1
|
Li D, Liu H, Li C, Guan Y, Xiong X, He R, Jia Z, Liang L, Zhao J, Miao X, Wang Y, Peng J. Exogenous Mitochondrial Transplantation Facilitates the Recovery of Autologous Nerve Grafting in Repairing Nerve Defects. Cell Transplant 2024; 33:9636897241291278. [PMID: 39471108 PMCID: PMC11528789 DOI: 10.1177/09636897241291278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Autologous nerve transplantation (ANT) remains the gold standard for treating nerve defects. However, its efficacy in nerve repair still requires improvement. Mitochondrial dysfunction resulting from nerve injury may be a significant factor limiting nerve function restoration. This study investigated the impact of supplementing exogenous mitochondria (EM) in ANT and explored its effect on the efficacy of ANT in nerve repair. SD rats were used to prepare a model of a 10 mm sciatic nerve defect repaired by ANT (Auto group) and a model of ANT supplemented with EM (Mito group). At 12 weeks post-operation, functional, neurophysiological, and histological evaluations of the target organ revealed that the Mito group exhibited significantly better outcomes compared with the Auto group, with statistically significant differences (P < 0.05). In vitro experiments demonstrated that EM could be endocytosed by Schwann cells (SCs) and dorsal root ganglion neurons (DRGs) when co-cultured. After endocytosis by SCs, immunofluorescence staining of autophagy marker LC3II and mitochondrial marker Tomm20, as well as adenoviral fluorescence labeling of lysosomes and mitochondria, revealed that EM could promote autophagy in SCs. CCK8 and EDU assays also indicated that EM significantly promoted SCs proliferation and viability. After endocytosis by DRGs, EM could accelerate axonal growth rate. A sciatic nerve defect repair model prepared using Thy1-YFP-16 mice also revealed that EM could accelerate axonal growth in vivo, with statistically significant results (P < 0.05). This study suggests that EM enhances autophagy in SCs, promotes SCs proliferation and viability, and increases the axonal growth rate, thereby improving the efficacy of ANT. This research provides a novel therapeutic strategy for enhancing the efficacy of ANT in nerve repair.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Orthopedics, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haolin Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Chaochao Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xing Xiong
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Ruichao He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Lijing Liang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Jinjuan Zhao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xinyu Miao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| |
Collapse
|
2
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
3
|
Wood KL, Fonseca MIA, Gunderson KA, Nkana ZH, Israel JS, Poore SO, Dingle AM. Local Environment Induces Differential Gene Expression in Regenerating Nerves. J Surg Res 2022; 278:418-432. [PMID: 35618492 DOI: 10.1016/j.jss.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Approximately 80% of amputations are complicated by neuromas. Methods for neuroma management include nerve translocation into bone and implantation into skeletal muscle grafts, which have also facilitated the development of regenerative neural interfaces to enable fixation of prosthetics with motor and sensory feedback. However, molecular-level differences between nerves in these environments have not been investigated. This study aimed to elucidate the physiology of regenerating nerves in different settings by assessing gene expression. MATERIALS AND METHODS New Zealand white rabbits underwent transfemoral amputation with sciatic nerve transposition into the femur or tacked to skeletal muscle. At 5 wk, ribonucleic acid (RNA) sequencing of samples of distal nerve terminating in bone or muscle and nerve of the contralateral limb (control) identified differentially expressed genes (DEGs) and biochemical pathways (α = 0.05). RESULTS Three samples of nerve housed in bone, four of nerve tacked to muscle, and seven naïve controls were analyzed. Relative to controls, nerve housed in bone had little within-group variation and 13,028 DEGs, and nerve tacked to muscle had dramatic within-group variation and 12,811 DEGs. These samples upregulated the following pathways: lysosome, phagosome, antigen processing/presentation, and cell adhesion molecule. Relative to nerve housed in bone, nerve tacked to muscle had 12,526 DEGs, demonstrating upregulation of pathways of B-cell receptor signaling, focal adhesion, natural killer-cell mediated cytotoxicity, leukocyte transendothelial migration, and extracellular matrix-receptor interactions. CONCLUSIONS Nerve housed in bone has a more predictable molecular profile than does nerve tacked to muscle. Thus, the intramedullary canal may provide a more reliable setting for neuroma prevention and neural interfacing.
Collapse
Affiliation(s)
- Kasey Leigh Wood
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Marina I Adrianzen Fonseca
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kirsten A Gunderson
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zeeda H Nkana
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacqueline S Israel
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
4
|
Qian J, Lin X, Zhou Z. Skin/muscle incision and retraction regulates the persistent postoperative pain in rats by the Epac1/PKC-βII pathway. BMC Anesthesiol 2022; 22:230. [PMID: 35850627 PMCID: PMC9290233 DOI: 10.1186/s12871-022-01771-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Persistent postoperative pain causes influence the life quality of many patients. The Epac/PKC pathway has been indicated to regulate mechanical hyperalgesia. The present study used skin/muscle incision and retraction (SMIR) to induce postoperative pain in rats and evaluated the Epac/PKC pathway in postoperative pain. Mechanical allodynia was assessed by paw withdrawal threshold before and after incision. The levels of Epac, PKC, proinflammatory cytokines, and blood-nerve barrier-related proteins were assessed using Western blotting. We found that SMIR induced the activation of the Epac/PKC pathway, mechanical allodynia, and upregulation of Glut1, VEGF, and PGP9.5 proteins in dorsal root ganglia. Under the influence of agonists of Epac/PKC, normal rats showed mechanical allodynia and increased Glut1, VEGF, and PGP9.5 proteins. After inhibition of Epac1 in rats with SMIR, mechanical allodynia was alleviated, and proinflammatory cytokines and Glut1, VEGF, and PGP9.5 proteins were decreased. Moreover, dorsal root ganglia neurons showed abnormal proliferation under the activation of the Epac/PKC pathway. Using Captopril to protect vascular endothelial cells after SMIR had a positive effect on postoperative pain. In conclusion, SMIR regulates the persistent postoperative pain in rats by the Epac/PKC pathway.
Collapse
Affiliation(s)
- Jiashu Qian
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China
| | - Zhili Zhou
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China.
| |
Collapse
|
5
|
Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int J Mol Sci 2022; 23:2685. [PMID: 35269822 PMCID: PMC8910267 DOI: 10.3390/ijms23052685] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain indicates pain caused by damage to the somatosensory system and is difficult to manage and treat. A new treatment strategy urgently needs to be developed. Both autophagy and apoptosis are critical adaptive mechanisms when neurons encounter stress or damage. Recent studies have shown that, after nerve damage, both autophagic and apoptotic activities in the injured nerve, dorsal root ganglia, and spinal dorsal horn change over time. Many studies have shown that upregulated autophagic activities may help myelin clearance, promote nerve regeneration, and attenuate pain behavior. On the other hand, there is no direct evidence that the inhibition of apoptotic activities in the injured neurons can attenuate pain behavior. Most studies have only shown that agents can simultaneously attenuate pain behavior and inhibit apoptotic activities in the injured dorsal root ganglia. Autophagy and apoptosis can crosstalk with each other through various proteins and proinflammatory cytokine expressions. Proinflammatory cytokines can promote both autophagic/apoptotic activities and neuropathic pain formation, whereas autophagy can inhibit proinflammatory cytokine activities and further attenuate pain behaviors. Thus, agents that can enhance autophagic activities but suppress apoptotic activities on the injured nerve and dorsal root ganglia can treat neuropathic pain. Here, we summarized the evolving changes in apoptotic and autophagic activities in the injured nerve, dorsal root ganglia, spinal cord, and brain after nerve damage. This review may help in further understanding the treatment strategy for neuropathic pain during nerve injury by modulating apoptotic/autophagic activities and proinflammatory cytokines in the nervous system.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Jung-Lung Hsu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City 236, Taiwan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chih-Hong Lee
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Mei-Yun Cheng
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Long-Sun Ro
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| |
Collapse
|
6
|
Romano R, Del Fiore VS, Saveri P, Palamà IE, Pisciotta C, Pareyson D, Bucci C, Guerra F. Autophagy and Lysosomal Functionality in CMT2B Fibroblasts Carrying the RAB7 K126R Mutation. Cells 2022; 11:cells11030496. [PMID: 35159308 PMCID: PMC8834514 DOI: 10.3390/cells11030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by five mutations in the RAB7A gene. Autophagy and late endocytic trafficking were already characterized in CMT2B. Indeed, impairment of autophagy and an increase in lysosomal degradative activity were found in cells expressing the mutant proteins. Recently, we described a novel RAB7 mutation associated with predominantly motor CMT2 and impaired EGFR trafficking. With the aim to analyze the autophagy process and lysosomal activity in CMT2B fibroblasts carrying the p.K126R RAB7 novel mutation and to investigate further the causes of the different phenotype, we have performed Western blot, immunofluorescence and cytometric analyses monitoring autophagic markers and endocytic proteins. Moreover, we investigated lipophagy by analyzing accumulation of lipid droplets and their co-localization with endolysosomal degradative compartments. We found that cells expressing the RAB7K126R mutant protein were characterized by impairment of autophagy and lipophagy processes and by a moderate increase in lysosomal activity compared to the previously studied cells carrying the RAB7V162M mutation. Thus, we concluded that EGFR trafficking alterations and a moderate increase in lysosomal activity with concomitant impairment of autophagy could induce the specific predominantly motor phenotype observed in K126R patients.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Victoria Stefania Del Fiore
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | | | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| |
Collapse
|
7
|
Abstract
Obesity is a growing human health concern worldwide and imposes adverse effects on many cell types and organ systems, including the kidneys. Obesity interferes with various cellular processes by increasing lipid accumulation and oxidation, insulin resistance, and inflammation. Autophagy is an important cellular process to maintain hemostasis and preserve resources, but might be altered in obesity. Interestingly, experimental studies have shown either an increase or a decrease in the rate of autophagy, and accumulation of byproducts and mediators of this cascade in kidneys of obese individuals. Hence, whether autophagy is beneficial or detrimental under these conditions remains unresolved. This review summarizes emerging evidence linking superfluous fat accumulation to alterations in autophagy. Elucidating the role of autophagy in the pathogenesis and complications of obesity in the kidney might help in the identification of therapeutic targets to prevent or delay the development of chronic kidney disease in obese subjects. Autophagy, kidney, obesity, lipids.
Collapse
Affiliation(s)
- Ramyar Ghandriz
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| |
Collapse
|
8
|
Baum P, Toyka KV, Blüher M, Kosacka J, Nowicki M. Inflammatory Mechanisms in the Pathophysiology of Diabetic Peripheral Neuropathy (DN)-New Aspects. Int J Mol Sci 2021; 22:10835. [PMID: 34639176 PMCID: PMC8509236 DOI: 10.3390/ijms221910835] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of diabetic neuropathy is complex, and various pathogenic pathways have been proposed. A better understanding of the pathophysiology is warranted for developing novel therapeutic strategies. Here, we summarize recent evidence from experiments using animal models of type 1 and type 2 diabetes showing that low-grade intraneural inflammation is a facet of diabetic neuropathy. Our experimental data suggest that these mild inflammatory processes are a likely common terminal pathway in diabetic neuropathy associated with the degeneration of intraepidermal nerve fibers. In contrast to earlier reports claiming toxic effects of high-iron content, we found the opposite, i.e., nutritional iron deficiency caused low-grade inflammation and fiber degeneration while in normal or high non-heme iron nutrition no or only extremely mild inflammatory signs were identified in nerve tissue. Obesity and dyslipidemia also appear to trigger mild inflammation of peripheral nerves, associated with neuropathy even in the absence of overt diabetes mellitus. Our finding may be the experimental analog of recent observations identifying systemic proinflammatory activity in human sensorimotor diabetic neuropathy. In a rat model of type 1 diabetes, a mild neuropathy with inflammatory components could be induced by insulin treatment causing an abrupt reduction in HbA1c. This is in line with observations in patients with severe diabetes developing a small fiber neuropathy upon treatment-induced rapid HbA1c reduction. If the inflammatory pathogenesis could be further substantiated by data from human tissues and intervention studies, anti-inflammatory compounds with different modes of action may become candidates for the treatment or prevention of diabetic neuropathy.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany;
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany;
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany;
| | - Joanna Kosacka
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig, D-04103 Leipzig, Germany;
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
Liao MF, Yeh SR, Lu KT, Hsu JL, Chao PK, Hsu HC, Peng CH, Lee YL, Hung YH, Ro LS. Interactions between Autophagy, Proinflammatory Cytokines, and Apoptosis in Neuropathic Pain: Granulocyte Colony Stimulating Factor as a Multipotent Therapy in Rats with Chronic Constriction Injury. Biomedicines 2021; 9:biomedicines9050542. [PMID: 34066206 PMCID: PMC8151381 DOI: 10.3390/biomedicines9050542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Our previous studies have shown that early systemic granulocyte colony-stimulating factor (G-CSF) treatment can attenuate neuropathic pain in rats with chronic constriction injury (CCI) by modulating expression of different proinflammatory cytokines, microRNAs, and proteins. Besides the modulation of inflammatory mediators' expression, previous studies have also reported that G-CSF can modulate autophagic and apoptotic activity. Furthermore, both autophagy and apoptosis play important roles in chronic pain modulation. In this study, we evaluated the temporal interactions of autophagy, and apoptosis in the dorsal root ganglion (DRG) and injured sciatic nerve after G-CSF treatment in CCI rats. We studied the behaviors of CCI rats with or without G-CSF treatment and the various levels of autophagic, proinflammatory, and apoptotic proteins in injured sciatic nerves and DRG neurons at different time points using Western blot analysis and immunohistochemical methods. The results showed that G-CSF treatment upregulated autophagic protein expression in the early phase and suppressed apoptotic protein expression in the late phase after nerve injury. Thus, medication such as G-CSF can modulate autophagy, apoptosis, and different proinflammatory proteins in the injured sciatic nerve and DRG neurons, which have the potential to treat neuropathic pain. However, autophagy-mediated regulation of neuropathic pain is a time-dependent process. An increase in autophagic activity in the early phase before proinflammatory cytokines reach the threshold level to induce neuropathic pain can effectively alleviate further neuropathic pain development.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Shin-Rung Yeh
- College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Jung-Lung Hsu
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Hui-Ching Hsu
- Division of Chinese Acupuncture and Traumatology, Chang Department of Traditional Chinese Medicine, Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (H.-C.H.); (C.-H.P.)
| | - Chi-Hao Peng
- Division of Chinese Acupuncture and Traumatology, Chang Department of Traditional Chinese Medicine, Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (H.-C.H.); (C.-H.P.)
| | - Yun-Lin Lee
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
| | - Yu-Hui Hung
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8351)
| |
Collapse
|
10
|
TFEB Biology and Agonists at a Glance. Cells 2021; 10:cells10020333. [PMID: 33562649 PMCID: PMC7914707 DOI: 10.3390/cells10020333] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a critical regulator of cellular survival, differentiation, development, and homeostasis, dysregulation of which is associated with diverse diseases including cancer and neurodegenerative diseases. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy and lysosome, can enhance autophagic and lysosomal biogenesis and function. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of disease models, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. Therefore, TFEB agonists are a promising strategy to ameliorate diseases implicated with autophagy dysfunction. Recently, several TFEB agonists have been identified and preclinical or clinical trials are applied. In this review, we present an overview of the latest research on TFEB biology and TFEB agonists.
Collapse
|
11
|
Baum P, Koj S, Klöting N, Blüher M, Classen J, Paeschke S, Gericke M, Toyka KV, Nowicki M, Kosacka J. Treatment-Induced Neuropathy in Diabetes (TIND)-Developing a Disease Model in Type 1 Diabetic Rats. Int J Mol Sci 2021; 22:ijms22041571. [PMID: 33557206 PMCID: PMC7913916 DOI: 10.3390/ijms22041571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Severin Koj
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig, Philipp-Rosenthal-Straße 27, D-04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig, Philipp-Rosenthal-Straße 27, D-04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany; (S.P.); (M.N.)
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, University of Halle, Große Steinstraße 52, D-06108 Halle, Germany;
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Straße 11, D-97080 Würzburg, Germany;
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany; (S.P.); (M.N.)
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Institute of Anatomy and Cell Biology, University of Halle, Große Steinstraße 52, D-06108 Halle, Germany;
- Correspondence: ; Tel.: +49-341-9713405
| |
Collapse
|
12
|
Jiang Y, Liang J, Li R, Peng Y, Huang J, Huang L. Basic fibroblast growth factor accelerates myelin debris clearance through activating autophagy to facilitate early peripheral nerve regeneration. J Cell Mol Med 2021; 25:2596-2608. [PMID: 33512767 PMCID: PMC7933946 DOI: 10.1111/jcmm.16274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/31/2020] [Indexed: 01/17/2023] Open
Abstract
The successful removal of damaged myelin sheaths during Wallerian degeneration (WD) is essential for ensuring structural remodelling and functional recovery following traumatic peripheral nerve injury (PNI). Recent studies have established that autophagy involves myelin phagocytosis and cellular homoeostasis, and its disorder impairs myelin clearance. Based on the role of basic fibroblast growth factor (bFGF) on exerting neuroprotection and angiogenesis during nerve tissue regeneration, we now explicitly focus on the issue about whether the therapeutic effect of bFGF on supporting nerve regeneration is closely related to accelerate the autophagic clearance of myelin debris during WD. Using sciatic nerve crushed model, we found that bFGF remarkedly improved axonal outgrowth and nerve reconstruction at the early phase of PNI (14 days after PNI). More importantly, we further observed that bFGF could enhance phagocytic capacity of Schwann cells (SCs) to engulf myelin debris. Additionally, this enhancing effect is accomplished by autophagy activation and the increase of autophagy flux by immunoblotting and immune‐histochemical analyses. Taken together, our data suggest that the action of bFGF on modulating early peripheral nerve regeneration is closely associated with myelin debris removal by SCs, which might result in SC‐mediated autophagy activation, highlighting its insight molecular mechanism as a neuroprotective agent for repairing PNI.
Collapse
Affiliation(s)
- Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Jiahong Liang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- HangZhou Zhuyangxin Pharmaceutical Co.,LTD Hangzhou Zhejiang China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- PCFM Lab, GD HPPC Lab School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yan Peng
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- Hangzhou Institute for Food and Drug control Hangzhou Zhejiang China
| | - JiangLi Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| |
Collapse
|
13
|
Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats. Neuroreport 2020; 31:644-649. [DOI: 10.1097/wnr.0000000000001461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Protective effect inhibiting the expression of miR-181a on the diabetic corneal nerve in a mouse model. Exp Eye Res 2020; 192:107925. [PMID: 31926967 DOI: 10.1016/j.exer.2020.107925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
To investigate the protective effect of inhibiting miR-181a on diabetic corneal nerve in mice, we chose male C57BL/6 mice with streptozotocin (STZ) -induced diabetes as animal models. The expression of miR-181a in trigeminal ganglion tissue (TG) of diabetic mice was detected by real-time PCR. In vitro, we cultured mouse trigeminal ganglion neurons and measured the neuronal axon growth when treated under miR-181a antagomir and negative conditions (NTC). Immunofluorescence showed a significant increase in neuronal axon length in trigeminal ganglion cells treated with miR-181a antagomir. In animal models, we performed epithelial scraping and subconjunctival injection of the miR-181a antagomir and miRNA antagomir NTC to observe the corneal nerve repair by corneal nerve staining. miR-181a antagomir subconjunctival injection significantly increased the corneal epithelium healing of diabetic mice compared with that of the NTC group. Meanwhile, corneal nerve staining showed that the repair of corneal nerve endings was significantly promoted. As the targets of the 181a, ATG5 and BCL-2 were previously identified. The results of Western blot showed that the expression of autophagy associated protein ATG5 and LC3B-II and the expression of anti-apoptotic protein Bcl-2 were decreased in the high-glucose cell culture environment and the diabetic TG tissue. The expression of ATG5, LC3B-II and Bcl-2 were significantly increased after miR-181a antagomir treatment compared with negative control group. This study showed that inhibition of miR-181a expression in diabetic mice could increase ATG5-mediated autophagic activation, BCL-2-mediated inhibition of apoptosis, and promote the growth of trigeminal sensory neurons and the regeneration of corneal nerve fibers. It has a protective effect on diabetic corneal neuropathy.
Collapse
|
15
|
Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10:1649-1677. [PMID: 32042328 PMCID: PMC6993217 DOI: 10.7150/thno.40919] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Autophagy in Schwann cells (SCs) is crucial for myelin debris degradation and clearance following peripheral nerve injury (PNI). Nerve growth factor (NGF) plays an important role in reconstructing peripheral nerve fibers and promoting axonal regeneration. However, it remains unclear if NGF effect in enhancing nerve regeneration is mediated through autophagic clearance of myelin debris in SCs. Methods: In vivo, free NGF solution plus with/without pharmacological inhibitors were administered to a rat sciatic nerve crush injury model. In vitro, the primary Schwann cells (SCs) and its cell line were cultured in normal medium containing NGF, their capable of swallowing or clearing degenerated myelin was evaluated through supplement of homogenized myelin fractions. Results: Administration of exogenous NGF could activate autophagy in dedifferentiated SCs, accelerate myelin debris clearance and phagocytosis, as well as promote axon and myelin regeneration at early stage of PNI. These NGF effects were effectively blocked by autophagy inhibitors. In addition, inhibition of the p75 kD neurotrophin receptor (p75NTR) signal or inactivation of the AMP-activated protein kinase (AMPK) also inhibited the NGF effect as well. Conclusions: NGF effect on promoting early nerve regeneration is closely associated with its accelerating autophagic clearance of myelin debris in SCs, which probably regulated by the p75NTR/AMPK/mTOR axis. Our studies thus provide strong support that NGF may serve as a powerful pharmacological therapy for peripheral nerve injuries.
Collapse
|
16
|
Forouzanfar F, Read MI, Barreto GE, Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2019; 72:652-664. [DOI: 10.1002/iub.2209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Morgayn I. Read
- Department of PharmacologySchool of Medical Sciences, University of Otago Dunedin New Zealand
| | - George E. Barreto
- Department of Biological SciencesUniversity of Limerick Limerick Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA Tehran Iran
- Biotechnology Research CenterPharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Resham K, Sharma SS. Pharmacological interventions targeting Wnt/β-catenin signaling pathway attenuate paclitaxel-induced peripheral neuropathy. Eur J Pharmacol 2019; 864:172714. [PMID: 31586636 DOI: 10.1016/j.ejphar.2019.172714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition which occurs as a consequence of cancer chemotherapy with anti-cancer agents like paclitaxel, oxaliplatin, etc. Despite immense research in the pathological pathways involved in CIPN, treatment options still remain limited. Recently, pathological involvement of Wnt signaling has been investigated in various neuropathic pain models, however there are no reports as yet on the role of Wnt signaling in CIPN. In the present study, we have investigated the neuroprotective effects of Wnt signaling inhibitors namely LGK974 (Porcupine inhibitor), NSC668036 (Disheveled inhibitor) and PNU76454 (β-catenin inhibitor) in paclitaxel-induced neuropathic pain. Paclitaxel (2 mg/kg, i. p.) was administered to male Sprague Dawley rats on four alternate days. After 21 days, paclitaxel-treated rats showed reduced behavioral pain thresholds (cold allodynia, heat & mechanical hyperalgesia) and nerve functions (nerve conduction velocity and nerve blood flow). Moreover, Wnt signaling proteins (Wnt3a, β-catenin, c-myc and Dvl1), inflammatory marker (matrix metalloproteinase 2) and endoplasmic reticulum stress marker (GRP78) were found to be upregulated in the sciatic nerves of paclitaxel-treated rats accompanied with loss of intraepidermal nerve fiber density as compared to the control rats. Intrathecal administration of Wnt inhibitors (each at dose of 10 and 30 μM) for three consecutive days to paclitaxel-treated rats, significantly improved behavioral pain thresholds and nerve functional parameters by inhibition of Wnt signaling, inflammation, endoplasmic reticulum stress and improvement of intraepidermal nerve fiber density. All these results suggested the neuroprotective potential of Wnt signaling inhibitors in CIPN.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
18
|
Hu J, Hu X, Kan T. MiR-34c Participates in Diabetic Corneal Neuropathy Via Regulation of Autophagy. Invest Ophthalmol Vis Sci 2019; 60:16-25. [PMID: 30601927 DOI: 10.1167/iovs.18-24968] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the contribution and mechanism of miRNAs and autophagy in diabetic peripheral neuropathy. Methods In this study, we used streptozotocin (STZ)-induced type I diabetes C57 mice as animal models, and we detected the expression of miR-34c and autophagic intensity in trigeminal ganglion (TG) tissue. The bioinformatics software was used to predict and analyze the potential targets of miR-34c. Primary trigeminal ganglion neurons were cultured in vitro to investigate the effect of miR-34c on axon growth and survival of TG cells. A corneal epithelial damage-healing model was established on the diabetic mice, then miR-34c antagomir was injected subconjunctivally. The condition of corneal epithelial healing was observed through sodium fluorescein staining, and the peripheral nerve degeneration of the cornea was evaluated by β-tublin corneal nerve staining. Results The expression of miR-34c was significantly increased in TG tissue of type I diabetic mice by real-time PCR. Western blot showed that autophagy-related proteins Atg4B and LC3-II were significantly down-regulated in diabetes TG compared with normal control. Trigeminal neuron immunofluorescence showed that the length of the trigeminal ganglion cell synapses was significantly increased after miR-34c antagomir treatment compared with normal cultures. Subconjunctival injection of miR-34c antagomir can significantly promote corneal epithelium healing of diabetic mice and appreciably promote the regeneration of corneal nerve. At the same time, it can significantly increase the expression of autophagy in TG tissue of type I diabetic mice. Conclusions In this study , miR-34c was found to affect the growth of trigeminal sensory neurons and the repair of diabetic corneal nerve endings by acting directly on Atg4B.
Collapse
Affiliation(s)
- Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - XinYing Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Tong Kan
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
19
|
Liu X, Zhu M, Ju Y, Li A, Sun X. Autophagy dysfunction in neuropathic pain. Neuropeptides 2019; 75:41-48. [PMID: 30910234 DOI: 10.1016/j.npep.2019.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Autophagy is a lysosomal degradation pathway that maintains tissue homeostasis by recycling damaged and aged cellular components, which plays important roles in development of the nervous system, as well as in neuronal function and survival. In addition, autophagy dysfunction underlies neuropathic pain. Thus, the modulation of autophagy can alleviate neuropathic pain. Here, we describe the definition, mechanisms of autophagy and neuropathic pain. On this basis, we further discuss the role of autophagy dysfunction in neuropathic pain. This review updates our knowledge on autophagy mechanisms which propose potential therapeutic targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Affiliated Lixiang Eye Hospital of Soochow University, Suzhou 210005, Jiangsu, China
| | - Yuanyuan Ju
- Medical College, Nantong University, Nantong 2266001, Jiangsu, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Xiaolei Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
20
|
Paeschke S, Baum P, Toyka KV, Blüher M, Koj S, Klöting N, Bechmann I, Thiery J, Kosacka J, Nowicki M. The Role of Iron and Nerve Inflammation in Diabetes Mellitus Type 2-Induced Peripheral Neuropathy. Neuroscience 2019; 406:496-509. [DOI: 10.1016/j.neuroscience.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
|
21
|
Kosacka J, Woidt K, Toyka KV, Paeschke S, Klöting N, Bechmann I, Blüher M, Thiery J, Ossmann S, Baum P, Nowicki M. The role of dietary non-heme iron load and peripheral nerve inflammation in the development of peripheral neuropathy (PN) in obese non-diabetic leptin-deficient ob/ob mice. Neurol Res 2019; 41:341-353. [DOI: 10.1080/01616412.2018.1564191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna Kosacka
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Katrin Woidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Disease, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, German
| | | | - Petra Baum
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Zhu X, Liu Y, Huang H, Zhang Y, Huang S, Zhou W, Bian X, Shen S, Cao S. PKCβII-induced upregulation of PGP9.5 and VEGF in postoperative persistent pain in rats. J Pain Res 2018; 11:2095-2106. [PMID: 30310311 PMCID: PMC6166760 DOI: 10.2147/jpr.s144852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Postoperative pain is a common clinical problem. In this study, we aimed to investigate the role of protein kinase C βII (PKCβII) in the progression of postoperative pain following skin/muscle incision and retraction (SMIR) surgery. Materials and methods SMIR postoperative pain model was established in rats, akin to a clinical procedure. The expression level and location of p-PKCβII were observed in dorsal root ganglion (DRG) or spinal cord from SMIR-operated rats by Western blotting and immunofluorescence. In addition, the effects of PKCβII on the expression of protein gene product 9.5 (PGP9.5) or vascular endothelial growth factor (VEGF) were assessed by using pharmacological activator and inhibitor of PKCβII. Moreover, mechanical withdrawal threshold (MWT) was assessed before or after SMIR-operated rats were treated with inhibitor or activator of PKCβII. Results The expression of PKCβII in DRG and spinal cord was significantly increased after SMIR surgery (P < 0.001, P < 0.01) and expression of PKCβII was located in the neurons of the spinal cord, and magnocellular neurons, non-peptide neurons, and peptide neurons in DRG. Besides, compared with skin/muscle incision group, retraction caused a marked increase in the expression of PKCβII and a significant decrease of MWT (P < 0.001, P < 0.05). The activator of PKCβII greatly increased the expression of PGP9.5 and VEGF (P < 0.05, P < 0.01) and enhanced MWT (P < 0.001), while inhibitor of PKCβII decreased the expression of PGP9.5 and VEGF and attenuated MWT (P < 0.05, P < 0.01, P < 0.001). Conclusion Activation of PKCβII signaling pathways might be an important mechanism in the progression of postoperative pain.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Yuxi Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Hongfang Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Yonghua Zhang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Saisai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Weiwei Zhou
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Xiaocui Bian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Shiren Shen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China, ;
| |
Collapse
|
23
|
Jin GL, Yue RC, He SD, Hong LM, Xu Y, Yu CX. Koumine Decreases Astrocyte-Mediated Neuroinflammation and Enhances Autophagy, Contributing to Neuropathic Pain From Chronic Constriction Injury in Rats. Front Pharmacol 2018; 9:989. [PMID: 30214411 PMCID: PMC6125371 DOI: 10.3389/fphar.2018.00989] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/10/2018] [Indexed: 01/23/2023] Open
Abstract
Koumine, an indole alkaloid, is a major bioactive component of Gelsemium elegans. Previous studies have demonstrated that koumine has noticeable anti-inflammatory and analgesic effects in inflammatory and neuropathic pain (NP) models, but the mechanisms involved are not well understood. This study was designed to explore the analgesic effect of koumine on chronic constriction injury (CCI)-induced NP in rats and the underlying mechanisms, including astrocyte autophagy and apoptosis in the spinal cord. Rats with CCI-induced NP were used to evaluate the analgesic and anti-inflammatory effects of koumine. Lipopolysaccharide (LPS)-induced inflammation in rat primary astrocytes was also used to evaluate the anti-inflammatory effect of koumine. We found that repeated treatment with koumine significantly reduced and inhibited CCI-evoked astrocyte activation as well as the levels of pro-inflammatory cytokines. Meanwhile, we found that koumine promoted autophagy in the spinal cord of CCI rats, as reflected by decreases in the LC3-II/I ratio and P62 expression. Double immunofluorescence staining showed a high level of colocalization between LC3 and GFAP-positive glia cells, which could be decreased by koumine. Intrathecal injection of an autophagy inhibitor (chloroquine) reversed the analgesic effect of koumine, as well as the inhibitory effect of koumine on astrocyte activation in the spinal cord. In addition, TUNEL staining suggested that CCI-induced apoptosis was inhibited by koumine, and this inhibition could be abolished by chloroquine. Western blot analysis revealed that koumine significantly increased the level of Bcl-xl while inhibiting Bax expression and decreasing cleaved caspase-3. In addition, we found that koumine could decrease astrocyte-mediated neuroinflammation and enhance autophagy in primary cultured astrocytes. These results suggest that the analgesic effects of koumine on CCI-induced NP may involve inhibition of astrocyte activation and pro-inflammatory cytokine release, which may relate to the promotion of astrocyte autophagy and the inhibition for apoptosis in the spinal cord.
Collapse
Affiliation(s)
- Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Sai-di He
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li-Mian Hong
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Colecchia D, Stasi M, Leonardi M, Manganelli F, Nolano M, Veneziani BM, Santoro L, Eskelinen EL, Chiariello M, Bucci C. Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy 2018; 14:930-941. [PMID: 29130394 PMCID: PMC6103410 DOI: 10.1080/15548627.2017.1388475] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
Collapse
Affiliation(s)
- David Colecchia
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Mariangela Stasi
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| | - Margherita Leonardi
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Fiore Manganelli
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Maria Nolano
- d Salvatore Maugeri Foundation , Institute of Telese Terme , Benevento , Italy
| | - Bianca Maria Veneziani
- e Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Lucio Santoro
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Eeva-Liisa Eskelinen
- f Department of Biosciences, Division of Biochemistry and Biotechnology , University of Helsinki , Helsinki , Finland
| | - Mario Chiariello
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Cecilia Bucci
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| |
Collapse
|
25
|
Kosacka J, Nowicki M, Paeschke S, Baum P, Blüher M, Klöting N. Up-regulated autophagy: as a protective factor in adipose tissue of WOKW rats with metabolic syndrome. Diabetol Metab Syndr 2018; 10:13. [PMID: 29507613 PMCID: PMC5834836 DOI: 10.1186/s13098-018-0317-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Wistar Ottawa Karlsburg W (RT1u) rats (WOKW) are a model of the metabolic syndrome (MetS). Adipose tissue (AT) and peripheral nerves of WOKW rats exhibit up-regulated autophagy and inflammation corresponding with decreased apoptosis rate. The aim of this study was to characterize AT in WOKW rats in relation to autophagic activity. METHODS mRNA and protein expression of adiponectin, pro-inflammatory and pro-apoptotic markers including MCP1, TNFα, cleaved caspase-3 and RNF157, a new candidate gene regulated through autophagy, were analyzed in adipocytes isolated from visceral and subcutaneous AT of 5-month old WOKW rats with MetS and LEW.1W controls in response to pharmacological inhibition of autophagy. Immunohistochemistry was performed to detect adiponectin and RNF157 protein in cultured adipocytes. RESULTS Inhibition of autophagy by LY294002 was associated with a fourfold up-regulation of adiponectin expression and a decrease of RNF157 protein and pro-inflammatory markers-MCP-1 and TNFα predominantly in visceral adipocytes of obese WOKW rats compared to LEW.1W rats. Moreover, inhibition of autophagic activity correlates with an activation of cleaved caspase-3 apoptotic signaling pathway. CONCLUSIONS Up-regulated autophagy in obese WOKW rats contributes to the regulation of visceral AT function and involves an altered balance between pro-inflammatory and protective adipokine expression. Our data suggest that activation of AT autophagy protects against adipocyte apoptosis at least under conditions of obesity related MetS in WOKW rats.
Collapse
Affiliation(s)
- J. Kosacka
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - M. Nowicki
- Institute of Anatomy, University of Leipzig, Oststraße 25, 04317 Leipzig, Germany
| | - S. Paeschke
- Institute of Anatomy, University of Leipzig, Oststraße 25, 04317 Leipzig, Germany
| | - P. Baum
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - M. Blüher
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - N. Klöting
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Liebigstraße 19-21, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Assessing Autophagy in Sciatic Nerves of a Rat Model that Develops Inflammatory Autoimmune Peripheral Neuropathies. Cells 2017; 6:cells6030030. [PMID: 28927011 PMCID: PMC5617976 DOI: 10.3390/cells6030030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/08/2023] Open
Abstract
The rat sciatic nerve has attracted widespread attention as an excellent model system for studying autophagy alterations in peripheral neuropathies. In our laboratory, we have developed an original rat model, which we used currently in routine novel drug screening and to evaluate treatment strategies for chronic inflammatory demyelinating polyneuropathy (CIDP) and other closely related diseases. Lewis rats injected with the S-palmitoylated P0(180-199) peptide develop a chronic, sometimes relapsing-remitting type of disease. Our model fulfills electrophysiological criteria of demyelination with axonal degeneration, confirmed by immunohistopathology and several typical features of CIDP. We have set up a series of techniques that led us to examine the failures of autophagy pathways in the sciatic nerve of these model rats and to follow the possible improvement of these defects after treatment. Based on these newly introduced methods, a novel area of investigation is now open and will allow us to more thoroughly examine important features of certain autophagy pathways occurring in sciatic nerves.
Collapse
|
27
|
Abstract
Recent studies have shown that autophagy is involved in peripheral nervous system disease. However, the role of autophagy in the pathogenesis of experimental autoimmune neuritis (EAN) remains unclear. Therefore, EAN was induced by a subcutaneous injection into both hind footpads of synthetic neuritogenic P2(57-81) peptide in male Lewis rats. The clinical evaluation was completed using a 10-point scale method. The histological alteration of sciatic nerves was analyzed by hematoxylin and eosin and luxol fast blue staining. The ultrastructure of sciatic nerves was analyzed by transmission electron microscopy. Expressions of beclin-1 and microtubule-associated protein light chain-3 (LC3) and p62/SQSTM1 were determined by western blot. 3-Methyladenine, the inhibitor of autophagy, was used in this research. Results showed that the clinical scores were significantly increased from day 6 to day 16 after immunization compared with the control group. Compared with the control group, the number of inflammatory cells and the histological score of sciatic nerves were significantly increased, expressions of beclin-1 and LC3-II and the ratio of LC3-II/LC3-I in the sciatic nerve were significantly increased, and the expression of p62 was significantly decreased in the EAN model group. Considerable double-membrane autophagosomes in axons and myelin sheaths of sciatic nerves were observed and the number of autophagosomes in axons and myelin sheaths of sciatic nerves in the EAN model group was obviously increased compared with the control group. 3-Methyladenine ameliorated the neurologic severity of EAN. Our results suggest that autophagy activity in nerve tissue of EAN rats is increased, which may be associated with the pathogenesis of EAN.
Collapse
|
28
|
Samuelsson K, Osman AAM, Angeria M, Risling M, Mohseni S, Press R. Study of Autophagy and Microangiopathy in Sural Nerves of Patients with Chronic Idiopathic Axonal Polyneuropathy. PLoS One 2016; 11:e0163427. [PMID: 27662650 PMCID: PMC5035003 DOI: 10.1371/journal.pone.0163427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/08/2016] [Indexed: 01/07/2023] Open
Abstract
Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy.
Collapse
Affiliation(s)
- Kristin Samuelsson
- Department of Clinical Neuroscience, Department of Neurology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Ayman A. M. Osman
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Maria Angeria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Simin Mohseni
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Department of Neurology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, Paeschke S, Stockinger M, Klöting N, Blüher M, Dorn M, Classen J, Thiery J, Bechmann I, Toyka KV, Nowicki M. The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 2016; 65:391-405. [PMID: 26975531 DOI: 10.1016/j.metabol.2015.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Iron is an essential but potentially toxic metal in mammals. Here we investigated a pathogenic role of exogenous iron in peripheral diabetic neuropathy (PDN) in an animal model for type 1 diabetes. METHODS Diabetes was induced by a single injection of streptozotocin (STZ) in 4-month-old Sprague-Dawley rats. STZ-diabetic rats and non-diabetic rats were fed with high, standard, or low iron diet. After three months of feeding, animals were tested. RESULTS STZ-rats on standard iron diet showed overt diabetes, slowed motor nerve conduction, marked degeneration of distal intraepidermal nerve fibers, mild intraneural infiltration with macrophages and T-cells in the sciatic nerve, and increased iron levels in serum and dorsal root ganglion (DRG) neurons. While motor fibers were afflicted in all STZ-groups, only a low iron-diet led also to reduced sensory conduction velocities in the sciatic nerve. In addition, only STZ-rats on a low iron diet showed damaged mitochondria in numerous DRG neurons, a more profound intraepidermal nerve fiber degeneration indicating small fiber neuropathy, and even more inflammatory cells in sciatic nerves than seen in any other experimental group. CONCLUSIONS These results indicate that dietary iron-deficiency rather than iron overload, and mild inflammation may both promote neuropathy in STZ-induced experimental PDN.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Katrin Woidt
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Heike Serke
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Sabine Paeschke
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Maximilian Stockinger
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Disease, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Marco Dorn
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Liebigstr. 27, D-04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Klaus V Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany.
| |
Collapse
|
30
|
Huang HC, Chen L, Zhang HX, Li SF, Liu P, Zhao TY, Li CX. Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats. J Mol Neurosci 2016; 58:416-23. [PMID: 26738732 PMCID: PMC4829621 DOI: 10.1007/s12031-015-0672-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/27/2015] [Indexed: 01/08/2023]
Abstract
Autophagy maintains cellular homeostasis by stimulating the lysosomal degradation of cytoplasmic structures, including damaged organelles and dysfunctional proteins. The role of autophagy in the renewal and regeneration of injured peripheral nerves remains poorly understood. The current study investigated the role of autophagy in peripheral nerve regeneration and motor function recovery following sciatic nerve crush injury in rats by stimulating or suppressing autophagy and detecting the presence of autophagosomes and LC3-II expression by electron microscopy and Western blotting, respectively. Neurobehavioral function was tested by CatWalk gait analysis 1, 2, 3, and 6 weeks after injury, and the expression of neurofilament (NF)-200 and myelin basic protein (MBP) at the injury site was examined by immunocytochemistry. Apoptosis at the lesion site was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Treatment of injured rats with the autophagy inducer rapamycin increased the number of autophagosomes and LC3-II expression while reducing the number of apoptotic cells at the lesion; this was associated with an upregulation of MBP and NF-200 expression and increased motor function recovery as compared to sham-operated rats and those that were subjected to crush injury but untreated. The opposite effects were observed in rats treated with the autophagy inhibitor 3-methyladenine. These data indicate that the modulation of autophagy in peripheral nerve injury could be an effective pharmacological approach to promote nerve regeneration and reestablish motor function.
Collapse
Affiliation(s)
- Hai-Cheng Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Hai-Xing Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Sheng-Fa Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Tian-Yun Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Chuan-Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China.
| |
Collapse
|
31
|
Yerra VG, Gundu C, Bachewal P, Kumar A. Autophagy: The missing link in diabetic neuropathy? Med Hypotheses 2016; 86:120-8. [DOI: 10.1016/j.mehy.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
|
32
|
Osman AAM, Dahlin LB, Thomsen NOB, Mohseni S. Autophagy in the posterior interosseous nerve of patients with type 1 and type 2 diabetes mellitus: an ultrastructural study. Diabetologia 2015; 58:625-32. [PMID: 25523623 DOI: 10.1007/s00125-014-3477-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS We addressed the question of whether the autophagy pathway occurs in human peripheral nerves and whether this pathway is associated with peripheral neuropathy in diabetes mellitus. METHODS By using electron microscopy, we evaluated the presence of autophagy-related structures and neuropathy in the posterior interosseous nerve of patients who had undergone carpal tunnel release and had type 1 or type 2 diabetes mellitus, and in patients with no diabetes (controls). RESULTS Autophagy-related ultrastructures were observed in the samples taken from all patients of the three groups. The number of autophagy-associated structures was significantly higher (p < 0.05) in the nerves of patients with type 1 than type 2 diabetes. Qualitative and quantitative evaluations of fascicle area, diameter of myelinated and unmyelinated nerve fibres, the density of myelinated and unmyelinated fibres and the g-ratio of myelinated fibres were performed. We found degeneration and regeneration of a few myelinated axons in controls, and a well-developed neuropathy with the loss of large myelinated axons and the presence of many small ones in patients with diabetes. The pathology in type 1 diabetes was more extensive than in type 2 diabetes. CONCLUSIONS/INTERPRETATION The results of this study show that the human peripheral nerves have access to the autophagy machinery, and this pathway may be regulated differently in type 1 and type 2 diabetes; insulin, presence of extensive neuropathy, and/or other factors such as duration of diabetes and HbA1c level may underlie this differential regulation.
Collapse
Affiliation(s)
- Ayman A M Osman
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, SE-581 83, Linköping, Sweden
| | | | | | | |
Collapse
|