1
|
Han D, Wu Z, Zhang C, Wei Z, Chao F, Xie X, Liu J, Song Y, Song X, Shao D, Wang S, Xu G, Chen G. GILT stabilizes cofilin to promote the metastasis of prostate cancer. Cell Death Discov 2025; 11:10. [PMID: 39820478 PMCID: PMC11739388 DOI: 10.1038/s41420-025-02288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Gamma-interferon-induced lysosomal thiol reductase (GILT), known for catalyzing disulfide bond reduction, is involved in various physiological processes. While the involvement of GILT in the development of various tumors has been demonstrated, the mechanisms underlying its regulation in prostate cancer (PCa) are not fully understood. In the present study, we confirmed that GILT was significantly upregulated in PCa and facilitated tumor metastasis. Mechanistically, GILT stabilized the cofilin protein by competitively binding to cofilin with Src family tyrosine kinase (SRC), inhibiting SRC-mediated tyrosine phosphorylation of cofilin, thereby suppressing the ubiquitination pathway degradation of cofilin. GILT overexpression stabilized and increased the protein level of cofilin in PCa cells and promoted the metastasis of PCa cells by accelerating actin dynamics through cofilin-mediated actin severing. Our findings reveal a novel mechanism of GILT in PCa and provide a new potential target for the diagnosis and treatment of PCa patients.
Collapse
Affiliation(s)
- Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Xuefeng Xie
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dingchang Shao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Angappulige DH, Barashi NS, Pickersgill N, Weimholt C, Luo J, Shadmani G, Tarcha Z, Rayamajhi S, Mahajan NP, Andriole GL, Siegel BA, Kim EH, Mahajan K. Prostate-Specific Membrane Antigen-Targeted Imaging and Its Correlation with HOXB13 Expression. J Nucl Med 2024; 65:1210-1216. [PMID: 38936974 PMCID: PMC11294063 DOI: 10.2967/jnumed.123.267301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Homeobox 13 (HOXB13) is an oncogenic transcription factor that directly regulates expression of folate hydrolase 1, which encodes prostate-specific membrane antigen (PSMA). HOXB13 is expressed in primary and metastatic prostate cancers (PCs) and promotes androgen-independent PC growth. Since HOXB13 promotes resistance to androgen receptor (AR)-targeted therapies and regulates the expression of folate hydrolase 1, we investigated whether SUVs on PSMA PET would correlate with HOXB13 expression. Methods: We analyzed 2 independent PC patient cohorts who underwent PSMA PET/CT for initial staging or for biochemical recurrence. In the discovery cohort, we examined the relationship between HOXB13, PSMA, and AR messenger RNA (mRNA) expression in prostate biopsy specimens from 179 patients who underwent PSMA PET/CT with 18F-piflufolastat. In the validation cohort, we confirmed the relationship between HOXB13, PSMA, and AR by comparing protein expression in prostatectomy and lymph node (LN) sections from 19 patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and association analyses were also used to confirm the relationship between the markers, LN positivity, and PSMA PET SUVs. Results: We observed a significant correlation between PSMA and HOXB13 mRNA (P < 0.01). The association between HOXB13 and 18F-piflufolastat SUVs was also significant (SUVmax, P = 0.0005; SUVpeak, P = 0.0006). Likewise, the PSMA SUVmax was significantly associated with the expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort (P = 0.008). Treatment-naïve patients with LN metastases demonstrated elevated HOXB13 and PSMA levels in their tumors as well as higher PSMA tracer uptake and low AR expression. Conclusion: Our findings demonstrate that HOXB13 correlates with PSMA expression and PSMA PET SUVs at the mRNA and protein levels. Our study suggests that the PSMA PET findings may reflect oncogenic HOXB13 transcriptional activity in PC, thus potentially serving as an imaging biomarker for more aggressive disease.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nimrod S Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Pickersgill
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Ghazal Shadmani
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ziad Tarcha
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Sampanna Rayamajhi
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Gerald L Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Barry A Siegel
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Eric H Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri;
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| |
Collapse
|
3
|
Pandit-Taskar N, O'Donoghue JA, Chetty D, Max S, Wanik D, Ilovich O, Russell M, Nyima T, Divgi CR, Yu M, Morris MJ. A Phase 0 Study to Assess the Biodistribution and Pharmacokinetics of a Radiolabeled Antibody Targeting Human Kallikrein 2 in Participants with Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2024; 65:1051-1056. [PMID: 38782459 PMCID: PMC11218722 DOI: 10.2967/jnumed.124.267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the inclusion of multiple agents within the prostate cancer treatment landscape, new treatment options are needed to address the unmet need for patients with metastatic castration-resistant prostate cancer (mCRPC). Although prostate-specific membrane antigen is the only cell-surface target to yield clinical benefit in men with advanced prostate cancer, additional targets may further advance targeted immune, cytotoxic, radiopharmaceutical, and other tumor-directed therapies for these patients. Human kallikrein 2 (hK2) is a novel prostate-specific target with little to no expression in nonprostate tissues. This first-in-human phase 0 trial uses an 111In-radiolabeled anti-hK2 monoclonal antibody, [111In]-DOTA-h11B6, to credential hK2 as a potential target for prostate cancer treatment. Methods: Participants with progressive mCRPC received a single infusion of 2 mg of [111In]-DOTA-h11B6 (185 MBq of 111In), with or without 8 mg of unlabeled h11B6 to assess antibody mass effects. Sequential imaging and serial blood samples were collected to determine [111In]-DOTA-h11B6 biodistribution, dosimetry, serum radioactivity, and pharmacokinetics. Safety was assessed within a 2-wk follow-up period from the time of [111In]-DOTA-h11B6 administration. Results: Twenty-two participants received [111In]-DOTA-h11B6 and are included in this analysis. Within 6-8 d of administration, [111In]-DOTA-h11B6 visibly accumulated in known mCRPC lesions, with limited uptake in other organs. Two treatment-emergent adverse events unrelated to treatment occurred, including tumor-related bleeding in 1 patient, which led to early study discontinuation. Serum clearance, biodistribution, and tumor targeting were independent of total antibody mass (2 or 10 mg). Conclusion: This first-in-human study demonstrates that tumor-associated hK2 can be identified and targeted using h11B6 as a platform as the h11B6 antibody selectively accumulated in mCRPC metastases with mass-independent clearance kinetics. These data support the feasibility of hK2 as a target for imaging and hK2-directed agents as potential therapies in patients with mCRPC.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical Center, New York, New York
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dushen Chetty
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Steven Max
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | | | | | - Michael Russell
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Tenzin Nyima
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Margaret Yu
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Michael J Morris
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
4
|
Hodgson K, Orozco-Moreno M, Goode EA, Fisher M, Garnham R, Beatson R, Turner H, Livermore K, Zhou Y, Wilson L, Visser EA, Pijnenborg JF, Eerden N, Moons SJ, Rossing E, Hysenaj G, Krishna R, Peng Z, Nangkana KP, Schmidt EN, Duxfield A, Dennis EP, Heer R, Lawson MA, Macauley M, Elliott DJ, Büll C, Scott E, Boltje TJ, Drake RR, Wang N, Munkley J. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine 2024; 104:105163. [PMID: 38772281 PMCID: PMC11134892 DOI: 10.1016/j.ebiom.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.
Collapse
Affiliation(s)
- Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Matthew Fisher
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Richard Beatson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London WC1E 6JF, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Yuhan Zhou
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; GlycoTherapeutics B.V., Nijmegen, the Netherlands
| | | | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Rashi Krishna
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Kyla Putri Nangkana
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK; International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Ella P Dennis
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK; Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK; Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, LE2 7LX, UK.
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
5
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Granata I, Barboro P. Identification of Molecular Markers Associated with Prostate Cancer Subtypes: An Integrative Bioinformatics Approach. Biomolecules 2024; 14:87. [PMID: 38254687 PMCID: PMC10813078 DOI: 10.3390/biom14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) is characterised by androgen dependency. Unfortunately, under anti-androgen treatment pressure, castration-resistant prostate cancer (CRPC) emerges, characterised by heterogeneous cell populations that, over time, lead to the development of different androgen-dependent or -independent phenotypes. Despite important advances in therapeutic strategies, CRPC remains incurable. Context-specific essential genes represent valuable candidates for targeted anti-cancer therapies. Through the investigation of gene and protein annotations and the integration of published transcriptomic data, we identified two consensus lists to stratify PCa patients' risk and discriminate CRPC phenotypes based on androgen receptor activity. ROC and Kaplan-Meier survival analyses were used for gene set validation in independent datasets. We further evaluated these genes for their association with cancer dependency. The deregulated expression of the PCa-related genes was associated with overall and disease-specific survival, metastasis and/or high recurrence risk, while the CRPC-related genes clearly discriminated between adeno and neuroendocrine phenotypes. Some of the genes showed context-specific essentiality. We further identified candidate drugs through a computational repositioning approach for targeting these genes and treating lethal variants of PCa. This work provides a proof-of-concept for the use of an integrative approach to identify candidate biomarkers involved in PCa progression and CRPC pathogenesis within the goal of precision medicine.
Collapse
Affiliation(s)
- Ilaria Granata
- High Performance Computing and Networking Institute (ICAR), National Council of Research (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paola Barboro
- Proteomic and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
7
|
Barashi NS, Li T, Angappulige DH, Zhang B, O’Gorman H, Nottingham CU, Shetty AS, Ippolito JE, Andriole GL, Mahajan NP, Kim EH, Mahajan K. Symptomatic Benign Prostatic Hyperplasia with Suppressed Epigenetic Regulator HOXB13 Shows a Lower Incidence of Prostate Cancer Development. Cancers (Basel) 2024; 16:213. [PMID: 38201640 PMCID: PMC10778073 DOI: 10.3390/cancers16010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.
Collapse
Affiliation(s)
- Nimrod S. Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Duminduni H. Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Harry O’Gorman
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Charles U. Nottingham
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anup S. Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joseph E. Ippolito
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L. Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric H. Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Spyratou V, Freyhult E, Bergh A, Thellenberg-Karlsson C, Wikström P, Welén K, Josefsson A. Ki67 and prostate specific antigen are prognostic in metastatic hormone naïve prostate cancer. Acta Oncol 2023; 62:1698-1706. [PMID: 37713321 DOI: 10.1080/0284186x.2023.2254480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND For metastatic hormone naïve prostate cancer patients, androgen deprivation therapy (ADT) with escalation therapy including docetaxel and/or androgen targeting drugs is the standard therapy. However, de-escalation is preferable to avoid unnecessary side effects, especially from docetaxel, but markers to identify these patients are lacking. The purpose of the present study was to investigate the potential of PSA and Ki67 immunoreactive scores as prognostic and treatment-predictive markers. MATERIAL AND METHODS Prostate biopsies from 92 patients with metastatic hormone naïve PC (PSA > 80 ng/mL or clinical metastases) were immunohistochemically evaluated for PSA and Ki67. Gene expression analysis was performed with Clariom D microarrays to identify the phenotypic profile associated with the immunohistochemistry scores of biopsies. Cox regression analysis for progression free survival after ADT adjustment for age, ISUP, and serum PSA and Kaplan-Meier analyses were performed to assess prognostic values of Ki67, PSA, and the Ki67/PSA ratio. RESULTS The immunohistochemical score for PSA was the strongest prognostic factor for progression-free and overall survival after ADT. Consequently, the ratio between Ki67 and PSA displayed a stronger prognostic value than Ki67 itself. Further, mRNA expression data analysis showed an association between high Ki67/PSA ratio, cell-cycle regulation, and DNA damage repair. In an exploratory sub-analysis of 12 patients treated with early docetaxel as addition to ADT and matched controls, a high Ki67/PSA ratio showed potential to identify those who benefit from docetaxel. CONCLUSION PSA and Ki67 immunoreactive scores are prognostic in the metastatic hormone-sensitive setting, with PSA being superior. The combination of Ki67 and PSA did not give additional prognostic value. The results suggest immunohistochemical scoring of PSA to have potential to improve identification of patients responding well to ADT alone.
Collapse
Affiliation(s)
- Vasiliki Spyratou
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Karin Welén
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Josefsson
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Zanvit P, van Dyk D, Fazenbaker C, McGlinchey K, Luo W, Pezold JM, Meekin J, Chang CY, Carrasco RA, Breen S, Cheung CSF, Endlich-Frazier A, Clark B, Chu NJ, Vantellini A, Martin PL, Hoover CE, Riley K, Sweet SM, Chain D, Kim YJ, Tu E, Harder N, Phipps S, Damschroder M, Gilbreth RN, Cobbold M, Moody G, Bosco EE. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J Clin Invest 2023; 133:e169655. [PMID: 37966111 PMCID: PMC10645390 DOI: 10.1172/jci169655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-β type II receptor, bolstering its activity in the TGF-β-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-β-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Philip L. Martin
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Clare E. Hoover
- Clinical Pathology Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kenesha Riley
- Clinical Pathology Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Steve M. Sweet
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - David Chain
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Yeoun Jin Kim
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Eric Tu
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z, Liang C, Meng J. Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 2023; 55:2279235. [PMID: 37939258 PMCID: PMC10653710 DOI: 10.1080/07853890.2023.2279235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.
Collapse
Affiliation(s)
- Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | | | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
11
|
Ivkovic TC, Cornella H, Voss G, Ku A, Persson M, Rigo R, Gruvberger-Saal SK, Saal LH, Ceder Y. Functional In Vivo Screening Identifies microRNAs Regulating Metastatic Dissemination of Prostate Cancer Cells to Bone Marrow. Cancers (Basel) 2023; 15:3892. [PMID: 37568709 PMCID: PMC10416931 DOI: 10.3390/cancers15153892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone.
Collapse
Affiliation(s)
- Tina Catela Ivkovic
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Helena Cornella
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Gjendine Voss
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Anson Ku
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden;
| | - Margareta Persson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Robert Rigo
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Sofia K. Gruvberger-Saal
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Lao H. Saal
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| |
Collapse
|
12
|
Wang S, Huang M, Chen M, Sun Z, Jiao Y, Ye G, Pan J, Ye W, Zhao J, Zhang D. Zoledronic acid and thymosin α1 elicit antitumor immunity against prostate cancer by enhancing tumor inflammation and cytotoxic T cells. J Immunother Cancer 2023; 11:e006381. [PMID: 37295817 PMCID: PMC10277537 DOI: 10.1136/jitc-2022-006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced or metastatic prostate cancer (PCa) is still an incurable malignancy with high lethality and a poor prognosis. Despite the remarkable success of immunotherapy against many types of cancer, most patients with PCa receive minimal benefit from current immunotherapeutic strategies, because PCa is an immune cold tumor with scarce T-cell infiltration in the tumor microenvironment. The aim of this study was to develop an effective immunotherapeutic approach for immune cold PCa tumors. METHODS The therapeutic efficacy of androgen deprivation therapy (ADT) and zoledronic acid (ZA) plus thymosin α1 (Tα1) therapy was analyzed retrospectively in patients with advanced or metastatic PCa. The effects and mechanisms by which ZA and Tα1 regulated the immune functions of PCa cells and immune cells were evaluated by a PCa allograft mouse model, flow cytometric analysis, immunohistochemical and immunofluorescence staining assays, and PCR, ELISA, and Western blot analyses. RESULTS In this study, clinical retrospective analysis revealed that ADT combined with ZA plus Tα1 improved the therapeutic outcomes of patients with PCa, which might be associated with an enhanced frequency of T cells. ZA and Tα1 treatment synergistically inhibited the growth of androgen-independent PCa allograft tumors, with increased infiltration of tumor-specific cytotoxic CD8+ T cells and enhanced tumor inflammation. Functionally, ZA and Tα1 treatment relieved immunosuppression in PCa cells, stimulated pro-inflammatory macrophages, and enhanced the cytotoxic function of T cells. Mechanistically, ZA plus Tα1 therapy blocked the MyD88/NF-κB pathway in PCa cells but activated this signaling in macrophages and T cells, altering the tumor immune landscape to suppress PCa progression. CONCLUSIONS These findings uncover a previously undefined role for ZA and Tα1 in inhibiting the disease progression of immune cold PCa tumors by enhancing antitumor immunity and pave the way for the application of ZA plus Tα1 therapy as an immunotherapeutic strategy for treating patients with immunologically unresponsive PCa.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zhiting Sun
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yubo Jiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Geni Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wencai Ye
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Pimenta R, Mioshi CM, Gonçalves GL, Candido P, Camargo JA, Guimarães VR, Chiovatto C, Ghazarian V, Romão P, da Silva KS, Dos Santos GA, Silva IA, Srougi M, Nahas WC, Leite KR, Viana NI, Reis ST. Intratumoral Restoration of miR-137 Plus Cholesterol Favors Homeostasis of the miR-137/Coactivator p160/AR Axis and Negatively Modulates Tumor Progression in Advanced Prostate Cancer. Int J Mol Sci 2023; 24:ijms24119633. [PMID: 37298588 DOI: 10.3390/ijms24119633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) have gained a prominent role as biomarkers in prostate cancer (PCa). Our study aimed to evaluate the potential suppressive effect of miR-137 in a model of advanced PCa with and without diet-induced hypercholesterolemia. In vitro, PC-3 cells were treated with 50 pmol of mimic miR-137 for 24 h, and gene and protein expression levels of SRC-1, SRC-2, SRC-3, and AR were evaluated by qPCR and immunofluorescence. We also assessed migration rate, invasion, colony-forming ability, and flow cytometry assays (apoptosis and cell cycle) after 24 h of miRNA treatment. For in vivo experiments, 16 male NOD/SCID mice were used to evaluate the effect of restoring miR-137 expression together with cholesterol. The animals were fed a standard (SD) or hypercholesterolemic (HCOL) diet for 21 days. After this, we xenografted PC-3 LUC-MC6 cells into their subcutaneous tissue. Tumor volume and bioluminescence intensity were measured weekly. After the tumors reached 50 mm3, we started intratumor treatments with a miR-137 mimic, at a dose of 6 μg weekly for four weeks. Ultimately, the animals were killed, and the xenografts were resected and analyzed for gene and protein expression. The animals' serum was collected to evaluate the lipid profile. The in vitro results showed that miR-137 could inhibit the transcription and translation of the p160 family, SRC-1, SRC-2, and SRC-3, and indirectly reduce the expression of AR. After these analyses, it was determined that increased miR-137 inhibits cell migration and invasion and impacts reduced proliferation and increased apoptosis rates. The in vivo results demonstrated that tumor growth was arrested after the intratumoral restoration of miR-137, and proliferation levels were reduced in the SD and HCOL groups. Interestingly, the tumor growth retention response was more significant in the HCOL group. We conclude that miR-137 is a potential therapeutic miRNA that, in association with androgen precursors, can restore and reinstate the AR-mediated axis of transcription and transactivation of androgenic pathway homeostasis. Further studies involving the miR-137/coregulator/AR/cholesterol axis should be conducted to evaluate this miR in a clinical context.
Collapse
Affiliation(s)
- Ruan Pimenta
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- D'Or Institute for Research and Education (ID'Or), São Paulo 04501000, SP, Brazil
| | - Carolina Mie Mioshi
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Santo André, Universidade Federal do ABC, Santo André 09210580, SP, Brazil
| | - Guilherme L Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
| | - Patrícia Candido
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Juliana A Camargo
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Vanessa R Guimarães
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Caroline Chiovatto
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Ipiranga, Centro Universitário São Camilo, São Paulo 04263200, SP, Brazil
| | - Vitória Ghazarian
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Poliana Romão
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Karina Serafim da Silva
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Ipiranga, Centro Universitário São Camilo, São Paulo 04263200, SP, Brazil
| | - Gabriel A Dos Santos
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Iran A Silva
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- D'Or Institute for Research and Education (ID'Or), São Paulo 04501000, SP, Brazil
| | - William C Nahas
- Uro-Oncology Group, Urology Department, Institute of Cancer Estate of São Paulo (ICESP), São Paulo 01246000, SP, Brazil
| | - Kátia R Leite
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Nayara I Viana
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Passos, Universidade do Estado de Minas Gerais-UEMG, Passos 37900106, MG, Brazil
| | - Sabrina T Reis
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| |
Collapse
|
14
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
15
|
Järemo H, Semenas J, Bergström SH, Lundholm M, Thysell E, Widmark A, Crnalic S, Ylitalo EB, Bergh A, Brattsand M, Wikström P. Investigating microRNA Profiles in Prostate Cancer Bone Metastases and Functional Effects of microRNA-23c and microRNA-4328. Cancers (Basel) 2023; 15:cancers15092437. [PMID: 37173903 PMCID: PMC10177411 DOI: 10.3390/cancers15092437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNAs (miRNAs) are aberrantly expressed in prostate cancer (PC), but comprehensive knowledge about their levels and function in metastatic PC is lacking. Here, we explored the differential expression of miRNA profiles during PC progression to bone metastasis, and further focused on the downregulation of miRNA-23c and -4328 and their impact on PC growth in experimental models. Using microarray screening, the levels of 1510 miRNAs were compared between bone metastases (n = 14), localized PC (n = 7) and benign prostate tissue (n = 7). Differentially expressed miRNAs (n = 4 increased and n = 75 decreased, p < 0.05) were identified, of which miRNA-1, -23c, -143-3p, -143-5p, -145-3p, -205-5p, -221-3p, -222-3p and -4328 showed consistent downregulation during disease progression (benign > localized PC > bone metastases). The downregulation of miRNA-23c and -4328 was confirmed by reverse transcription and quantitative polymerase chain reaction analysis of 67 metastasis, 12 localized PC and 12 benign prostate tissue samples. The stable overexpression of miRNA-23c and -4328 in the 22Rv1 and PC-3 cell lines resulted in reduced PC cell growth in vitro, and in the secretion of high levels of miRNA-23c (but not -4328) in extracellular vesicles. However, no tumor suppressive effects were observed from miRNA-23c overexpression in PC-3 cells subcutaneously grown in mice. In conclusion, bone metastases display a profound reduction of miRNA levels compared to localized PC and benign disease. The downregulation of those miRNAs, including miRNA-23c and -4328, may lead to a loss of tumor suppressive effects and provide biomarker and therapeutic possibilities that deserve to be further explored.
Collapse
Affiliation(s)
- Helena Järemo
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | - Julius Semenas
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | | | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, 901 87 Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
16
|
Li XF, Selli C, Zhou HL, Cao J, Wu S, Ma RY, Lu Y, Zhang CB, Xun B, Lam AD, Pang XC, Fernando A, Zhang Z, Unciti-Broceta A, Carragher NO, Ramachandran P, Henderson NC, Sun LL, Hu HY, Li GB, Sawyers C, Qian BZ. Macrophages promote anti-androgen resistance in prostate cancer bone disease. J Exp Med 2023; 220:213858. [PMID: 36749798 PMCID: PMC9948761 DOI: 10.1084/jem.20221007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/14/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.
Collapse
Affiliation(s)
- Xue-Feng Li
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cigdem Selli
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Han-Lin Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medicine School, Central South University, Changsha, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Yu Ma
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ye Lu
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Cheng-Bin Zhang
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Bijie Xun
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Alyson D. Lam
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Anu Fernando
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ling-Ling Sun
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yan Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Gui-Bo Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Charles Sawyers:
| | - Bin-Zhi Qian
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Correspondence to Bin-Zhi Qian:
| |
Collapse
|
17
|
Thellenberg-Karlsson C, Vjaters E, Kase M, Tammela T, Ojamaa K, Norming U, Nyman C, Andersson SO, Hublarovs O, Marquez-Holmberg M, Castellanos E, Ullen A, Holmberg A, Nilsson S. A randomised, double-blind, dose-finding, phase II multicentre study of ODX in the treatment of patients with castration-resistant prostate cancer and skeletal metastases. Eur J Cancer 2023; 181:198-207. [PMID: 36682096 DOI: 10.1016/j.ejca.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study aimed to assess the efficacy and safety of ODX, a novel, cytotoxic, bone-targeting drug candidate, in castration-resistant prostate cancer bone metastatic disease. METHODS Patients with progressive disease were randomised to ten cycles of ODX, intravenous infusion Q2W (3, 6, and 9 mg/kg, respectively). The primary objective was to assess the relative change from baseline in bone alkaline phosphatase (B-ALP) and serum-aminoterminal-propeptide of Type I procollagen (S-P1NP) at 12 weeks. The inclusion criteria selected were broad, and a double-blind design was used to ensure objective recruitment of patients for the assessment of efficacy. None of the patients received bone-protecting agents during the ODX treatment period. RESULTS Fifty-five 21,20 and 14) patients were randomised to ODX (3, 6 and 9 mg/kg), respectively. The lower number of patients in arm 3 was due to too low a recruitment rate towards the end of the study. The median treatment time were 14, 13 and 14 weeks, respectively. The decrease in B-ALP at 12 weeks in study arms 3, 6 and 9 mg/kg was seen in 6/15 (40%), 8/12 (67%) and 5/12 (42%) patients, respectively, whereas the corresponding numbers for P1NP were 8/15 (53%), 8/12 (67%), and 4/12 (33%), respectively. The median decrease in B-ALP and P1NP at 12 weeks for study arms 3, 6 and 9 mg/kg were 37%, 14% and 43%, respectively, and 51%, 40% and 64%, respectively. The decrease in serum C-terminal telopeptide at 12 weeks was seen in the vast majority of patients and in about one-third of patients in bone scan index. ODX was well tolerated, and no drug-related serious adverse events occurred. There were no significant differences between study arms regarding efficacy and safety. CONCLUSIONS ODX was well tolerated and demonstrated inhibitory effects on markers related to the vicious cycle in bone at all three doses. The reduction in metastatic burden, assessed with bone scan index, supports this finding. Studies with continued ODX treatment until disease progression are being planned (ClinicalTrials.gov Identifier: NCT02825628).
Collapse
Affiliation(s)
| | - Egils Vjaters
- Pauls Strandis Clinical University Hospital, Pilsonu Iela 13, Riga, Latvia.
| | - Marju Kase
- Tartu University Hospital, L.Puusepa 8, Tartu, Estonia.
| | - Teuvo Tammela
- Tampere University Hospital, Urology Clinic, Teiskontie 35, Tampere, Finland.
| | | | - Ulf Norming
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden.
| | - Claes Nyman
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden.
| | | | | | | | | | - Anders Ullen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna.
| | - Anders Holmberg
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna; Dextech Medical, Box 389, 751 06 Uppsala.
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna.
| |
Collapse
|
18
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D’Agostino E, Pugliese G, Cerri S, Vitale MG, Madeo B, Dominici M, Sabbatini R. Bone Metastases and Health in Prostate Cancer: From Pathophysiology to Clinical Implications. Cancers (Basel) 2023; 15:1518. [PMID: 36900309 PMCID: PMC10000416 DOI: 10.3390/cancers15051518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Clinically relevant bone metastases are a major cause of morbidity and mortality for prostate cancer patients. Distinct phenotypes are described: osteoblastic, the more common osteolytic and mixed. A molecular classification has been also proposed. Bone metastases start with the tropism of cancer cells to the bone through different multi-step tumor-host interactions, as described by the "metastatic cascade" model. Understanding these mechanisms, although far from being fully elucidated, could offer several potential targets for prevention and therapy. Moreover, the prognosis of patients is markedly influenced by skeletal-related events. They can be correlated not only with bone metastases, but also with "bad" bone health. There is a close correlation between osteoporosis-a skeletal disorder with decreased bone mass and qualitative alterations-and prostate cancer, in particular when treated with androgen deprivation therapy, a milestone in its treatment. Systemic treatments for prostate cancer, especially with the newest options, have improved the survival and quality of life of patients with respect to skeletal-related events; however, all patients should be evaluated for "bone health" and osteoporotic risk, both in the presence and in the absence of bone metastases. Treatment with bone-targeted therapies should be evaluated even in the absence of bone metastases, as described in special guidelines and according to a multidisciplinary evaluation.
Collapse
Affiliation(s)
- Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Stefania Pipitone
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Eleonora Molinaro
- Oncology, AUSL of Modena Area Sud, Sassuolo-Vignola-Pavullo, 41121 Modena, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Martina Fanelli
- Department of Oncology, Azienda Ospedaliero Universitaria S. M. della Misericordia, 33100 Udine, Italy
| | - Cecilia Nasso
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
- Medical Oncology, Ospedale Santa Corona, 17027 Pietra Ligure, Italy
| | - Marco Oltrecolli
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Marta Pirola
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Elisa D’Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Giuseppe Pugliese
- Department of Oncology and Hematology, Univerity of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Cerri
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Bruno Madeo
- Unit of Endocrinology, Department of Medical Specialities, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
19
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
20
|
Tu Z, Li K, Ji Q, Huang Y, Lv S, Li J, Wu L, Huang K, Zhu X. Pan-cancer analysis: predictive role of TAP1 in cancer prognosis and response to immunotherapy. BMC Cancer 2023; 23:133. [PMID: 36759763 PMCID: PMC9912572 DOI: 10.1186/s12885-022-10491-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Transporter associated with antigen processing 1 (TAP1) is a molecule involved in processing and presentation of major histocompatibility complex class I restricted antigens, including tumor-associated antigens. TAP1 participates in tumor immunity, and is aberrantly expressed in multiple cancer types; METHODS: Transcriptome profiles were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Genetic alterations, protein distribution, and interaction information for TAP1 were downloaded from cBioPortal, Human Protein Atlas and Compartmentalized Protein-Protein Interaction, respectively. Single-cell analyses of TAP1 across cancers were conducted via the Tumor Immune Single-cell Hub website. Gene set enrichment analysis was employed to investigate TAP1-associated functional mechanisms and processes. Immune cell infiltration was explored using Tumor Immune Estimation Resource 2.0. Pan-cancer correlations between TAP1 expression and immunotherapy biomarkers were explored using the Spearman's correlation test. Associations with immunotherapy responses were also investigated using clinicopathological and prognostic information from cohorts of patients with cancer receiving immune checkpoint inhibitors. RESULTS TAP1 expression was elevated in most cancer types and exhibited distinct prognostic value. Immune cells expressed more TAP1 than malignant cells within most tumors. TAP1 expression was significantly correlated with immune-related pathways, T-lymphocyte infiltration, and immunotherapeutic biomarkers. Clinical cohort validation revealed a significant correlation with immune therapeutic effects and verified the prognostic role of TAP1 in immunotherapy. Western blot assay indicated that TAP1 is upregulated in glioblastoma compared with adjacent normal brain tissues. CONCLUSION TAP1 is a robust tumor prognostic biomarker and a novel predictor of clinical prognosis and immunotherapeutic responses in various cancer types.
Collapse
Affiliation(s)
- Zewei Tu
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China
| | - Kuangxun Li
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Queen Mary School, University of Nanchang, Jiangxi 330006 Nanchang, P. R. China
| | - Qiankun Ji
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China
| | - Yuyang Huang
- grid.260463.50000 0001 2182 8825Queen Mary School, University of Nanchang, Jiangxi 330006 Nanchang, P. R. China
| | - Shigang Lv
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China
| | - Jingying Li
- grid.412455.30000 0004 1756 5980Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| |
Collapse
|
21
|
Zhang D, Liu H, Wang W, Xu G, Yin C, Wang S. STEAP2 promotes osteosarcoma progression by inducing epithelial-mesenchymal transition via the PI3K/AKT/mTOR signaling pathway and is regulated by EFEMP2. Cancer Biol Ther 2022; 23:1-16. [PMID: 36316642 PMCID: PMC9629848 DOI: 10.1080/15384047.2022.2136465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study was designed to explore the prognostic significance and functionality of STEAP2 (six-transmembrane epithelial antigen of prostate 2) in osteosarcomas and determine whether EFEMP2 (Epidermal growth factor-containing fibulin-like extracellular matrix protein 2) targets STEAP2 to facilitate osteosarcoma cell infiltration and migration. STEAP2 expression in peritumoral tissues, osteosarcoma, benign fibrous dysplasia, osteosarcoma cells, normal osteoblastic hFOB cells, and various invasive subclones was evaluated using IHC, ICC, and qRT-PCR. We also evaluated the association between STEAP2 expression and disease outcome using Kaplan-Meier analyses and then investigated STEAP2 regulation and its functional effects using both in vitro and in vivo assays. The results revealed that the upregulation of STEAP2 in osteosarcoma tissues positively correlated with both the malignant osteosarcoma phenotype and poor patient outcomes. In addition, STEAP2 expression induced epithelial-mesenchymal transition (EMT) via the PI3K/AKT/mTOR axis and facilitated osteosarcoma cell infiltration and migration. Changes in EFEMP2 expression resulted in correlating changes in STEAP2 expression, with EFEMP2-overexpressing osteosarcoma cells exhibiting a less invasive phenotype and reduced EMT following STEAP2 inhibition. It is also worth noting that although EFEMP2 overexpression activated the PI3K/AKT/mTOR pathway promoting EMT, it did not affect osteosarcoma cells in which STEAP2 or Akt was knocked down. Thus, we can conclude that STEAP2 acts as an oncogene in osteosarcoma progression, while EFEMP2 enables PI3K/AKT/mTOR axis initiation and EMT by partly targeting STEAP2, thereby facilitating osteosarcoma cell infiltration and migration.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Suzhou Hospital of Anhui Medical University, Suzhou, P.R. China
| | - Haitao Liu
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Weihua Wang
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Gang Xu
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Chenxiao Yin
- Department of Orthopedics, Xiangcheng No. 2 People’s Hospital, Suzhou, P.R. China
| | - Songgang Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,CONTACT Songgang Wang Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xilu, Jinan, Shandong250012, China
| |
Collapse
|
22
|
Wänman J, Abul-Kasim K, Semenas J, Thysell E, Bergh A, Wikström P, Crnalic S. A Novel Radiographic Pattern Related to Poor Prognosis in Patients with Prostate Cancer with Metastatic Spinal Cord Compression. EUR UROL SUPPL 2022; 48:44-53. [PMID: 36743403 PMCID: PMC9895766 DOI: 10.1016/j.euros.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Prostate cancer spinal bone metastases can have a radiographic profile that mimics multiple myeloma. Objective To analyse the presence and prognostic value of myeloma-like prostate cancer bone metastases and its relation to known clinical, molecular, and morphological prognostic markers. Design setting and participants A cohort of 110 patients with prostate cancer who underwent surgery for metastatic spinal cord compression (MSCC) was analysed. Spinal bone metastases were classified as myeloma like (n = 20) or non-myeloma like (n = 90) based on magnetic resonance imaging prior to surgery. An immunohistochemical analysis of metastasis samples was performed to assess tumour cell proliferation (percentage of Ki67-positive cells) and the expression levels of prostate-specific antigen (PSA) and androgen receptor (AR). The metastasis subtypes MetA, MetB, and MetC were determined from transcriptomic profiling. Outcome measurements and statistical analysis Survival curves were compared with the log-rank test. Univariate and multivariate Cox proportional hazard models were used to assess the effects of prognostic variables. Groups were compared using the Mann-Whitney U test for continuous variables and the chi-square test for categorical variables. Results and limitations Patients with the myeloma-like metastatic pattern had median survival after surgery for MSCC of 1.7 (range 0.1-33) mo, while the median survival period of those with the non-myeloma-like pattern was 13 (range 0-140) mo (p < 0.001). The myeloma-like appearance had an independent prognostic value for the risk of death after MSCC surgery (adjusted hazard ratio 2.4, p = 0.012). Postoperative neurological function was significantly reduced in the myeloma-like group. No association was found between the myeloma-like pattern and morphological markers of known relevance for this patient group: the transcriptomic subtypes MetA, MetB, and MetC; tumour cell proliferation; and AR and PSA expression. Conclusions A myeloma-like metastatic pattern identifies an important subtype of metastatic prostate cancer associated with poor survival and neurological outcomes after surgery for MSCC. Patient summary This study describes a novel radiographic pattern of prostate cancer bone metastases and its relation to poor patient prognosis.
Collapse
Affiliation(s)
- Johan Wänman
- Department of Surgical and Perioperative Sciences, Orthopaedics, Umeå University, Umeå, Sweden,Corresponding author. Department of Orthopaedics, Umeå University Hospital, S-90185 Umeå, Sweden. Tel. +46 702 698 300.
| | - Kasim Abul-Kasim
- Division of Neuroradiology, Diagnostic Centre for Imaging and Functional Medicine, Faculty of Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Julius Semenas
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopaedics, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy. Cancers (Basel) 2022; 14:cancers14215195. [PMID: 36358614 PMCID: PMC9659192 DOI: 10.3390/cancers14215195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Metastatic prostate cancer is a lethal disease and metastasis-specific treatments need to be developed. Mechanisms driving metastases and primary tumor growth could be different, but this is largely unexplored. We previously discovered that bone metastases can be separated into transcriptomic-based subtypes, showing different responses to standard androgen-deprivation therapy for metastatic prostate cancer. One subtype, named MetB, is particularly aggressive and has the worst prognosis. Here, we describe similarities and differences between primary tumors and their metastases, and specifically examine if the development of specific subtype of bone metastases can be predicted by analyzing the primary tumor. Results show that many aspects of prostate cancer bone metastases morphology are related to those in the primary tumor, while others are not. Importantly, men with primary tumors with high cell proliferation and low cellular PSA expression tend to develop metastases enriched for the MetB subtype, have poor prognosis, and need complementary treatment to standard hormone treatment. Abstract Prostate cancer (PC) bone metastases can be divided into transcriptomic subtypes, by us termed MetA-C. The MetB subtype, constituting about 20% of the cases, is characterized by high cell cycle activity, low androgen receptor (AR) activity, and a limited response to standard androgen deprivation therapy (ADT). Complementary treatments should preferably be introduced early on if the risk of developing metastases of the MetB subtype is predicted to behigh. In this study, we therefore examined if the bone metastatic subtype and patient outcome after ADT could be predicted by immunohistochemical analysis of epithelial and stromal cell markers in primary tumor biopsies obtained at diagnosis (n = 98). In this advanced patient group, primary tumor International Society of Urological Pathology (ISUP) grade was not associated with outcome or metastasis subtype. In contrast, high tumor cell Ki67 labeling (proliferation) in combination with low tumor cell immunoreactivity for PSA, and a low fraction of AR positive stroma cells in the primary tumors were prognostic for poor survival after ADT. Accordingly, the same tissue markers were associated with developing metastases enriched for the aggressive MetB subtype. The development of the contrasting MetA subtype, showing the best response to ADT, could be predicted by the opposite staining pattern. We conclude that outcome after ADT and metastasis subtype can, at least to some extent, be predicted by analysis of primary tumor characteristics, such as tumor cell proliferation and PSA expression, and AR expression in stromal cells.
Collapse
|
24
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
25
|
Thysell E, Köhn L, Semenas J, Järemo H, Freyhult E, Lundholm M, Thellenberg Karlsson C, Damber J, Widmark A, Crnalic S, Josefsson A, Welén K, Nilsson RJA, Bergh A, Wikström P. Clinical and biological relevance of the transcriptomic-based prostate cancer metastasis subtypes MetA-C. Mol Oncol 2022; 16:846-859. [PMID: 34889043 PMCID: PMC8847984 DOI: 10.1002/1878-0261.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/10/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022] Open
Abstract
To improve treatment of metastatic prostate cancer, the biology of metastases needs to be understood. We recently described three subtypes of prostate cancer bone metastases (MetA-C), based on differential gene expression. The aim of this study was to verify the clinical relevance of these subtypes and to explore their biology and relations to genetic drivers. Freshly-frozen metastasis samples were obtained as hormone-naive (n = 17), short-term castrated (n = 21), or castration-resistant (n = 65) from a total of 67 patients. Previously published sequencing data from 573 metastasis samples were also analyzed. Through transcriptome profiling and sample classification based on a set of predefined MetA-C-differentiating genes, we found that most metastases were heterogeneous for the MetA-C subtypes. Overall, MetA was the most common subtype, while MetB was significantly enriched in castration-resistant samples and in liver metastases, and consistently associated with poor prognosis. By gene set enrichment analysis, the phenotype of MetA was described by high androgen response, protein secretion and adipogenesis, MetB by high cell cycle activity and DNA repair, and MetC by epithelial-to-mesenchymal transition and inflammation. The MetB subtype demonstrated single nucleotide variants of RB transcriptional corepressor 1 (RB1) and loss of 21 genes at chromosome 13, including RB1, but provided independent prognostic value to those genetic aberrations. In conclusion, a distinct set of gene transcripts can be used to classify prostate cancer metastases into the subtypes MetA-C. The MetA-C subtypes show diverse biology, organ tropism, and prognosis. The MetA-C classification may be used independently, or in combination with genetic markers, primarily to identify MetB patients in need of complementary therapy to conventional androgen receptor-targeting treatments.
Collapse
Affiliation(s)
- Elin Thysell
- Department of Medical Biosciences, PathologyUmeå UniversitySweden
| | - Linda Köhn
- Department of Radiation Sciences, OncologyUmeå UniversitySweden
| | - Julius Semenas
- Department of Medical Biosciences, PathologyUmeå UniversitySweden
| | - Helena Järemo
- Department of Medical Biosciences, PathologyUmeå UniversitySweden
| | - Eva Freyhult
- Department of Cell and Molecular BiologyNational Bioinformatics Infrastructure SwedenScience for Life LaboratoryUppsala UniversitySweden
| | - Marie Lundholm
- Department of Medical Biosciences, PathologyUmeå UniversitySweden
| | | | - Jan‐Erik Damber
- Department of UrologySahlgrenska Center for Cancer ResearchInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgSweden
| | - Anders Widmark
- Department of Radiation Sciences, OncologyUmeå UniversitySweden
| | - Sead Crnalic
- Department of Surgery and Perioperative Sciences, OrthopedicsUmeå UniversitySweden
| | - Andreas Josefsson
- Department of UrologySahlgrenska Center for Cancer ResearchInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgSweden
- Department of Surgery and Perioperative Sciences, Urology & AndrologyUmeå UniversitySweden
- Wallenberg Center for Molecular MedicineUmeå UniversitySweden
| | - Karin Welén
- Department of UrologySahlgrenska Center for Cancer ResearchInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgSweden
| | | | - Anders Bergh
- Department of Medical Biosciences, PathologyUmeå UniversitySweden
| | | |
Collapse
|
26
|
Sethakorn N, Heninger E, Sánchez-de-Diego C, Ding AB, Yada RC, Kerr SC, Kosoff D, Beebe DJ, Lang JM. Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers (Basel) 2022; 14:757. [PMID: 35159026 PMCID: PMC8833657 DOI: 10.3390/cancers14030757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.
Collapse
Affiliation(s)
- Nan Sethakorn
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Cristina Sánchez-de-Diego
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Adeline B. Ding
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Ravi Chandra Yada
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Sheena C. Kerr
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - David Kosoff
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua M. Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
27
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
28
|
Boibessot C, Molina O, Lachance G, Tav C, Champagne A, Neveu B, Pelletier J, Pouliot F, Fradet V, Bilodeau S, Fradet Y, Bergeron A, Toren P. Subversion of infiltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clin Transl Med 2022; 12:e581. [PMID: 35075795 PMCID: PMC8786699 DOI: 10.1002/ctm2.581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) support tumor progression within the tumor microenvironment (TME). Many questions remain as to the origin, development, and function of TAMs within the prostate TME. Evaluation of TAMs in prostate cancer (PCa) patients identified the immunosuppressive TAM marker CD163 in adjacent normal epithelium as an independent predictor of metastases or PCa death. Flow cytometry analyses identified prostate TAMs as frequently expressing both proinflammatory M1 (CCR7+) and immunosuppressive M2 (CD163+) markers. In vitro, we demonstrate PCa cells similarly subvert human M1 macrophages toward a mixed M1/M2 macrophage phenotype favoring tumor growth. Further the cytokine milieu-induced transition between immunosuppressive M2 to proinflammatory M1 (M2→M1) macrophages is abrogated by the presence of PCa cells. RNA sequencing suggests alterations in chemokine expression in prostate TAMs due to the presence of PCa cells. Together, our results suggest that prostate TAMs originate from inflammatory infiltrating macrophages, which are then reprogrammed mainly by PCa cells, but also the cytokine milieu. A better understanding of this subversion of macrophages within the prostate may lead to novel treatment strategies.
Collapse
Affiliation(s)
- Clovis Boibessot
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Oscar Molina
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Gabriel Lachance
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Christophe Tav
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Centre de Recherche en Données Massives de l'Université LavalQuébecCanada
| | - Audrey Champagne
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Bertrand Neveu
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Jean‐François Pelletier
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Frédéric Pouliot
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Département de chirurgieUniversité LavalQuébecCanada
| | - Vincent Fradet
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Département de chirurgieUniversité LavalQuébecCanada
| | - Steve Bilodeau
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Centre de Recherche en Données Massives de l'Université LavalQuébecCanada
- Département de biologie moléculairebiochimie médicale et pathologieFaculté de MédecineUniversité LavalQuébecCanada
| | - Yves Fradet
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Département de chirurgieUniversité LavalQuébecCanada
| | - Alain Bergeron
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Département de chirurgieUniversité LavalQuébecCanada
| | - Paul Toren
- Centre de recherche du CHU de Québec—Université LavalAxe OncologieQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Département de chirurgieUniversité LavalQuébecCanada
| |
Collapse
|
29
|
Immune response and inflammation in cancer health disparities. Trends Cancer 2021; 8:316-327. [PMID: 34965905 DOI: 10.1016/j.trecan.2021.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022]
Abstract
Cancer death rates vary among population groups. Underserved populations continue to experience an excessive burden of lethal cancers that is largely explained by health-care disparities. However, the prominent role of advanced-stage disease as a driver of cancer survival disparities may indicate that some cancers are more aggressive in certain population groups than others. The tumor mutational burden can show large differences among patients with similar-stage disease but differences in race/ethnicity or residence. These dissimilarities may result from environmental or chronic inflammatory exposures, altering tumor biology and the immune response. We discuss the evidence that inflammation and immune response dissimilarities among population groups contribute to cancer disparities and how they can be targeted to reduce these disparities.
Collapse
|
30
|
Fonseca NM, Roberts ME, Wyatt AW. A marrow-minded look at immune checkpoint blockade resistance in metastatic castration resistant prostate cancer. Transl Androl Urol 2021; 10:4009-4013. [PMID: 34804843 PMCID: PMC8575591 DOI: 10.21037/tau-20-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Morgan E Roberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2021; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA; VA Northern California Health Care System, Mather, California, USA.
| |
Collapse
|
32
|
Imada EL, Sanchez DF, Dinalankara W, Vidotto T, Ebot EM, Tyekucheva S, Franco GR, Mucci LA, Loda M, Schaeffer EM, Lotan T, Marchionni L. Transcriptional landscape of PTEN loss in primary prostate cancer. BMC Cancer 2021; 21:856. [PMID: 34311724 PMCID: PMC8314517 DOI: 10.1186/s12885-021-08593-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa. METHODS Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using the TCGA quantifications from the FC-R2 expression atlas. RESULTS The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression. CONCLUSION We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the immune system. These findings can help the development of new biomarkers and help guide therapy choices.
Collapse
Affiliation(s)
- Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ericka M Ebot
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorelei Ann Mucci
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Tamara Lotan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Farshchi F, Saadati A, Kholafazad-Kordasht H, Seidi F, Hasanzadeh M. Trifluralin recognition using touch-based fingertip: Application of wearable glove-based sensor toward environmental pollution and human health control. J Mol Recognit 2021; 34:e2927. [PMID: 34288170 DOI: 10.1002/jmr.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Monitoring of herbicides and pesticides in water, food, and the environment is essential for human health, and this requires low-cost, portable devices for widespread deployment of this technology. For the first time, a wearable glove-based electrochemical sensor based on conductive Ag nano-ink was developed for the on-site monitoring of trifluralin residue on the surface of various substrates. Three electrode system with optimal thicknesses was designed directly on the finger surface of a rubber glove. Then, fabricated electrochemical sensor used for the direct detection of trifluralin in the range of 0.01 μM to 1 mM on the surface of tomato and mulberry leaves using square wave voltammetry (SWV) and difference pulse voltammetry technique. The obtained LLOQ was 0.01 μM, which indicates the suitable sensitivity of this sensor. On the other hand, this sensor is portable, easy to use, and has a high environmental capability that can be effective in detecting other chemical threats in the soil and water environment.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kholafazad-Kordasht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Ylitalo EB, Thysell E, Landfors M, Brattsand M, Jernberg E, Crnalic S, Widmark A, Hultdin M, Bergh A, Degerman S, Wikström P. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin Epigenetics 2021; 13:133. [PMID: 34193246 PMCID: PMC8244194 DOI: 10.1186/s13148-021-01119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity. MATERIALS AND METHODS Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity. RESULTS Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT. CONCLUSIONS A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
35
|
High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102424. [PMID: 34067757 PMCID: PMC8156049 DOI: 10.3390/cancers13102424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence indicates calcium-binding S100 protein involvement in inflammation and tumor progression. In this prospective study, we evaluated the mRNA levels of two members of this family, S100A9 and S100A12, in peripheral blood mononuclear cells (PBMCs) in a cohort of 121 prostate cancer patients using RT-PCR. Furthermore, monocyte count was determined by flow cytometry. By stratifying patients into different risk groups, according to TNM stage, Gleason score and PSA concentration at diagnosis, expression of S100A9 and S100A12 was found to be significantly higher in patients with metastases compared to patients without clinically detectable metastases. In line with this, we observed that the protein levels of S100A9 and S100A12 in plasma were higher in patients with advanced disease. Importantly, in patients with metastases at diagnosis, high monocyte count and high levels of S100A9 and S100A12 were significantly associated with short progression free survival (PFS) after androgen deprivation therapy (ADT). High monocyte count and S100A9 levels were also associated with short cancer-specific survival, with monocyte count providing independent prognostic information. These findings indicate that circulating levels of monocytes, as well as S100A9 and S100A12, could be biomarkers for metastatic prostate cancer associated with particularly poor prognosis.
Collapse
|
36
|
Ren X, Chen X, Fang K, Zhang X, Wei X, Zhang T, Li G, Lu Z, Song N, Wang S, Qin C. COL5A2 Promotes Proliferation and Invasion in Prostate Cancer and Is One of Seven Gleason-Related Genes That Predict Recurrence-Free Survival. Front Oncol 2021; 11:583083. [PMID: 33816226 PMCID: PMC8012814 DOI: 10.3389/fonc.2021.583083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extensive research has revealed that the score derived from the Gleason grading system plays a pivotal role in predicting prostate cancer (PCa) progression. However, the underlying involvement of Gleason-related genes in PCa requires further investigation. This study aimed to identify Gleason-related genes with the potential to guide PCa therapy and future research. Differentially expressed genes (DEGs) were identified by comparing PCa tissues with high or low Gleason scores using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. R v3.6.1, SPSS v23, and ImageJ software were used for all analyses. An effective recurrence-free survival (RFS) predictive model based on seven Gleason-related genes was established and validated (TCGA, AUC = 0.803; five years, AUC = 0.740; three years, AUC = 0.722; one year, AUC = 0.711; GSE46602, AUC = 0.766; five years, AUC = 0.808; three years, AUC = 0.723; one year, AUC = 0.656; GSE116918, AUC = 0.788; five years, AUC = 0.704; three years, AUC = 0.693; one year, AUC = 0.996). Calibration and nomogram plots were conducted. Weighted correlation network analysis (WGCNA) was used, and COL5A2 was selected for further analysis. The results from in vitro experiments demonstrated that COL5A2 was upregulated in PCa with high Gleason scores. The knockdown of COL5A2 inhibited cell proliferation and invasion in PC-3 and LNCaP cell lines. Meanwhile, COL5A2 displayed a strong association with immune infiltration, which might be an underlying immunotherapy target for PCa. We successfully established a robust RFS predictive model. The findings from this study indicated that COL5A2 could promote cell proliferation and invasion in PCa.
Collapse
Affiliation(s)
- Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinglin Chen
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Fang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangyao Li
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Zhou Y, Bastian IN, Long MD, Dow M, Li W, Liu T, Ngu RK, Antonucci L, Huang JY, Phung QT, Zhao XH, Banerjee S, Lin XJ, Wang H, Dang B, Choi S, Karin D, Su H, Ellisman MH, Jamieson C, Bosenberg M, Cheng Z, Haybaeck J, Kenner L, Fisch KM, Bourgon R, Hernandez G, Lill JR, Liu S, Carter H, Mellman I, Karin M, Shalapour S. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc Natl Acad Sci U S A 2021; 118:e2025840118. [PMID: 33602823 PMCID: PMC7923353 DOI: 10.1073/pnas.2025840118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8+ CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.
Collapse
Affiliation(s)
- Yixuan Zhou
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Ingmar Niels Bastian
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Michelle Dow
- Division of Medical Genetics, Health Sciences, Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Weihua Li
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Rachael Katie Ngu
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Laura Antonucci
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jian Yu Huang
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Qui T Phung
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Xi-He Zhao
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Oncology Department, China Medical University Shengjing Hospital, 110004 Shenyang City, China
| | - Sourav Banerjee
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Department of Cellular Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Xue-Jia Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Biomedical Translational Research Institute and the First Affiliated Hospital, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Hongxia Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850 Beijing, China
| | - Brian Dang
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sylvia Choi
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
| | - Hua Su
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Christina Jamieson
- Department of Urology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Marcus Bosenberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| | - Zhang Cheng
- Center for Epigenomics, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lukas Kenner
- Department of Pathology, Christian Doppler Laboratory, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Richard Bourgon
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Genevive Hernandez
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Jennie R Lill
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Hannah Carter
- Division of Medical Genetics, Health Sciences, Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093;
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Shabnam Shalapour
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054
| |
Collapse
|
38
|
Liu S, Huang D, Huang J, Yan J, Chen T, Zhang N, Jiang G, Gao Y, Xu D, Na R. Genome-wide Expression Analysis Identifies the Association between SEC14L2 and Castration-resistant Prostate Cancer Survival. J Cancer 2021; 12:2173-2180. [PMID: 33758595 PMCID: PMC7974876 DOI: 10.7150/jca.50299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Mechanism of castration-resistant prostate cancer (CRPC) is still unclear. Our objective is to investigate the association between genes expression and CRPC through the genome-wide approach and functional researches. Methods: Differentially expressed genes (DEGs) between PCa and CRPC tissues were identified using expression profile obtained from Gene Expression Omnibus database (GEO). Survival analysis was performed using online database Gene Expression Profiling Interactive Analysis (GEPIA). Oncomine database was further used to explore the relationship between DEGs expression levels with clinical parameters. After in silico study, SEC14L2-knockdown CRPC cells and normal prostatic epithelial cells were used for in vitro study to verify its biological functions. Results: A total of 3 consistently changed DEGs (SEC14L2, DMD, SEL1L) were identified correlating with CRPC after cross validation in three independent datasets. Low expression of SEC14L2 was associated with poorer disease-free survival and higher Gleason score than normal/high expression of SEC14L2. SEC14L2 knockdown promoted cell proliferation, migration, invasion as well as cell cycle progression in CRPC cells (all P<0.05) while no significant effects were observed in normal prostatic epithelial cells. Conclusions: Low expression of SEC14L2 was significantly associated with CRPC, and correlated with PCa aggressiveness and poorer prognosis. SEC14L2 might be a potential biomarker or drug target for CRPC.
Collapse
Affiliation(s)
- Shiyun Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Yan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhe Chen
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Gao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Program for Personalized Cancer Care, NorthShore University HealthSystem (Teaching affiliation of University of Chicago), Evanston, IL 60201, USA
| |
Collapse
|
39
|
Voss G, Haflidadóttir BS, Järemo H, Persson M, Catela Ivkovic T, Wikström P, Ceder Y. Regulation of cell-cell adhesion in prostate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM. Carcinogenesis 2021; 41:865-874. [PMID: 31738404 PMCID: PMC7359773 DOI: 10.1093/carcin/bgz191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell–cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell–cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell–cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.
Collapse
Affiliation(s)
- Gjendine Voss
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Helena Järemo
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Tina Catela Ivkovic
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Yu Z, Zou H, Wang H, Li Q, Yu D. Identification of Key Gene Signatures Associated With Bone Metastasis in Castration-Resistant Prostate Cancer Using Co-Expression Analysis. Front Oncol 2021; 10:571524. [PMID: 33604283 PMCID: PMC7884857 DOI: 10.3389/fonc.2020.571524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
About 80–90% of castration-resistant prostate cancer (CRPC) patients would develop bone metastasis. However, the molecular mechanisms of bone metastasis are still not clear. This study aimed to detect the differences between the tumor and normal samples in bone after metastatic colonization. Four transcriptional datasets (GSE32269, GSE101607, GSE29650, and GSE74685) were obtained from the GEO database. 1983 differentially expressed genes (DEGs) were first identified between tumor and normal marrow samples in GSE32269. Most of the top 10 up-regulated DEGs are related with prostate cancer, and the top 10 down-regulated DEGs are mainly related with bone development. Seven co-expression modules were then detected based on the 1469 DEGs shared by the four datasets. Three of them were found highly preserved among the four datasets. Enrichment analysis showed that the three modules were respectively enriched in Cell adhesion molecules (CAMs), Leukocyte transendothelial migration and cell cycle, which might play significantly important roles in the tumor development in bone marrow. Ten, 17, and 99 hub genes for each module were then identified. And four genes (C3AR1, IL10RA, LY86, and MS4A6A) were detect to be tightly related to progression of bone metastatic CRPC. ROC curve was plotted and AUC was calculated to distinguish tumor and normal bone marrow samples as well as bone and non-bone metastatic CRPCs. The present study identified key genes and modules involved in bone metastatic CRPCs, which may provide new insights and biomarkers for understanding of the molecular mechanisms of bone metastatic CRPC.
Collapse
Affiliation(s)
- Zhongxiang Yu
- Department of Orthopaedics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, China
| | - Hanlin Zou
- Department of Orthopedics, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, China
| | - Huihao Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, China
| | - Qi Li
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, China
| | - Dong Yu
- Center for Translational Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Kim EH, Cao D, Mahajan NP, Andriole GL, Mahajan K. ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers. NAR Cancer 2020; 2:zcaa018. [PMID: 32885168 PMCID: PMC7454006 DOI: 10.1093/narcan/zcaa018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
The androgen receptor (AR) is a critical transcription factor in prostate cancer (PC) pathogenesis. Its activity in malignant cells is dependent on interactions with a diverse set of co-regulators. These interactions fluctuate depending on androgen availability. For example, the androgen depletion increases the dependence of castration-resistant PCs (CRPCs) on the ACK1 and HOXB13 cell survival pathways. Activated ACK1, an oncogenic tyrosine kinase, phosphorylates cytosolic and nuclear proteins, thereby avoiding the inhibitory growth consequences of androgen depletion. Notably, ACK1-mediated phosphorylation of histone H4, which leads to epigenetic upregulation of AR expression, has emerged as a critical mechanism of CRPC resistance to anti-androgens. This resistance can be targeted using the ACK1-selective small-molecule kinase inhibitor (R)- 9b. CRPCs also deploy the bromodomain and extra-terminal domain protein BRD4 to epigenetically increase HOXB13 gene expression, which in turn activates the MYC target genes AURKA/AURKB. HOXB13 also facilitates ligand-independent recruitment of the AR splice variant AR-V7 to chromatin, compensating for the loss of the chromatin remodeling protein, CHD1, and restricting expression of the mitosis control gene HSPB8. These studies highlight the crosstalk between AR-ACK1 and AR-HOXB13 pathways as key mediators of CRPC recurrence.
Collapse
Affiliation(s)
- Eric H Kim
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Dengfeng Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
43
|
Owen KL, Gearing LJ, Zanker DJ, Brockwell NK, Khoo WH, Roden DL, Cmero M, Mangiola S, Hong MK, Spurling AJ, McDonald M, Chan C, Pasam A, Lyons RJ, Duivenvoorden HM, Ryan A, Butler LM, Mariadason JM, Giang Phan T, Hayes VM, Sandhu S, Swarbrick A, Corcoran NM, Hertzog PJ, Croucher PI, Hovens C, Parker BS. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep 2020; 21:e50162. [PMID: 32314873 PMCID: PMC7271653 DOI: 10.15252/embr.202050162] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The latency associated with bone metastasis emergence in castrate-resistant prostate cancer is attributed to dormancy, a state in which cancer cells persist prior to overt lesion formation. Using single-cell transcriptomics and ex vivo profiling, we have uncovered the critical role of tumor-intrinsic immune signaling in the retention of cancer cell dormancy. We demonstrate that loss of tumor-intrinsic type I IFN occurs in proliferating prostate cancer cells in bone. This loss suppresses tumor immunogenicity and therapeutic response and promotes bone cell activation to drive cancer progression. Restoration of tumor-intrinsic IFN signaling by HDAC inhibition increased tumor cell visibility, promoted long-term antitumor immunity, and blocked cancer growth in bone. Key findings were validated in patients, including loss of tumor-intrinsic IFN signaling and immunogenicity in bone metastases compared to primary tumors. Data herein provide a rationale as to why current immunotherapeutics fail in bone-metastatic prostate cancer, and provide a new therapeutic strategy to overcome the inefficacy of immune-based therapies in solid cancers.
Collapse
|
44
|
Dorff TB, Stein C, Kortylewski M, Posadas E, Synold T, Quinn D. Evaluating Changes in Immune Function and Bone Microenvironment During Radium-223 Treatment of Patients with Castration-Resistant Prostate Cancer. Cancer Biother Radiopharm 2020; 35:485-489. [PMID: 32366119 DOI: 10.1089/cbr.2019.3397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of radium-223 on the immune system and the bone tumor microenvironment are incompletely understood. The authors describe mechanisms by which radium-223 may interact with the immune system, specifically through STAT-3 and impact on tumor and circulating lymphocyte populations. They review mechanisms through which effects of radium-223 and androgen-targeted therapy on bone microenvironment could be better elucidated. These knowledge gaps currently limit development of optimal combination therapy approaches for radium-223. Tissue based studies are currently underway in a prospective clinical trial to enhance therapeutic perspective on radium-223 treatment in the prostate cancer landscape.
Collapse
Affiliation(s)
- Tanya B Dorff
- Department of Medical Oncology and Developmental Therapeutics, City of Hope National Medical Center, Duarte, California, USA
| | - Cy Stein
- Department of Medical Oncology and Developmental Therapeutics, City of Hope National Medical Center, Duarte, California, USA
| | - Marcin Kortylewski
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Timothy Synold
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - David Quinn
- Department of Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
45
|
Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, Sjöström M, Den RB, Freedland SJ, Klein EA, Karnes RJ, Schaeffer EM, Xu M, Speers C, Nguyen PL, Ross AE, Chan JM, Cooperberg MR, Carroll PR, Davicioni E, Fong L, Spratt DE, Feng FY. The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. J Natl Cancer Inst 2020; 111:301-310. [PMID: 30321406 DOI: 10.1093/jnci/djy141] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunotherapy has been less successful in treating prostate cancer than other solid tumors. We sought to better understand the immune landscape in prostate cancer and identify immune-related biomarkers and potential therapeutic targets. METHODS We analyzed gene expression data from 7826 prospectively collected prostatectomy samples (2013-2016), and 1567 retrospective samples with long-term clinical outcomes, for a total of 9393 samples, all profiled on the same commercial clinical platform in a CLIA-certified lab. The primary outcome was distant metastasis-free survival (DMFS). Secondary outcomes included biochemical recurrence-free survival (bRFS), prostate cancer-specific survival (PCSS), and overall survival (OS). All statistical tests were two-sided. RESULTS Unsupervised hierarchical clustering of hallmark pathways demonstrated an immune-related tumor cluster. Increased estimated immune content scores based on immune-specific genes from the literature were associated with worse bRFS (hazard ratio [HR] = 1.26 [95% confidence interval [CI] = 1.12 to 1.42]; P < .001), DMFS (HR = 1.34 [95% CI = 1.13 to 1.58]; P < .001), PCSS (HR = 1.53 [95% CI = 1.21 to 1.92]; P < .001), and OS (HR = 1.27 [95% CI = 1.07 to 1.50]; P = .006). Deconvolution using Cibersort revealed that mast cells, natural killer cells, and dendritic cells conferred improved DMFS, whereas macrophages and T-cells conferred worse DMFS. Interestingly, while PD-L1 was not prognostic, consistent with its low expression in prostate cancer, PD-L2 was expressed at statistically significantly higher levels (P < .001) and was associated with worse bRFS (HR = 1.17 [95% CI = 1.03 to 1.33]; P = .01), DMFS (HR = 1.25 [95% CI = 1.05 to 1.49]; P = .01), and PCSS (HR = 1.45 [95% CI = 1.13 to 1.86]; P = .003). PD-L2 was strongly associated with immune-related pathways on gene set enrichment analysis suggesting that it is playing an important role in immune modulation in clinical prostate cancer samples. Furthermore, PD-L2 was correlated with radiation response pathways, and also predicted response to postoperative radiation therapy (PORT) on multivariable interaction analysis (P = .03). CONCLUSION In the largest study of its kind to date, these results illustrate the complex relationship between the tumor-immune interaction, prognosis, and response to radiotherapy, and nominate PD-L2 as a potential novel therapeutic target in prostate cancer, potentially in combination with radiotherapy.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | | | - S Laura Chang
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Rajdeep Das
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | | | - Yang Liu
- GenomeDx Biosciences Inc., Vancouver, BC, Canada
| | - Martin Sjöström
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Melody Xu
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Paul L Nguyen
- Dana-Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Harvard Medical School, Boston, MA
| | - Ashley E Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD
| | - June M Chan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Epidemiology & Biostatistics, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Matthew R Cooperberg
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Peter R Carroll
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | | | - Lawrence Fong
- Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA.,Department of Urology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
46
|
Ylitalo EB, Thysell E, Thellenberg‐Karlsson C, Lundholm M, Widmark A, Bergh A, Josefsson A, Brattsand M, Wikström P. Marked response to cabazitaxel in prostate cancer xenografts expressing androgen receptor variant 7 and reversion of acquired resistance by anti-androgens. Prostate 2020; 80:214-224. [PMID: 31799745 PMCID: PMC6973163 DOI: 10.1002/pros.23935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Taxane treatment may be a suitable therapeutic option for patients with castration-resistant prostate cancer and high expression of constitutively active androgen receptor variants (AR-Vs). The aim of the study was to compare the effects of cabazitaxel and androgen deprivation treatments in a prostate tumor xenograft model expressing high levels of constitutively active AR-V7. Furthermore, mechanisms behind acquired cabazitaxel resistance were explored. METHODS Mice were subcutaneously inoculated with 22Rv1 cells and treated with surgical castration (n = 7), abiraterone (n = 9), cabazitaxel (n = 6), castration plus abiraterone (n = 8), castration plus cabazitaxel (n = 11), or vehicle and/or sham operation (n = 23). Tumor growth was followed for about 2 months or to a volume of approximately 1000 mm3 . Two cabazitaxel resistant cell lines; 22Rv1-CabR1 and 22Rv1-CabR2, were established from xenografts relapsing during cabazitaxel treatment. Differential gene expression between the cabazitaxel resistant and control 22Rv1 cells was examined by whole-genome expression array analysis followed by immunoblotting, immunohistochemistry, and functional pathway analysis. RESULTS Abiraterone treatment alone or in combination with surgical castration had no major effect on 22Rv1 tumor growth, while cabazitaxel significantly delayed and in some cases totally abolished 22Rv1 tumor growth on its own and in combination with surgical castration. The cabazitaxel resistant cell lines; 22Rv1-CabR1 and 22Rv1-CabR2, both showed upregulation of the ATP-binding cassette sub-family B member 1 (ABCB1) efflux pump. Treatment with ABCB1 inhibitor elacridar completely restored susceptibility to cabazitaxel, while treatment with AR-antagonists bicalutamide and enzalutamide partly restored susceptibility to cabazitaxel in both cell lines. The cholesterol biosynthesis pathway was induced in the 22Rv1-CabR2 cell line, which was confirmed by reduced sensitivity to simvastatin treatment. CONCLUSIONS Cabazitaxel efficiently inhibits prostate cancer growth despite the high expression of constitutively active AR-V7. Acquired cabazitaxel resistance involving overexpression of efflux transporter ABCB1 can be reverted by bicalutamide or enzalutamide treatment, indicating the great clinical potential for combined treatment with cabazitaxel and anti-androgens.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | | | - Marie Lundholm
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Anders Widmark
- Department of Radiation Sciences, OncologyUmeå UniversityUmeåSweden
| | - Anders Bergh
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Andreas Josefsson
- Department of Urology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Surgical and Perioperative Sciences, Urology and AndrologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Maria Brattsand
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Pernilla Wikström
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| |
Collapse
|
47
|
Yu H, Zhao F, Li J, Zhu K, Lin H, Pan Z, Zhu M, Yao M, Yan M. TBX2 Identified as a Potential Predictor of Bone Metastasis in Lung Adenocarcinoma via Integrated Bioinformatics Analyses and Verification of Functional Assay. J Cancer 2020; 11:388-402. [PMID: 31897234 PMCID: PMC6930436 DOI: 10.7150/jca.31636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Bone metastasis from patients with advanced lung adenocarcinoma (LAC) is a very serious complication. To better understand the molecular mechanism, our current study sheds light on identification of hub genes mediating bone metastatic spread by combining bioinformatic analysis with functional verification. Methods: First, we downloaded a lung adenocarcinoma dataset (GSE76194) from Gene Expression Omnibus, analyzed differentially expressed genes (DEGs) through Limma package in R software and constructed a protein-protein interaction network. Based on that preliminary data, we further performed modular and topological analysis using Cystoscope to obtain biological connected genes. Through literature searching and performing mRNA expression analysis on the other independent public dataset (GSE10799), we finally focused on TBX2. Functional effects of TBX2 were performed in tumorigenicity assays including migration and invasion assays, cell proliferation assay, and cell cycle assay. In addition, mechanically, we found enriched pathways related to bone metastasis using Gene Set Enrichment Analysis (GSEA) and validated our results by western blot. Result: A total of 1132 significant genes were sorted initially. We selected common significant genes (log FC>2; p<0.01) from both the biological network data and microarray data. In total, 44 such genes were identified. we found TBX2, along with 10 other genes, to be reported with relevance to bone metastasis in other cancer types. Moreover, TBX2 showed significantly higher expression levels in patients that were found positive for metastasis to bone marrow compared to patients that did not exhibit this type of metastasis in the other separated cohort (GSE10799). Thus, we finally focused on TBX2. We found that TBX2 had detectable expression in LAC cell lines and silencing endogenous TBX2 expression in A549 and H1299 cell lines markedly suppressed migration and invasion, cell proliferation and arrested cell-cycle. Pathway enrichment analyses suggested that TBX2 drove LAC oncogenesis and metastasis through various pathways with epithelial mesenchymal transition (EMT) figuring prominently in the bone metastatic group, which was evidenced by western blot. Conclusion: Collectively, TBX2 plays as a potential predictor of bone metastasis from LAC, yielding a better promise view towards "driver" gene responsible for bone metastasis.
Collapse
Affiliation(s)
- Huajian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kechao Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
49
|
Joncas FH, Lucien F, Rouleau M, Morin F, Leong HS, Pouliot F, Fradet Y, Gilbert C, Toren P. Plasma extracellular vesicles as phenotypic biomarkers in prostate cancer patients. Prostate 2019; 79:1767-1776. [PMID: 31475741 DOI: 10.1002/pros.23901] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of phenotypic biomarkers to aid the selection of treatment for patients with castrate-resistant prostate cancer (CRPC) is an important priority. Plasma exosomes have excellent potential as real-time biomarkers to characterize the tumor because they are easily accessible in the blood and contain DNA, RNA, and protein from the parent cell. This study aims to investigate the characteristics of putative prostate-specific plasma extracellular vesicle (EV) markers and their relationship with clinical outcomes. METHODS AND PATIENTS We investigated plasma EVs in a total of 89 patients with prostate cancer (PCa) at different stages of disease progression. EVs were isolated using both precipitation and ultracentrifugation methods; physical characterization was performed using dynamic light scattering, acetylcholinesterase (AChE) activity, and velocity gradients. An immunocapture method was developed for the evaluation of prostate-specific membrane antigen (PSMA)-positive exosomes. Exosomal messenger RNA (mRNA) was quantified using droplet digital polymerase chain reaction for the expression of KLK3 and androgen receptor splice variant 7 (AR-V7) genes, which code prostate-specific antigen (PSA) and AR-V7, respectively. Serum sex steroids were measured using liquid chromatography-tandem mass spectroscopy. RESULTS Isolated exosomes from patients with CRPC had a smaller hydrodynamic size than those isolated from localized patients with PCa, while AChE activity showed no difference. Moreover, no differences were observed after initiation of androgen deprivation therapy in serial patient samples. Velocity gradients identified that PSMA-positive exosomes occupied a specific fraction of isolated EVs. A total of 35 patients with CRPC had mRNA analyzed from isolated plasma exosomes. Detectable exosomal KLK3 corresponded with higher concomitant serum PSA measurements, as expected (mean, 112.6 vs 26.61 ng/mL; P = .065). Furthermore, detectable levels of AR-V7 mRNA were associated with a shorter time to progression (median, 16.0 vs 28.0 months; P = .0499). Furthermore, detectable exosomal AR-V7 was significantly associated with testosterone levels below the lower limit of quantification (<0.1 nM). CONCLUSIONS Our results suggest that exosomal AR-V7 is correlated with lower sex steroid levels in CRPC patients with a poorer prognosis. PSMA immunocapture does not appear sufficient to isolate PCa-specific exosomes.
Collapse
Affiliation(s)
- France-Hélène Joncas
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic Cancer Centre, Rochester, Minnesota
| | - Mélanie Rouleau
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Fannie Morin
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Hon Sing Leong
- Department of Urology, Mayo Clinic Cancer Centre, Rochester, Minnesota
| | - Frédéric Pouliot
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Yves Fradet
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| | - Paul Toren
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec,- Université Laval Research Center, Quebec City, Quebec, Canada
| |
Collapse
|
50
|
Umbreen S, Banday MM, Jamroze A, Mansini AP, Ganaie AA, Ferrari MG, Maqbool R, Beigh FH, Murugan P, Morrissey C, Corey E, Konety BR, Saleem M. COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer. Mol Cancer Ther 2019; 18:2111-2123. [PMID: 31467179 DOI: 10.1158/1535-7163.mct-19-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.
Collapse
Affiliation(s)
- Syed Umbreen
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Queens University, Belfast, Northern Ireland
| | - Mudassir Meraj Banday
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anmbreen Jamroze
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Hormel Institute, Austin, Minnesota
| | - Adrian P Mansini
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arsheed A Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raihana Maqbool
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Firdous H Beigh
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Badrinath R Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|