1
|
Tagawa M, Hiroi H, Nakano Y, Morishita R, Kobayashi K, Sakai O. Clinical Utility of Circulating Cell-Free DNA as a Liquid Biopsy in Cats With Various Tumours. Vet Comp Oncol 2024. [PMID: 39385318 DOI: 10.1111/vco.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Only a limited number of tumour biomarkers are currently available in veterinary medicine, particularly in cats. Cell-free DNA (cfDNA) is an extracellular DNA fragment released upon cell death and is considered a minimally invasive biomarker for the diagnosis and monitoring of various human malignancies. This study aimed to clarify the utility of circulating cfDNA as a liquid biopsy for various feline tumours. Plasma samples were collected from 44 cats with various tumours, 24 cats with other diseases and 10 healthy controls. A follow-up study was conducted in three tumour-bearing patients. All cfDNA concentrations were quantified via real-time polymerase chain reaction (PCR), which provided short and long fragments of a newly identified feline LINE-1 gene. We found that cfDNA levels were significantly higher in cats with various tumours than in those with other diseases or healthy controls. The cfDNA concentration was not correlated with serum amyloid A (SAA) levels. Cats with tumours exhibited elevated cfDNA levels that predicted tumour-bearing with a sensitivity and specificity of 50.5% and 91.2%, respectively (AUC 0.736; p < 0.001). In lymphoma cases, cats with high cfDNA levels had significantly shorter survival times than those with low cfDNA levels (median: 33 days vs. 178 days; p = 0.003). In addition, the cfDNA levels of the three patients correlated with clinical status during follow-up. Collectively, these findings indicate the potential of cfDNA as a useful biomarker for the diagnosis, therapeutic monitoring and prognostic assessment of tumours in cats.
Collapse
Affiliation(s)
- Michihito Tagawa
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hotaka Hiroi
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yuzuki Nakano
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Riyo Morishita
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Osamu Sakai
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
2
|
Islam MA, Sehar U, Sultana OF, Mukherjee U, Brownell M, Kshirsagar S, Reddy PH. SuperAgers and centenarians, dynamics of healthy ageing with cognitive resilience. Mech Ageing Dev 2024; 219:111936. [PMID: 38657874 DOI: 10.1016/j.mad.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Graceful healthy ageing and extended longevity is the most desired goal for human race. The process of ageing is inevitable and has a profound impact on the gradual deterioration of our physiology and health since it triggers the onset of many chronic conditions like dementia, osteoporosis, diabetes, arthritis, cancer, and cardiovascular disease. However, some people who lived/live more than 100 years called 'Centenarians" and how do they achieve their extended lifespans are not completely understood. Studying these unknown factors of longevity is important not only to establish a longer human lifespan but also to manage and treat people with shortened lifespans suffering from age-related morbidities. Furthermore, older adults who maintain strong cognitive function are referred to as "SuperAgers" and may be resistant to risk factors linked to cognitive decline. Investigating the mechanisms underlying their cognitive resilience may contribute to the development of therapeutic strategies that support the preservation of cognitive function as people age. The key to a long, physically, and cognitively healthy life has been a mystery to scientists for ages. Developments in the medical sciences helps us to a better understanding of human physiological function and greater access to medical care has led us to an increase in life expectancy. Moreover, inheriting favorable genetic traits and adopting a healthy lifestyle play pivotal roles in promoting longer and healthier lives. Engaging in regular physical activity, maintaining a balanced diet, and avoiding harmful habits such as smoking contribute to overall well-being. The synergy between positive lifestyle choices, access to education, socio-economic factors, environmental determinants and genetic supremacy enhances the potential for a longer and healthier life. Our article aims to examine the factors associated with healthy ageing, particularly focusing on cognitive health in centenarians. We will also be discussing different aspects of ageing including genomic instability, metabolic burden, oxidative stress and inflammation, mitochondrial dysfunction, cellular senescence, immunosenescence, and sarcopenia.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Juškevičiūtė E, Neuberger E, Eimantas N, Venckunas T, Kamandulis S, Simon P, Brazaitis M. Three-week sprint interval training (SIT) reduces cell-free DNA and low-frequency fatigue but does not induce VO2max improvement in older men. Eur J Appl Physiol 2024; 124:1297-1309. [PMID: 38015284 DOI: 10.1007/s00421-023-05366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men. METHODS Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions. RESULTS The plasma cfDNA levels were increased post-exercise (from 1.4 ± 0.258 to 1.91 ± 0.278 ng/ml (P < 0.01) on a log10 scale), without significant differences between the groups. However, older individuals showed a slight decrease in the baseline cfDNA values, from 1.39 ± 0.176 to 1.29 ± 0.085 ng/ml on a log10 scale, after 3 weeks (P = 0.043). Importantly, the elevation of the post-exercise cfDNA values was correlated with an increase in LFF in both groups. Three weeks of SIT induced an improvement in the recovery of LFF (main session effect, P = 0.0029); however, only the young group showed an increase in aerobic capacity (VO2max) (from 40.8 ± 6.74 to 43.0 ± 5.80 ml/kg/min, P = 0.0039). CONCLUSION Three weeks of SIT diminished the baseline cfDNA values in the old group, together with an improvement in the recovery of LFF. However, VO2max was increased only in the young group.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Elmo Neuberger
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Perikles Simon
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
5
|
Sawai A, Shida T, Hoshikawa Y, Hatanaka S, Ueda M, Kato Y, Tokinoya K, Natsui H, Kawakami Y, Takekoshi K. Effect of acute moderate-intensity cycling on cfDNA levels considering menstrual cycle phases. Front Sports Act Living 2024; 6:1322295. [PMID: 38348376 PMCID: PMC10859457 DOI: 10.3389/fspor.2024.1322295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction We aimed to determine the effects of exercise on cell-free DNA (cfDNA) levels and concentration changes during the menstrual cycle in participants with regular menstrual cycles and no exercise habits. Methods Eleven sedentary female students with regular menstrual cycles and ovulation performed bicycle exercises at 60% VO2max for 30 min during the menstrual, ovulatory, and luteal phases. Blood samples were collected before (Pre), immediately after (Post 0), 30 min after (Post 30), and 60 min after (Post 60) exercise. Blood concentrations of ovarian hormones, cfDNA, prostaglandin F2a (PGF2α), interleukin-6 (IL-6), and aromatase were evaluated. Results Based on the concentration of ovarian hormones, seven individuals were finally analyzed. No significant phase difference was observed in cfDNA across all time points. cfDNA (menstrual phase: p = 0.028, ovulatory phase: p = 0.018, and luteal phase: p = 0.048) and aromatase concentrations (menstrual phase: p = 0.040, ovulatory phase: p = 0.039, and luteal phase: p = 0.045) significantly increased from Pre to Post 0 in all phases. Serum estradiol (E2) levels were significantly higher in the luteal phase at all time points than in the menstrual phase (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p = 0.005, and Post 60: p = 0.011); however, serum progesterone (P4) levels were significantly higher in the luteal phase at all time points than in the menstrual (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p < 0.001, and Post 60: p < 0.001) and ovulatory phases (Pre: p = 0.005, Post 0: p = 0.005, Post 30: p = 0.003, and Post 60: p = 0.003). E2 levels significantly increased from Pre to Post 0 in the ovulatory and luteal phases, whereas P4 levels increased in the luteal phase. Progesterone to estradiol level ratio (P4/E2) changes from Pre to Post 0 (%baseline) during the luteal phase were significantly negatively correlated (r = -0.82, p = 0.046) with the changes in cfDNA from Pre to Post 0. Furthermore, the repeated measures correlation between P4/E2 and cfDNA level showed a significant negative correlation in ovulatory and luteal phases. Discussion The results indicate that while resting cfDNA levels are unlikely to be affected by a woman's menstrual cycle, the increase in cfDNA after exercise is higher in the ovulatory phase (when only E2 increases) and lower in the luteal phase (when E2 and P4 increase with exercise) compared to that in the menstrual phase (when E2 and P4 are in low levels), suggesting the contribution of increased ovarian hormone levels after exercise.
Collapse
Affiliation(s)
- Akemi Sawai
- Research Institute of Physical Fitness, Japan Women’s College of Physical Education, Setagaya City, Japan
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Takashi Shida
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi City, Japan
| | - Yoshihiro Hoshikawa
- Department of Sports Science, Japan Women’s College of Physical Education, Setagaya City, Japan
| | - Sho Hatanaka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi City, Japan
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yuri Kato
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Katsuyuki Tokinoya
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Embodied Wisdom Division, Center for Liberal Education and Learning, Sophia University, Chiyoda City, Japan
| | - Hiroaki Natsui
- Department of Sports and Health Science, Japan Women’s College of Physical Education, Setagaya City, Japan
| | - Yasushi Kawakami
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Kazuhiro Takekoshi
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
6
|
Tessier NP, Hardy LM, Deleuze JF, How-Kit A. Circulating cell-free nucleic acids of plasma in human aging, healthy aging and longevity: current state of knowledge. Front Genet 2023; 14:1321280. [PMID: 38090154 PMCID: PMC10715054 DOI: 10.3389/fgene.2023.1321280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024] Open
Abstract
Circulating cell-free nucleic acids (ccfNAs) of plasma are a remarkable source of genetic, epigenetic and transcriptomic materials originating from different cells, tissues and organs of an individual. They have been increasingly studied over the past decade as they can carry several important pieces of information about the health status of an individual, which makes them biomarkers of choice for non-invasive diagnosis of numerous diseases and health conditions. However, few studies have investigated variations of plasma ccfNAs in healthy subjects, particularly in relation to aging, healthy aging and longevity, despite the great variability of these biological processes among individuals. Here, we reviewed several studies that focused on the analysis of circulating cell-free DNA (ccfDNA) and microRNAs (ccfmiRNAs) during aging and in the elderly, including some on exceptionally long-lived individuals, i.e., centenarians. After a brief overview of the types, origins and functions of plasma ccfNAs, we described the variations of both ccfDNA and ccfmiRNAs during aging as well as the identification of several potential ccfDNA-based and ccfmiRNA-based biomarkers of aging, healthy aging and/or longevity. We finally highlighted some prospects offered by ccfNAs for the understanding and improvement of healthy aging and longevity.
Collapse
Affiliation(s)
| | - Lise M. Hardy
- Laboratory for Genomics, Foundation Jean Dausset—CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Genomics, Foundation Jean Dausset—CEPH, Paris, France
- Centre National de Recherche en Génomique Humaine, CEA, Institut François Jacob, Evry, France
| | - Alexandre How-Kit
- Laboratory for Genomics, Foundation Jean Dausset—CEPH, Paris, France
| |
Collapse
|
7
|
Morawin B, Tylutka A, Bielewicz F, Zembron-Lacny A. Diagnostics of inflammaging in relation to sarcopenia. Front Public Health 2023; 11:1162385. [PMID: 37465171 PMCID: PMC10351926 DOI: 10.3389/fpubh.2023.1162385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
One of the theories about aging focuses on the immune response and relates to the activation of subclinical and chronic inflammation. This study was designed to investigate the relationship between inflammation and sarcopenia and to evaluate the influence of lifestyle on the inflammatory profile. Finally, therapeutic strategies to counteract the pathophysiological effect of skeletal muscle aging were also indicated. One hundred seventy-three individuals aged 71.5 ± 6.8 years were divided into two groups: sarcopenia and probable sarcopenia (n = 39) and no sarcopenia (n = 134). Sarcopenia was assessed according to the algorithm of the European Working Group on Sarcopenia in the older adults 2. C-reactive protein (CRP) (p = 0.011) and CRP/albumin ratio (p = 0.030) as well as IL-1β (p = 0.002), cfDNA (p < 0.001) and bilirubin levels (p = 0.002) were significantly higher in the sarcopenia group as opposed to the no sarcopenia group. No significant differences were observed between groups in the concentration of TNFα (p = 0.429) and IL-6 (p = 0.300). An inverse correlation was found between gait speed and cfDNA (rs = -0.234, p < 0.01) and IL-1β (rs = -0.263, p < 0.01). The ROC analysis of cfDNA, CRP, IL-1β and bilirubin ranged from 0.6 to 0.7, which confirms the association between sarcopenia and inflammatory mediators and indicates high clinical usefulness of cfDNA and bilirubin in sarcopenia prediction. We also indicated a link between inflammation and fitness level in the older adult thereby providing evidence that lifestyle exercise should be a key therapeutic strategy in sarcopenia prevention.
Collapse
Affiliation(s)
- Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Filip Bielewicz
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| |
Collapse
|
8
|
Daniels TE, Zitkovsky EK, Kunicki ZJ, Price DJ, Peterson AL, Dennery PA, Kao HT, Price LH, Tyrka AR, Abrantes AM. Associations of circulating cell-free DNA, C-reactive protein, and cardiometabolic risk among low-active smokers with elevated depressive symptoms. Brain Behav Immun Health 2022; 25:100519. [PMID: 36164463 PMCID: PMC9508337 DOI: 10.1016/j.bbih.2022.100519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 01/31/2023] Open
Abstract
Background and aims Cell-free DNA (cfDNA) is elevated in several disease states. Metabolic syndrome is a constellation of factors associated with poor cardiometabolic outcomes. This study examined associations of cfDNA from the nucleus (cf-nDNA) and mitochondria (cf-mtDNA), C-reactive protein (CRP), and metabolic syndrome risk, in low-active smokers with depressive symptoms. Methods Participants (N = 109; mean age 47) self-reported medical history. Physical activity was determined by accelerometry and anthropometrics were measured. Blood was collected and analyzed for cf-nDNA, cf-mtDNA, CRP, triglycerides, high-density lipoprotein, hemoglobin A1c. A continuous metabolic syndrome composite risk score was calculated. Relationships of cf-nDNA, cf-mtDNA, CRP, and cardiometabolic risk were examined with correlations and linear regression. Results CRP and cf-nDNA were significantly associated with metabolic syndrome risk (r = .39 and r = .31, respectively), cf-mtDNA was not (r = .01). In a linear regression, CRP and cf-nDNA significantly predicted the metabolic syndrome risk score, findings that remained significant controlling for age, gender, nicotine dependence, and physical activity. Conclusions Associations of cf-nDNA with both CRP and metabolic risk suggest a role for cf-nDNA in inflammatory processes associated with metabolic syndrome. The negative findings for cf-mtDNA suggest distinct roles for cf-nDNA and cf-mtDNA in these processes.
Collapse
Affiliation(s)
- Teresa E. Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA,Corresponding author. 1011 Veterans Memorial Parkway, Riverside, RI, 02915, USA.
| | - Emily K. Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zachary J. Kunicki
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Destiny J. Price
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, 1051 Riverside Dr, New York, NY, 10032, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA,Department of Pediatrics, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI, 02903, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ana M. Abrantes
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Behavioral Medicine and Addictions Research Department, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| |
Collapse
|
9
|
Fathima N, Manorenj S, Vishwakarma SK, Khan AA. Role of cell-free DNA for predicting incidence and outcome of patients with ischemic stroke. World J Neurol 2022; 8:1-9. [DOI: 10.5316/wjn.v8.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 02/08/2023] Open
Abstract
Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings. A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke. Cell-free DNA (cfDNA) has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders. Despite bright outlook of cfDNA in clinical applications, very less is known about its origin, composition, or function. Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA (mtDNA) in the extracellular spaces including blood and cerebrospinal fluid. However, the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood. DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased. However, the importance of cell-free mtDNA (cf-mtDNA) in ischemic stroke is still unknown. This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cf-mtDNA as a non-invasive potential biomarker of ischemic stroke.
Collapse
Affiliation(s)
- Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandhya Manorenj
- Department of Neurology, Princess Esra Hospital, Deccan College of Medical Sciences, Hyderabad 500002, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
10
|
Kananen L, Hurme M, Bürkle A, Moreno-Villanueva M, Bernhardt J, Debacq-Chainiaux F, Grubeck-Loebenstein B, Malavolta M, Basso A, Piacenza F, Collino S, Gonos ES, Sikora E, Gradinaru D, Jansen EHJM, Dollé MET, Salmon M, Stuetz W, Weber D, Grune T, Breusing N, Simm A, Capri M, Franceschi C, Slagboom E, Talbot D, Libert C, Raitanen J, Koskinen S, Härkänen T, Stenholm S, Ala-Korpela M, Lehtimäki T, Raitakari OT, Ukkola O, Kähönen M, Jylhä M, Jylhävä J. Circulating cell-free DNA in health and disease - the relationship to health behaviours, ageing phenotypes and metabolomics. GeroScience 2022; 45:85-103. [PMID: 35864375 PMCID: PMC9886738 DOI: 10.1007/s11357-022-00590-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
Circulating cell-free DNA (cf-DNA) has emerged as a promising biomarker of ageing, tissue damage and cellular stress. However, less is known about health behaviours, ageing phenotypes and metabolic processes that lead to elevated cf-DNA levels. We sought to analyse the relationship of circulating cf-DNA level to age, sex, smoking, physical activity, vegetable consumption, ageing phenotypes (physical functioning, the number of diseases, frailty) and an extensive panel of biomarkers including blood and urine metabolites and inflammatory markers in three human cohorts (N = 5385; 17-82 years). The relationships were assessed using correlation statistics, and linear and penalised regressions (the Lasso), also stratified by sex.cf-DNA levels were significantly higher in men than in women, and especially in middle-aged men and women who smoke, and in older more frail individuals. Correlation statistics of biomarker data showed that cf-DNA level was higher with elevated inflammation (C-reactive protein, interleukin-6), and higher levels of homocysteine, and proportion of red blood cells and lower levels of ascorbic acid. Inflammation (C-reactive protein, glycoprotein acetylation), amino acids (isoleucine, leucine, tyrosine), and ketogenesis (3-hydroxybutyrate) were included in the cf-DNA level-related biomarker profiles in at least two of the cohorts.In conclusion, circulating cf-DNA level is different by sex, and related to health behaviour, health decline and metabolic processes common in health and disease. These results can inform future studies where epidemiological and biological pathways of cf-DNA are to be analysed in details, and for studies evaluating cf-DNA as a potential clinical marker.
Collapse
Affiliation(s)
- Laura Kananen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Social Sciences (Health Sciences), and Gerontology Research Center, Tampere University, Tampere, Finland. .,Faculty of Medicine and Health Technology, and Gerontology Research Center, Tampere University, Tampere, Finland.
| | - Mikko Hurme
- grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, and Gerontology Research Center, Tampere University, Tampere, Finland
| | - Alexander Bürkle
- grid.9811.10000 0001 0658 7699Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Maria Moreno-Villanueva
- grid.9811.10000 0001 0658 7699Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | | | - Florence Debacq-Chainiaux
- grid.6520.10000 0001 2242 8479URBC-Narilis, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Beatrix Grubeck-Loebenstein
- grid.5771.40000 0001 2151 8122Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, 6020 Innsbruck, Austria
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Sebastiano Collino
- grid.5333.60000000121839049Nestlé Research, Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Efstathios S. Gonos
- grid.22459.380000 0001 2232 6894Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Ewa Sikora
- grid.419305.a0000 0001 1943 2944Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, 02-093 Warsaw, Poland
| | - Daniela Gradinaru
- grid.8194.40000 0000 9828 7548Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Eugene H. J. M. Jansen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Martijn E. T. Dollé
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Michel Salmon
- grid.425994.7Straticell, Science Park Crealys, Rue Jean Sonet 10, 5032 Les Isnes, Belgium
| | - Wolfgang Stuetz
- grid.9464.f0000 0001 2290 1502Institute of Nutritional Sciences (140), University of Hohenheim, 70593 Stuttgart, Germany
| | - Daniela Weber
- grid.418213.d0000 0004 0390 0098Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- grid.418213.d0000 0004 0390 0098Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany ,grid.10420.370000 0001 2286 1424Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria ,grid.9464.f0000 0001 2290 1502Institute of Nutritional Medicine (180), University of Hohenheim, 70593 Stuttgart, Germany
| | - Nicolle Breusing
- grid.9464.f0000 0001 2290 1502Institute of Nutritional Medicine (180), University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Simm
- grid.461820.90000 0004 0390 1701Department of Cardiothoracic Surgery, University Hospital Halle, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany
| | - Miriam Capri
- grid.6292.f0000 0004 1757 1758DIMES- Department of Experimental, Diagnostic and Specialty Medicine,
Interdepartmental Center “Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)”,
Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Claudio Franceschi
- grid.6292.f0000 0004 1757 1758DIMES- Department of Experimental, Diagnostic and Specialty Medicine,
Interdepartmental Center “Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)”,
Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Eline Slagboom
- grid.10419.3d0000000089452978Section of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Duncan Talbot
- Unilever Science and Technology, Beauty and Personal Care, Sharnbrook, UK
| | - Claude Libert
- grid.11486.3a0000000104788040Center for Inflammation Research, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jani Raitanen
- grid.502801.e0000 0001 2314 6254Faculty of Social Sciences (Health Sciences), and Gerontology Research Center, Tampere University, Tampere, Finland
| | - Seppo Koskinen
- grid.14758.3f0000 0001 1013 0499National Institute for Health and Welfare, Helsinki, Finland
| | - Tommi Härkänen
- grid.14758.3f0000 0001 1013 0499National Institute for Health and Welfare, Helsinki, Finland
| | - Sari Stenholm
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Ala-Korpela
- grid.10858.340000 0001 0941 4873Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Center for Life Course Health Research, University of Oulu, Oulu, Finland ,grid.9668.10000 0001 0726 2490NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Terho Lehtimäki
- grid.502801.e0000 0001 2314 6254Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.502801.e0000 0001 2314 6254Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.511163.10000 0004 0518 4910Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T. Raitakari
- grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Olavi Ukkola
- grid.10858.340000 0001 0941 4873Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mika Kähönen
- grid.502801.e0000 0001 2314 6254Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.502801.e0000 0001 2314 6254Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.412330.70000 0004 0628 2985Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Marja Jylhä
- grid.502801.e0000 0001 2314 6254Faculty of Social Sciences (Health Sciences), and Gerontology Research Center, Tampere University, Tampere, Finland
| | - Juulia Jylhävä
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,grid.502801.e0000 0001 2314 6254Faculty of Social Sciences (Health Sciences), and Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
11
|
Yuwono NL, Warton K, Ford CE. The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma. eLife 2021; 10:e69679. [PMID: 34752217 PMCID: PMC8577835 DOI: 10.7554/elife.69679] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Research and clinical use of circulating cell-free DNA (cirDNA) is expanding rapidly; however, there remain large gaps in our understanding of the influence of lifestyle and biological factors on the amount of cirDNA present in blood. Here, we review 66 individual studies of cirDNA levels and lifestyle and biological factors, including exercise (acute and chronic), alcohol consumption, occupational hazard exposure, smoking, body mass index, menstruation, hypertension, circadian rhythm, stress, biological sex and age. Despite technical and methodological inconsistences across studies, we identify acute exercise as a significant influence on cirDNA levels. Given the large increase in cirDNA induced by acute exercise, we recommend that controlling for physical activity prior to blood collection is routinely incorporated into study design when total cirDNA levels are of interest. We also highlight appropriate selection and complete reporting of laboratory protocols as important for improving the reproducibility cirDNA studies and ability to critically evaluate the results.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| |
Collapse
|
12
|
The Association of Anti-Inflammatory Diet Ingredients and Lifestyle Exercise with Inflammaging. Nutrients 2021; 13:nu13113696. [PMID: 34835952 PMCID: PMC8621229 DOI: 10.3390/nu13113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
One of the latest theories on ageing focuses on immune response, and considers the activation of subclinical and chronic inflammation. The study was designed to explain whether anti-inflammatory diet and lifestyle exercise affect an inflammatory profile in the Polish elderly population. Sixty individuals (80.2 ± 7.9 years) were allocated to a low-grade inflammation (LGI n = 33) or high-grade inflammation (HGI n = 27) group, based on C-reactive protein concentration (<3 or ≥3 mg/L) as a conventional marker of systemic inflammation. Diet analysis focused on vitamins D, C, E, A, β-carotene, n-3 and n-6 PUFA using single 24-h dietary recall. LGI demonstrated a lower n-6/n-3 PUFA but higher vitamin D intake than HGI. Physical performance based on 6-min walk test (6MWT) classified the elderly as physically inactive, whereby LGI demonstrated a significantly higher gait speed (1.09 ± 0.26 m/s) than HGI (0.72 ± 0.28 m/s). Circulating interleukins IL-1β, IL-6, IL-13, TNFα and cfDNA demonstrated high concentrations in the elderly with low 6MWT, confirming an impairment of physical performance by persistent systemic inflammation. These findings reveal that increased intake of anti-inflammatory diet ingredients and physical activity sustained throughout life attenuate progression of inflammaging in the elderly and indicate potential therapeutic strategies to counteract pathophysiological effects of ageing.
Collapse
|
13
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, Wilkins LHW, Tunc I, Sivakumar I, Nichols JS, Dagur PK, Yang S, Almeida LEF, Quezado ZMN, Combs CA, Lindberg E, Bleck CKE, Zhu J, Shet AS, Chung JH, Pirooznia M, Thein SL. Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood 2021; 137:3116-3126. [PMID: 33661274 PMCID: PMC8176765 DOI: 10.1182/blood.2020009063] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of sickle cell disease (SCD) is driven by chronic inflammation fueled by damage associated molecular patterns (DAMPs). We show that elevated cell-free DNA (cfDNA) in patients with SCD is not just a prognostic biomarker, it also contributes to the pathological inflammation. Within the elevated cfDNA, patients with SCD had a significantly higher ratio of cell-free mitochondrial DNA (cf-mtDNA)/cell-free nuclear DNA compared with healthy controls. Additionally, mitochondrial DNA in patient samples showed significantly disproportionately increased hypomethylation compared with healthy controls, and it was increased further in crises compared with steady-state. Using flow cytometry, structured illumination microscopy, and electron microscopy, we showed that circulating SCD red blood cells abnormally retained their mitochondria and, thus, are likely to be the source of the elevated cf-mtDNA in patients with SCD. Patient plasma containing high levels of cf-mtDNA triggered the formation of neutrophil extracellular traps (NETs) that was substantially reduced by inhibition of TANK-binding kinase 1, implicating activation of the cGAS-STING pathway. cf-mtDNA is an erythrocytic DAMP, highlighting an underappreciated role for mitochondria in sickle pathology. These trials were registered at www.clinicaltrials.gov as #NCT00081523, #NCT03049475, and #NCT00047996.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ilker Tunc
- Bioinformatics and Computational Biology Core
| | | | | | | | - Shutong Yang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD; and
| | - Zenaide M N Quezado
- Sickle Cell Branch
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD; and
| | | | | | | | - Jun Zhu
- Single Cell Genomics Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|
15
|
Perkins RK, Lavin KM, Raue U, Jemiolo B, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on expression of innate immune components in human skeletal muscle. J Appl Physiol (1985) 2020; 129:1483-1492. [PMID: 32969782 DOI: 10.1152/japplphysiol.00615.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this investigation was to evaluate the effects of aging and lifelong exercise on skeletal muscle components of the innate immune system. Additionally, the effects of an acute resistance exercise (RE) challenge were explored. Three groups of men were studied: young exercisers (YE: n = 10, 25 ± 1 yr; V̇o2max: 53 ± 3 mL/kg/min; quadriceps size: 78 ± 3 cm2), lifelong aerobic exercisers with a 53 ± 1 yr training history (LLE; n = 21, 74 ± 1 yr; V̇o2max: 34 ± 1 mL/kg/min; quadriceps size: 67 ± 2 cm2), and old healthy nonexercisers (OH: n = 10, 75 ± 1 yr; V̇o2max: 22 ± 1 mL/kg/min, quadriceps size: 56 ± 3 cm2). Vastus lateralis muscle biopsies were obtained in the basal state and 4 h after RE (3 × 10 reps, 70% of 1 repetition maximum) to assess Toll-like receptors (TLR)1-10, TLR adaptors (Myd88 and TRIF), and NF-κB pathway components (IκΒα and IKKβ) mRNA expression. Basal TLR3, TLR6, and TLR7 tended to be higher (P ≤ 0.10) with aging (LLE and OH combined). In general, RE increased expression of TLR1 and TLR8 (P ≤ 0.10) and TLR3 and TLR4 (P < 0.05), although TLR3 did not respond in OH. Both TLR adaptors also responded to the exercise bout; these were primarily (Myd88, main effect P ≤ 0.10) or exclusively (TRIF, P < 0.05) driven by the OH group. In summary, aging appears to increase basal expression of some innate immune components in human skeletal muscle, and lifelong aerobic exercise does not affect this age-related increase. An exercise challenge stimulates the expression of several TLRs, while the TLR adaptor response appears to be dysregulated with aging and maintained with lifelong exercise. Partially preserved muscle mass, coupled with a notable immunity profile, suggests lifelong exercisers are likely better prepared for a stress that challenges the immune system.NEW & NOTEWORTHY Findings from this investigation provide novel insight into the effect of aging and lifelong aerobic exercise on structural components of the innate immune system in skeletal muscle of humans. Data presented here suggest aging increases basal expression of select Toll-like receptors (TLRs), and lifelong exercise does not impact this age-related increase. Additionally, acute exercise stimulates gene expression of several TLRs, while the adaptor response is likely dysregulated with aging and maintained with lifelong exercise.
Collapse
Affiliation(s)
- Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
16
|
Circulating cell-free DNA level predicts all-cause mortality independent of other predictors in the Health 2000 survey. Sci Rep 2020; 10:13809. [PMID: 32796872 PMCID: PMC7427793 DOI: 10.1038/s41598-020-70526-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Increased levels of circulating cell-free DNA (cf-DNA) are associated with and predict poor health outcomes. However, its predictive ability for mortality in population-based samples remains understudied. We analysed the capability of cf-DNA to predict all-cause mortality and assessed whether it adds predictive value on top of the other risk factors in the Health 2000 survey (n = 1,257, 46–76 years of age, 15-years-follow-up, 18% deceased). When analysed in a multivariate model with the other factors that independently predicted mortality in the sample (age, gender, self-rated health, smoking and plasma levels of glucose and adiponectin), increases in cf-DNA levels were associated with increased risk of mortality (hazard ratio [HR] for 0.1 µg increase in cf-DNA: 1.017, 95% confidence interval [CI] 1.008–1.026, p = 0.0003). Inclusion of cf-DNA in the model improved the model fit and discrimination. Stratifying the analysis by cardiovascular disease (CVD) status indicated that cf-DNA predicted mortality equally well in individuals with (HR 1.018, 95% CI 1.008–1.026, p = 0.002) and without (HR 1.018, 95% CI 1.001–1.035, p = 0.033) CVD. In conclusion, our study indicates that cf-DNA level predicts mortality in middle-aged and older individuals, also among those with established CVD, and adds significant value to mortality prediction. Our results thus underscore the role of cf-DNA as a viable marker of health.
Collapse
|
17
|
Storci G, Bacalini MG, Bonifazi F, Garagnani P, De Carolis S, Salvioli S, Olivieri F, Bonafè M. Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Res Rev 2020; 58:101018. [PMID: 31926964 DOI: 10.1016/j.arr.2020.101018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Across eukaryotes, ribosomal DNA (rDNA) loci are characterized by intrinsic genomic instability due to their repetitive nature and their base composition that facilitate DNA double strand breaks and RNA:DNA hybrids formation. In the yeast, ribosomal DNA instability affects lifespan via the formation of extrachromosomal rDNA circles (ERC) that accrue into aged cells. In humans, rDNA instability has long been reported in a variety of progeric syndromes caused by the dysfunction of DNA helicases, but its role in physiological aging and longevity still needs to be clarified. Here we propose that rDNA instability leads to the activation of innate immunity and inflammation via the interaction with the cytoplasmic DNA sensing machinery. Owing to the recent clarified role of cytoplasmic DNA in the pro-inflammatory phenotype of senescent cells, we hypothesize that the accrual of rDNA derived molecules (i.e. ERC and RNA:DNA hybrids) may have a role in aging by contributing to inflammaging i.e. the systemic pro-inflammatory drift that associates with the onset of geriatric syndromes and age related dysfunctions in humans.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| | | | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| |
Collapse
|
18
|
Barbany G, Arthur C, Liedén A, Nordenskjöld M, Rosenquist R, Tesi B, Wallander K, Tham E. Cell-free tumour DNA testing for early detection of cancer - a potential future tool. J Intern Med 2019; 286:118-136. [PMID: 30861222 DOI: 10.1111/joim.12897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, detection of cell-free tumour DNA (ctDNA) or liquid biopsy has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma, and numerous studies have reported on the feasibility of ctDNA in advanced cancer. In particular, ctDNA assays can capture a more 'global' portrait of tumour heterogeneity, monitor therapy response, and lead to early detection of resistance mutations. More recently, ctDNA analysis has also been proposed as a promising future tool for detection of early cancer and/or cancer screening. As the average proportion of mutated DNA in plasma is very low (0.4% even in advanced cancer), exceedingly sensitive techniques need to be developed. In addition, as tumours are genetically heterogeneous, any screening test needs to assay multiple genetic targets in order to increase the chances of detection. Further research on the genetic progression from normal to cancer cells and their release of ctDNA is imperative in order to avoid overtreating benign/indolent lesions, causing more harm than good by early diagnosis. More knowledge on the sources and elimination of cell-free DNA will enable better interpretation in older individuals and those with comorbidities. In addition, as white blood cells are the major source of cell-free DNA in plasma, it is important to distinguish acquired mutations in leukocytes (benign clonal haematopoiesis) from an upcoming haematological malignancy or other cancer. In conclusion, although many studies report encouraging results, further technical development and larger studies are warranted before applying ctDNA analysis for early cancer detection in the clinic.
Collapse
Affiliation(s)
- G Barbany
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - C Arthur
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - A Liedén
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Nordenskjöld
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - R Rosenquist
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - B Tesi
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - K Wallander
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - E Tham
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Smalheiser NR. Mining Clinical Case Reports to Identify New Lines of Investigation in Alzheimer's Disease: The Curious Case of DNase I. J Alzheimers Dis Rep 2019; 3:71-76. [PMID: 31025031 PMCID: PMC6481472 DOI: 10.3233/adr-190100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mining the case report literature identified an intriguing, yet neglected finding: Deoxyribonuclease I (DNase I) as a possible treatment for Alzheimer’s disease. This finding is speculative, both because it is based on one patient, and because the underlying mechanism(s) of action remain obscure. However, further literature review revealed that there are several plausible mechanisms by which DNase I might affect the course of Alzheimer’s disease. Given that DNase I is an FDA-approved drug, with extensive studies in both animals and man in the context of other diseases, I suggest that investigation of DNAse I in Alzheimer’s disease is worthwhile.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40:6-16. [DOI: 10.1016/j.smim.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
21
|
Nardini C, Moreau JF, Gensous N, Ravaioli F, Garagnani P, Bacalini MG. The epigenetics of inflammaging: The contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. Semin Immunol 2018; 40:49-60. [PMID: 30396810 DOI: 10.1016/j.smim.2018.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
A growing amount of evidences indicates that inflammaging - the chronic, low grade inflammation state characteristic of the elderly - is the result of genetic as well as environmental or stochastic factors. Some of these, such as the accumulation of senescent cells that are persistent during aging or accompany its progression, seem to be sufficient to initiate the aging process and to fuel it. Others, like exposure to environmental compounds or infections, are temporary and resolve within a (relatively) short time. In both cases, however, a cellular memory of the event can be established by means of epigenetic modulation of the genome. In this review we will specifically discuss the relationship between epigenetics and inflammaging. In particular, we will show how age-associated epigenetic modifications concerned with heterochromatin loss and gene-specific remodelling, can promote inflammaging. Furthermore, we will recall how the exposure to specific nutritional, environmental and microbial stimuli can affect the rate of inflammaging through epigenetic mechanisms, touching also on the recent insight given by the concept of trained immunity.
Collapse
Affiliation(s)
- Christine Nardini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; CNR IAC "Mauro Picone", Roma, Italy; Personal Genomics S.r.l., Verona, Italy
| | - Jean-Francois Moreau
- University of Bordeaux, CNRS-UMR5164, 146 rue Léo Saignat, 33076 Bordeaux, France; CHU Bordeaux, Place Amélie Raba-Léon, Bordeaux, France
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.
| | | |
Collapse
|
22
|
Peto MV, De la Guardia C, Winslow K, Ho A, Fortney K, Morgen E. MortalityPredictors.org: a manually-curated database of published biomarkers of human all-cause mortality. Aging (Albany NY) 2018; 9:1916-1925. [PMID: 28858850 PMCID: PMC5611985 DOI: 10.18632/aging.101280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
Biomarkers of all-cause mortality are of tremendous clinical and research interest. Because of the long potential duration of prospective human lifespan studies, such biomarkers can play a key role in quantifying human aging and quickly evaluating any potential therapies. Decades of research into mortality biomarkers have resulted in numerous associations documented across hundreds of publications. Here, we present MortalityPredictors.org, a manually-curated, publicly accessible database, housing published, statistically-significant relationships between biomarkers and all-cause mortality in population-based or generally healthy samples. To gather the information for this database, we searched PubMed for appropriate research papers and then manually curated relevant data from each paper. We manually curated 1,576 biomarker associations, involving 471 distinct biomarkers. Biomarkers ranged in type from hematologic (red blood cell distribution width) to molecular (DNA methylation changes) to physical (grip strength). Via the web interface, the resulting data can be easily browsed, searched, and downloaded for further analysis. MortalityPredictors.org provides comprehensive results on published biomarkers of human all-cause mortality that can be used to compare biomarkers, facilitate meta-analysis, assist with the experimental design of aging studies, and serve as a central resource for analysis. We hope that it will facilitate future research into human mortality and aging.
Collapse
Affiliation(s)
| | | | | | - Andrew Ho
- BioAge Labs, Berkeley, CA 94703, USA
| | | | | |
Collapse
|
23
|
Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med 2018; 20:e1. [PMID: 29343314 DOI: 10.1017/erm.2017.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free DNA (cfDNA) is present in various body fluids and originates mostly from blood cells. In specific conditions, circulating cfDNA might be derived from tumours, donor organs after transplantation or from the foetus during pregnancy. The analysis of cfDNA is mainly used for genetic analyses of the source tissue -tumour, foetus or for the early detection of graft rejection. It might serve also as a nonspecific biomarker of tissue damage in critical care medicine. In kidney diseases, cfDNA increases during haemodialysis and indicates cell damage. In patients with renal cell carcinoma, cfDNA in plasma and its integrity is studied for monitoring of tumour growth, the effects of chemotherapy and for prognosis. Urinary cfDNA is highly fragmented, but the technical hurdles can now be overcome and urinary cfDNA is being evaluated as a potential biomarker of renal injury and urinary tract tumours. Beyond its diagnostic application, cfDNA might also be involved in the pathogenesis of diseases affecting the kidneys as shown for systemic lupus, sepsis and some pregnancy-related pathologies. Recent data suggest that increased cfDNA is associated with acute kidney injury. In this review, we discuss the biological characteristics, sources of cfDNA, its potential use as a biomarker as well as its role in the pathogenesis of renal and urinary diseases.
Collapse
|
24
|
Pinheiro da Silva F, Machado MCC. Septic Shock and the Aging Process: A Molecular Comparison. Front Immunol 2017; 8:1389. [PMID: 29118760 PMCID: PMC5661002 DOI: 10.3389/fimmu.2017.01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Aging is a continuous process promoted by both intrinsic and extrinsic factors that each trigger a multitude of molecular events. Increasing evidence supports a central role for inflammation in this progression. Here, we discuss how the low-grade chronic inflammation that characterizes aging is tightly interconnected with other important aspects of this process, such as DNA damage, mitochondrial dysfunction, and epigenetic changes. Similarly, inflammation also plays a critical role in many morbid conditions that affect patients who are admitted to Intensive Care. Although the inflammatory response is low grade and persistent in healthy aging while it is acute and severe in critically ill states, we hypothesize that both situations have important interconnections. Here, we performed an extensive review of the literature to investigate this potential link. Because sepsis is the most extensively studied disease and is the leading cause of death in Critical Care, we focus our discussion on comparing the inflammatory profile of healthy older people with that of patients in septic shock to explain why we believe that both situations have synergistic effects, leading to critically ill aged patients having a worse prognosis when compared with critically ill young patients.
Collapse
Affiliation(s)
- Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
25
|
Raungrut P, Petjaroen P, Geater SL, Keeratichananont W, Phukaoloun M, Suwiwat S, Thongsuksai P. Methylation of 14-3-3σ gene and prognostic significance of 14-3-3σ expression in non-small cell lung cancer. Oncol Lett 2017; 14:5257-5264. [PMID: 29113161 PMCID: PMC5662907 DOI: 10.3892/ol.2017.6881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Loss of 14-3-3σ expression through DNA methylation has been associated with carcinogenesis and the prognosis for various cancer types. Detection of methylation of the gene in serum may be useful for diagnostic utility. The present study aimed to investigate the correlation between 14-3-3σ methylation level in 36 paired tumor tissues of non-small cell lung cancer (NSCLC) and matched serum using methylation-specific polymerase chain reaction. The prognostic significance of 14-3-3σ expression in 167 NSCLC was also evaluated using immunohistochemistry. Methylation of the 14-3-3σ gene was identified in all samples. The methylation level in the serum (mean 87.7%, range 64.6–100%) was higher compared with tumor (mean 46.7%, range 25.3–56.3%). However, no significant correlation between methylation levels in tissues and serums was observed (Spearman's correlation, −0.036; P=0.837). In the 167 tumor tissues, the majority of the cases (83.8%) exhibited negative expression. Adenocarcinoma is more likely to exhibit negative expression (91.4%) compared with squamous cell carcinoma (70.2%). No significant difference was identified in the overall survival according to 14-3-3σ expression status and 14-3-3σ expression did not demonstrated independent prognostic significance. In conclusion, NSCLC harbors certain levels of 14-3-3σ methylation in the tumor and the sera of patients. The clinical value of serum 14-3-3σ methylation should be further elucidated. Immunohistochemical expression 14-3-3σ protein has limited value on prognostic significance.
Collapse
Affiliation(s)
- Pritsana Raungrut
- Department of Biomedical Sciences and The Excellent Research Laboratory of Cancer Molecular Biology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pingpond Petjaroen
- Department of Biomedical Sciences and The Excellent Research Laboratory of Cancer Molecular Biology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarayut Lucien Geater
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warangkana Keeratichananont
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monlika Phukaoloun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supaporn Suwiwat
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
26
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
27
|
Tosevska A, Franzke B, Hofmann M, Vierheilig I, Schober-Halper B, Oesen S, Neubauer O, Wessner B, Wagner KH. Circulating cell-free DNA, telomere length and bilirubin in the Vienna Active Ageing Study: exploratory analysis of a randomized, controlled trial. Sci Rep 2016; 6:38084. [PMID: 27905522 PMCID: PMC5131485 DOI: 10.1038/srep38084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Telomere length (TL) in blood cells is widely used in human studies as a molecular marker of ageing. Circulating cell-free DNA (cfDNA) as well as unconjugated bilirubin (UCB) are dynamic blood constituents whose involvement in age-associated diseases is largely unexplored. To our knowledge, there are no published studies integrating all three parameters, especially in individuals of advanced age. Here we present a secondary analysis from the Vienna Active Aging Study (VAAS), a randomized controlled intervention trial in institutionalized elderly individuals (n = 101). Using an exploratory approach we combine three blood-based molecular markers (TL, UCB and cfDNA) with a range of primary and secondary outcomes from the intervention. We further look at the changes occurring in these parameters after 6-month resistance exercise training with or without supplementation. A correlation between UCB and TL was evident at baseline (p < 0.05), and both were associated with increased chromosomal anomalies such as nucleoplasmatic bridges and nuclear buds (p < 0.05). Of the three main markers explored in this paper, only cfDNA decreased significantly (p < 0.05) after 6-month training and dietary intervention. No clear relationship could be established between cfDNA and either UCB or TL. The trial was registered at ClinicalTrials.gov (NCT01775111).
Collapse
Affiliation(s)
- Anela Tosevska
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marlene Hofmann
- Centre for Sport Science and University Sports, Department of Sport and Exercise Physiology, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Immina Vierheilig
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Barbara Schober-Halper
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Oliver Neubauer
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Tissue Repair and Regeneration Group, 60 Musk Avenue, Kelvin Grove Campus, Brisbane, QLD 4059, Australia
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Centre for Sport Science and University Sports, Department of Sport and Exercise Physiology, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
28
|
Abstract
Human immune system aging results in impaired responses to pathogens or vaccines. In the innate immune system, which mediates the earliest pro-inflammatory responses to immunologic challenge, processes ranging from Toll-like Receptor function to Neutrophil Extracellular Trap formation are generally diminished in older adults. Dysregulated, enhanced basal inflammation with age reflecting activation by endogenous damage-associated ligands contributes to impaired innate immune responses. In the adaptive immune system, T and B cell subsets and function alter with age. The control of cytomegalovirus infection, particularly in the T lineage, plays a dominant role in the differentiation and diversity of the T cell compartment.
Collapse
Affiliation(s)
- Thilinie Bandaranayake
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Nakayama H, Nishida K, Otsu K. Macromolecular Degradation Systems and Cardiovascular Aging. Circ Res 2016; 118:1577-92. [DOI: 10.1161/circresaha.115.307495] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.
Collapse
Affiliation(s)
- Hiroyuki Nakayama
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kazuhiko Nishida
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kinya Otsu
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| |
Collapse
|
30
|
Abstract
INTRODUCTION As the U.S. population ages, the incidence of chronic disease will rise. Chronic diseases have been linked to chronic inflammation. The purpose of this review is to summarize the literature on cell-free DNA (cfDNA) in relation to inflammation. METHODS PubMed, EMBASE, and Web of Science were searched. Inclusion criteria were noninterventional studies on acute and chronic inflammation, autoimmunity, and infection published in English after 2000, conducted in humans using the fluorescence method of quantifying DNA. Of the 442 articles retrieved, 83 were identified for full-text review and 13 remained after application of inclusion criteria. RESULTS Of the reviewed studies, three involved acute inflammation, six involved chronic inflammation, and four involved infection. Healthy controls with interpretable results were included in six studies, three of which used the Quant-iT high-sensitivity DNA kit and found cfDNA quantities near 800 ng/ml, while the other three used other fluorescence methods and found quantities below 100 ng/ml. All 13 studies compared groups, and all but 1 found statistically significant differences between them. Among studies using the Quant-iT reagent, levels were higher in infection than in chronic inflammation. Among studies that used other reagents, levels increased from chronic to acute inflammation to severe infection. CfDNA levels were associated with mortality and with clinical outcomes in acute inflammation and infection. Most studies assessed cfDNA's correlation with other inflammation biomarkers and found inconclusive results. CONCLUSION There appears to be an association between inflammation and cfDNA. Further research is necessary before cfDNA can be used clinically as a measure of inflammation.
Collapse
Affiliation(s)
- Mayu O Frank
- College of Nursing, New York University, New York, NY, USA Rockefeller University, New York, NY, USA
| |
Collapse
|
31
|
Santi A, da Cruz IBM, Loro VL, Medeiros Frescura Duarte MM, Barbisan F, Duarte T, Pasa AG. Overt hypothyroidism is associated with blood inflammatory biomarkers dependent of lipid profile. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Assessment of the total cfDNA and HPV16/18 detection in plasma samples of head and neck squamous cell carcinoma patients. Oral Oncol 2016; 54:36-41. [PMID: 26786940 DOI: 10.1016/j.oraloncology.2015.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/08/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The advantages of the circulating cell-free DNA (cfDNA) methodology are quick results and the possibility of repeated analysis. The main aim of our study was to establish the relationship of the total cfDNA with patients' clinical characteristics and circulating HPV DNA detection in the blood of patients with head and neck squamous cell carcinoma (HNSCC). METHODS The cfDNA level of 200 HNSCC patients in plasma was quantified using TaqMan-based TERT amplification. TaqMan technology was also used for HPV16/18 detection. Additionally, mutations in KRAS and EGFR were investigated. RESULTS A higher level (p=0.011) of the total cfDNA was found in patients with oropharyngeal squamous cell carcinoma (OPSCC) (9.60 ± 6.23 ng/ml) in comparison with other HNSCC (7.67 ± 4.44 ng/ml). The level of cfDNA in patients with clinical N2-N3 disease (9.28 ± 6.34 ng/ml) was (p=0.015) higher than in patients with a clinical N0-N1 disease (7.50 ± 3.69 ng/ml). It was also higher in patients with stage IV (9.16 ± 6.04 ng/ml) compared with stages I-III of cancer (7.26 ± 3.63 ng/ml) (p=0.011). Analysis of HPV16/18 in plasma revealed that 14% of patients were HPV-positive, the majority of whom had the type HPV16 (96.4%). CfDNA level was comparable in HPV-positive and HPV-negative HNSCC patients, as well in the OPSCC subgroup. Somatic mutations in EGFR and KRAS were not found. CONCLUSIONS A high level of cfDNA is specific for patients with OPSCC. HPV detection in cfDNA does not depend on the cfDNA concentration. Our results prove the diagnostic potential of plasma-based HPV cfDNA tests for the early detection and monitoring of HPV-positive HNSCC.
Collapse
|
33
|
DAMPs and neurodegeneration. Ageing Res Rev 2015; 24:17-28. [PMID: 25462192 DOI: 10.1016/j.arr.2014.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.
Collapse
|
34
|
Korzeneva IB, Kostuyk SV, Ershova LS, Osipov AN, Zhuravleva VF, Pankratova GV, Porokhovnik LN, Veiko NN. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation. Mutat Res 2015; 779:1-15. [PMID: 26113293 DOI: 10.1016/j.mrfmmm.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA.
Collapse
Affiliation(s)
- Inna B Korzeneva
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia.
| | - Svetlana V Kostuyk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Liza S Ershova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Andrian N Osipov
- Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow, Russia; State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098, Russia
| | - Veronika F Zhuravleva
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia
| | - Galina V Pankratova
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia
| | - Lev N Porokhovnik
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Natalia N Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| |
Collapse
|
35
|
Lewis JM, Heineck DP, Heller MJ. Detecting cancer biomarkers in blood: challenges for new molecular diagnostic and point-of-care tests using cell-free nucleic acids. Expert Rev Mol Diagn 2015; 15:1187-200. [PMID: 26189641 DOI: 10.1586/14737159.2015.1069709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As we move into the era of individualized cancer treatment, the need for more sophisticated cancer diagnostics has emerged. Cell-free (cf) nucleic acids (cf-DNA, cf-RNA) and other cellular nanoparticulates are now considered important and selective biomarkers. There is great hope that blood-borne cf-nucleic acids can be used for 'liquid biopsies', replacing more invasive tissue biopsies to analyze cancer mutations and monitor therapy. Conventional techniques for cf-nucleic acid biomarker isolation from blood are generally time-consuming, complicated and expensive. They require relatively large blood samples, which must be processed to serum or plasma before isolation of biomarkers can proceed. Such cumbersome sample preparation also limits the widespread use of powerful, downstream genomic analyses, including PCR and DNA sequencing. These limitations also preclude rapid, point-of-care diagnostic applications. Thus, new technologies that allow rapid isolation of biomarkers directly from blood will permit seamless sample-to-answer solutions that enable next-generation point-of-care molecular diagnostics.
Collapse
Affiliation(s)
- Jean M Lewis
- a 1 Department of Nanoengineering, University of California - San Diego, SME Building, 9500 Gilman Dr., La Jolla, CA 92093-0448, USA
| | | | | |
Collapse
|
36
|
Kangas R, Pöllänen E, Rippo MR, Lanzarini C, Prattichizzo F, Niskala P, Jylhävä J, Sipilä S, Kaprio J, Procopio AD, Capri M, Franceschi C, Olivieri F, Kovanen V. Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy--a study with monozygotic twin pairs. Mech Ageing Dev 2014; 143-144:1-8. [PMID: 25448133 DOI: 10.1016/j.mad.2014.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/11/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
Biological aging is associated with physiological deteriorations, which are partly due to changes in the hormonal profile. MicroRNAs regulate various processes associated with cell senescence; differentiation, replication and apoptosis. Serum microRNAs have potential to serve as noninvasive markers for diagnostics/prognostics and therapeutic targets. We analysed the association of estrogen-based hormone replacement therapy (HRT) with selected microRNAs and inflammation markers from the serum, leukocytes and muscle biopsy samples from 54 to 62 year-old postmenopausal monozygotic twins (n=11 pairs) discordant for HRT usage. Premenopausal 30-35 year-old women (n=8) were used as young controls. We focused on the hormonal aging and on the interaction between HRT use and the modulation of miR-21, miR-146a and classical inflammation markers. Fas-ligand was analysed since it functions in both apoptosis and inflammation. The inflammatory profile was healthier among the premenopausal women compared to the postmenopausal twins. Serum miR-21 and miR-146a levels and FasL concentrations were lower in HRT users compared to their non-using co-twins, demonstrating their responsiveness to HRT. Based on the pairwise FasL analysis, FasL concentration is likely to be genetically controlled. Overall, we suggest that postmenopausal estrogen deficiency sustains the development of "inflamm-aging". Estrogen sensitive, specific circulating microRNAs could be potential, early biomarkers for age-associated physiological deteriorations.
Collapse
Affiliation(s)
- Reeta Kangas
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland.
| | - Eija Pöllänen
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Francesco Prattichizzo
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Paula Niskala
- Department of Health Sciences, University of Jyväskylä, Finland
| | - Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Finland; Gerontology Research Center, University of Tampere, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy; Department of Clinical Pathology and Innovative Therapy, Advanced Technology Center for Aging Research, INRCA-IRCCS, Ancona, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy; Department of Clinical Pathology and Innovative Therapy, Advanced Technology Center for Aging Research, INRCA-IRCCS, Ancona, Italy
| | - Vuokko Kovanen
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| |
Collapse
|
37
|
Lou X, Hou Y, Liang D, Peng L, Chen H, Ma S, Zhang L. A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: sensitivity and specificity for the diagnosis of myocardial infarction. Int J Mol Med 2014; 35:72-80. [PMID: 25374065 PMCID: PMC4249756 DOI: 10.3892/ijmm.2014.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023] Open
Abstract
In the present study, we aimed to develop and validate a rapid and sensitive, Alu-based real-time PCR method for the detection of circulating cell-free DNA (cfDNA). This method targeted repetitive elements of the Alu reduplicative elements in the human genome, followed by signal amplification using fluorescence quantification. Standard Alu-puc57 vectors were constructed and 5 pairs of specific primers were designed. Valuation was conducted concerning linearity, variation and recovery. We found 5 linear responses (R1–5=0.998–0.999). The average intra- and inter-assay coefficients of variance were 12.98 and 10.75%, respectively. The recovery was 82.33–114.01%, with a mean recovery index of 101.26%. This Alu-based assay was reliable, accurate and sensitive for the quantitative detection of cfDNA. Plasma from normal controls and patients with myocardial infarction (MI) were analyzed, and the baseline levels of cfDNA were higher in the MI group. The area under the receiver operating characteristic (ROC) curve for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu (Alu1 + Alu2 + Alu3 + Alu4 + Alu5) was 0.887, 0.758, 0.857, 0.940, 0.968 and 0.933, respectively. The optimal cut-off value for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu to predict MI was 3.71, 1.93, 0.22, 3.73, 6.13 and 6.40 log copies/ml. We demonstrate that this new method is a reliable, accurate and sensitive method for the quantitative detection of cfDNA and that it is useful for studying the regulation of cfDNA in certain pathological conditions. Alu4, Alu5 and Alu showed better sensitivity and specificity for the diagnosis of MI compared with cardiac troponin I (cTnI), creatine kinase MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH). Alu5 had the best prognostic ability.
Collapse
Affiliation(s)
- Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Dongyu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Liang Peng
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Hongwei Chen
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Shanyuan Ma
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, P.R. China
| | - Lurong Zhang
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Identification of a prognostic signature for old-age mortality by integrating genome-wide transcriptomic data with the conventional predictors: the Vitality 90+ Study. BMC Med Genomics 2014; 7:54. [PMID: 25213707 PMCID: PMC4167306 DOI: 10.1186/1755-8794-7-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prediction models for old-age mortality have generally relied upon conventional markers such as plasma-based factors and biophysiological characteristics. However, it is unknown whether the existing markers are able to provide the most relevant information in terms of old-age survival or whether predictions could be improved through the integration of whole-genome expression profiles. METHODS We assessed the predictive abilities of survival models containing only conventional markers, only gene expression data or both types of data together in a Vitality 90+ study cohort consisting of n = 151 nonagenarians. The all-cause death rate was 32.5% (49 of 151 individuals), and the median follow-up time was 2.55 years. RESULTS Three different feature selection models, the penalized Lasso and Ridge regressions and the C-index boosting algorithm, were used to test the genomic data. The Ridge regression model incorporating both the conventional markers and transcripts outperformed the other models. The multivariate Cox regression model was used to adjust for the conventional mortality prediction markers, i.e., the body mass index, frailty index and cell-free DNA level, revealing that 331 transcripts were independently associated with survival. The final mortality-predicting transcriptomic signature derived from the Ridge regression model was mapped to a network that identified nuclear factor kappa beta (NF-κB) as a central node. CONCLUSIONS Together with the loss of physiological reserves, the transcriptomic predictors centered around NF-κB underscored the role of immunoinflammatory signaling, the control of the DNA damage response and cell cycle, and mitochondrial functions as the key determinants of old-age mortality.
Collapse
|
39
|
Tug S, Helmig S, Menke J, Zahn D, Kubiak T, Schwarting A, Simon P. Correlation between cell free DNA levels and medical evaluation of disease progression in systemic lupus erythematosus patients. Cell Immunol 2014; 292:32-9. [PMID: 25243646 DOI: 10.1016/j.cellimm.2014.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
High levels of cell free DNA (cfDNA) in human blood plasma have been described in patients with autoimmune diseases. The aim of this study was to determine the levels of cfDNA in systemic lupus erythematosus (SLE) patients and to assess fluctuations of cfDNA concentrations compared to the course of disease progression under standard treatment. Therefore, nuclear cfDNA concentrations in plasma were measured in 59 SLE patients and 59 healthy controls. Follow-up blood plasma was collected from 27 of the 59 SLE patients. Patients were characterised by clinical parameters (antinuclear antibodies (ANA), anti-dsDNA-antibodies, C3, C4, and CRP), SLE disease activity index (SLEDAI) and medical therapy. Our results showed that cfDNA concentrations were significantly higher in SLE patients compared to healthy individuals. Levels of cfDNA assessed in serial samples correlated significantly with the medical evaluation of disease activity in SLE patients. Our results could implicate cfDNA as a global marker for disease activity.
Collapse
Affiliation(s)
- Suzan Tug
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Menke
- Department of Rheumatology and Clinical Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Zahn
- Institute of Psychology, Health Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Kubiak
- Institute of Psychology, Health Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schwarting
- Department of Rheumatology and Clinical Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
40
|
Aging of the human innate immune system in HIV infection. Curr Opin Immunol 2014; 29:127-36. [PMID: 24997358 DOI: 10.1016/j.coi.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
HIV infection is associated with a chronic inflammatory state arising from multiple factors, including innate immune recognition of HIV, increased microbial translocation, and release of endogenous ligands from damaged cells (such as CD4 T cells). In many respects, this heightened pro-inflammatory environment resembles that associated with aging in the absence of HIV infection, and evidence of dysregulated innate immune responses can be found in not only older HIV-negative adults, but also adults with HIV infection. While the study of innate immune aging in HIV infection is still in its early stages, it seems likely that at least additive, or potentially synergistic effects of aging and HIV infection will be found.
Collapse
|
41
|
Song H, Nan Y, Cheng XW. Circulating cf-DNA: A promising, noninvasive tool for assessment of early cardio-metabolic risk. Atherosclerosis 2014; 233:307-9. [DOI: 10.1016/j.atherosclerosis.2013.11.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
|
42
|
Marzese DM, Hirose H, Hoon DSB. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 2014; 13:827-44. [DOI: 10.1586/14737159.2013.845088] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Jylhävä J, Lehtimäki T, Jula A, Moilanen L, Kesäniemi YA, Nieminen MS, Kähönen M, Hurme M. Circulating cell-free DNA is associated with cardiometabolic risk factors: the Health 2000 Survey. Atherosclerosis 2014; 233:268-71. [PMID: 24529155 DOI: 10.1016/j.atherosclerosis.2013.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
Abstract
Cell-free circulating DNA (cf-DNA) has recently arisen as a promising biomarker in acute cardiovascular pathologies and as a mortality predictor in myocardial infarction. We wanted to investigate whether the baseline cf-DNA concentration could serve as an indicator of increased cardiovascular risk and early atherosclerosis. The study population consisted of 1337 participants (aged 46-77 years) in the Health 2000 Survey. cf-DNA was quantified directly in plasma using the fluorescence-based Quant-iT™ high-sensitivity DNA assay kit. Increased cf-DNA levels paralleled a cluster of cardiometabolic risk factors, such as high blood pressure, unfavorable lipid metabolism profile and systemic inflammation in both sexes. In addition, higher cf-DNA levels indicated decreased arterial elasticity and glucose intolerance in women not using hormonal replacement therapy (HRT). The cf-DNA level was also observed to be an independent determinant for Young's elastic modulus but not for carotid artery compliance or beta stiffness index in the women not using HRT. Hence, we conclude that cf-DNA could serve as an auxiliary biomarker in cardiometabolic risk assessment and as an indicator of arterial stiffness in women not using HRT.
Collapse
Affiliation(s)
- Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, FIN-33014 Tampere, Finland.
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere, School of Medicine, Tampere, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Y Antero Kesäniemi
- Institute of Clinical Medicine, Department of Medicine, University of Oulu, Oulu, Finland; Clinical Research Center, Oulu University Hospital, Oulu, Finland
| | - Markku S Nieminen
- Department of Medicine, Helsinki University Hospital, P.O. Box 340, FI-00029 HUS Helsinki, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland; University of Tampere, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, FIN-33014 Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
44
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 737] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
45
|
Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett 2013; 356:22-33. [PMID: 24045040 DOI: 10.1016/j.canlet.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/28/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
An increase in the levels of oxidation is a universal feature of genomic DNA of irradiated or aged or even malignant cells. In case of apoptotic death of stressed cells, oxidized DNA can be released in circulation (cfDNA). According to the results of the studies performed in vitro by our group and other researchers, the oxidized cfDNA serves as a biomarker for a stress and a stress signal that is transmitted from the "stressed" area i.e. irradiated cells or cells with deficient anti-oxidant defenses to distant (bystander) cells. In recipient cells, oxidized DNA stimulates biosynthesis of ROS that is followed up by an increase in the number of single strand and double strand breaks (SSBs and DSBs), and activation of DNA Damage Response (DDR) pathway. Effects of oxidized DNA are considered similar to that of irradiation. It seems that downstream effects of irradiation, in part, depend on the release of oxidized DNA fragments that mediate the effects in distant cells. The responses of normal and tumor cell to oxidized DNA may differ. It seems that tumor cells are more sensitive to oxidized DNA-dependent DNA damage, while developing pronounced adaptive response. This may suggest that in chemotherapy or irradiation-treated human body, the release of oxidized DNA from dying cancer cells may give a boost to remaining malignant cells by augmenting their survival and stress resistance. Further studies of the effects of oxidized DNA in both in vitro and in vivo systems are warranted.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalya Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vera Izhevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; Center for the Study of Chronic Metabolic Diseases, School of System Biology, MSN3E1, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
46
|
Jylhävä J, Nevalainen T, Marttila S, Jylhä M, Hervonen A, Hurme M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013; 12:388-97. [PMID: 23438186 DOI: 10.1111/acel.12058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
Plasma cell-free DNA (cf-DNA) has recently emerged as a potential biomarker of aging, reflecting systemic inflammation, and cell death. In addition, it has been suggested that cf-DNA could promote autoinflammation. Because the total cf-DNA pool comprises different cf-DNA species, we quantified the plasma levels of gene-coding cf-DNA, Alu repeat cf-DNA, mitochondrial DNA (mtDNA) copy number, and the amounts of unmethylated and total cf-DNAs. We identified the relationships between these cf-DNA species and age-associated inflammation, immunosenescence, and frailty. Additionally, we determined the cf-DNA species-specific transcriptomic signatures in blood mononuclear cells to elucidate the age-linked leukocyte responses to cf-DNA. The study population consisted of n = 144 nonagenarian participants of the Vitality 90+ Study and n = 30 young controls. In the nonagenarians, higher levels of total and unmethylated cf-DNAs were associated with systemic inflammation and increased frailty. The mtDNA copy number was also directly correlated with increased frailty but not with inflammation. None of the cf-DNA species were associated with immunosenescence. The transcriptomic pathway analysis revealed that higher levels of total and unmethylated cf-DNAs were associated with immunoinflammatory activation in the nonagenarians but not in the young controls. The plasma mtDNA appeared to be inert in terms of inflammatory activation in both the nonagenarians and young controls. These data demonstrate that the plasma levels of total and unmethylated cf-DNA and the mtDNA copy number could serve as biomarkers of frailty. In addition, we suggest that circulating self-DNA, assessed as total or unmethylated cf-DNA, might aggravate immunoinflammatory reactivity in very old individuals.
Collapse
Affiliation(s)
- Juulia Jylhävä
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Tapio Nevalainen
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Saara Marttila
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Marja Jylhä
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Antti Hervonen
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
- Department of Microbiology Tampere University Hospital Tampere Finland
| |
Collapse
|
47
|
Oxidized DNA induces an adaptive response in human fibroblasts. Mutat Res 2013; 747-748:6-18. [PMID: 23644378 DOI: 10.1016/j.mrfmmm.2013.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/20/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA(OX). The levels of cfDNA(OX) are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by Н2О2in vitro (gDNA(OX)) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA(OX) on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA(OX) evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA(OX) leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of РСNА, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA(OX) and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA(OX) inhibits NF-κB signaling. gDNA(OX) is a model for oxidized cfDNA(OX) that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA released from irradiated cells may be responsible for an abscopal effects and a bystander mediated adaptive response seen in some cancer patients. These results indicate the necessity for the further study of the effects of oxidized DNA in both in vitro and in vivo systems.
Collapse
|
48
|
Ermakov AV, Konkova MS, Kostyuk SV, Izevskaya VL, Baranova A, Veiko NN. Oxidized extracellular DNA as a stress signal in human cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:649747. [PMID: 23533696 PMCID: PMC3606786 DOI: 10.1155/2013/649747] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2013] [Indexed: 12/20/2022]
Abstract
The term "cell-free DNA" (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS) that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2) that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.
Collapse
Affiliation(s)
- Aleksei V. Ermakov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Marina S. Konkova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Vera L. Izevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
- Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030, USA
| | - Natalya N. Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| |
Collapse
|
49
|
Cavanagh MM, Weyand CM, Goronzy JJ. Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol 2012; 24:488-93. [PMID: 22565047 DOI: 10.1016/j.coi.2012.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 12/31/2022]
Abstract
The aged immune system, typically hyporesponsive to infection and vaccination, can be hyperresponsive in the context of inflammatory pathology. Here we review current work examining the mechanisms behind the amplified inflammatory profile of aged adaptive immunity, and the reciprocal relationship between chronic inflammation and immune aging. Aged hematopoietic stem cells are driven to differentiate following accumulated DNA damage, thus depleting the stem cell pool and increasing the number of damaged effector cells in the circulation. Chronic DNA damage responses in lymphocytes as well as senescent cells of other lineages initiate the production of inflammatory mediators. In addition, aged lymphocytes become less reliant on specific antigen for stimulation and more prone to activation through innate receptors. When these lymphocytes are exposed to inflammatory signals produced by senescent tissues, the bias toward inflammation exacerbates destruction without necessarily improving immunity.
Collapse
Affiliation(s)
- Mary M Cavanagh
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | | | | |
Collapse
|