1
|
Biancotti JC, Sescleifer AM, Sferra SR, Penikis AB, Halbert-Elliott KM, Bubb CR, Kunisaki SM. Maternal Minocycline as Fetal Therapy in a Rat Model of Myelomeningocele. J Surg Res 2024; 301:696-703. [PMID: 39168042 DOI: 10.1016/j.jss.2024.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION This study aimed to investigate whether the maternal administration of minocycline, a tetracycline antibiotic known to have anti-inflammatory and neuroprotective properties in models of neural injury, reduces inflammation and neural cell death in a fetal rat model of myelomeningocele (MMC). METHODS E10 pregnant rats were gavaged with olive oil or olive oil + retinoic acid to induce fetal MMC. At E12, the dams were exposed to regular drinking water or water containing minocycline (range, 40-140 mg/kg/day). At E21, fetal lumbosacral spinal cords were isolated for immunohistochemistry and quantitative gene expression studies focused on microglia activity, inflammation, and apoptosis (P < 0.05). RESULTS There was a trend toward decreased activated Iba1+ microglial cells within the dorsal spinal cord of MMC pups following minocycline exposure when compared to water (H2O) alone (P = 0.052). Prenatal minocycline exposure was correlated with significantly reduced expression of the proinflammatory cytokine, IL-6 (minocycline: 1.75 versus H2O: 3.52, P = 0.04) and apoptosis gene, Bax (minocycline: 0.71 versus H2O: 1.04, P < 0.001) among MMC pups. CONCLUSIONS This study found evidence that the maternal administration of minocycline reduces selected markers of inflammation and apoptosis within the exposed dorsal spinal cords of fetal MMC rats. Further study of minocycline as a novel prenatal treatment strategy to mitigate spinal cord damage in MMC is warranted.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anne M Sescleifer
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Annalise B Penikis
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kyra M Halbert-Elliott
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ciaran R Bubb
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Guillemot-Legris O, Girmahun G, Shipley RJ, Phillips JB. Local Administration of Minocycline Improves Nerve Regeneration in Two Rat Nerve Injury Models. Int J Mol Sci 2023; 24:12085. [PMID: 37569473 PMCID: PMC10418394 DOI: 10.3390/ijms241512085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Peripheral nerve injuries are quite common and often require a surgical intervention. However, even after surgery, patients do not often regain satisfactory sensory and motor functions. This, in turn, results in a heavy socioeconomic burden. To some extent, neurons can regenerate from the proximal nerve stump and try to reconnect to the distal stump. However, this regenerating capacity is limited, and depending on the type and size of peripheral nerve injury, this process may not lead to a positive outcome. To date, no pharmacological approach has been used to improve nerve regeneration following repair surgery. We elected to investigate the effects of local delivery of minocycline on nerve regeneration. This molecule has been studied in the central nervous system and was shown to improve the outcome in many disease models. In this study, we first tested the effects of minocycline on SCL 4.1/F7 Schwann cells in vitro and on sciatic nerve explants. We specifically focused on the Schwann cell repair phenotype, as these cells play a central role in orchestrating nerve regeneration. Finally, we delivered minocycline locally in two different rat models of nerve injury, a sciatic nerve transection and a sciatic nerve autograft, demonstrating the capacity of local minocycline treatment to improve nerve regeneration.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
- UCL Mechanical Engineering, London WC1E 7JE, UK
| | - Gedion Girmahun
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
| | - Rebecca J. Shipley
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL Mechanical Engineering, London WC1E 7JE, UK
| | - James B. Phillips
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
| |
Collapse
|
3
|
Chemogenetic Activation of CX3CR1-Expressing Spinal Microglia Using Gq-DREADD Elicits Mechanical Allodynia in Male Mice. Cells 2021; 10:cells10040874. [PMID: 33921365 PMCID: PMC8069983 DOI: 10.3390/cells10040874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
It is important to investigate the sex-dependent roles of microglia in pain hypersensitivity as reactive microglia within the spinal dorsal horn (DH) have been reported to be pivotal in neuropathic pain induction in male rodents upon nerve injury. Here, we aimed at determining the role of sex differences in the behavioral and functional outcomes of the chemogenetic activation of spinal microglia using Gq-designer receptors exclusively activated by designer drugs (Gq-DREADD) driven by the microglia-specific Cx3cr1 promoter. CAG-LSL-human Gq-coupled M3 muscarinic receptors (hM3Dq)-DREADD mice were crossed with CX3C chemokine receptor 1 (CX3CR1)-Cre mice, and immunohistochemistry images revealed that hM3Dq was selectively expressed on Iba1+ microglia, but not on astrocytes and neurons. Intrathecal (i.t.) administration of clozapine-N-oxide (CNO) elicited mechanical allodynia exclusively in male mice. Furthermore, the reactive microglia-dominant molecules that contributed to pain hypersensitivity in CX3CR1-hM3Dq were upregulated in mice of both sexes. The degree of upregulation was greater in male than in female mice. Depletion of spinal microglia using pexidartinib (PLX3397), a colony stimulating factor-1 receptor inhibitor, alleviated the male CX3CR1-hM3Dq mice from pain hypersensitivity and compromised the expression of inflammatory molecules. Thus, the chemogenetic activation of spinal microglia resulted in pain hypersensitivity in male mice, suggesting the sex-dependent molecular aspects of spinal microglia in the regulation of pain.
Collapse
|
4
|
Shinjyo N, Hikosaka K, Kido Y, Yoshida H, Norose K. Toxoplasma Infection Induces Sustained Up-Regulation of Complement Factor B and C5a Receptor in the Mouse Brain via Microglial Activation: Implication for the Alternative Complement Pathway Activation and Anaphylatoxin Signaling in Cerebral Toxoplasmosis. Front Immunol 2021; 11:603924. [PMID: 33613523 PMCID: PMC7892429 DOI: 10.3389/fimmu.2020.603924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is a neurotropic protozoan parasite, which is linked to neurological manifestations in immunocompromised individuals as well as severe neurodevelopmental sequelae in congenital toxoplasmosis. While the complement system is the first line of host defense that plays a significant role in the prevention of parasite dissemination, Toxoplasma artfully evades complement-mediated clearance via recruiting complement regulatory proteins to their surface. On the other hand, the details of Toxoplasma and the complement system interaction in the brain parenchyma remain elusive. In this study, infection-induced changes in the mRNA levels of complement components were analyzed by quantitative PCR using a murine Toxoplasma infection model in vivo and primary glial cells in vitro. In addition to the core components C3 and C1q, anaphylatoxin C3a and C5a receptors (C3aR and C5aR1), as well as alternative complement pathway components properdin (CFP) and factor B (CFB), were significantly upregulated 2 weeks after inoculation. Two months post-infection, CFB, C3, C3aR, and C5aR1 expression remained higher than in controls, while CFP upregulation was transient. Furthermore, Toxoplasma infection induced significant increase in CFP, CFB, C3, and C5aR1 in mixed glial culture, which was abrogated when microglial activation was inhibited by pre-treatment with minocycline. This study sheds new light on the roles for the complement system in the brain parenchyma during Toxoplasma infection, which may lead to the development of novel therapeutic approaches to Toxoplasma infection-induced neurological disorders.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Cells, Cultured
- Complement Factor B/genetics
- Complement Factor B/metabolism
- Complement Pathway, Alternative
- Disease Models, Animal
- Host-Parasite Interactions
- Male
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Microglia/parasitology
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Time Factors
- Toxoplasma/immunology
- Toxoplasma/pathogenicity
- Toxoplasmosis, Animal/genetics
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/metabolism
- Toxoplasmosis, Animal/parasitology
- Toxoplasmosis, Cerebral/genetics
- Toxoplasmosis, Cerebral/immunology
- Toxoplasmosis, Cerebral/metabolism
- Toxoplasmosis, Cerebral/parasitology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasutoshi Kido
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries. Future Med Chem 2020; 12:1759-1778. [PMID: 33028091 DOI: 10.4155/fmc-2020-0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most therapeutics for the treatment of traumatic central nervous system injuries, such as traumatic brain injury and spinal cord injury, encounter various obstacles in reaching the target tissue and exerting pharmacological effects, including physiological barriers like the blood-brain barrier and blood-spinal cord barrier, instability rapid elimination from the injured tissue or cerebrospinal fluid and off-target toxicity. For central nervous system delivery, nano- and microdrug delivery systems are regarded as the most suitable and promising carriers. In this review, the pathophysiology and biomarkers of traumatic central nervous system injuries (traumatic brain injury and spinal cord injury) are introduced. Furthermore, various drug delivery systems, novel combinatorial therapies and advanced therapies for the treatment of traumatic brain injury and spinal cord injury are emphasized.
Collapse
|
6
|
Puty B, Nogueira ICDC, Nogueira LS, Vasconcelos CP, Araújo TMC, Bittencourt LO, Ferreira RDO, Oliveira EHCD, Leal WG, Lima RR. Genotoxic effect of non-lethal concentrations of minocycline in human glial cell culture. Biomed Pharmacother 2020; 128:110285. [PMID: 32485569 DOI: 10.1016/j.biopha.2020.110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023] Open
Abstract
Minocycline has been proposed as a neuroprotective agent with pleiotropic effects on several experimental models of neurodegenerative diseases, including microglial inhibition. However, although most studies have focused on the central actions of minocycline in affecting microglial functions, other central nervous system (CNS) cell types may also be affected by this drug toxicity. Hence, considering that glial cells play a pivotal role on CNS physiology and are the main responsible for neuronal integrity, a comprehensive investigation on the effects of minocycline treatment on human glial cells is mandatory before translational studies to afford neuroprotection in humans. Therefore, we explored the cytotoxic and genotoxic effects of minocycline at different concentrations in glial cells using an in vitro model. To achieve this, U87 glial cell were exposed to 10-50 μg/mL for 24 h. After exposure, cell viability, general metabolic status and genotoxic assays were performed. No changes were observed in cell viability, however, the general metabolic status decreased over 20 μg/mL. In addition, although no chromossome aberrations were observed, evidences of genotoxicity, such as increase on micronucleus, buds and bridges, were observed from 10 μg/mL. These results suggest that minocycline may induce genotoxic effects even at concentrations considered previously safe and should be used with caution in translational studies.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | - Iago César da Costa Nogueira
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Lygia S Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | | | - Teka Mayara Corrêa Araújo
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | - Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | | | - Walace Gomes Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
7
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
8
|
Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson's disease. Drugs Context 2019; 8:212553. [PMID: 30873213 PMCID: PMC6408180 DOI: 10.7573/dic.212553] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023] Open
Abstract
Minocycline, a semisynthetic tetracycline-derived antibiotic, has been shown to exert anti-apoptotic, anti-inflammatory, and antioxidant effects. Furthermore, there is rapidly growing evidence suggesting that minocycline may have some neuroprotective activity in various experimental models such as cerebral ischemia, traumatic brain injury, amyotrophic lateral sclerosis, Parkinson's disease (PD), Huntington's disease, and multiple sclerosis. In this perspective review, we summarize the preclinical and clinical findings suggesting the neuroprotective role of minocycline in PD.
Collapse
Affiliation(s)
- Seyda Cankaya
- Department of Neurology, Faculty of Medicine, Alaaddin Keykubat University, Alanya, Turkey
| | - Baris Cankaya
- Department of Anesthesiology and Reanimation, Marmara University Pendik Education and Research Hospital, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Ertugrul Kilic
- Department of Medical Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Faculty of Medicine, Alaaddin Keykubat University, Alanya, Turkey
| |
Collapse
|
9
|
Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM. miR‑155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep 2019; 19:2627-2635. [PMID: 30720115 PMCID: PMC6423572 DOI: 10.3892/mmr.2019.9917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/09/2018] [Indexed: 01/05/2023] Open
Abstract
MicroRNA (miR)-155 has a crucial role in various cellular functions, including differentiation of hematopoietic cells, immunization, inflammation and cardiovascular diseases. The present study aimed to investigate the roles and mechanisms of miR-155 in treatment-resistant depression (TRD). A Cell Counting Kit-8 assay and flow cytometry were performed to assess the cell viability and apoptosis of microglial cells, respectively. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the associated protein and mRNA expression, respectively. The results revealed that miR-155 reduced the cell viability of BV-2 microglial cells, and miR-155 enhanced the expression levels of pro-inflammatory cytokines in BV-2 microglial cells. Furthermore, conditioned medium from miR-155-treated microglia decreased the cell viability of HT22 hippocampal cells. miR-155-treated microglia increased the apoptosis of neuronal hippocampal cells by modulating the expression levels of apoptosis regulator Bax, apoptosis regulator Bcl-2, pro-caspase-3 and cleaved-caspase-3. The cell cycle distribution was disrupted by miR-155-treated microglia through induction of S phase arrest. Furthermore, the overexpression of suppressor of cytokine signaling 1 reversed the pro-apoptotic effect of activated microglia on hippocampal neuronal cells. In conclusion, the present results suggested that miR-155 mediated the inflammatory injury in hippocampal neuronal cells by activating the microglial cells. The potential effects of miR-155 on the activation of microglial cells suggest that miR-155 may be an effective target for TRD therapies.
Collapse
Affiliation(s)
- Xiao-Hua Sun
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Ming-Fen Song
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Hai-Dong Song
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Yu-Wen Wang
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Ming-Jin Luo
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Li-Ming Yin
- Institute of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
10
|
Wang Q, Lv H, Lu L, Ren P, Li L. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med 2018; 32:3685-3692. [PMID: 29681183 DOI: 10.1080/14767058.2018.1468881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is an important cause of neonatal death and disability. At present, there is no unified standard and specialized treatment method for neonatal HIE. In clinical practice, we have found that a gap remains between preclinical medical research and clinical application in the treatment of neonatal HIE. To promote an organic combination of preclinical research and clinical application, we propose the different phases as intervention targets, based on the pathophysiologic changes in phases I, II, and III of neonatal HIE; moreover, we suggest transformative medicine as a principle that may improve the therapeutic effect by blocking the progression of the disease to an irreversible stage. For instance, in phase I, mild hypothermia, free radical scavenger (erythropoietin, hydrogen-rich saline), excitatory amino acid receptor blocker, and neuroprotective agents should be administered to neonates with moderate/severe HIE; in phase II, following phase I treatment, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients; in phase III, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients. As soon as the patient's condition has stabilized, acupuncture, massage, and rehabilitation training should be performed. Following further study of stem cells, stem cell transplantation is expected to become the most promising therapeutic candidate for treatment of severe neonatal HIE with its sequelae.
Collapse
Affiliation(s)
- Qiuli Wang
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Hongyan Lv
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lixin Lu
- c Department of Pediatrics , Handan 7th Hospital , Handan , PR China
| | - Pengshun Ren
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lianxiang Li
- b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,d Department of Neural Development and Neural Pathology , Hebei University of Engineering School of Medicine , Handan , PR China
| |
Collapse
|
11
|
No Effect of Adjunctive Minocycline Treatment on Body Metabolism in Patients With Schizophrenia. J Clin Psychopharmacol 2018; 38:125-128. [PMID: 29424804 DOI: 10.1097/jcp.0000000000000841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE/BACKGROUND This study examined the effect of adjunctive minocycline on body metabolism in risperidone-treated patients with schizophrenia. METHODS/PROCEDURES Each subject had a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnosis of schizophrenia and had been on stable dose of risperidone for at least 4 weeks. In a 16-week randomized, double-blind, placebo-controlled study, subjects received either minocycline (200 mg/d) or placebo. Various metabolic parameters, including weight, waist circumference, fasting insulin, glucose, and lipids, were measured at baseline and week 16. FINDINGS/RESULTS A total of 63 subjects with schizophrenia were enrolled in the study. Fifty-five patients completed week-16 assessments (27 in the minocycline group, 28 in the placebo group). There were no significant differences between the 2 groups in week 16 changes for body weight, body mass index, waist circumference, fasting insulin, glucose, and lipids (P's > 0.300). IMPLICATIONS/CONCLUSIONS In the present study, adjunctive treatment of minocycline did not seem to improve body metabolism in patients with schizophrenia receiving risperidone. The implications for future studies were discussed.
Collapse
|
12
|
Chen X, Xiong Z, Li Z, Yang Y, Zheng Z, Li Y, Xie Y, Li Z. Minocycline as adjunct therapy for a male patient with deficit schizophrenia. Neuropsychiatr Dis Treat 2018; 14:2697-2701. [PMID: 30349268 PMCID: PMC6188198 DOI: 10.2147/ndt.s179658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathophysiology of schizophrenia may involve increased production of inflammatory cytokines by activated microglia. Minocycline can inhibit activated microglia and may improve secondary negative symptoms and/or cognitive functions when used as adjuvant to antipsychotics. Effects on minocycline on primary and enduring negative symptoms in deficit schizophrenia (DS) are unknown. We present a male patient with a 3-year history of DS. He was treated for 12 weeks with risperidone at a maximal dose of 6 mg per day, then for 10 weeks with olanzapine at 20 mg per day. Symptoms did not improve, and body mass index increased from 20.41 to 22.84 kg/m2. Serum levels of several inflammatory cytokines were elevated, so we prescribed minocycline as adjunct to aripiprazole for 12 weeks. Negative symptoms and cognitive impairment improved, and serum levels of inflammatory cytokines decreased. Our case suggests that clinicians may consider minocycline as adjunct therapy to antipsychotics in patients with DS with elevated serum levels of inflammatory cytokines. This highlights the need for further research into possible relationships of minocycline with negative symptoms and cognitive function in patients with DS.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Central Transportation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenzhen Xiong
- School of Nursing, Chengdu Medical College, Chengdu, Sichuan 610083, China
| | - Zhixiong Li
- The Third Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - Yali Yang
- The Second Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - Zhanying Zheng
- The First Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - Yonghong Li
- The Sleep Medicine Department, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - Yan Xie
- The Sleep Medicine Department, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - Zhe Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China, .,The Mental Rehabilitation Center, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China,
| |
Collapse
|
13
|
Microglial Interferon Signaling and White Matter. Neurochem Res 2017; 42:2625-2638. [PMID: 28540600 DOI: 10.1007/s11064-017-2307-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/17/2023]
Abstract
Microglia, the resident immune cells of the CNS, are primary regulators of the neuroimmune response to injury. Type I interferons (IFNs), including the IFNαs and IFNβ, are key cytokines in the innate immune system. Their activity is implicated in the regulation of microglial function both during development and in response to neuroinflammation, ischemia, and neurodegeneration. Data from numerous studies in multiple sclerosis (MS) and stroke suggest that type I IFNs can modulate the microglial phenotype, influence the overall neuroimmune milieu, regulate phagocytosis, and affect blood-brain barrier integrity. All of these IFN-induced effects result in numerous downstream consequences on white matter pathology and microglial reactivity. Dysregulation of IFN signaling in mouse models with genetic deficiency in ubiquitin specific protease 18 (USP18) leads to a severe neurological phenotype and neuropathological changes that include white matter microgliosis and pro-inflammatory gene expression in dystrophic microglia. A class of genetic disorders in humans, referred to as pseudo-TORCH syndrome (PTS) for the clinical resemblance to infection-induced TORCH syndrome, also show dysregulation of IFN signaling, which leads to severe neurological developmental disease. In these disorders, the excessive activation of IFN signaling during CNS development results in a destructive interferonopathy with similar induction of microglial dysfunction as seen in USP18 deficient mice. Other recent studies implicate "microgliopathies" more broadly in neurological disorders including Alzheimer's disease (AD) and MS, suggesting that microglia are a potential therapeutic target for disease prevention and/or treatment, with interferon signaling playing a key role in regulating the microglial phenotype.
Collapse
|
14
|
Pierre WC, Smith PLP, Londono I, Chemtob S, Mallard C, Lodygensky GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun 2017; 59:333-345. [PMID: 27596692 DOI: 10.1016/j.bbi.2016.08.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Microglia, mainly known for their role in innate immunity and modulation of neuroinflammation, play an active role in central nervous system development and homeostasis. Depending on the context and environmental stimuli, microglia adopt a broad spectrum of activation status from pro-inflammatory, associated with neurotoxicity, to anti-inflammatory linked to neuroprotection. Pro-inflammatory microglial activation is a key hallmark of white matter injury in preterm infants and is involved in developmental origin of adult neurological diseases. Characterization of neonatal microglia function in brain development and inflammation has allowed the investigation of promising therapeutic targets with potential long-lasting neuroprotective effects. True prevention of neuro-degenerative diseases might eventually occur as early as the perinatal period.
Collapse
Affiliation(s)
- Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Peter L P Smith
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Departments of Ophtalmology, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montreal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
16
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Properties of human central nervous system neurons in a glia-depleted (isolated) culture system. J Neurosci Methods 2015; 253:142-50. [PMID: 26093165 DOI: 10.1016/j.jneumeth.2015.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Current methods for studying human neurons depend on a feeder layer of astroglia supplemented with animal serum to support the growing neurons. These requirements undermine many of the advantages provided by in vitro cell culture approaches when compared with more complex in vivo techniques. NEW METHOD Here, we identified a reliable marker (MHCI) that allows for direct isolation of primary neurons from fetal human brain. We utilized a magnetic labeling and isolation technique to separate neurons from other neural cells. We established a defined condition, omitting the astroglial supports that could maintain the human neurons for varying amounts of time. RESULTS We showed that the new method significantly improved the purity of human neurons in culture without the need for further chemical/mechanical enrichment. We demonstrated the suitability of these neurons for functional studies including Rho-kinase dependent regulation of neurite outgrowth and ensheathment in co-cultures with oligodendrocyte progenitor cells derived from fetal human brain. COMPARISON WITH EXISTING METHODS The accountability for neuron-only seeding and the controllable density allows for better neuronal maturation and better visualization of the different neuronal compartments. The higher purity culture constitutes an effective system to study and screen for compounds that impact neuron biology without potential confounding effects from glial crowding. CONCLUSIONS High purity human neurons generated using the improved method will enable enhanced reliability in the discovery and development of drugs with neuroregenerative and neuroprotective activity.
Collapse
|
18
|
Potential neuroprotective strategies for perinatal infection and inflammation. Int J Dev Neurosci 2015; 45:44-54. [DOI: 10.1016/j.ijdevneu.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023] Open
|
19
|
Gullo F, Amadeo A, Donvito G, Lecchi M, Costa B, Constanti A, Wanke E. Atypical "seizure-like" activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons. Front Cell Neurosci 2014; 8:361. [PMID: 25404893 PMCID: PMC4217498 DOI: 10.3389/fncel.2014.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
We show here that a mild sterile inflammation induced by the endotoxin lipopolysaccharide (LPS), in a neuron/astrocyte/microglial cortical network, modulates neuronal excitability and can initiate long-duration burst events resembling epileptiform seizures, a recognized feature of various central nervous neurodegenerative, neurological and acute systemic diseases associated with neuroinflammation. To study this action, we simultaneously analyzed the reverberating bursting activity of a hundred neurons by using in vitro multi-electrode array methods. ∼5 h after LPS application, we observed a net increase in the average number of spikes elicited in engaged cells and within each burst, but no changes neither in spike waveforms nor in burst rate. This effect was characterized by a slow, twofold exponential increase of the burst duration and the appearance of rarely occurring long burst events that were never seen during control recordings. These changes and the time-course of microglia-released proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), were blocked by pre-treatment with 50 nM minocycline, an established anti-inflammatory agent which was inactive when applied alone. Assay experiments also revealed that application of 60 pM exogenous TNF-α after 12–15 h, produced non-washable changes of neuronal excitability, completely different from those induced by LPS, suggesting that TNF-α release alone was not responsible for our observed findings. Our results indicate that the link between neuroinflammation and hyperexcitability can be unveiled by studying the long-term activity of in vitro neuronal/astrocyte/microglial networks.
Collapse
Affiliation(s)
- Francesca Gullo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Alida Amadeo
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan Italy
| | - Giulia Donvito
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Marzia Lecchi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Barbara Costa
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | | | - Enzo Wanke
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| |
Collapse
|
20
|
Mika J, Popiolek-Barczyk K, Rojewska E, Makuch W, Starowicz K, Przewlocka B. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain. PLoS One 2014; 9:e104420. [PMID: 25105291 PMCID: PMC4126741 DOI: 10.1371/journal.pone.0104420] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/therapeutic use
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/therapeutic use
- Gene Expression Regulation/drug effects
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Minocycline/administration & dosage
- Minocycline/therapeutic use
- Morphine/administration & dosage
- Morphine/therapeutic use
- Neuralgia/drug therapy
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| | | | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| |
Collapse
|
21
|
Liu F, Guo X, Wu R, Ou J, Zheng Y, Zhang B, Xie L, Zhang L, Yang L, Yang S, Yang J, Ruan Y, Zeng Y, Xu X, Zhao J. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res 2014; 153:169-76. [PMID: 24503176 DOI: 10.1016/j.schres.2014.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND It is difficult to improve negative symptoms and cognitive impairments in schizophrenia. A previous pilot study has shown that minocycline, a semi-synthetic second-generation tetracycline, is effective in treating for negative and/or cognitive symptoms in schizophrenia. OBJECTIVES The present study was designed to examine the efficacy and safety of minocycline for the treatment of negative symptoms and cognitive impairments in patients with schizophrenia. METHODS Ninety-two patients with early stage schizophrenia treated with risperidone entered this 16-week, double blind, randomized, placebo-controlled clinical trial. Subjects were randomly assigned to receive minocycline (200mg per day) or the placebo. The primary outcome was evaluated using the Scale for the Assessment of Negative Symptoms (SANS). Secondary outcomes included the response rate of SANS, the Positive and Negative Syndrome Scale (PANSS), the Clinical Global Impression Scale (CGI), and cognitive tests. RESULTS Subjects receiving minocycline had greater improvements on SANS total scores and PANSS negative subscale scores (P<0.001) when compared with those receiving the placebo. Rates of treatment response (43.6%) in the minocycline group were significantly higher than those in the placebo group (10.0%) after 16weeks of treatment. There was no significant difference between the seven cognitive domains (P>0.05), except for the attention domain (P=0.044). CONCLUSIONS The addition of minocycline to atypical antipsychotic drugs in early schizophrenia had significant efficacy on negative symptoms but had a slight effect on the attention domains of patients with schizophrenia. It may be considered as a new adjunct treatment for negative symptoms of schizophrenia. Clinical trials.gov identifier: NCT01493622.
Collapse
Affiliation(s)
- Fang Liu
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China; First Affiliated Hospital of Kunming Medical University, 295 Xican Rd., Kunming, Yunnan, China
| | - Xiaofeng Guo
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Rengrong Wu
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Jianjun Ou
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Yingjun Zheng
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Bingkui Zhang
- First Affiliated Hospital of Kunming Medical University, 295 Xican Rd., Kunming, Yunnan, China
| | - Liqin Xie
- First Affiliated Hospital of Kunming Medical University, 295 Xican Rd., Kunming, Yunnan, China
| | - Limei Zhang
- Mental Health Center of Yunnan Province, 733 Chuanjin Rd., Kunming, Yunnan, China
| | - Li Yang
- Mental Health Center of Yunnan Province, 733 Chuanjin Rd., Kunming, Yunnan, China
| | - Shuyun Yang
- Mental Health Center of Yunnan Province, 733 Chuanjin Rd., Kunming, Yunnan, China
| | - Junwei Yang
- Mental Health Center of Yunnan Province, 733 Chuanjin Rd., Kunming, Yunnan, China
| | - Ye Ruan
- Mental Health Center of Yunnan Province, 733 Chuanjin Rd., Kunming, Yunnan, China
| | - Yong Zeng
- First Affiliated Hospital of Kunming Medical University, 295 Xican Rd., Kunming, Yunnan, China
| | - Xiufeng Xu
- First Affiliated Hospital of Kunming Medical University, 295 Xican Rd., Kunming, Yunnan, China
| | - Jingping Zhao
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China.
| |
Collapse
|
22
|
Ofek-Shlomai N, Berger I. Inflammatory injury to the neonatal brain - what can we do? Front Pediatr 2014; 2:30. [PMID: 24783185 PMCID: PMC3988390 DOI: 10.3389/fped.2014.00030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain damage is one of the leading causes of life long disability. This damage could be hypoxic-ischemic, inflammatory, or both. This mini-review discusses different interventions aiming at minimizing inflammatory processes in the neonatal brain, both before and after insult. Current options of anti-inflammatory measures for neonates remain quite limited. We describe current anti-inflammatory intervention strategies such as avoiding perinatal infection and inflammation, and reducing exposure to inflammatory processes. We describe the known effects of anti-inflammatory drugs such as steroids, antibiotics, and indomethacin, and the possible anti-inflammatory role of other substances such as IL-1 receptor antagonists, erythropoietin, caffeine, estradiol, insulin-like growth factor, and melatonin as well as endogenous protectors, and genetic regulation of inflammation. If successful, these may decrease mortality and long-term morbidity among term and pre-term infants.
Collapse
Affiliation(s)
- Noa Ofek-Shlomai
- Department of Neonatology, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Itai Berger
- Pediatric Division, The Neuro-Cognitive Center, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
23
|
Bell MT, Agoston VA, Freeman KA, Puskas F, Herson PS, Mares J, Fullerton DA, Reece TB. Interruption of spinal cord microglial signaling by alpha-2 agonist dexmedetomidine in a murine model of delayed paraplegia. J Vasc Surg 2013; 59:1090-7. [PMID: 23850057 DOI: 10.1016/j.jvs.2013.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite investigation into preventable pharmacologic adjuncts, paraplegia continues to complicate thoracoabdominal aortic interventions. The alpha 2a adrenergic receptor agonist, dexmedetomidine, has been shown to preserve neurologic function and neuronal viability in a murine model of spinal cord ischemia reperfusion, although the mechanism remains elusive. We hypothesize that dexmedetomidine will blunt postischemic inflammation in vivo following thoracic aortic occlusion with in vitro demonstration of microglial inhibition following lipopolysaccharide (LPS) stimulation. METHODS Adult male C57BL/6 mice underwent 4 minutes of aortic occlusion. Mice received 25 μg/kg intraperitoneal dexmedetomidine (n = 8) or 0.9% normal saline (n = 7) at reperfusion and 12-hour intervals postoperatively until 48 hours. Additionally, sham mice (n = 3), which had aortic arch exposed with no occlusion, were included for comparison. Functional scoring was done at 6 hours following surgery and 12-hour intervals until 60 hours when spinal cords were removed and examined for neuronal viability and cytokine production. Additional analysis of microglia activation was done in 12 hours following surgery. Age- and sex-matched mice had spinal cord removed for microglial isolation culture. Cells were grown to confluence and stimulated with toll-like receptor-4 agonist LPS 100 ng/mL in presence of dexmedetomidine or vehicle control for 24 hours. Microglia and media were then removed for analysis of protein expression. RESULTS Dexmedetomidine treatment at reperfusion significantly preserved neurologic function with mice in treatment group having a Basso Score of 6.3 in comparison to 2.3 in ischemic control group. Treatment was associated with a significant reduction in microglia activation and in interleukin-6 production. Microglial cells in isolation when stimulated with LPS had an increased production of proinflammatory cytokines and markers of activation. Treatment with dexmedetomidine significantly attenuated microglial activation and proinflammatory cytokine production in vitro with a greater than twofold reduction in tumor necrosis factor-α. CONCLUSIONS Alpha 2a agonist, dexmedetomidine treatment at reperfusion preserved neurologic function and neuronal viability. Furthermore, dexmedetomidine treatment resulted in an attenuation of microglial activation and proinflammatory cytokine production both in vivo and in vitro following LPS stimulation. This finding lends insight into the mechanism of paralysis following thoracic aortic interventions and may guide future pharmacologic targets for attenuating spinal cord ischemia and reperfusion.
Collapse
Affiliation(s)
- Marshall T Bell
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo.
| | - Viktor A Agoston
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo
| | - Kirsten A Freeman
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo
| | - Ferenc Puskas
- Department of Anesthesiology, University of Colorado, Denver, Colo
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado, Denver, Colo
| | - Joshua Mares
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo
| | - David A Fullerton
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo
| | - T Brett Reece
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado, Denver, Colo
| |
Collapse
|
24
|
Kohno H, Chen Y, Kevany BM, Pearlman E, Miyagi M, Maeda T, Palczewski K, Maeda A. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. J Biol Chem 2013; 288:15326-41. [PMID: 23572532 DOI: 10.1074/jbc.m112.448712] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-7286, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pathipati P, Müller S, Jiang X, Ferriero D. Phenotype and Secretory Responses to Oxidative Stress in Microglia. Dev Neurosci 2013; 35:241-54. [DOI: 10.1159/000346159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
|
26
|
Monaco MCG, Maric D, Bandeian A, Leibovitch E, Yang W, Major EO. Progenitor-derived oligodendrocyte culture system from human fetal brain. J Vis Exp 2012:4274. [PMID: 23288248 DOI: 10.3791/4274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside(+) (GalC) and O4(+) oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation. Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.
Collapse
Affiliation(s)
- Maria Chiara G Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | | | | | | | | | | |
Collapse
|
27
|
Xu H, Tan G, Zhang S, Zhu H, Liu F, Huang C, Zhang F, Wang Z. Minocycline reduces reactive gliosis in the rat model of hydrocephalus. BMC Neurosci 2012; 13:148. [PMID: 23217034 PMCID: PMC3529686 DOI: 10.1186/1471-2202-13-148] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background Reactive gliosis had been implicated in injury and recovery patterns associated with hydrocephalus. Our aim is to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce reactive gliosis and inhibit the development of hydrocephalus. Results The ventricular dilatation were evaluated by MRI at 1-week post drugs treated, while GFAP and Iba-1were detected by RT-PCR, Immunohistochemistry and Western blot. The expression of GFAP and Iba-1 was significantly higher in hydrocephalic group compared with saline control group (p < 0.05). Minocycline treatment of hydrocephalic animals reduced the expression of GFAP and Iba-1 significantly (p < 0.05). Likewise, the severity of ventricular dilatation is lower in minocycline treated hydrocephalic animals compared with the no minocycline group (p < 0.05). Conclusion Minocycline treatment is effective in reducing the gliosis and delaying the development of hydrocephalus with prospective to be the auxiliary therapeutic method of hydrocephalus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, First Affiliate Hospital of Xiamen University, Xiamen, Fujian Province 361003, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen SD, Yin JH, Hwang CS, Tang CM, Yang DI. Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer's disease and cerebral ischemia. Free Radic Res 2012; 46:940-50. [PMID: 22583533 DOI: 10.3109/10715762.2012.674640] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingolipids represent a major class of lipids in which selected family members act as bioactive molecules that control diverse cellular processes, such as proliferation, differentiation, growth, senescence, migration and apoptosis. Emerging evidence reveals that sphingomyelinase/ceramide pathway plays a pivotal role in neurodegenerative diseases that involve mitochondrial dysfunction, oxidative stress and apoptosis. Minocycline, a semi-synthetic second-generation tetracycline derivative in clinical use for infection control, is also considered an effective protective agent in various neurodegenerative diseases in pre-clinical studies. Acting via multiple mechanisms, including anti-inflammatory, anti-oxidative and anti-apoptotic effects, minocycline is a desirable candidate for clinical trials in both acute brain injury as well as chronic neurodegenerative disorders. This review is focused on the anti-apoptotic and anti-oxidative mechanisms of minocycline against neurotoxicity induced by sphingomyelinase/ceramide in relation to neurodegeneration, particularly Alzheimer's disease and cerebral ischemia.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Du B, Zhang Y, Tang Y, Wang P. Minocycline attenuates ototoxicity and enhances antitumor activity of cisplatin treatment in vitro. Otolaryngol Head Neck Surg 2011; 144:719-25. [PMID: 21493367 DOI: 10.1177/0194599810395090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Some agents have been shown to prevent cisplatin-induced ototoxicity. The objective is to show that the agent minocycline protects the cochlea against cisplatin damage and enhances the cytotoxicity of anticancer therapies. STUDY DESIGN In vitro chemotherapeutic assessments of minocycline. SETTING Research laboratory. SUBJECTS AND METHODS Hep-2 cells were cultured with and without 100 μM cisplatin, and cell growth inhibition was assessed. Autophagy in the samples was visually evaluated by electron microscopy and by beclin-1 expression using Western blotting. In another experiment, cochlear basilar membranes of 3-day-old rats were isolated and cultured. The cultures were treated with the same concentration of cisplatin or cisplatin combined with minocycline. Immunofluorescence staining was used to identify changes in spiral ganglions. RESULTS Cell growth was inhibited in a dose-dependent manner following minocycline treatment. Furthermore, the combination of cisplatin and minocycline effectively increased tumor cell death (P < .01). Autophagosomes were also evident in cells treated with minocycline. Beclin-l protein expression was increased after minocycline treatment in Hep-2 cells. In an experiment evaluating cochlear spiral ganglion neuron survival, it was found that the number of surviving cochlear neurons significantly increased in the minocycline pretreatment group compared with the group treated with cisplatin alone (P < .01). CONCLUSION This study shows that minocycline alone, or in combination with chemotherapeutic drugs, inhibits the growth of tumor cells and attenuates ototoxicity. It is also shown that minocycline activates cell autophagy via the beclin-1 signaling pathway, which may be an additional underlying cause of Hep- 2 cell death.
Collapse
Affiliation(s)
- Bo Du
- Department of Otolaryngology and Head & Neck Surgery, First Hospital, Jilin University, Changchun, Jilin, China
| | | | | | | |
Collapse
|
30
|
Microglia and cyclooxygenase-2: possible therapeutic targets of progesterone for stroke. Int Immunopharmacol 2011; 11:1925-31. [PMID: 21843661 DOI: 10.1016/j.intimp.2011.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/25/2022]
Abstract
Previous studies have demonstrated that progesterone (PROG) may be a pleiotropic neuroprotective agent. Although there have been reports about the neurotoxicity of activated microglia and cyclooxygenase-2 (COX-2) in animal models of ischemic stroke, the influence of PROG on the activation of microglia and the expression of COX-2 after stroke has not been examined in detail. In this investigation, we carried out research about the influence of PROG on cultured microglia by detection of the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in their supernatant fluid before and after induced with lipopolysaccharide (LPS) or influenced by PROG with Enzyme-Linked Immunosorbent Assay technique in vitro. Moreover, the expression of COX-2 and ionized calcium-binding adapter molecule 1 (Iba1) was also detected in the cortex of rats that underwent permanent middle cerebral artery occlusion and received PROG or vehicle treatment by immunohistochemistry and western blot technique. The results revealed that PROG significantly reduced the expression of TNF-α and IL-1β in cultured microglia after activated with LPS in vitro. In addition, PROG also valuably inhibited the expression of Iba1 and COX-2 after stroke in vivo. These observations raised the possibility that PROG can exert its neuroprotective effects by inhibiting the activation of microglia and the over expression of COX-2 after stroke.
Collapse
|
31
|
Tang CM, Hwang CS, Chen SD, Yang DI. Neuroprotective mechanisms of minocycline against sphingomyelinase/ceramide toxicity: Roles of Bcl-2 and thioredoxin. Free Radic Biol Med 2011; 50:710-21. [PMID: 21184825 DOI: 10.1016/j.freeradbiomed.2010.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
In this study, we determined whether minocycline may protect rat cortical cultures against neurotoxicity induced by sphingomyelinase/ceramide and explored the underlying mechanisms. We found that minocycline exerted strong neuroprotective effects against toxicity induced by bacterial sphingomyelinase and synthetic C2 ceramide. Minocycline enhanced the production of nitric oxide (NO) with resultant increases in cellular cGMP content. Consistently, minocycline-dependent neuroprotection was abolished by the nitric oxide synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) and the soluble guanylate cyclase (sGC) inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ). Western blotting revealed that minocycline restored the expression levels of cGMP-dependent protein kinase (PKG)-1, antioxidative thioredoxin-1, and antiapoptotic Bcl-2 that were down-regulated by bacterial sphingomyelinase. Accordingly, the PKG inhibitor KT5823, the thioredoxin reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), and a Bcl-2 inhibitor significantly abolished the minocycline neuroprotection. The minocycline-dependent restoration of Bcl-2 was abolished by L-NAME, ODQ, and KT5823, but not by DNCB, suggesting the involvement of NO/sGC/PKG but not thioredoxin. Furthermore, minocycline-dependent recovery of thioredoxin-1 was PKG-independent. Taken together, our results indicate that minocycline protects rat cortical neurons against bacterial sphingomyelinase/ceramide toxicity via an NO/cGMP/PKG pathway with induction of Bcl-2 and PKG-independent stimulation of thioredoxin-1.
Collapse
Affiliation(s)
- Ching-Min Tang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei City 11221, Taiwan, Republic of China
| | | | | | | |
Collapse
|
32
|
Ionescu VA, Villanueva EB, Hashioka S, Bahniwal M, Klegeris A. Cultured adult porcine astrocytes and microglia express functional interferon-γ receptors and exhibit toxicity towards SH-SY5Y cells. Brain Res Bull 2011; 84:244-51. [PMID: 21185917 DOI: 10.1016/j.brainresbull.2010.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/14/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
In vitro cultures of various glial cell types are common systems used to model neuroinflammatory processes associated with age-dependent human neurodegenerative diseases. Even though most researchers choose to use neonatal rodent brain tissues as the source of glial cells, there are significant variations in glial cell functions that are species and age dependent. It has been established that human and swine immune systems have a number of similarities, which suggests that cultured porcine microglia and astrocytes may be good surrogates for human glial cell types. Here we describe a method that could be used to prepare more than 90% pure microglia and astrocyte cultures derived from adult porcine tissues. We demonstrate that both microglia and astrocytes derived from adult porcine brains express functional interferon-γ receptors (IFN-γ-R) and CD14. They become toxic towards SH-SY5Y neuroblastoma cells when exposed to proinflammatory mediators. Upon such stimulation with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), adult porcine microglia, but not astrocytes, secrete tumor necrosis factor-α (TNF-α) while both cell types do not secrete detectable levels of nitric oxide (NO). Comparison of our experimental data with previously published studies indicates that adult porcine glial cultures have certain functional characteristics that make them similar to human glial cells. Therefore adult porcine glial cells may be a useful model system for studies of human diseases associated with adulthood and advanced age. Adult porcine tissues are relatively easy to obtain in most countries and could be used as a reliable and inexpensive source of cultured cells.
Collapse
Affiliation(s)
- Vlad A Ionescu
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | | | | | | |
Collapse
|
33
|
Oxenkrug GF. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm (Vienna) 2011; 118:75-85. [PMID: 20811799 PMCID: PMC3026891 DOI: 10.1007/s00702-010-0475-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
This review of literature and our data suggests that up-regulated production of interferon-gamma (IFNG) in periphery and brain triggers a merger of tryptophan (TRY)-kynurenine (KYN) and guanine-tetrahydrobiopterin (BH4) metabolic pathways into inflammation cascade involved in aging and aging-associated medical and psychiatric disorders (AAMPD) (metabolic syndrome, depression, vascular cognitive impairment). IFNG-inducible KYN/pteridines inflammation cascade is characterized by up-regulation of nitric oxide synthase (NOS) activity (induced by KYN) and decreased formation of NOS cofactor, BH4, that results in uncoupling of NOS that shifting arginine from NO to superoxide anion production. Superoxide anion and free radicals among KYN derivatives trigger phospholipase A2-arachidonic acid cascade associated with AAMPD. IFNG-induced up-regulation of indoleamine 2,3-dioxygenase (IDO), rate-limiting enzyme of TRY-KYN pathway, decreases TRY conversion into serotonin (substrate of antidepressant effect) and increases production of KYN associated with diabetes [xanthurenic acid (XA)], anxiety (KYN), psychoses and cognitive impairment (kynurenic acid). IFNG-inducible KYN/pteridines inflammation cascade is impacted by IFNG (+874) T/A genotypes, encoding cytokine production. In addition to literature data on KYN/TRY ratio (IDO activity index), we observe neopterin levels (index of activity of rate-limiting enzyme of guanine-BH4 pathway) to be higher in carriers of high (T) than of low (A) producers alleles; and to correlate with AAMPD markers (e.g., insulin resistance, body mass index, mortality risk), and with IFN-alpha-induced depression in hepatitis C patients. IFNG-inducible cascade is influenced by environmental factors (e.g., vitamin B6 deficiency increases XA formation) and by pharmacological agents; and might offer new approaches for anti-aging and anti-AAMPD interventions.
Collapse
Affiliation(s)
- Gregory F Oxenkrug
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
34
|
Schildknecht S, Pape R, Müller N, Robotta M, Marquardt A, Bürkle A, Drescher M, Leist M. Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2010; 286:4991-5002. [PMID: 21081502 DOI: 10.1074/jbc.m110.169565] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Minocycline prevents oxidative protein modifications and damage in disease models associated with inflammatory glial activation and oxidative stress. Although the drug has been assumed to act by preventing the up-regulation of proinflammatory enzymes, we probed here its direct chemical interaction with reactive oxygen species. The antibiotic did not react with superoxide or (•)NO radicals, but peroxynitrite (PON) was scavenged in the range of ∼1 μm minocycline and below. The interaction of pharmacologically relevant minocycline concentrations with PON was corroborated in several assay systems and significantly exceeded the efficacy of other antibiotics. Minocycline was degraded during the reaction with PON, and the resultant products lacked antioxidant properties. The antioxidant activity of minocycline extended to cellular systems, because it prevented neuronal mitochondrial DNA damage and glutathione depletion. Maintenance of neuronal viability under PON stress was shown to be solely dependent on direct chemical scavenging by minocycline. We chose α-synuclein (ASYN), known from Parkinsonian pathology as a biologically relevant target in chemical and cellular nitration reactions. Submicromolar concentrations of minocycline prevented tyrosine nitration of ASYN by PON. Mass spectrometric analysis revealed that minocycline impeded nitrations more effectively than methionine oxidations and dimerizations of ASYN, which are secondary reactions under PON stress. Thus, PON scavenging at low concentrations is a novel feature of minocycline and may help to explain its pharmacological activity.
Collapse
Affiliation(s)
- Stefan Schildknecht
- Department of In Vitro Toxicology and Biomedicine, Faculty of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010; 24:776-83. [PMID: 19903519 DOI: 10.1016/j.bbi.2009.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023] Open
Abstract
Although the role of microglial activation in neural injury remains controversial, there is increasing evidence for a detrimental effect in the immature brain, which may occur in response to release of neurotoxic substances including pro-inflammatory cytokines. However, the signaling mechanisms involved in microglial-induced neuronal cell death are unclear. Microglia isolated from the brains of wild-type (WT) or MyD88 knockout (KO) mice were exposed to PBS or the TLR4-ligand LPS (100 ng/mL) for 2, 6, 14, or 24 h, and the microglia-conditioned medium (MCM) collected. Detection of multiple inflammatory molecules in MCM was performed using a mouse 22-plex cytokine microbead array kit. Primary neuronal cultures were supplemented with the 14 or 24 h MCM, and the degree of neuronal apoptosis examined after exposure for 24 h. Results showed a rapid and sustained elevation in multiple inflammatory mediators in the MCM of WT microglia exposed to LPS, which was largely inhibited in MyD88 KO microglia. There was a significant increase in apoptotic death measured at 24 h in cultured neurons exposed to CM from either 14 or 24 h LPS-stimulated WT microglia (p<.05 vs. WT control). By contrast, there was no increase in apoptotic death in cultured neurons exposed to CM from 14 or 24 h LPS-stimulated MyD88 KO microglia (p=.15 vs. MyD88 KO control). These data suggest that MyD88-dependent activation of microglia by LPS causes release of factors directly toxic to neurons.
Collapse
|
36
|
Abstract
BACKGROUND In Parkinson's disease, most of current therapies only provide symptomatic treatment and so far there is no drug which directly affects the disease process. OBJECTIVES To investigate the neuroprotective effects of minocycline against long-term rotenone toxicity in primary dopaminergic cell cultures. METHODS Embryonic mice of 14-days-old were used for preparation of primary dopaminergic cell cultures. On the 6th day in vitro, prepared cultures were treated both with minocycline alone (1, 5, 10 and 20 microM) and concomitantly with rotenone (5 and 20 nM) and minocycline. Cultures were incubated at 37 degrees C for six consecutive days. On Day in vitro culture medium was aspirated and used for measuring lactate dehydrogenase. Cultured cells were fixed in 4% paraformaldhyde and stained immunohistochemically against tyrosine hydroxylase. RESULTS Treatment of cultures with 5 and 20 nM of rotenone significantly decreased the survival of tyrosine hydroxylase immunoreactive neurons by 27 and 31% and increased the release of lactate dehydrogenase into the culture medium by 31 and 236%, respectively compared to untreated controls. Minocycline (1, 5, 10 microM) significantly protected tyrosine hydroxylase immunoreactive neurons by 17, 15 and 19% and 13, 22 and 23% against 5 and 20 nM of rotenone, respectively compared to rotenone-treated cultures. Minocycline (only at 10 microM) significantly decreased the release of lactate dehydrogenase by 79% and 133% against 5 and 20 nM of rotenone, respectively. CONCLUSION Minocycline has neuroprotective potential against the progressive loss of tyrosine hydroxylase immunoreactive neurons induced by long-term rotenone toxicity in primary dopaminergic cultures.
Collapse
|
37
|
Nargenicin attenuates lipopolysaccharide-induced inflammatory responses in BV-2 cells. Neuroreport 2009; 20:1007-12. [PMID: 19474767 DOI: 10.1097/wnr.0b013e32832d2239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microglia activation has been considered as a major factor associated with neurodegenerative diseases. In this study, we investigated the inhibitory effects of nargenicin, a natural antibiotic from soil bacterium Nocardia, on lipopolysaccharide (LPS)-induced inflammatory activation of microglia. Nargenicin significantly attenuated LPS-induced nitric oxide production in BV-2 microglial cells. Furthermore, nargenicin effectively suppressed the upregulation of interleukin-1beta, tumor necrosis factor alpha, and inducible nitric oxide synthase at both mRNA and protein levels in LPS-stimulated BV-2 microglia. In addition, nargenicin blocked LPS-induced degradation of IkappaB-alpha, indicating that the initial molecular target of nargenicin is the transcription factor nuclear factor-kappaB. These results suggest that nargenicin should be evaluated as a therapeutic agent for inflammatory neurodegenerative diseases.
Collapse
|
38
|
Gervasi NM, Kwok JC, Fawcett JW. Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 2009; 3:907-23. [PMID: 18947312 DOI: 10.2217/17460751.3.6.907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.
Collapse
Affiliation(s)
- Noreen M Gervasi
- Cambridge University Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB22PY, UK.
| | | | | |
Collapse
|
39
|
Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res 2008; 196:168-79. [PMID: 18977395 DOI: 10.1016/j.bbr.2008.09.040] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/28/2008] [Indexed: 01/21/2023]
Abstract
Minocycline is a semi-synthetic, second-generation tetracycline analog which is effectively crossing the blood-brain barrier, effective against gram-positive and -negative infections. In addition to its own antimicrobacterial properties, minocycline has been reported to exert neuroprotective effects over various experimental models such as cerebral ischemia, traumatic brain injury, amyotrophic lateral sclerosis, Parkinson's disease, kainic acid treatment, Huntington' disease and multiple sclerosis. Minocycline has been focused as a neuroprotective agent over neurodegenerative disease since it has been first reported that minocycline has neuroprotective effects in animal models of ischemic injury [Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koisinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998;95:15769-74; Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999;96:13496-500]. Recently, the effect of minocycline on Alzheimer's disease has been also reported. Although its precise primary target is not clear, the action mechanisms of minocycline for neuroprotection reported so far are; via; the inhibition of mitochondrial permeability-transition mediated cytochrome c release from mitochondria, the inhibition of caspase-1 and -3 expressions, and the suppression of microglial activation, involvement in some signaling pathways, metalloprotease activity inhibition. Because of the high tolerance and the excellent penetration into the brain, minocycline has been clinically tried for some neurodegenerative diseases such as stroke, multiple sclerosis, spinal cord injury, amyotropic lateral sclerosis, Hungtington's disease and Parkinson's disease. This review will briefly summarize the effects and action mechanisms of minocycline on neurodegenerative diseases.
Collapse
Affiliation(s)
- Hye-Sun Kim
- Department of Pharmacology, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|