1
|
Szumlinski KK, Datko MC, Lominac KD, Jentsch JD. Dysbindin-1 Mutation Alters Prefrontal Cortex Extracellular Glutamate and Dopamine In Vivo. Int J Mol Sci 2024; 25:12732. [PMID: 39684450 DOI: 10.3390/ijms252312732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Elevated risk for schizophrenia is associated with a variation in the DTNBP1 gene encoding dysbindin-1, which may underpin cognitive impairments in this prevalent neuropsychiatric disorder. The cognitive symptoms of schizophrenia involve anomalies in glutamate and dopamine signaling, particularly within the prefrontal cortex (PFC). Indeed, mice with Dtnbp1 mutations exhibit spatial and working memory deficits that are associated with deficits in glutamate release and NMDA receptor function as determined by slice electrophysiology. The present study extended the results from ex vivo approaches by examining how the Dtnbp1 mutation impacts high K+- and NMDA receptor-evoked glutamate release within the PFC using in vivo microdialysis procedures. Dntbp1 mutant mice are also reported to exhibit blunted K+-evoked dopamine release within the PFC. Thus, we examined also K+- and NMDA-evoked dopamine release within this region. Perfusion of high-concentration K+ or NMDA solutions increased the PFC levels of both dopamine and glutamate in wild-type (WT) but not in Dtnbp1 mutants (MUT), whereas mice heterozygous for the Dtnbp1 mutation (HET) exhibited blunted K+-evoked dopamine release. No net-flux microdialysis procedures confirmed elevated basal extracellular content of both glutamate and dopamine within the PFC of HET and MUT mice. These in vivo microdialysis results corroborate prior indications that Dtnbp1 mutations perturb evoked dopamine and glutamate release within the PFC, provide in vivo evidence for impaired NMDA receptor function within the PFC, and suggest that these neurochemical anomalies may be related to abnormally elevated basal neurotransmitter content.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael C Datko
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - J David Jentsch
- Department of Psychology, Binghampton University-State University of New York, Binghampton, NY 13902, USA
| |
Collapse
|
2
|
Lambert B, Semmler A, Beer C, Voisey J. Pyrroles as a Potential Biomarker for Oxidative Stress Disorders. Int J Mol Sci 2023; 24:ijms24032712. [PMID: 36769035 PMCID: PMC9917263 DOI: 10.3390/ijms24032712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Redox imbalance or oxidative stress that results from both environmental and genetic factors is observed in patients with schizophrenia. Therefore, identifying markers of oxidative stress in the early stages of psychosis and using antioxidant treatments as an adjuvant to antipsychotics has important implications. The reaction of p-N,N-dimethylaminobenzaldehyde (DMAB) with pyrrole moieties has been well studied for well over a century for use as a marker of oxidative stress dysregulation. Throughout this time, pyrroles have been investigated with varying veracity in urine extracts to identify elevated levels in patients diagnosed with schizophrenia. Since the 1960's, various claims have been made with respect to what causes the colour change when DMAB is added to urine extracts. Whilst the substances from this reaction have not been fully elucidated, an objective look at most studies indicates that urobilinogen is likely to be one them. Urobilinogen has also been identified as a major interferent in our results. Both pyrroles and urobilinogen condense the DMAB reaction system (form condensation products) and are quite different. The urobilinogen detected in urine forms when gut microflora chemically reduces the bilirubin content of bile acids. In comparison, evidence suggests that the pyrrole fraction originates from the fragmentation of regulatory haem by reactive oxygen species (ROS) such as hydrogen peroxide and super and nitrous oxides. Clinical studies in our laboratories have established that pyrroles as a urine biomarker have specificity in detecting schizophrenia; however, caution must be applied as the readings are subject to interference by other DMAB active compounds that are present, such as urobilinogen. This review highlights the initial chemistry in isolating pyrroles and provides recommendations for standardised laboratory testing to ensure pyrroles are correctly measured and distinguished from other by-products.
Collapse
Affiliation(s)
- Brett Lambert
- Applied Analytical Laboratories, Logandowns Dr, Meadowbrook, QLD 4131, Australia
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Correspondence:
| |
Collapse
|
3
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
4
|
Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC. Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis. Schizophr Res 2021; 228:60-73. [PMID: 33434736 PMCID: PMC7987889 DOI: 10.1016/j.schres.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
Dysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia. In the present study, we hypothesized that there would be lower levels of dysbindin-1 and CTR1 in the hippocampus in schizophrenia versus a comparison group. Using semi-quantitative immunohistochemistry for dysbindin1 and CTR1, we measured the optical density in a layer specific fashion in the hippocampus and entorhinal cortex in ten subjects with schizophrenia and ten comparison subjects. Both regions were richly immunolabeled for CTR1 and dysbindin1 in both groups. In the superficial layers of the entorhinal cortex, CTR1 immunolabeled neuropil and cells showed lower optical density values in patients versus the comparison group. In the molecular layer of the dentate gyrus, patients had higher optical density values of CTR1 versus the comparison group. The density and distribution of dysbindin-1 immunolabeling was similar between groups. These laminar specific alterations of CTR1 in schizophrenia suggest abnormal copper transport in those locations.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Charlene B. Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Laura Odom
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
5
|
Interactions between knockout of schizophrenia risk factor Dysbindin-1 and copper metabolism in mice. Brain Res Bull 2020; 164:339-349. [PMID: 32795490 DOI: 10.1016/j.brainresbull.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear. EXPERIMENTAL APPROACH The current study measured behavioral indices of neurological function in dysbindin-1 functional knockout (KO) mice and their wild-type (WT) littermates with or without quetiapine treatment. We assessed serum and brain copper levels, ATP7A and CTR1 mRNA, and copper transporter-expressing cellular population transcripts: TTR (transthyretin; choroid plexus epithelial cells), MBP (myelin basic protein; oligodendrocytes), and GJA1 (gap-junction protein alpha-1; astrocytes) in cortex and hippocampus. KEY RESULTS Regardless of genotype, quetiapine significantly reduced TTR, MBP, CTR1 mRNA, and serum copper levels. Neurological function of untreated KO mice was abnormal, and ledge instability was rescued with quetiapine. KO mice were hyperactive after 10 min in the open-field assay, which was not affected by treatment. CONCLUSIONS AND IMPLICATIONS Dysbindin-1 KO results in hyperactivity, altered serum copper, and neurological impairment, the last of which is selectively rescued with quetiapine. Antipsychotic treatment modulates specific cellular populations, affecting myelin, the choroid plexus, and copper transport across the blood brain barrier. Together these results indicate the widespread impact of antipsychotic treatment, and that alteration of dysbindin-1 may be sufficient, but not necessary, for specific schizophrenia pathology.
Collapse
|
6
|
Yang Y, Zhang L, Guo D, Zhang L, Yu H, Liu Q, Su X, Shao M, Song M, Zhang Y, Ding M, Lu Y, Liu B, Li W, Yue W, Fan X, Yang G, Lv L. Association of DTNBP1 With Schizophrenia: Findings From Two Independent Samples of Han Chinese Population. Front Psychiatry 2020; 11:446. [PMID: 32581860 PMCID: PMC7286384 DOI: 10.3389/fpsyt.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Schizophrenia (SZ) is a complex psychiatric disorder that has a strong genetic basis. Dystrobrevin-binding protein 1 (DTNBP1) is one of the genes thought to be pivotal in regulating the glutamatergic system. Studies have suggested that variations in DTNBP1 confer susceptibility to SZ and clinical symptoms. Here, we performed a two-stage independent verification study to identify polymorphisms of the DTNBP1 gene that might be associated with SZ in the Han Chinese population. METHODS In stage 1, 14 single nucleotide polymorphisms (SNPs) were genotyped in 528 paranoid SZ patients and 528 healthy controls (HCs) using the Illumina GoldenGate assays on a BeadStation 500G Genotyping System. In stage 2, ten SNPs were genotyped in an independent sample of 1,031 SZ patients and 621 HCs using the Illumina 660k Genotyping System. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale. RESULTS There was a significant association related to allele frequency, and a trend association in relation to genotype between SZ patients and HCs at rs4712253 (p = 0.03 and 0.05, respectively). These associations were not evident following Bonferroni correction (p > 0.05 for both). Haplotype association analysis revealed that only two haplotypes (GAG and GAA; rs16876575-rs9464793-rs4712253) were significantly different between SZ patients and HCs (χ2 = 4.24, 6.37, p = 0.04 and 0.01, respectively). In addition, in SZ patients there was a significant association in the rs4964793 genotype for positive symptoms, and in the rs1011313 genotype for excitement/hostility symptoms (p = 0.01 and 0.002, respectively). We found a significant association in the baseline symbol digital modalities test (SDMT), forward-digital span (DS), backward-DS, and semantic fluency between SZ patients and HCs (p < 0.05 for all). Finally, the SNP rs1011313 genotypes were associated with SDMT in SZ patients (p = 0.04). CONCLUSION This study provides further evidence that SNP rs4712253 of DTNBP1 has a nominal association with SZ in the Han Chinese population. Such a genotype variation may play a role in psychopathology and cognitive function.
Collapse
Affiliation(s)
- Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Luwen Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Dong Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Lin Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Hongyan Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Qing Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Men Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Yan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Minli Ding
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Yanli Lu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China.,Ministry of Health Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiaoduo Fan
- Psychiatry Department, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, United States
| | - Ge Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China.,Psychiatry Department, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
8
|
Chow TJ, Tee SF, Loh SY, Yong HS, Abu Bakar AK, Tang PY. Variants in ZNF804A and DTNBP1 assessed for cognitive impairment in schizophrenia using a multiplex family-based approach. Psychiatry Res 2018; 270:1166-1167. [PMID: 29754893 DOI: 10.1016/j.psychres.2018.04.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia
| | - Siew Yim Loh
- Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras 43000 Kajang, Malaysia.
| |
Collapse
|
9
|
Schoonover KE, Queern SL, Lapi SE, Roberts RC. Impaired copper transport in schizophrenia results in a copper-deficient brain state: A new side to the dysbindin story. World J Biol Psychiatry 2018; 21:13-28. [PMID: 30230404 PMCID: PMC6424639 DOI: 10.1080/15622975.2018.1523562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities. Therefore, we sought to determine dysbindin and copper transporter protein expression and copper content in SZP.Methods: We studied the copper-rich substantia nigra (SN) using Western blot and inductively-coupled plasma mass spectrometry. We characterised specific protein domains of copper transporters ATP7A, CTR1, ATP7B and dysbindin isoforms 1 A and 1B/C in SZP (n = 15) and matched controls (n = 11), and SN copper content in SZP (n = 14) and matched controls (n = 11). As a preliminary investigation, we compared medicated (ON; n = 11) versus unmedicated SZP (OFF; n = 4).Results: SZP exhibited increased C terminus, but not N terminus, ATP7A. SZP expressed less transmembrane CTR1 and dysbindin 1B/C than controls. ON exhibited increased C terminus ATP7A protein versus controls. OFF exhibited less N terminus ATP7A protein than controls and ON, suggesting medication-induced rescue of the ATP7A N terminus. SZP exhibited less SN copper content than controls.Conclusions: These results provide the first evidence of disrupted copper transport in schizophrenia SN that appears to result in a copper-deficient state. Furthermore, copper homeostasis may be modulated by specific dysbindin isoforms and antipsychotic treatment.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Stacy L. Queern
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
10
|
Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, Managò F, Guadagna S, Piras F, Zhang F, Kleinman JE, Hyde TM, Kaalund SS, Pontillo M, Orso G, Caltagirone C, Borrelli E, De Luca MA, Vicari S, Weinberger DR, Spalletta G, Papaleo F. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun 2018; 9:2265. [PMID: 29891954 PMCID: PMC5995960 DOI: 10.1038/s41467-018-04711-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Antipsychotics are the most widely used medications for the treatment of schizophrenia spectrum disorders. While such drugs generally ameliorate positive symptoms, clinical responses are highly variable in terms of negative symptoms and cognitive impairments. However, predictors of individual responses have been elusive. Here, we report a pharmacogenetic interaction related to a core cognitive dysfunction in patients with schizophrenia. We show that genetic variations reducing dysbindin-1 expression can identify individuals whose executive functions respond better to antipsychotic drugs, both in humans and in mice. Multilevel ex vivo and in vivo analyses in postmortem human brains and genetically modified mice demonstrate that such interaction between antipsychotics and dysbindin-1 is mediated by an imbalance between the short and long isoforms of dopamine D2 receptors, leading to enhanced presynaptic D2 function within the prefrontal cortex. These findings reveal one of the pharmacodynamic mechanisms underlying individual cognitive response to treatment in patients with schizophrenia, suggesting a potential approach for improving the use of antipsychotic drugs.
Collapse
Affiliation(s)
- Diego Scheggia
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center Lausanne, Prilly-Lausanne, CH-1008, Switzerland
| | - Rosa Mastrogiacomo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti 2, 35131, Padova, Italy
| | - Sara Sannino
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, 2400, Copenhagen, NV, Denmark
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Genny Orso
- IRCCS E. Medea Scientific Institute, 23842, Bosisio Parini, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | | | - Maria A De Luca
- Department of Biomedical Sciences, Università di Cagliari, 09124, Cagliari, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
- Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
11
|
Petit EI, Michalak Z, Cox R, O'Tuathaigh CMP, Clarke N, Tighe O, Talbot K, Blake D, Joel J, Shaw A, Sheardown SA, Morrison AD, Wilson S, Shapland EM, Henshall DC, Kew JN, Kirby BP, Waddington JL. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2017; 42:1349-1360. [PMID: 27986973 PMCID: PMC5437891 DOI: 10.1038/npp.2016.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/12/2023]
Abstract
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A-/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A-/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A-/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Collapse
Affiliation(s)
- Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zuzanna Michalak
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Niamh Clarke
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Konrad Talbot
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Derek Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Josephine Joel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Horizon Discovery, Cambridge, UK
| | - Alexander Shaw
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Steven A Sheardown
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Takeda Cambridge, Cambridge, UK
| | - Alastair D Morrison
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Worldwide Business Development, GlaxoSmithKline, Stevenage, UK
| | - Stephen Wilson
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ellen M Shapland
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James N Kew
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Cheah SY, Lurie JK, Lawford BR, Young RM, Morris CP, Voisey J. Interaction of multiple gene variants and their effects on schizophrenia phenotypes. Compr Psychiatry 2016; 71:63-70. [PMID: 27636509 DOI: 10.1016/j.comppsych.2016.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Schizophrenia is a clinically heterogeneous disorder and may be explained by its complex genetic architecture. Many schizophrenia susceptibility genes were identified but the picture remains unclear due to inconsistent or contradictory genetic association studies. This confusion may, in part, be because symptoms result from the combined interaction of many genes and these interacting genes are associated with specific sub-phenotypes of schizophrenia rather than schizophrenia as a whole. This study investigates the relationship between schizophrenia susceptibility genes and schizophrenia sub-phenotypes by identifying multiple gene variant interactions. MATERIALS AND METHODS Fifty SNPs from 21 genes were genotyped in 235 Australian participants with schizophrenia screened for various phenotypes. Schizophrenia participants were grouped into relevant phenotype clusters using cluster analysis and normalized phenotype cluster scores were calculated for each patient. The relationship between genotypes and normalized phenotype cluster scores were analyzed by linear regression analysis. RESULTS Three phenotype clusters were identified. There was some overlap in symptoms between phenotype clusters, particularly for depression. However, cluster 1 appears to be characterized by speech disorder and affective behavior symptoms, cluster 2 has predominantly hallucination symptoms and cluster 3 has mainly delusion symptoms. Interaction of five SNPs was found to have an effect on cluster 1 symptoms; ten SNPs on cluster 2 symptoms; and eight SNPs on cluster 3 symptoms. CONCLUSION The interaction of specific susceptibility genes is likely to lead to specific clinical sub-phenotypes of schizophrenia. Larger patient cohorts with more extensive clinical data will improve the detection of gene interactions and the resultant schizophrenia clinical phenotypes.
Collapse
Affiliation(s)
- Sern-Yih Cheah
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Janine K Lurie
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Bruce R Lawford
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Discipline of Psychiatry, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - Ross McD Young
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Charles P Morris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
13
|
Lawford BR, Barnes M, Morris CP, Noble EP, Nyst P, Heslop K, Young RM, Voisey J, Connor JP. Dopamine 2 Receptor Genes Are Associated with Raised Blood Glucose in Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:291-7. [PMID: 27254804 PMCID: PMC4841287 DOI: 10.1177/0706743716644765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Type 2 diabetes is commonly found in schizophrenia and is an important contributor to mortality and morbidity in this condition. Dopamine has been implicated in the aetiology of both diabetes and schizophrenia. It is possible that both disorders share a common genetic susceptibility. METHODS In a cross-sectional study, we examined 2 dopamine D2 receptor (DRD2) single-nucleotide polymorphisms (SNPs) previously associated with schizophrenia (C939 T, rs6275 and C957 T, rs6277) along with fasting blood glucose and body mass index (BMI) in 207 antipsychotic-treated patients with schizophrenia. All participants met DSM-IV criteria for schizophrenia, and those with other psychiatric disorders were excluded. Analysis of covariance was used to compare fasting glucose results by DRD2 genotypes, after controlling for known confounds. For significant associations, follow-up Bonferroni post hoc tests examined differences in fasting glucose levels between genotypes. Specific comparisons were also made using analysis of variance and chi-square (Fisher's exact test). RESULTS The 2 DRD2 risk genotypes were associated with significant increases in blood glucose, after controlling for BMI, age, sex, dosage and type of antipsychotic medication, number of hospitalisations, and negative symptoms (rs6275, F(2, 182) = 5.901, P = 0.003; rs6277 SNP, F(2, 178) = 3.483, P = 0.033). CONCLUSIONS These findings support the involvement of DRD2 not only in schizophrenia but also in elevated levels of blood glucose commonly found in antipsychotic-treated patients with schizophrenia. Our data support the notion that diabetes may not merely be a comorbid condition but could be fundamentally associated with the pathogenesis of schizophrenia itself.
Collapse
Affiliation(s)
- Bruce R Lawford
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Mark Barnes
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - C Phillip Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Ernest P Noble
- Alcohol Research Center, Neuropsychiatric Institute, University of California, Los Angeles, CA, USA
| | - Phillip Nyst
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Karen Heslop
- Faculty of Health Sciences, Curtain University, Perth, Western Australia, Australia
| | - Ross McD Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Jason P Connor
- Department of Psychiatry and Centre for Youth Substance Abuse Research, The University of Queensland, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and D₂ receptors. J Neurochem 2016; 136:1037-51. [PMID: 26685100 DOI: 10.1111/jnc.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023]
Abstract
Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.
Collapse
Affiliation(s)
- Nathalie Schmieg
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Cristina Rocchi
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Mark J Millan
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| |
Collapse
|
15
|
Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation. Cell Discov 2015; 1:15032. [PMID: 27462430 PMCID: PMC4860834 DOI: 10.1038/celldisc.2015.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties.
Collapse
|
16
|
Spiegel S, Chiu A, James AS, Jentsch JD, Karlsgodt KH. Recognition deficits in mice carrying mutations of genes encoding BLOC-1 subunits pallidin or dysbindin. GENES BRAIN AND BEHAVIOR 2015; 14:618-24. [PMID: 26294018 DOI: 10.1111/gbb.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 01/31/2023]
Abstract
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin-binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC-1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild-type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC-1 expression and/or function.
Collapse
Affiliation(s)
- S Spiegel
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - A Chiu
- Department of Pharmacology, University of California Irvine, Irvine
| | - A S James
- Department of Psychology, UCLA, Los Angeles, CA
| | - J D Jentsch
- Department of Psychology, UCLA, Los Angeles, CA.,Department of Psychiatry, UCLA, Los Angeles, CA
| | - K H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital, Glen Oaks.,Psychiatry Research Division, Feinstein Institute for Medical Research, Manhasset.,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| |
Collapse
|
17
|
Tan GKN, Tee SF, Tang PY. Genetic association of single nucleotide polymorphisms in dystrobrevin binding protein 1 gene with schizophrenia in a Malaysian population. Genet Mol Biol 2015; 38:138-46. [PMID: 26273215 PMCID: PMC4530642 DOI: 10.1590/s1415-4757382220140142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.
Collapse
Affiliation(s)
- Grace Kang Ning Tan
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J. Dysbindin (DTNBP1) variants are associated with hallucinations in schizophrenia. Eur Psychiatry 2015; 30:486-91. [PMID: 25697573 DOI: 10.1016/j.eurpsy.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity.
Collapse
Affiliation(s)
- S-Y Cheah
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - B R Lawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Discipline of Psychiatry, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - R M Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - C P Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - J Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
19
|
Chen J, Cao F, Liu L, Wang L, Chen X. Genetic studies of schizophrenia: an update. Neurosci Bull 2015; 31:87-98. [PMID: 25652814 DOI: 10.1007/s12264-014-1494-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia (SCZ) is a complex and heterogeneous mental disorder that affects about 1% of global population. In recent years, considerable progress has been made in genetic studies of SCZ. A number of common variants with small effects and rare variants with relatively larger effects have been identified. These variants include risk loci identified by genome-wide association studies, rare copy-number variants identified by comparative genomic analyses, and de novo mutations identified by high-throughput DNA sequencing. Collectively, they contribute to the heterogeneity of the disease. In this review, we update recent discoveries in the field of SCZ genetics, and outline the perspectives of future directions.
Collapse
Affiliation(s)
- Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA,
| | | | | | | | | |
Collapse
|
20
|
Yap MYA, Lo YL, Talbot K, Ong WY. Oxidative stress reduces levels of dysbindin-1A via its PEST domain. Neurochem Int 2014; 79:65-9. [DOI: 10.1016/j.neuint.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/05/2023]
|
21
|
Bruenig D, White MJ, Young RM, Voisey J. Subclinical psychotic experiences in healthy young adults: associations with stress and genetic predisposition. Genet Test Mol Biomarkers 2014; 18:683-9. [PMID: 25184405 DOI: 10.1089/gtmb.2014.0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stress has been identified as a common trigger for psychosis. Dopamine pathways are suggested to be affected by chronic and severe stress and to play an important role in psychosis. This pilot study investigates the potential relationship of stress and psychosis in subclinical psychotic experiences. It was hypothesized that single-nucleotide polymorphisms (SNPs) previously found to be associated with psychiatric disorders would be associated with both stress and subclinical psychotic experiences. University students (N=182) were genotyped for 17 SNPs across 11 genes. Higher stress reporting was associated with rs4680 COMT, rs13211507 HLA region, and rs13107325 SLC39A8. Reports of higher subclinical psychotic experiences were associated with DRD2 SNPs rs17601612 and rs658986 and an AKT1 SNP rs2494732. Replication studies are recommended to further pursue this line of research for identification of markers of psychosis for early diagnosis and intervention.
Collapse
Affiliation(s)
- Dagmar Bruenig
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Australia
| | | | | | | |
Collapse
|
22
|
Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VLJ, Voisey J. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 2014; 4:e339. [PMID: 24399042 PMCID: PMC3905221 DOI: 10.1038/tp.2013.111] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023] Open
Abstract
Recent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk, and epigenetics also has a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485,000 CpG sites using the Illumina Infinium HumanMethylation450 Bead Chip. After adjusting for age and post-mortem interval, 4641 probes corresponding to 2929 unique genes were found to be differentially methylated. Of those genes, 1291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10, which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27,000 CpG sites were analysed. Unsupervised clustering analysis of the top 3000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared with controls (P=1.74 × 10(-4)). The first cluster composed of 88% of patients with schizophrenia and only 12% controls, whereas the second cluster composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia.
Collapse
Affiliation(s)
- L F Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - E P Noble
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - B R Lawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia,Alcohol and Drug Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - R McD Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - C P Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - V L J Whitehall
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - J Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia,Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia. E-mail:
| |
Collapse
|
23
|
Glen WB, Horowitz B, Carlson GC, Cannon TD, Talbot K, Jentsch JD, Lavin A. Dysbindin-1 loss compromises NMDAR-dependent synaptic plasticity and contextual fear conditioning. Hippocampus 2013; 24:204-13. [PMID: 24446171 DOI: 10.1002/hipo.22215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/19/2023]
Abstract
Genetic variants in DTNBP1 encoding the protein dysbindin-1 have often been associated with schizophrenia and with the cognitive deficits prominent in that disorder. Because impaired function of the hippocampus is thought to play a role in these memory deficits and because NMDAR-dependent synaptic plasticity in this region is a proposed biological substrate for some hippocampal-dependent memory functions in schizophrenia, we hypothesized that reduced dysbindin-1 expression would lead to impairments in NMDAR-dependent synaptic plasticity and in contextual fear conditioning. Acute slices from male mice carrying 0, 1, or 2 null mutant alleles of the Dtnbp1 gene were prepared, and field recordings from the CA1 striatum radiatum were obtained before and after tetanization of Schaffer collaterals of CA3 pyramidal cells. Mice homozygous for the null mutation in Dtnbp1 exhibited significantly reduced NMDAR-dependent synaptic potentiation compared to wild type mice, an effect that could be rescued by bath application of the NMDA receptor coagonist glycine (10 μM). Behavioral testing in adult mice revealed deficits in hippocampal memory processes. Homozygous null mice exhibited lower conditional freezing, without a change in the response to shock itself, indicative of a learning and memory deficit. Taken together, these results indicate that a loss of dysbindin-1 impairs hippocampal plasticity which may, in part, explain the role dysbindin-1 plays in the cognitive impairments of schizophrenia.
Collapse
Affiliation(s)
- W Bailey Glen
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | | | | | | |
Collapse
|
24
|
Cheng MC, Chuang YA, Lu CL, Chen YJ, Luu SU, Li JM, Hsu SH, Chen CH. Genetic and functional analyses of early growth response (EGR) family genes in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:149-55. [PMID: 22691714 DOI: 10.1016/j.pnpbp.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Early growth response genes (EGR1, 2, 3, and 4) encode a family of nuclear proteins that function as transcriptional regulators. They are involved in the regulation of synaptic plasticity, learning, and memory, and are implicated in the pathogenesis of schizophrenia. METHODS We conducted a genetic association analysis of 14 SNPs selected from the EGR1, 2, 3, and 4 genes of 564 patients with schizophrenia and 564 control subjects. We also conducted Western blot analysis and promoter activity assay to characterize the EGR genes associated with schizophrenia RESULTS We did not detect a true genetic association of these 14 SNPs with schizophrenia in this sample. However, we observed a nominal over-representation of C/C genotype of rs9990 of EGR2 in female schizophrenia as compared to female control subjects (p=0.012, uncorrected for multiple testing). Further study showed that the average mRNA level of the EGR2 gene in the lymphoblastoid cell lines of female schizophrenia patients was significantly higher than that in female control subjects (p=0.002). We also detected a nominal association of 4 SNPs (rs6747506, rs6718289, rs2229294, and rs3813226) of the EGR4 gene that form strong linkage disequilibrium with schizophrenia in males. Reporter gene assay showed that the haplotype T-A derived from rs6747506 and rs6718289 at the promoter region had significantly reduced promoter activity compared with the haplotype A-G. CONCLUSION Our data suggest a tendency of gender-specific association of EGR2 and EGR4 in schizophrenia, with an elevated expression of EGR2 in lympoblastoid cell lines of female schizophrenia patients and a reduced EGR4 gene expression in male schizophrenia patients.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
26
|
Current world literature. Curr Opin Psychiatry 2012; 25:155-62. [PMID: 22297717 DOI: 10.1097/yco.0b013e3283514a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Domschke K, Lawford B, Young R, Voisey J, Morris CP, Roehrs T, Hohoff C, Birosova E, Arolt V, Baune BT. Dysbindin (DTNBP1)--a role in psychotic depression? J Psychiatr Res 2011; 45:588-95. [PMID: 20951386 DOI: 10.1016/j.jpsychires.2010.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 09/22/2010] [Indexed: 01/20/2023]
Abstract
Previous studies yielded evidence for dysbindin (DTNBP1) to impact the pathogenesis of schizophrenia on the one hand and affective disorders such as bipolar or major depressive disorder (MDD) on the other. Thus, in the present study we investigated whether DTNBP1 variation was associated with psychotic depression as a severe clinical manifestation of MDD possibly constituting an overlapping phenotype between affective disorders and schizophrenia. A sample of 243 Caucasian inpatients with MDD (SCID-I) was genotyped for 12 SNPs spanning 92% of the DTNBP1 gene region. Differences in DTNBP1 genotype distributions across diagnostic subgroups of psychotic (N = 131) vs. non-psychotic depression were estimated by Pearson Chi(2) test and logistic regression analyses adjusted for age, gender, Beck Depression Inventory (BDI) and the Global Assessment of Functioning Scale (GAF). Overall, patients with psychotic depression presented with higher BDI and lower GAF scores expressing a higher severity of the illness as compared to depressed patients without psychotic features. Four DTNBP1 SNPs, particularly rs1997679 and rs9370822, and the corresponding haplotypes, respectively, were found to be significantly associated with the risk of psychotic depression in an allele-dose fashion. In summary, the present results provide preliminary support for dysbindin (DTNBP1) gene variation, particularly SNPs rs1997679 and rs9370822, to be associated with the clinical phenotype of psychotic depression suggesting a possible neurobiological mechanism for an intermediate trait on the continuum between affective disorders and schizophrenia.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, University of Muenster, Albert-Schweitzer-Strasse 11, D-48143 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Voisey J, Swagell CD, Hughes IP, Connor JP, Lawford BR, Young RM, Morris CP. A polymorphism in the dysbindin gene (DTNBP1) associated with multiple psychiatric disorders including schizophrenia. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2010; 6:41. [PMID: 20615259 PMCID: PMC2911395 DOI: 10.1186/1744-9081-6-41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/09/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND A number of studies have found associations between dysbindin (DTNBP1) polymorphisms and schizophrenia. Recently we identified a DTNBP1 SNP (rs9370822) that is strongly associated with schizophrenia. Individuals diagnosed with schizophrenia were nearly three times as likely to carry the CC genotype compared to the AA genotype. METHODS To investigate the importance of this SNP in the function of DTNBP1, a number of psychiatric conditions including addictive behaviours and anxiety disorders were analysed for association with rs9370822. RESULTS The DTNBP1 polymorphism was significantly associated with post-traumatic stress disorder (PTSD) as well as nicotine and opiate dependence but not alcohol dependence. Individuals suffering PTSD were more than three times as likely to carry the CC genotype compared to the AA genotype. Individuals with nicotine or opiate dependence were more than twice as likely to carry the CC genotype compared to the AA genotype. CONCLUSIONS This study provides further support for the importance of DTNBP1 in psychiatric conditions and suggests that there is a common underlying molecular defect involving DTNBP1 that contributes to the development of several anxiety and addictive disorders that are generally recognised as separate clinical conditions. These disorders may actually be different expressions of a single metabolic pathway perturbation. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.
Collapse
Affiliation(s)
- Joanne Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher D Swagell
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ian P Hughes
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jason P Connor
- Discipline of Psychiatry, School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Bruce R Lawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ross M Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - C Phillip Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|