1
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Müller L, Di Benedetto S, Müller V. From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells 2025; 14:54. [PMID: 39791755 PMCID: PMC11720143 DOI: 10.3390/cells14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors. Under homeostatic conditions, these elements promote cellular cooperation and stability, whereas in neuroinflammatory states, they drive adaptive responses that may become pathological if dysregulated. We examine how neuroimmune interactions, mediated through these cellular actors and signaling pathways, create complex networks that regulate CNS functionality and respond to injury or inflammation. To further elucidate these dynamics, we provide insights using a multilayer network (MLN) approach, highlighting the interconnected nature of neuroimmune interactions under both inflammatory and homeostatic conditions. This perspective aims to enhance our understanding of neuroimmune communication and the mechanisms underlying shifts from homeostasis to neuroinflammation. Applying an MLN approach offers a more integrative view of CNS resilience and adaptability, helping to clarify inflammatory processes and identify novel intervention points within the layered landscape of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany (V.M.)
| | | | | |
Collapse
|
3
|
Nairuz T, Heo JC, Lee JH. Differential Glial Response and Neurodegenerative Patterns in CA1, CA3, and DG Hippocampal Regions of 5XFAD Mice. Int J Mol Sci 2024; 25:12156. [PMID: 39596222 PMCID: PMC11594373 DOI: 10.3390/ijms252212156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, the distinct patterns of glial response and neurodegeneration within the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus were examined in 5XFAD mice at 6 and 12 months of age. The primary feature of this transgenic mouse model is the rapid onset of amyloid pathology. We employed quantitative assessments via immunohistochemistry, incorporating double staining techniques, followed by observation with light microscopy and subsequent digital analysis of microscopic images. We identified significantly increased Aβ deposition in these three hippocampal regions at 6 and 12 months of transgenic mice. Moreover, the CA1 and CA3 regions showed higher vulnerability, with signs of reactive astrogliosis such as increased astrocyte density and elevated GFAP expression. Additionally, we observed a significant rise in microglia density, along with elevated inflammatory markers (TNFα) in these hippocampal regions. These findings highlight a non-uniform glial and neuronal response to Aβ plaque deposition within the hippocampal regions of 5xFAD mice, potentially contributing to the neurodegenerative and memory deficit characteristics of Alzheimer's disease in this model.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (J.-C.H.)
| |
Collapse
|
4
|
Lana D, Traini C, Bulli I, Sarti G, Magni G, Attorre S, Giovannini MG, Vannucchi MG. Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front Pharmacol 2024; 15:1451114. [PMID: 39166107 PMCID: PMC11333230 DOI: 10.3389/fphar.2024.1451114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction: The gut microbiota (MB), although one of the main producers of Aβ in the body, in physiological conditions contributes to the maintainance of a healthy brain. Dysbiosis, the dysbalance between Gram-negative and Gram-positive bacteria in the MB increases Aβ production, contributing to the accumulation of Aβ plaques in the brain, the main histopathological hallmark of Alzheimer's disease (AD). Administration of prebiotics and probiotics, maintaining or recovering gut-MB composition, could represent a nutraceutical strategy to prevent or reduce AD sympthomathology. Aim of this research was to evaluate whether treatment with pre- and probiotics could modify the histopathological signs of neurodegeneration in hippocampal CA1 and CA3 areas of a transgenic mouse model of AD (APP/PS1 mice). The hippocampus is one of the brain regions involved in AD. Methods: Tg mice and Wt littermates (Wt-T and Tg-T) were fed daily for 6 months from 2 months of age with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). Controls were Wt and Tg mice fed with a standard diet. Brain sections were immunostained for Aβ plaques, neurons, astrocytes, microglia, and inflammatory proteins that were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results: Quantitative analyses demonstrated that: 1) The treatment with pre- and probiotics significantly decreased Aβ plaques in CA3, while in CA1 the reduction was not significant; 2) Neuronal damage in CA1 Stratum Pyramidalis was significantly prevented in Tg-T mice; no damage was found in CA3; 3) In both CA1 and CA3 the treatment significantly increased astrocytes density, and GFAP and IBA1 expression, especially around plaques; 4) Microglia reacted differently in CA1 and CA3: in CA3 of Tg-T mice there was a significant increase of CD68+ phagocytic microglia (ball-and-chain phenomic) and of CX3CR1 compared with CA1. Discussion: The higher microglia reactivity could be responsible for their more efficient scavenging activity towards Aβ plaques in CA3 in comparison to CA1. Treatment with pre- and probiotics, modifying many of the physiopathological hallmarks of AD, could be considered an effective nutraceutical strategy against AD symptomatology.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Traini
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irene Bulli
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giorgia Sarti
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr — Istituto di Fisica Applicata “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Jia Y, Li Y, Hou W, Wei Z, Zhang T, Wang X, Wang J, Tan H. A comparative assessment of age-related nicotinamide adenine dinucleotide phosphate-diaphorase positivity in the spinal cord and medulla oblongata of pigeons, rats, and mice. Anat Rec (Hoboken) 2024. [PMID: 39086191 DOI: 10.1002/ar.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (N-d) positive neurons have been extensively studied across various animals, and N-d neurodegenerative neurites have been detected in some aged animal models. However, detailed knowledge on N-d positivity and aging-related alterations in the spinal cord and medulla oblongata of pigeons is limited. In this study, we investigated N-d positivity and age-related changes in the pigeon's spinal cord and medulla oblongata and compared them to those in rats and mice. Pigeons, had more N-d neurons in the dorsal horn, around the central canal, and in the column of Terni in the thoracic and lumbar segments, with scattered neurons found in the ventral horn of the spinal segments. N-d neurons were also present in the white matter of the spinal cord. Morphometric analysis revealed that the size of N-d soma in the lumbosacral, cervical, and thoracic regions was substantially altered in aged pigeons compared to young birds. Furthermore, the lumbar to sacral segments underwent significant morphological alterations. The main findings of this study were the presence of age-related N-d positive bodies (ANB) in aged pigeons, predominantly in the external cuneate nucleus (CuE) and occasionally in the gracilis and CuEs. ANBs were also identified in the gracile nuclei and spinal cord in the aged rats and mice, whereas in aged rats, ANBs were detected in the CuE spinal nucleus. Immunohistochemistry showed that the age-related alterations occurred in the cell types and neuropeptides in old animals. The results suggest weak inflammatory response and neuronal dysfunction in the spinal cord in aged pigeons. Our results suggested that the ANB could be a potential aging marker for the central nervous system.
Collapse
Affiliation(s)
- Yunge Jia
- Department of Pathology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Yinhua Li
- College of Physical Education and Sport Rehabilitation, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Hou
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zichun Wei
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tianyi Zhang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xinghang Wang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Wang
- Department of General Surgery, Changzhi People's Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Huibing Tan
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
6
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
8
|
Zhang R, Chen M, Deng Z, Kong L, Shen B, Zhang L. Delta Opioid Peptide Targets Brain Microvascular Endothelial Cells Reducing Apoptosis to Relieve Hypoxia-Ischemic/Reperfusion Injury. Pharmaceutics 2022; 15:pharmaceutics15010046. [PMID: 36678674 PMCID: PMC9861451 DOI: 10.3390/pharmaceutics15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is one of the leading causes of death. (D-ala2, D-leu5) enkephalin (DADLE) is a synthetic peptide and highly selective delta opioid receptor (δOR) agonist that has exhibited protective properties in ischemia. However, the specific target and mechanism are still unclear. The present study explores the expression of δOR on brain microvascular endothelial cells (BMECs) and whether DADLE could relieve I/R-induced injury by reducing apoptosis. A lateral ventricular injection of DADLE for pretreatment, the neurofunctional behavior score, and TTC staining, were used to evaluate the protective effect of DADLE. Immunofluorescence technology was used to label different types of cells with apoptosis-positive signals to test co-localization status. Primary cultured BMECs were separated and treated with DADLE, accompanied by OGD/R. The CCK-8 test was conducted to evaluate cell viability and TdT-mediated dUTP Nick-end Labelling (TUNEL) staining to test apoptosis levels. The levels of apoptosis-related proteins were analyzed by Western blotting. The co-localization results showed that BMECs, but not astrocytes, microglia, or neurons, presented mostly TUNEL-positive signals, especially in the Dentate gyrus (DG) area of the hippocampus. Either activation of δORs on rats' brains or primary BMECs mainly reduce cellular apoptosis and relieve the injury. Interference with the expression δOR could block this effect. DADLE also significantly increased levels of Bcl-2 and reduced levels of Bax. δOR's expressions can be detected on the BMECs, but not on the HEK293 cells, by Western blotting and IFC. Therefore, DADLE exerts a cytoprotective effect, primarily under hypoxia-ischemic injury/reperfusion conditions, by targeting BMECs to inhibit apoptosis.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Meixuan Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongfang Deng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lingchao Kong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
9
|
Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis 2022; 174:105895. [DOI: 10.1016/j.nbd.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
10
|
Lana D, Landucci E, Mazzantini C, Magni G, Pellegrini-Giampietro DE, Giovannini MG. The Protective Effect of CBD in a Model of In Vitro Ischemia May Be Mediated by Agonism on TRPV2 Channel and Microglia Activation. Int J Mol Sci 2022; 23:12144. [PMID: 36292998 PMCID: PMC9603301 DOI: 10.3390/ijms232012144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 09/21/2023] Open
Abstract
Cannabinoids, used for centuries for recreational and medical purposes, have potential therapeutic value in stroke treatment. Cannabidiol (CBD), a non-psychoactive compound and partial agonist of TRPV2 channels, is efficacious in many neurological disorders. We investigated the effects of CBD or Δ9-tetrahydrocannabinol (THC) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Neuronal TRPV2 expression decreased after OGD, but it increased in activated, phagocytic microglia. CBD increased TRPV2 expression, decreased microglia phagocytosis, and increased rod microglia after OGD. THC had effects contrary to those of CBD. Our results show that cannabinoids have different effects in ischemia. CBD showed neuroprotective effects, mediated, at least in part, by TRPV2 channels, since the TRPV2 antagonist tranilast blocked them, while THC worsened the neurodegeneration caused by ischemia. In conclusion, our results suggest that different cannabinoid molecules play different roles in the mechanisms of post-ischemic neuronal death. These different effects of cannabinoid observed in our experiments caution against the indiscriminate use of cannabis or cannabinoid preparations for recreational or therapeutic use. It was observed that the positive effects of CBD may be counteracted by the negative effects caused by high levels of THC.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
11
|
Anticonvulsant Action and Long-Term Effects of Chronic Cannabidiol Treatment in the Rat Pentylenetetrazole-Kindling Model of Epilepsy. Biomedicines 2022; 10:biomedicines10081811. [PMID: 36009358 PMCID: PMC9405483 DOI: 10.3390/biomedicines10081811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) showed anticonvulsant action in several preclinical models and is currently approved by regulatory agencies to treat childhood epilepsy syndromes. However, CBD treatment has limited benefits, and its long-term effects on cognition are not fully understood yet. This study aimed to examine the impact of long-term CBD treatment in the pentylenetetrazole (PTZ)-kindling model of epilepsy. Adult male Wistar rats (N = 24) received PTZ (35 mg/kg intraperitoneally) every other day until two consecutive generalized seizures occurred. CBD (60 mg/kg body weight) was administered daily by the oral route until the kindled state was achieved (n = 12). To confirm that the formulation and administration techniques were not of concern, liquid chromatography–mass spectrometry was performed to test the brain penetration of the CBD formula. As a result of CBD treatment, a lower mortality rate and significantly prolonged generalized seizure latency (925.3 ± 120.0 vs. 550.1 ± 69.62 s) were observed, while the frequency and duration of generalized seizures were not influenced. The CBD-treated group showed a significant decrease in vertical exploration in the open field test and a significant decrease in the discrimination index in the novel object recognition (NOR) test (−0.01 ± 0.17 vs. 0.57 ± 0.15, p = 0.04). The observed behavioral characteristics may be connected to the decreased thickness of the stratum pyramidale or the decreased astrogliosis observed in the hippocampus. In conclusion, CBD treatment did not prevent kindling, nor did it affect seizure frequency or duration. However, it did increase the latency to the first seizure and decreased the prolonged status epilepticus-related mortality in PTZ-kindled rats. The cognitive impairment observed in the NOR test may be related to the high dose used in this study, which may warrant further investigation.
Collapse
|
12
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Hypoxia/Ischemia-Induced Rod Microglia Phenotype in CA1 Hippocampal Slices. Int J Mol Sci 2022; 23:ijms23031422. [PMID: 35163344 PMCID: PMC8836225 DOI: 10.3390/ijms23031422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.
Collapse
|
14
|
Rudnitskaya EA, Burnyasheva AO, Kozlova TA, Peunov DA, Kolosova NG, Stefanova NA. Changes in Glial Support of the Hippocampus during the Development of an Alzheimer's Disease-like Pathology and Their Correction by Mitochondria-Targeted Antioxidant SkQ1. Int J Mol Sci 2022; 23:ijms23031134. [PMID: 35163053 PMCID: PMC8834695 DOI: 10.3390/ijms23031134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.
Collapse
Affiliation(s)
- Ekaterina A. Rudnitskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
- Correspondence:
| | - Alena O. Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Tatiana A. Kozlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Daniil A. Peunov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Natalia A. Stefanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| |
Collapse
|
15
|
Cianciulli A, Calvello R, Ruggiero M, Panaro MA. Inflammaging and Brain: Curcumin and Its Beneficial Potential as Regulator of Microglia Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020341. [PMID: 35056657 PMCID: PMC8780663 DOI: 10.3390/molecules27020341] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Inflammaging is a term used to describe the tight relationship between low-grade chronic inflammation and aging that occurs during physiological aging in the absence of evident infection. This condition has been linked to a broad spectrum of age-related disorders in various organs including the brain. Inflammaging represents a highly significant risk factor for the development and progression of age-related conditions, including neurodegenerative diseases which are characterized by the progressive dysfunction and degeneration of neurons in the brain and peripheral nervous system. Curcumin is a widely studied polyphenol isolated from Curcuma longa with a variety of pharmacologic properties. It is well-known for its healing properties and has been extensively used in Asian medicine to treat a variety of illness conditions. The number of studies that suggest beneficial effects of curcumin on brain pathologies and age-related diseases is increasing. Curcumin is able to inhibit the formation of reactive-oxygen species and other pro-inflammatory mediators that are believed to play a pivotal role in many age-related diseases. Curcumin has been recently proposed as a potential useful remedy against neurodegenerative disorders and brain ageing. In light of this, our current review aims to discuss the potential positive effects of Curcumin on the possibility to control inflammaging emphasizing the possible modulation of inflammaging processes in neurodegenerative diseases.
Collapse
|
16
|
Ameliorative effects of oyster (Crassostrea hongkongensis) protein hydrolysate on age-induced cognitive impairment via restoring glia cell dysfunction and neuronal injured in zebrafish. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Debarba LK, Jayarathne HSM, Miller RA, Garratt M, Sadagurski M. 17-a-estradiol has sex-specific effects on neuroinflammation that are partly reversed by gonadectomy. J Gerontol A Biol Sci Med Sci 2021; 77:66-74. [PMID: 34309657 DOI: 10.1093/gerona/glab216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
17-α-estradiol (17aE2) treatment from 4-months of age extends lifespan in male mice and can reduce neuroinflammatory responses in the hypothalamus of 12-month-old males. Although 17aE2 improves longevity in males, female mice are unaffected, suggesting a sexually dimorphic pattern of lifespan regulation. We tested whether the sex-specific effects of 17aE2 on neuroinflammatory responses are affected by gonadal removal and whether hypothalamic changes extend to other brain regions in old age. We show that sex-specific effects of 17aE2 on age-associated gliosis are brain region-specific and are partially dependent on gonadectomy. 17aE2 treatment started at 4 months of age protected 25-month-old males from hypothalamic inflammation. Castration before 17aE2 exposure reduced the effect of 17aE2 on hypothalamic astrogliosis in males. By contrast, sex-specific inhibition of microgliosis generated by 17aE2 was not significantly affected by castration. In the hippocampus, gonadectomy influenced the severity of gliosis and the responsiveness to 17aE2 in a region-dependent manner. The male-specific effects of 17aE2 correlate with increases in hypothalamic ERα expression, specifically in gonadally intact males, consistent with the idea that 17aE2 might act through this receptor. Our results indicate that neuroinflammatory responses to 17aE2 are partially controlled by the presence of sex-specific gonads. Loss of gonadal function and age-associated neuroinflammation could, therefore, influence late-life health and disease onset, leading to sexual dimorphism in both aging and in response to drugs that modify the pace of aging.
Collapse
Affiliation(s)
- Lucas K Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Hashan S M Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, NZ
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| |
Collapse
|
18
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Abstract
Clasmatodendrosis derives from the Greek for fragment (klasma), tree (dendron), and condition (- osis). Cajal first used the term in 1913: he observed disintegration of the distal cell processes of astrocytes, along with a fragmentation or beading of proximal processes closer to the astrocyte cell body. In contemporary clinical and experimental reports, clasmatodendrosis has been observed in models of cerebral ischemia and seizures (including status epilepticus), in elderly brains, in white matter disease, in hippocampal models and cell cultures associated with amyloid plaques, in head trauma, toxic exposures, demyelinating diseases, encephalitides and infection-associated encephalopathies, and in the treatment of cancer using immune effector cells. We examine evidence to support a claim that clasmatodendrotic astrocyte cell processes overtly bead (truncate) as a morphological sign of ongoing damage premortem. In grey and white matter and often in relationship to vascular lumina, beading becomes apparent with immunohistochemical staining of glial fibrillary acidic protein when specimens are examined at reasonably high magnification, but demonstration of distal astrocytic loss of processes may require additional marker study and imaging. Proposed mechanisms for clasmatodendrotic change have examined hypoxic-ischemic, osmotic-demyelinating, and autophagic models. In these models as well as in neuropathological reports, parenchymal swelling, vessel-wall leakage, or disturbed clearance of toxins can occur in association with clasmatodendrosis. Clasmatodendrotic features may serve as a marker for gliovascular dysregulation either acutely or chronically. We review correlative evidence for blood-brain barrier (BBB) dysfunction associated with astrocytic structural change, with attention to interactions between endothelial cells, pericytes, and astrocytic endfeet.
Collapse
|
20
|
Nosi D, Lana D, Giovannini MG, Delfino G, Zecchi-Orlandini S. Neuroinflammation: Integrated Nervous Tissue Response through Intercellular Interactions at the "Whole System" Scale. Cells 2021; 10:1195. [PMID: 34068375 PMCID: PMC8153304 DOI: 10.3390/cells10051195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Different cell populations in the nervous tissue establish numerous, heterotypic interactions and perform specific, frequently intersecting activities devoted to the maintenance of homeostasis. Microglia and astrocytes, respectively the immune and the "housekeeper" cells of nervous tissue, play a key role in neurodegenerative diseases. Alterations of tissue homeostasis trigger neuroinflammation, a collective dynamic response of glial cells. Reactive astrocytes and microglia express various functional phenotypes, ranging from anti-inflammatory to pro-inflammatory. Chronic neuroinflammation is characterized by a gradual shift of astroglial and microglial phenotypes from anti-inflammatory to pro-inflammatory, switching their activities from cytoprotective to cytotoxic. In this scenario, the different cell populations reciprocally modulate their phenotypes through intense, reverberating signaling. Current evidence suggests that heterotypic interactions are links in an intricate network of mutual influences and interdependencies connecting all cell types in the nervous system. In this view, activation, modulation, as well as outcomes of neuroinflammation, should be ascribed to the nervous tissue as a whole. While the need remains of identifying further links in this network, a step back to rethink our view of neuroinflammation in the light of the "whole system" scale, could help us to understand some of its most controversial and puzzling features.
Collapse
Affiliation(s)
- Daniele Nosi
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| | - Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Giovanni Delfino
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| |
Collapse
|
21
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 2021; 13:651973. [PMID: 33889084 PMCID: PMC8055856 DOI: 10.3389/fnagi.2021.651973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
Collapse
Affiliation(s)
- Daniele Lana
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Anatomopatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Maria Grazia Giovannini
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Tarudji AW, Gee CC, Romereim SM, Convertine AJ, Kievit FM. Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 2021; 272:120766. [PMID: 33819812 DOI: 10.1016/j.biomaterials.2021.120766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/19/2023]
Abstract
The secondary phase of traumatic brain injury (TBI) is partly caused by the release of excess reactive oxygen species (ROS) from the primary injury. However, there are currently no therapies that have been shown to reduce the secondary spread of injury beyond the primary insult. Nanoparticles offer the ability to rapidly accumulate and be retained in injured brain for improved target engagement. Here, we utilized systemically administered antioxidant thioether core-cross-linked nanoparticles (NP1) that scavenge and inactivate ROS to reduce this secondary spread of injury in a mild controlled cortical impact (CCI) mouse model of TBI. We found that NP1 treatment protected CCI mice from injury induced learning and memory deficits observed in the Morris water maze (MWM) test at 1-month post-CCI. This protection was likely a result of NP1-mediated reduction in oxidative stress in the ipsilateral hemisphere as determined by immunofluorescence imaging of markers of oxidative stress and the spread of neuroinflammation into the contralateral hippocampus as determined by immunofluorescence imaging of activated microglia and neuron-astrocyte-microglia triad formation. These data suggest NP1-mediated reduction in post-traumatic oxidative stress correlates with the reduction in the spread of injury to the contralateral hippocampus to protect spatial memory and learning in CCI mice. Therefore, these materials may offer an improved treatment strategy to reduce the secondary spread of TBI.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Sarah M Romereim
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA.
| |
Collapse
|
23
|
Shinjyo N, Nakayama H, Li L, Ishimaru K, Hikosaka K, Suzuki N, Yoshida H, Norose K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113525. [PMID: 33129946 DOI: 10.1016/j.jep.2020.113525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has been widely used as a natural antidepressant. However, it is unknown whether it is effective in treating infection-induced neuropsychiatric disorders. AIM OF THE STUDY In order to evaluate the effectiveness of H. perforatum against infection with neurotropic parasite Toxoplasma gondii, which has been linked to neuropsychiatric disorders, this study investigated the anti-Toxoplasma activity using in vitro models. MATERIALS AND METHODS Dried alcoholic extracts were prepared from three Hypericum species: H. perforatum, H. erectum, and H. ascyron. H. perforatum extract was further separated by solvent-partitioning. Hyperforin and hypericin levels in the extracts and fractions were analyzed by high resolution LC-MS. Anti-Toxoplasma activities were tested in vitro, using cell lines (Vero and Raw264), murine primary mixed glia, and primary neuron-glia. Toxoplasma proliferation and stage conversion were analyzed by qPCR. Infection-induced damages to the host cells were analyzed by Sulforhodamine B cytotoxicity assay (Vero) and immunofluorescent microscopy (neurons). Infection-induced inflammatory responses in glial cells were analysed by qPCR and immunofluorescent microscopy. RESULTS Hyperforin was identified only in H. perforatum among the three tested species, whereas hypericin was present in H. perforatum and H. erectum. H. perforatum extract and hyperforin-enriched fraction, as well as hyperforin, exhibited significant anti-Toxoplasma property as well as inhibitory activity against infection-induced inflammatory responses in glial cells. In addition, H. perforatum-derived hyperforin-enriched fraction restored neuro-supportive environment in mixed neuron-glia culture. CONCLUSIONS H. perforatum and its major constituent hyperforin are promising anti-Toxoplasma agents that could potentially protect neurons and glial cells against infection-induced damages. Further study is warranted to establish in vivo efficacy.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Hideyuki Nakayama
- Saga Prefectural Institute of Public Health and Pharmaceutical Research, 1-20 Hacchounawate, Saga, 849-0925, Japan
| | - Li Li
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kanji Ishimaru
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Noriyuki Suzuki
- Department of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
24
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Varinthra P, Ganesan K, Huang SP, Chompoopong S, Eurtivong C, Suresh P, Wen ZH, Liu IY. The 4-(Phenylsulfanyl) butan-2-one Improves Impaired Fear Memory Retrieval and Reduces Excessive Inflammatory Response in Triple Transgenic Alzheimer's Disease Mice. Front Aging Neurosci 2021; 13:615079. [PMID: 33613267 PMCID: PMC7888344 DOI: 10.3389/fnagi.2021.615079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by an excessive inflammatory response and impaired memory retrieval, including spatial memory, recognition memory, and emotional memory. Acquisition and retrieval of fear memory help one avoid dangers and natural threats. Thus, it is crucial for survival. AD patients with impaired retrieval of fear memory are vulnerable to dangerous conditions. Excessive expression of inflammatory markers is known to impede synaptic transmission and reduce the efficiency of memory retrieval. In wild-type mice, reducing inflammation response can improve fear memory retrieval; however, this effect of this approach is not yet investigated in 3xTg-AD model mice. To date, no satisfactory drug or treatment can attenuate the symptoms of AD despite numerous efforts. In the past few years, the direction of therapeutic drug development for AD has been shifted to natural compounds with anti-inflammatory effect. In the present study, we demonstrate that the compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) is effective in enhancing fear memory retrieval of wild-type and 3xTg-AD mice by reducing the expression of TNF-α, COX-2, and iNOS. We also found that 4-PSB-2 helps increase dendritic spine density, postsynaptic density protein-95 (PSD-95) expression, and long-term potentiation (LTP) in the hippocampus of 3xTg-AD mice. Our study indicates that 4-PSB-2 may be developed as a promising therapeutic compound for treating fear memory impairment of AD patients.
Collapse
Affiliation(s)
| | - Kiruthika Ganesan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok, Thailand
| | - Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
26
|
Kodali M, Attaluri S, Madhu LN, Shuai B, Upadhya R, Gonzalez JJ, Rao X, Shetty AK. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021; 20:e13277. [PMID: 33443781 PMCID: PMC7884047 DOI: 10.1111/acel.13277] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin, a drug widely used for treating diabetes, can prolong the lifespan in several species. Metformin also has the promise to slow down age‐related cognitive impairment. However, metformin's therapeutic use as an anti‐aging drug is yet to be accepted because of conflicting animal and human studies results. We examined the effects of metformin treatment in late middle age on cognitive function in old age. Eighteen‐month‐old male C57BL6/J mice received metformin or no treatment for 10 weeks. A series of behavioral tests revealed improved cognitive function in animals that received metformin. Such findings were evident from a better ability for pattern separation, object location, and recognition memory function. Quantification of microglia revealed that metformin treatment reduced the incidence of pathological microglial clusters with alternative activation of microglia into an M2 phenotype, displaying highly ramified processes in the hippocampus. Metformin treatment also seemed to reduce astrocyte hypertrophy. Additional analysis demonstrated that metformin treatment in late middle age increased adenosine monophosphate‐activated protein kinase activation, reduced proinflammatory cytokine levels, and the mammalian target of rapamycin signaling, and enhanced autophagy in the hippocampus. However, metformin treatment did not alter neurogenesis or synapses in the hippocampus, implying that improved cognitive function with metformin did not involve enhanced neurogenesis or neosynaptogenesis. The results provide new evidence that metformin treatment commencing in late middle age has promise for improving cognitive function in old age. Modulation of microglia, proinflammatory cytokines, and autophagy appear to be the mechanisms by which metformin facilitated functional benefits in the aged brain.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Bing Shuai
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Jenny Jaimes Gonzalez
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| |
Collapse
|
27
|
Seyedaghamiri F, Farajdokht F, Vatandoust SM, Mahmoudi J, Khabbaz A, Sadigh-Eteghad S. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol Biol Rep 2021; 48:1371-1382. [PMID: 33523373 DOI: 10.1007/s11033-021-06195-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Sericin is a protein derived from silkworm cocoons and identified as an anti-aging agent. This study aimed to examine the effects of sericin administration on episodic and avoidance memories, social interaction behavior, and molecular mechanisms including oxidative stress, inflammation, and apoptosis in the hippocampus of aged mice. Sericin was administered at 250 mg/kg/day (oral gavage) to 2-year-old BALB/c mice for a duration of 21 consecutive days. Lashley III Maze and Shuttle-Box tests were performed to assess episodic and avoidance memories, respectively. Subjects also underwent social interaction test to reveal any changes in their social behavior. Besides, markers of oxidative stress (TAC, SOD, GPx, and MDA) and neuroinflammation mediators (TNF-α, IL-1β, and IL-10) were measured in the hippocampus. The extent of apoptosis in the hippocampal tissue was further determined by TUNEL assay and histological assessment. The obtained results suggest that sericin promotes episodic and avoidance memories and social behaviors in aged mice. As of the molecular assay outcomes, it was noted that sericin regulates hippocampal inflammation by inhibiting the pro-inflammatory cytokines, TNF-α and IL-1β, and by increasing the anti-inflammatory factor IL-10. Moreover, sericin suppressed oxidative stress by enhancing antioxidant markers (TAC, SOD, and GPx) and inhibiting MDA. It was also identified that sericin can substantially suppress the apoptosis in the hippocampal tissue. Overall, sericin modulates memory and sociability behavior by tuning hippocampal antioxidant, inflammatory, and apoptotic markers in the aged mice.
Collapse
Affiliation(s)
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Aytak Khabbaz
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.
| |
Collapse
|
28
|
Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020; 21:E9441. [PMID: 33322419 PMCID: PMC7763751 DOI: 10.3390/ijms21249441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
This review is focused on the description and discussion of the alterations of astrocytes and microglia interplay in models of Alzheimer's disease (AD). AD is an age-related neurodegenerative pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD's histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key factor in both initiation and progression of the disease, and suppression of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions. Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess how these interactions can influence the state and progression of the disease, and will be critical for identifying therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
29
|
Lana D, Ugolini F, Giovannini MG. An Overview on the Differential Interplay Among Neurons-Astrocytes-Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia. Front Cell Neurosci 2020; 14:585833. [PMID: 33262692 PMCID: PMC7686560 DOI: 10.3389/fncel.2020.585833] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons have been long regarded as the basic functional cells of the brain, whereas astrocytes and microglia have been regarded only as elements of support. However, proper intercommunication among neurons-astrocytes-microglia is of fundamental importance for the functional organization of the brain. Perturbation in the regulation of brain energy metabolism not only in neurons but also in astrocytes and microglia may be one of the pathophysiological mechanisms of neurodegeneration, especially in hypoxia/ischemia. Glial activation has long been considered detrimental for survival of neurons, but recently it appears that glial responses to an insult are not equal but vary in different brain areas. In this review, we first take into consideration the modifications of the vascular unit of the glymphatic system and glial metabolism in hypoxic conditions. Using the method of triple-labeling fluorescent immunohistochemistry coupled with confocal microscopy (TIC), we recently studied the interplay among neurons, astrocytes, and microglia in chronic brain hypoperfusion. We evaluated the quantitative and morpho-functional alterations of the neuron-astrocyte-microglia triads comparing the hippocampal CA1 area, more vulnerable to ischemia, to the CA3 area, less vulnerable. In these contiguous and interconnected areas, in the same experimental hypoxic conditions, astrocytes and microglia show differential, finely regulated, region-specific reactivities. In both areas, astrocytes and microglia form triad clusters with apoptotic, degenerating neurons. In the neuron-astrocyte-microglia triads, the cell body of a damaged neuron is infiltrated and bisected by branches of astrocyte that create a microscar around it while a microglial cell phagocytoses the damaged neuron. These coordinated actions are consistent with the scavenging and protective activities of microglia. In hypoxia, the neuron-astrocyte-microglia triads are more numerous in CA3 than in CA1, further indicating their protective effects. These data, taken from contiguous and interconnected hippocampal areas, demonstrate that glial response to the same hypoxic insult is not equal but varies significantly. Understanding the differences of glial reactivity is of great interest to explain the differential susceptibility of hippocampal areas to hypoxia/ischemia. Further studies may evidence the differential reactivity of glia in different brain areas, explaining the higher or lower sensitivity of these areas to different insults and whether glia may represent a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Florence, Italy
| | - Maria G Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
31
|
Vargas G, Medeiros Geraldo LH, Gedeão Salomão N, Viana Paes M, Regina Souza Lima F, Carvalho Alcantara Gomes F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav Immun Health 2020; 7:100127. [PMID: 32838339 PMCID: PMC7423575 DOI: 10.1016/j.bbih.2020.100127] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a pneumonia outbreak was reported in Wuhan, Hubei province, China. Since then, the World Health Organization declared a public health emergency of international concern due to a growing number of deaths around the globe, as well as unparalleled economic and sociodemographic consequences. The disease called coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel form of human coronavirus. Although coronavirus infections have been associated with neurological manifestations such as febrile seizures, convulsions, change in mental status, and encephalitis, less is known about the impact of SARS-CoV-2 in the brain. Recently, emerging evidence suggests that SARS-CoV-2 is associated with neurological alterations in COVID-19 patients with severe clinical manifestations. The molecular and cellular mechanisms involved in this process, as well as the neurotropic and neuroinvasive properties of SARS-CoV-2, are still poorly understood. Glial cells, such as astrocytes and microglia, play pivotal roles in the brain response to neuroinflammatory insults and neurodegenerative diseases. Further, accumulating evidence has shown that those cells are targets of several neurotropic viruses that severely impact their function. Glial cell dysfunctions have been associated with several neuroinflammatory diseases, suggesting that SARS-CoV-2 likely has a primary effect on these cells in addition to a secondary effect from neuronal damage. Here, we provide an overview of these data and discuss the possible implications of glial cells as targets of SARS-CoV-2. Considering the roles of microglia and astrocytes in brain inflammatory responses, we shed light on glial cells as possible drivers and potential targets of therapeutic strategies against neurological manifestations in patients with COVID-19. The main goal of this review is to highlight the need to consider glial involvement in the progression of COVID-19 and potentially include astrocytes and microglia as mediators of SARS-CoV-2-induced neurological damage.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Marciano Viana Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
32
|
García S, Martín Giménez VM, Mocayar Marón FJ, Reiter RJ, Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol Histopathol 2020; 35:789-800. [PMID: 32154907 DOI: 10.14670/hh-18-212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generally, the development and progression of neurodegenerative diseases are associated with advancing age, so they are usually diagnosed in late adulthood. A primary mechanism underlying the onset of neurodegenerative diseases is neuroinflammation. Based on this background, the concept of "neuroinflammaging" has emerged. In this deregulated neuroinflammatory process, a variety of immune cells participate, especially glial cells, proinflammatory cytokines, receptors, and subcellular organelles including mitochondria, which are mainly responsible for maintaining redox balance at the cellular level. Senescence and autophagic processes also play a crucial role in the neuroinflammatory disease associated with aging. Of particular interest, melatonin, cannabinoids, and the receptors of both molecules which are closely related, exert beneficial effects on the neuroinflammatory processes that precede the onset of neurodegenerative pathologies such as Parkinson's and Alzheimer's diseases. Some of these neuroprotective effects are fundamentally related to its anti-inflammatory and antioxidative actions at the mitochondrial level due to the strategic functions of this organelle. The aim of this review is to summarize the most recent advances in the study of neuroinflammation and neurodegeneration associated with age and to consider the use of new mitochondrial therapeutic targets related to the endocannabinoid system and the pineal gland.
Collapse
Affiliation(s)
- Sebastián García
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Virna Margarita Martín Giménez
- Institute of Research in Chemical Sciences, School of Chemical and Technological Sciences, Cuyo Catholic University, San Juan, Argentina
| | - Feres José Mocayar Marón
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina.,Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.
| |
Collapse
|
33
|
Shi S, Yin H, Li J, Wang L, Wang W, Wang X. Studies of pathology and pharmacology of diabetic encephalopathy with KK-Ay mouse model. CNS Neurosci Ther 2020; 26:332-342. [PMID: 31401815 PMCID: PMC7052806 DOI: 10.1111/cns.13201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022] Open
Abstract
AIMS Pathogenesis of diabetic encephalopathy (DE) is not completely understood until now. The purposes of this study were to illustrate the changes in morphology, function, and important transporters in neurons and glia during DE, as well as to reveal the potential therapeutic effects of medicines and the diet control on DE. METHODS Spontaneous obese KK-Ay mice were used to investigate diabetes-induced cognitive disorder, the morphology, function, and protein expression changes in impact animal and the cell level studies. The new drug candidate PHPB, donepezil, and low-fat food were used to observe the therapeutic effects. RESULTS KK-Ay mice at 5 months of age showed typical characteristics of type 2 diabetes mellitus (T2DM) and appeared significant cognitive deficits. Morphological study showed microtubule-associated protein 2 (MAP2) expression was increased in hippocampal neurons and glial fibrillary acidic protein (GFAP) expression decreased in astrocytes. Meanwhile, the vesicular glutamate transporter 1 (vGLUT1) expression was increased and glucose transporter 1 (GLUT1) decreased, and the expression of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was also reduced in KK-Ay mice. Microglia were activated, and IL-1β and TNF-α were increased obviously in the brains of the KK-Ay mice. Most of the above changes in the KK-Ay mice at 5 months of age could be relieved by diet intervention (DR) or by treatment of donepezil or new drug candidate PHPB. CONCLUSION KK-Ay mouse is a useful animal model for studying DE. The alterations of morphology, structure, and function of astrocyte and microglia in KK-Ay mice might be rescued by DR and by treatment of medicine. The proteins we reported in this study could be used as biomarkers and the potential drug targets for DE study and treatment.
Collapse
Affiliation(s)
- Si Shi
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua‐Jing Yin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiang Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ling Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei‐Ping Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiao‐Liang Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
34
|
Cavallo D, Landucci E, Gerace E, Lana D, Ugolini F, Henley JM, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective effects of mGluR5 activation through the PI3K/Akt pathway and the molecular switch of AMPA receptors. Neuropharmacology 2020; 162:107810. [PMID: 31600563 DOI: 10.1016/j.neuropharm.2019.107810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that antagonists of mGluR1, but not mGluR5, are neuroprotective in models of cerebral ischemia. To investigate the individual roles of mGlu1 and mGlu5 receptors in in vitro model of cerebral ischemia we used low doses of the non-selective group I agonist DHPG and mGlu1 and mGlu5 selective positive allosteric modulators (PAMs). In hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), DHPG (1 μM) and the mGluR5 PAM (VU0092273) significantly reduced OGD-induced CA1 injury monitored by propidium iodide staining of the slices and quantitative analysis of CA1 neurons. In contrast, the mGluR1 PAM (VU0483605) showed no neuroprotection. These protective effects of DHPG and VU0092273 were prevented by inhibition of PI3K/Akt pathway by LY294002. The mGluR5 PAM (VU0092273) also prevented GluA2 down-regulation triggered by ischemic injury, via PI3K/Akt pathway, revealing a further contribution to its neuroprotective effects by reducing the excitotoxic effects of increased Ca2+ influx through GluA2-lacking AMPA receptors. Furthermore, immunohistochemical assays confirmed the neuroprotective effect of VU0092273 and revealed activation of glia, indicating the involvement reactive astrogliosis in the mechanisms of neuroprotection. Our data suggest that selective activation/potentiation of mGluR5 signalling represents a promising strategy for the development of new interventions to reduce or prevent ischemia-induced neuronal death.
Collapse
Affiliation(s)
- Damiana Cavallo
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy; School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Elisa Landucci
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Maria Grazia Giovannini
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
35
|
Deficiencies of microglia and TNFα in the mPFC-mediated cognitive inflexibility induced by social stress during adolescence. Brain Behav Immun 2019; 79:256-266. [PMID: 30772475 DOI: 10.1016/j.bbi.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
The crucial roles played by microglia and their release of cytokines in the regulation of brain maturation are increasingly being recognized. Adolescence is a unique period characterized by continued brain maturation, especially in the area of the prefrontal cortex. Our previous studies showed that adolescent social stress induced impairment in extradimensional set-shifting (EDS), a core component of cognitive flexibility mediated by the medial prefrontal cortex (mPFC) in adult mice. The present study further determined the role of microglia and the inflammatory cytokine tumor necrosis factor alpha (TNFα) in cognitive dysfunction. Accompanied by a deficit in EDS in adulthood, previously stressed mice showed significant reductions in the expression of the microglial molecular biomarker Iba1, cell numbers, and the levels of TNFα mRNA and protein in the mPFC. Pharmacological inhibition of TNFα signaling by direct injection of a neutralizer into the mPFC also specifically impaired EDS performance. Moreover, the cognitive and immune alterations in previously stressed adult mice were ameliorated by both acute LPS and chronic antidepressant treatment. Together, our data suggest that microglia and TNFα play important roles in cognitive flexibility and can provide attractive therapeutic targets for the treatment of cognitive deficits in psychiatric disorders.
Collapse
|
36
|
Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J Neurovirol 2019; 25:722-733. [PMID: 30671779 DOI: 10.1007/s13365-019-00721-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Abstract
Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease. Moreover, in several age-related CNS diseases, chronic inflammation and altered metabolism have been reported. Since people with HIV (PWH) are reported to experience rapid aging with chronic inflammation, altered brain metabolism is likely to be exacerbated. In fact, many studies report altered metabolism in astrocytes in diseases such as Alzheimer's, Parkinson's, and HIV. This review will address the roles of astrocyte activation and altered metabolism in normal aging, in age-related CNS disease, and in HIV-associated neurocognitive disorders.
Collapse
|
37
|
Luo A, Yan J, Tang X, Zhao Y, Zhou B, Li S. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology 2019; 27:27-37. [PMID: 30607668 DOI: 10.1007/s10787-018-00559-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
The aging population is burgeoning globally and this trend presents great challenges to the current healthcare system as the growing number of aged individuals receives procedures of surgery and anesthesia. Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela. Advanced age is considered as an independent risk factor of POCD. Mounting evidence have shown that neuroinflammation plays an essential role in POCD. However, it remains debatable why this complication occurs highly in the aged individuals. As known, aging itself is the major common high-risk factor for age-associated disorders including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. Chronic low-grade neuroinflammation (dubbed neuroinflammaging in the present paper) is a hallmark alternation and contributes to age-related cognitive decline in the normal aging. Interestingly, several lines of findings show that the neuroinflammatory pathogenesis of POCD is age-dependent. It suggests that age-related changes, especially the neuroinflammaging, are possibly associated with the postoperative cognitive impairment. Understanding the role of neuroinflammaging in POCD is crucial to elucidate the mechanism of POCD and develop strategies to prevent or treat POCD. Here the focus of this review is on the potential role of neuroinflammaging in the mechanism of POCD. Lastly, we briefly review promising interventions for this neurological sequela.
Collapse
Affiliation(s)
- AiLin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - XiaoLe Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - YiLin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - BiYun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - ShiYong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
38
|
Ugolini F, Lana D, Nardiello P, Nosi D, Pantano D, Casamenti F, Giovannini MG. Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal Regions of TgCRND8 Mice. Front Aging Neurosci 2018; 10:372. [PMID: 30483118 PMCID: PMC6243135 DOI: 10.3389/fnagi.2018.00372] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/26/2018] [Indexed: 01/24/2023] Open
Abstract
We investigated the different patterns of neurodegeneration and glia activation in CA1 and CA3 hippocampal areas of TgCRND8 mice. The main feature of this transgenic model is the rapid development of the amyloid pathology, which starts already at 3 months of age. We performed immunohistochemical analyses to compare the different sensibility of the two hippocampal regions to neurodegeneration. We performed qualitative and quantitative evaluations by fluorescence immunohistochemistry with double or triple staining, followed by confocal microscopy and digital image analysis in stratum pyramidale (SP) and stratum radiatum (SR) of CA1 and CA3, separately. We evaluated time-dependent Aβ plaques deposition, expression of inflammatory markers, as well as quantitative and morphological alterations of neurons and glia in transgenic mice at 3 (Tg 3M) and 6 (Tg 6M) months of age, compared to WT mice. In CA1 SR of Tg 6M mice, we found significantly more Medium and Large plaques than in CA3. The pattern of neurodegeneration and astrocytes activation was different in the two areas, indicating higher sensitivity of CA1. In the CA1 SP of Tg 6M mice, we found signs of reactive astrogliosis, such as increase of astrocytes density in SP, increase of GFAP expression in SR, and elongation of astrocytes branches. We found also common patterns of glia activation and neurodegenerative processes in CA1 and CA3 of Tg 6M mice: significant increase of total and reactive microglia density in SP and SR, increased expression of TNFα, of iNOS, and IL1β in astrocytes and increased density of neurons-astrocytes-microglia triads. In CA1 SP, we found decrease of volume and number of pyramidal neurons, paralleled by increase of apoptosis, and, consequently, shrinkage of CA1 SP. These data demonstrate that in TgCRND8 mice, the responses of neurons and glia to neurodegenerative patterns induced by Aβ plaques deposition is not uniform in the two hippocampal areas, and in CA1 pyramidal neurons, the higher sensitivity may be related to the different plaque distribution in this area. All these modifications may be at the basis of memory loss, the peculiar symptom of AD, which was demonstrated in this transgenic mouse model of Aβ deposition, even at early stages.
Collapse
Affiliation(s)
- Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods 2018; 15:1029-1032. [PMID: 30397326 PMCID: PMC6405223 DOI: 10.1038/s41592-018-0177-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Morphological and molecular characteristics determine the function of biological tissues. Attempts to combine immunofluorescence and electron microscopy invariably compromise the quality of the ultrastructure of tissue sections. We developed NATIVE, a correlated light and electron microscopy approach that preserves ultrastructure while showing the locations of multiple molecular moieties even deep within tissues. This technique allowed the large-scale 3D reconstruction of a volume of mouse hippocampal CA3 tissue at nanometer resolution.
Collapse
|
40
|
Age-Induced Spatial Memory Deficits in Rats Are Correlated with Specific Brain Region Alterations in Microglial Morphology and Gene Expression. J Neuroimmune Pharmacol 2018; 14:251-262. [DOI: 10.1007/s11481-018-9817-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
41
|
Losada-Perez M. Glia: from 'just glue' to essential players in complex nervous systems: a comparative view from flies to mammals. J Neurogenet 2018; 32:78-91. [PMID: 29718753 DOI: 10.1080/01677063.2018.1464568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last years, glial cells have emerged as central players in the development and function of complex nervous systems. Therefore, the concept of glial cells has evolved from simple supporting cells to essential actors. The molecular mechanisms that govern glial functions are evolutionarily conserved from Drosophila to mammals, highlighting genetic similarities between these groups, as well as the great potential of Drosophila research for the understanding of human CNS. These similarities would imply a common phylogenetic origin of glia, even though there is a controversy at this point. This review addresses the existing literature on the evolutionary origin of glia and discusses whether or not insect and mammalian glia are homologous or analogous. Besides, this manuscript summarizes the main glial functions in the CNS and underscores the evolutionarily conserved molecular mechanisms between Drosophila and mammals. Finally, I also consider the current nomenclature and classification of glial cells to highlight the need for a consensus agreement and I propose an alternative nomenclature based on function that unifies Drosophila and mammalian glial types.
Collapse
|
42
|
Fusco I, Ugolini F, Lana D, Coppi E, Dettori I, Gaviano L, Nosi D, Cherchi F, Pedata F, Giovannini MG, Pugliese AM. The Selective Antagonism of Adenosine A 2B Receptors Reduces the Synaptic Failure and Neuronal Death Induced by Oxygen and Glucose Deprivation in Rat CA1 Hippocampus in Vitro. Front Pharmacol 2018; 9:399. [PMID: 29740323 PMCID: PMC5928446 DOI: 10.3389/fphar.2018.00399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/06/2018] [Indexed: 01/02/2023] Open
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in time. Immediately after the ischemic insult, primary brain damage is due to the massive increase of extracellular glutamate. Adenosine in the brain increases dramatically during ischemia in concentrations able to stimulate all its receptors, A1, A2A, A2B, and A3. Although adenosine exerts clear neuroprotective effects through A1 receptors during ischemia, the use of selective A1 receptor agonists is hampered by their undesirable peripheral side effects. So far, no evidence is available on the involvement of adenosine A2B receptors in cerebral ischemia. This study explored the role of adenosine A2B receptors on synaptic and cellular responses during oxygen and glucose deprivation (OGD) in the CA1 region of rat hippocampus in vitro. We conducted extracellular recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD induced anoxic depolarization (AD) in all hippocampal slices tested and completely abolished fEPSPs that did not recover after return to normoxic condition. Seven minutes OGD was applied in the presence of the selective adenosine A2B receptor antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min before, during and 5 min after OGD. Both antagonists were able to prevent or delay the appearance of AD and to modify synaptic responses after OGD, allowing significant recovery of neurotransmission. Adenosine A2B receptor antagonism also counteracted the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to those of controls, thus sparing neurons from the degenerative effects caused by the simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum already 3 h after the end of OGD, possibly due to increased glutamate release. A2Breceptor antagonism significantly prevented astrocyte modifications. Both A2B receptor antagonists did not protect CA1 neurons from the neurodegeneration induced by glutamate application, indicating that the antagonistic effect is upstream of glutamate release. The selective antagonists of the adenosine A2B receptor subtype may thus represent a new class of neuroprotective drugs in ischemia.
Collapse
Affiliation(s)
- Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria G Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Anna M Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Santoro A, Spinelli CC, Martucciello S, Nori SL, Capunzo M, Puca AA, Ciaglia E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018; 103:509-524. [PMID: 29389023 DOI: 10.1002/jlb.3mr0118-003r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | | | | | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| |
Collapse
|
44
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
45
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
46
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration. Front Aging Neurosci 2017; 9:296. [PMID: 28955220 PMCID: PMC5601988 DOI: 10.3389/fnagi.2017.00296] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention. The current study focussed on the interplay between neurons and astroglia in the Granule Layer (GL) and the Polymorphic Layer (PL) of the Dentate Gyrus (DG) of adult, aged and LPS-treated rats. In GL and PL of aged and LPS-treated rats, astrocytes were less numerous than in adult rats. In GL of LPS-treated rats, astrocytes acquired morphological features of reactive astrocytes, such as longer branches than was observed in adult rats. Total and activated microglia increased in the aged and LPS-treated rats, as compared to adult rats. In the GL of aged and LPS-treated rats many neurons were apoptotic. Neurons decreased significantly in GL and PL of aged but not in rats treated with LPS. In PL of aged and LPS-treated rats many damaged neurons were embraced by microglia cells and were infiltrated by branches of astrocyte, which appeared to be bisecting the cell body, forming triads. Reactive microglia had a scavenging activity of dying neurons, as shown by the presence of neuronal debris within their cytoplasm. The levels of the chemokine fractalkine (CX3CL1) increased in hippocampal homogenates of aged rats and rats treated with LPS, and CX3CL1 immunoreactivity colocalized with activated microglia cells. Here we demonstrated that in the DG of aged and LPS-treated rats, astrocytes and microglia cooperate and participate in phagocytosis/phagoptosis of apoptotic granular neurons. The differential expression/activation of astroglia and the alteration of their intercommunication may be responsible for the different susceptibility of the DG in comparison to the CA1 and CA3 hippocampal areas to neurodegeneration during aging and inflammation.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of FlorenceFlorence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of FlorenceFlorence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State UniversityColumbus, OH, United States
| | - Maria G Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of FlorenceFlorence, Italy
| |
Collapse
|
47
|
Ibudilast reduces oxaliplatin-induced tactile allodynia and cognitive impairments in rats. Behav Brain Res 2017; 334:109-118. [DOI: 10.1016/j.bbr.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
48
|
Lana D, Ugolini F, Melani A, Nosi D, Pedata F, Giovannini MG. The neuron-astrocyte-microglia triad in CA3 after chronic cerebral hypoperfusion in the rat: Protective effect of dipyridamole. Exp Gerontol 2017; 96:46-62. [PMID: 28606482 DOI: 10.1016/j.exger.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022]
Abstract
We investigated the quantitative and morphofunctional alterations of neuron-astrocyte-microglia triads in CA3 hippocampus, in comparison to CA1, after 2 Vessel Occlusion (2VO) and the protective effect of dipyridamole. We evaluated 3 experimental groups: sham-operated rats (sham, n=15), 2VO-operated rats treated with vehicle (2VO-vehicle, n=15), and 2VO-operated rats treated with dipyridamole from day 0 to day 7 (2VO-dipyridamole, n=15), 90days after 2VO. We analyzed Stratum Pyramidalis (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of CA3. 1) ectopic neurons increased in SL and SR of 2VO-vehicle, and 2VO-dipyridamole rats; 2) apoptotic neurons increased in SP of 2VO-vehicle rats and dipyridamole reverted this effect; 3) astrocytes increased in SP, SL and SR of 2VO-vehicle and 2VO-dipyridamole rats; 4) TNF-α expression increased in astrocytes, blocked by dipyridamole, and in dendrites in SR of 2VO-vehicle rats; 5) total microglia increased in SL and SR of 2VO-vehicle and 2VO-dipyridamole rats; 6) triads increased in SR of 2VO-vehicle rats and dipyridamole reverted this effect. Microglia cooperated with astrocytes to phagocytosis of apoptotic neurons and debris, and engulfed ectopic non-fragmented neurons in SL of 2VO-vehicle and 2VO-dipyridamole rats, through a new mechanism called phagoptosis. CA3 showed a better adaptive capacity than CA1 to the ischemic insult, possibly due to the different behaviour of astrocytes and microglial cells. Dipyridamole had neuroprotective effects.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Filippo Ugolini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Alessia Melani
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 50139 Firenze, Italy.
| | - Felicita Pedata
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|