.2016.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 01/09/2023]
Abstract
Social play behaviour is a vigorous form of social interaction, abundant during the juvenile and adolescent phases of life in many mammalian species, including humans. Social play is highly rewarding and it is important for social and cognitive development. Being a rewarding activity, social play can be dissociated in its pleasurable and motivational components. We have previously shown that endocannabinoids modulate the expression of social play behaviour in rats. In the present study, we investigated whether endocannabinoids modulate the motivational and pleasurable properties of social play behaviour, using operant and place conditioning paradigms, respectively. Treatment with the anandamide hydrolysis inhibitor URB597 did not affect operant responding or social play-induced conditioned place preference (CPP) when administered at a dose (0.1mg/kg) known to increase the expression of social play behaviour, while it modestly reduced operant responding at a higher dose (0.2mg/kg). The cannabinoid-1 (CB1) receptor antagonist rimonabant reduced operant responding when administered at a dose (1mg/kg) known to decrease the expression of social play behaviour, although this effect may be secondary to concurrent drug-induced stereotypic behaviours (i.e., grooming and scratching). These data demonstrate that enhancing endocannabinoid levels does not differentially affect the motivational and pleasurable aspects of social play behaviour, whereas CB1 receptor blockade reduces the motivational aspects of social play behaviour, possibly due to response competition. Thus, endocannabinoids likely drive the expression of social play behaviour as a whole, without differentially affecting its motivational or pleasurable properties.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Maaike M H van Swieten
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Nina V Driel
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands.
| |
Collapse
|
44
|
Varlinskaya EI, Kim EU, Spear LP. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood. Brain Res 2016; 1654:145-156. [PMID: 27048754 DOI: 10.1016/j.brainres.2016.03.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Esther U Kim
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
45
|
Ellingsen DM, Leknes S, Løseth G, Wessberg J, Olausson H. The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context. Front Psychol 2016; 6:1986. [PMID: 26779092 PMCID: PMC4701942 DOI: 10.3389/fpsyg.2015.01986] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/12/2015] [Indexed: 01/01/2023] Open
Abstract
Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile “bottom–up” stimuli and “top–down” information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the μ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual.
Collapse
Affiliation(s)
- Dan-Mikael Ellingsen
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA, USA; Department of Psychology, University of OsloOslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo Oslo, Norway
| | - Guro Løseth
- Department of Psychology, University of Oslo Oslo, Norway
| | - Johan Wessberg
- Institute of Neuroscience and Physiology, University of Gothenburg Gothenburg, Sweden
| | - Håkan Olausson
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
46
|
A Possible Role of Anhedonia as Common Substrate for Depression and Anxiety. DEPRESSION RESEARCH AND TREATMENT 2016; 2016:1598130. [PMID: 27042346 PMCID: PMC4793100 DOI: 10.1155/2016/1598130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
Depression and anxiety are often comorbid, in up to 70% of cases, and the level of one or the other may fluctuate, leading now to a diagnosis of depression, now to a diagnosis of anxiety. For these reasons, and for the presence of many other common factors, it has been suggested that both are part of the same continuum of problems and that they have a common substrate. This paper proposes the possibility that anhedonia may be an important component of this possible common substrate, and it tries to identify the mechanism with which anhedonia could contribute to causing both depression and anxiety. It also proposes an explanation why an intense pleasure could improve both depression and anxiety.
Collapse
|
47
|
Abstract
Play is an important part of normal childhood development and is seen in varied forms among many mammals. While not indispensable to normal development, playful social experiences as juveniles may provide an opportunity to develop flexible behavioral strategies when novel and uncertain situations arise as an adult. To understand the neurobiological mechanisms responsible for play and how the functions of play may relate to these neural substrates, the rat has become the model of choice. Play in the rat is easily quantified, tightly regulated, and can be modulated by genetic factors and postnatal experiences. Brain areas most likely to be involved in the modulation of play include regions within the prefrontal cortex, dorsal and ventral striatum, some regions of the amygdala, and habenula. This paper discusses what we currently know about the neurobiological substrates of play and how this can help illuminate functional questions about the putative benefits of play.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, PA 17325, USA
| |
Collapse
|
48
|
Blanco-Gandía MC, Mateos-García A, García-Pardo MP, Montagud-Romero S, Rodríguez-Arias M, Miñarro J, Aguilar MA. Effect of drugs of abuse on social behaviour. Behav Pharmacol 2015. [DOI: 10.1097/fbp.0000000000000162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Manduca A, Morena M, Campolongo P, Servadio M, Palmery M, Trabace L, Hill MN, Vanderschuren LJMJ, Cuomo V, Trezza V. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur Neuropsychopharmacol 2015; 25:1362-74. [PMID: 25914159 DOI: 10.1016/j.euroneuro.2015.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 01/15/2023]
Abstract
To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy; Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Louk J M J Vanderschuren
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy.
| |
Collapse
|
50
|
Lahvis GP, Panksepp JB, Kennedy BC, Wilson CR, Merriman DK. Social conditioned place preference in the captive ground squirrel (Ictidomys tridecemlineatus): Social reward as a natural phenotype. J Comp Psychol 2015; 129:291-303. [PMID: 26147706 PMCID: PMC4621271 DOI: 10.1037/a0039435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Social behaviors of wild animals are often considered within an ultimate framework of adaptive benefits versus survival risks. By contrast, studies of laboratory animals more typically focus on affective aspects of behavioral decisions, whether a rodent derives a rewarding experience from social encounter, and how this experience might be initiated and maintained by neural circuits. Artificial selection and inbreeding have rendered laboratory animals more affiliative and less aggressive than their wild conspecifics, leaving open the possibility that social reward is an artifact of domestication. We compared social behaviors of wild and captive population of juvenile 13-lined ground squirrels (Ictidomys tridecemlineatus), the latter being 2nd- and 3rd-generation descendants of wild individuals. At an age corresponding to emergence from the burrow, postnatal day (PD) 38, captive squirrels engaged in vigorous social approach and play and these juvenile behaviors declined significantly by PD 56. Similarly, young wild squirrels expressed social proximity and play; affiliative interactions declined with summer's progression and were replaced by agonistic chasing behaviors. Social conditioned place preference testing (conditioned PDs 40-50) indicated that adolescent squirrels derived a rewarding experience from social reunion. Our results support the contention that undomesticated rodents have the capacity for social reward and more generally suggest the possibility that positive affective experiences may support group cohesion, social cooperation, and altruism in the wild.
Collapse
Affiliation(s)
- Garet P. Lahvis
- Department of Behavioral Neuroscience, Oregon Health and Science University,
Portland, Oregon
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Jules B. Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University,
Portland, Oregon
- Neuroscience Training Program, University of Wisconsin, Madison,
Wisconsin
| | - Bruce C. Kennedy
- Department of Behavioral Neuroscience, Oregon Health and Science University,
Portland, Oregon
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | | | - Dana K. Merriman
- Department of Biology and Microbiology, University of Wisconsin, Oshkosh,
Wisconsin
| |
Collapse
|