1
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Imura T, Abiko M, Tanaka R. Bioinformatic Exploration of Circulating microRNAs Related to Functional Outcomes in Patients With Acute Ischemic Stroke: An Exploratory Prospective Study. Cureus 2024; 16:e67476. [PMID: 39310540 PMCID: PMC11415936 DOI: 10.7759/cureus.67476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Although epigenetic modifications have been expected to play an important role in neuroplasticity for stroke recovery, the role of dynamic microRNA (miRNA) regulation related to functional outcomes after ischemic stroke remains unclear. Therefore, the current study performed a comprehensive miRNA expression analysis in serum to identify specifically altered circulating miRNAs associated with different grades of functional outcomes in patients with acute ischemic stroke (AIS). Methods Twelve patients with AIS in the middle cerebral artery region were included in this study. Peripheral blood samples were collected from patients one or two days after hospitalization. Total RNA, including small RNAs, was extracted from 400 µL of serum, and comprehensive miRNA expression analysis was performed to identify specifically altered circulating miRNAs associated with different grades of functional outcomes. Functional outcomes were evaluated three months after stroke onset using the modified Rankin Scale (mRS), classified as favorable (mRS score of 0 or 1) or unfavorable (mRS score of 2 to 5). Differentially expressed miRNAs were analyzed using the DESeq2 package. Target genes of the miRNAs were explored using miRTargetLink 2.0. Results Acute miRNA expression dynamics were characterized by differences in the patients' functional outcomes following ischemic stroke. The favorable outcome group exhibited significantly downregulated miRNAs, including hsa-miR-218-1, hsa-miR-218-2, hsa-miR-320e, hsa-miR-320d-1, hsa-miR-320d-2, hsa-miR-326, and hsa-miR-4429. In addition, 15 miRNAs, including hsa-miR-223, hsa-miR-18a, hsa-miR-411, and hsa-miR-128-1, were significantly upregulated in the favorable outcome group compared to the unfavorable outcome group. Interesting and strong validated networks between miRNAs and their target genes were identified. Conclusion This study identified specifically altered circulating miRNAs in serum associated with varying grades of functional outcomes in AIS patients and explored miRNA-target gene networks that might contribute to these outcomes. Although further studies are needed, this study highlights their potential role as biomarkers for predicting functional outcomes in patients with AIS.
Collapse
Affiliation(s)
- Takeshi Imura
- Department of Rehabilitation, Hiroshima Cosmopolitan University, Hiroshima, JPN
| | - Masaru Abiko
- Department of Neurosurgery, JA Onomichi General Hospital, Onomichi, JPN
| | - Ryo Tanaka
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, JPN
| |
Collapse
|
3
|
Tabei SZ, Khiveh F, Ebrahimi S. Modalization and Transcendence of Health in the Coming Decade: Emphasizing the Human Cognitive System in the Stories of Prophets in the Holy Quran. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:341-349. [PMID: 38952642 PMCID: PMC11214676 DOI: 10.30476/ijms.2024.100885.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 07/03/2024]
Abstract
In this study, the progression and importance of health knowledge is explored, projecting its future path. We do this by comparing the stages of evolution of the human cognitive system from birth to old age (inner intellect) with the stages of intellectual modalization in divine messengers (external intellect), as depicted in the stories of the prophets in the Holy Quran. This comparison aims to articulate the course of evolution, which includes sensory perception, apprehension, imaginalization, intellection, and intuition. Future medicine will consider the influence of spiritual factors (soul) in the form of human cognition and intention, as well as material effects (genes and biology). The seven medical domains of the future will encompass the field of 'sprito-epigenetico psycho-neuro-endocrino-immuno-pharmacology'. This perspective emphasizes the need for a transcendent outlook in health and medicine. This study employed a library research method, including studies in medical journals from the last forty years.
Collapse
Affiliation(s)
- Seyed Ziaeddin Tabei
- Department of Medical Ethics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khiveh
- Department of Medical Ethics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Ebrahimi
- Department of Medical Ethics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
5
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
6
|
Colovic H, Zlatanovic D, Zivkovic V, Jankovic M, Radosavljevic N, Ducic S, Ducic J, Stojkovic J, Jovanovic K, Nikolic D. A Review of Current Perspectives on Motoric Insufficiency Rehabilitation following Pediatric Stroke. Healthcare (Basel) 2024; 12:149. [PMID: 38255037 PMCID: PMC10815565 DOI: 10.3390/healthcare12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pediatric stroke (PS) is an injury caused by the occlusion or rupture of a blood vessel in the central nervous system (CNS) of children, before or after birth. Hemiparesis is the most common motoric deficit associated with PS in children. Therefore, it is important to emphasize that PS is a significant challenge for rehabilitation, especially since the consequences may also appear during the child's growth and development, reducing functional capacity. The plasticity of the child's CNS is an important predecessor of recovery, but disruption of the neural network, specific to an immature brain, can have harmful and potentially devastating consequences. In this review, we summarize the complexity of the consequences associated with PS and the possibilities and role of modern rehabilitation. An analysis of the current literature reveals that Constraint-Induced Movement Therapy, forced-use therapy, repetitive transcranial magnetic stimulation, functional electrical stimulation and robot-assisted therapy have demonstrated at least partial improvements in motor domains related to hemiparesis or hemiplegia caused by PS, but they are supported with different levels of evidence. Due to the lack of randomized controlled studies, the optimal rehabilitation treatment is still debatable, and therefore, most recommendations are primarily based on expert consensuses, opinions and an insufficient level of evidence.
Collapse
Affiliation(s)
- Hristina Colovic
- Department for Physical Medicine and Rehabilitation, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (D.Z.); (V.Z.)
- Clinic for Physical Medicine and Rehabilitation, University Clinical Center Niš, 18000 Niš, Serbia
| | - Dragan Zlatanovic
- Department for Physical Medicine and Rehabilitation, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (D.Z.); (V.Z.)
- Clinic for Physical Medicine and Rehabilitation, University Clinical Center Niš, 18000 Niš, Serbia
| | - Vesna Zivkovic
- Department for Physical Medicine and Rehabilitation, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (D.Z.); (V.Z.)
- Clinic for Physical Medicine and Rehabilitation, University Clinical Center Niš, 18000 Niš, Serbia
| | - Milena Jankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (S.D.); (J.D.); (J.S.); (D.N.)
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Natasa Radosavljevic
- Department of Biomedical Sciences, State University of Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Sinisa Ducic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (S.D.); (J.D.); (J.S.); (D.N.)
- Department of Pediatric Surgery, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Jovan Ducic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (S.D.); (J.D.); (J.S.); (D.N.)
| | - Jasna Stojkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (S.D.); (J.D.); (J.S.); (D.N.)
- Department of Physical Medicine and Rehabilitation, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Kristina Jovanovic
- Department of Pediatrics, University Children’s Hospital, 11000 Belgrade, Serbia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (S.D.); (J.D.); (J.S.); (D.N.)
- Department of Physical Medicine and Rehabilitation, University Children’s Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Ghazavi Dozin SM, Mohammad Rahimi N, Aminzadeh R. Wii Fit-Based Biofeedback Rehabilitation Among Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Biol Res Nurs 2024; 26:5-20. [PMID: 37247514 DOI: 10.1177/10998004231180316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Stroke is one of the most widespread reasons for acquired adult disability. Recent experimental studies have reported the beneficial influence of Wii Fit-based feedback on improving overall balance and gait for stroke survivors. METHODS We conducted a systematic review of the literature using the following keywords to retrieve the data: feedback, biofeedback, stroke, visual, auditory, tactile, virtual reality, videogame rehabilitation, Nintendo Wii stroke, videogame stroke, exergame stroke, Nintendo Wii rehabilitation, balance, and gait. A review and meta-analysis of RCTs regarding Wii Fit-based rehabilitation accompanied by conventional therapy effects on Berg Balance Scale (BBS), Timed Up and Go (TUG), functional reach test, and gait (speed) in stroke survivors was conducted. OBJECTIVE To determine the impacts of Wii Fit-based feedback combined with traditional therapy on balance and gait in stroke survivors. RESULTS 22 studies were included. The meta-analysis results revealed statistically significant improvements in functional ambulation measured using TUG (p < 0.0001), balance measured using BBS (p = 0.0001), and functional reach test (p = 0.01), but not in gait speed (p = 0.32) following Wii Fit-based feedback. Regarding the types of feedback, significant differences were found in BBS scores when mixed visual and auditory feedback was used. CONCLUSION Wii Fit-based feedback has desired effects on improving balance in stroke patients, making it a suitable adjunct to physical therapy.
Collapse
Affiliation(s)
| | | | - Reza Aminzadeh
- Department of Sports Sciences, Imam Reza International University, Mashhad, Iran
| |
Collapse
|
8
|
Hill NM, Malone LA, Sun LR. Stroke in the Developing Brain: Neurophysiologic Implications of Stroke Timing, Location, and Comorbid Factors. Pediatr Neurol 2023; 148:37-43. [PMID: 37651976 DOI: 10.1016/j.pediatrneurol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Pediatric stroke, which is unique in that it represents a static insult to a developing brain, often leads to long-term neurological disability. Neuroplasticity in infants and children influences neurophysiologic recovery patterns after stroke; therefore outcomes depend on several factors including the timing and location of stroke and the presence of comorbid conditions. METHODS In this review, we discuss the unique implications of stroke occurring in the fetal, perinatal, and childhood/adolescent time periods. First, we highlight the impact of the developmental stage of the brain at the time of insult on the motor, sensory, cognitive, speech, and behavioral domains. Next, we consider the influence of location of stroke on the presence and severity of motor and nonmotor outcomes. Finally, we discuss the impact of associated conditions on long-term outcomes and risk for stroke recurrence. RESULTS Hemiparesis is common after stroke at any age, although the severity of impairment differs by age group. Risk of epilepsy is elevated in all age groups compared with those without stroke. Outcomes in other domains vary by age, although several studies suggest worse cognitive outcomes when stroke occurs in early childhood compared with fetal and later childhood epochs. Conditions such as congenital heart disease, sickle cell disease, and moyamoya increase the risk of stroke and leave patients differentially vulnerable to neurodevelopmental delay, stroke recurrence, silent infarcts, and cognitive impairment. CONCLUSIONS A comprehensive understanding of the interplay of various factors is essential in guiding the clinical care of patients with pediatric stroke.
Collapse
Affiliation(s)
- Nayo M Hill
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura A Malone
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lisa R Sun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Qi S, Ngwa C, Al Mamun A, Romana S, Wu T, Marrelli SP, Arnold AP, McCullough LD, Liu F. X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals. Transl Stroke Res 2023; 14:776-789. [PMID: 35906327 PMCID: PMC10490444 DOI: 10.1007/s12975-022-01070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023]
Abstract
Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Aderinto N, AbdulBasit MO, Olatunji G, Adejumo T. Exploring the transformative influence of neuroplasticity on stroke rehabilitation: a narrative review of current evidence. Ann Med Surg (Lond) 2023; 85:4425-4432. [PMID: 37663728 PMCID: PMC10473303 DOI: 10.1097/ms9.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
This review aims to assess the role of neuroplasticity in facilitating stroke recovery and identify the challenges and limitations associated with its implementation. A comprehensive literature search was conducted to identify relevant studies, which were meticulously evaluated to determine the potential solutions for effectively harnessing neuroplasticity. The results indicate that neuroplasticity holds significant promise in stroke rehabilitation; however, individual variability in response to interventions, timing and duration of interventions and sociocultural and clinical factors pose challenges. Tailoring interventions to individual patient characteristics is crucial for optimising the impact of neuroplasticity. Despite challenges and limitations, the transformative potential of neuroplasticity in stroke rehabilitation is undeniable. The abstract concludes by emphasising the importance of a comprehensive understanding of individual variability, optimising intervention timing and duration and considering sociocultural and clinical factors. Future research and clinical practice should prioritise personalised interventions and interdisciplinary collaborations to fully exploit the vast potential of neuroplasticity in stroke recovery.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | - Muili O. AbdulBasit
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Temilade Adejumo
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| |
Collapse
|
11
|
Asadi B, Cuenca-Zaldivar JN, Nakhostin Ansari N, Ibáñez J, Herrero P, Calvo S. Brain Analysis with a Complex Network Approach in Stroke Patients Based on Electroencephalography: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:666. [PMID: 36900671 PMCID: PMC10000667 DOI: 10.3390/healthcare11050666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Brain function can be networked, and these networks typically present drastic changes after having suffered a stroke. The objective of this systematic review was to compare EEG-related outcomes in adults with stroke and healthy individuals with a complex network approach. METHODS The literature search was performed in the electronic databases PubMed, Cochrane and ScienceDirect from their inception until October 2021. RESULTS Ten studies were selected, nine of which were cohort studies. Five of them were of good quality, whereas four were of fair quality. Six studies showed a low risk of bias, whereas the other three studies presented a moderate risk of bias. In the network analysis, different parameters such as the path length, cluster coefficient, small-world index, cohesion and functional connection were used. The effect size was small and not significant in favor of the group of healthy subjects (Hedges'g = 0.189 [-0.714, 1.093], Z = 0.582, p = 0.592). CONCLUSIONS The systematic review found that there are structural differences between the brain network of post-stroke patients and healthy individuals as well as similarities. However, there was no specific distribution network to allows us to differentiate them and, therefore, more specialized and integrated studies are needed.
Collapse
Affiliation(s)
- Borhan Asadi
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Juan Nicolás Cuenca-Zaldivar
- Grupo de Investigación en Fisioterapia y Dolor, Departamento de Enfermería y Fisioterapia, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
- Physical Therapy Unit, Primary Health Care Center “El Abajón”, 28231 Las Rozas de Madrid, Spain
- Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute—Segovia de Arana (IDIPHISA), 28222 Majadahonda, Spain
| | - Noureddin Nakhostin Ansari
- Research Center for War-Affected People, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Jaime Ibáñez
- BSICoS Group, IIS Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | - Pablo Herrero
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Sandra Calvo
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Lee TL, Ding Z, Chan AS. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing Res Rev 2023; 83:101786. [PMID: 36371017 DOI: 10.1016/j.arr.2022.101786] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has been studied for over a decade as a possible cognitive intervention. OBJECTIVE To evaluate the effect of tPBM for enhancing human cognitive function in healthy adults and remediating impaired cognitive function in adults with cognitive disorders. METHODS A systematic literature search from three electronic databases (PubMed, Scopus, Web of Science) was conducted from 1987 to May 2022. The cognitive function being evaluated included learning and memory, attention, executive function, language, and global cognitive function. RESULTS Of the 35 studies identified, 29 (82.9 %) studies reported positive improvement in cognitive functions after tPBM. All nine studies on participants with subjective memory complaints, mild cognitive impairment, and dementia, showed positive outcomes. Seven (87.5 %) studies on traumatic brain injury (TBI) patients also showed positive results. A series of clinical trials on stroke patients showed positive trends on improved neurological deficit at first, but was prematurely terminated later at phase III due to the lack of statistical significance. One of the most common protocols for clinical populations employed devices delivering near-infrared light (810 nm), the irradiance of 20-25 mW/cm2, and fluence of 1-10 J/cm2. While this was common, the reviewed protocols also included other wavelengths of light ranging from visible, red (630-635 nm) to invisible near-infrared maximum wavelengths of 1060-1068 nm. CONCLUSIONS tPBM seems to improve cognitive function. However, only half of the reviewed clinical trials were randomized control trials, further investigation is warranted.
Collapse
Affiliation(s)
- Tsz-Lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihan Ding
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Liu C, Li M, Yin Q, Fan Y, Shen C, Yang R. HTRA1 methylation in peripheral blood as a potential marker for the preclinical detection of stroke: a case-control study and a prospective nested case-control study. Clin Epigenetics 2022; 14:191. [PMID: 36581876 PMCID: PMC9801609 DOI: 10.1186/s13148-022-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stroke is the leading cause of mortality in China. DNA methylation has essential roles in multiple diseases, but its association with stroke was barely studied. We hereby explored the association between blood-based HTRA serine protease 1 (HTRA1) methylation and the risk of stroke. RESULTS The association was discovered in a hospital-based case-control study (cases/controls = 190:190) and further validated in a prospective nested case-control study including 139 cases who developed stroke within 2 years after recruitment and 144 matched stroke-free controls. We observed stroke-related altered HTRA1 methylation and expression in both case-control study and prospective study. This blood-based HTRA1 methylation was associated with stroke independently from the known risk factors and mostly affected the older population. The prospective results further showed that the altered HTRA1 methylation was detectable 2 years before the clinical determination of stroke and became more robust with increased discriminatory power for stroke along with time when combined with other known stroke-related variables [onset time ≤ 1 year: area under the curve (AUC) = 0.76]. CONCLUSIONS In our study, altered HTRA1 methylation was associated with stroke at clinical and preclinical stages and thus may provide a potential biomarker in the blood for the risk evaluation and preclinical detection of stroke.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| |
Collapse
|
14
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Buendía D, Guncay T, Oyanedel M, Lemus M, Weinstein A, Ardiles ÁO, Marcos J, Fernandes A, Zângaro R, Muñoz P. The Transcranial Light Therapy Improves Synaptic Plasticity in the Alzheimer’s Disease Mouse Model. Brain Sci 2022; 12:brainsci12101272. [PMID: 36291206 PMCID: PMC9599908 DOI: 10.3390/brainsci12101272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the main cause of dementia worldwide. Emerging non-invasive treatments such as photobiomodulation target the mitochondria to minimize brain damage, improving cognitive functions. In this work, an experimental design was carried out to evaluate the effect of transcranial light therapy (TLTC) on synaptic plasticity (SP) and cognitive functions in an AD animal model. Twenty-three mice were separated into two general groups: an APP/PS1 (ALZ) transgenic group and a wild-type (WT) group. Each group was randomly subdivided into two subgroups: mice with and without TLTC, depending on whether they would undergo treatment with TLTC. Cognitive function, measured through an object recognition task, showed non-significant improvement after TLTC. SP, on the other hand, was evaluated using four electrophysiological parameters from the Schaffer-CA1 collateral hippocampal synapses: excitatory field potentials (fEPSP), paired pulse facilitation (PPF), long-term depression (LTD), and long-term potentiation (LTP). An improvement was observed in subjects treated with TLTC, showing higher levels of LTP than those transgenic mice that were not exposed to the treatment. Therefore, the results obtained in this work showed that TLTC could be an efficient non-invasive treatment for AD-associated SP deficits.
Collapse
Affiliation(s)
- Débora Buendía
- Programa de Engenharia Biomédica, Instituto de Engenharia Biomédica, Universidade Anhembi Morumbi—UAM, Rua Casa do Ator, 294, Sao Paulo 04546-001, Brazil
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso 2362905, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro de Inovação, Tecnología e Educação—CITÉ, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondesan 500, São José dos Campos 12247-016, Brazil
| | - Tatiana Guncay
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Macarena Oyanedel
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso 2362905, Chile
| | - Makarena Lemus
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso 2362905, Chile
| | - Alejandro Weinstein
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso 2362905, Chile
| | - Álvaro O. Ardiles
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Viña del Mar 2540064, Chile
| | - José Marcos
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar 2572007, Chile
| | - Adriana Fernandes
- Programa de Engenharia Biomédica, Instituto de Engenharia Biomédica, Universidade Anhembi Morumbi—UAM, Rua Casa do Ator, 294, Sao Paulo 04546-001, Brazil
- Centro de Inovação, Tecnología e Educação—CITÉ, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondesan 500, São José dos Campos 12247-016, Brazil
| | - Renato Zângaro
- Programa de Engenharia Biomédica, Instituto de Engenharia Biomédica, Universidade Anhembi Morumbi—UAM, Rua Casa do Ator, 294, Sao Paulo 04546-001, Brazil
- Centro de Inovação, Tecnología e Educação—CITÉ, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondesan 500, São José dos Campos 12247-016, Brazil
- Correspondence: (R.Z.); (P.M.); Tel.: +55-12-997830843 (R.Z.); +56-969028160 (P.M.)
| | - Pablo Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Viña del Mar 2540064, Chile
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Viña del Mar 2540064, Chile
- Correspondence: (R.Z.); (P.M.); Tel.: +55-12-997830843 (R.Z.); +56-969028160 (P.M.)
| |
Collapse
|
16
|
The Role of DNA Methylation in Stroke Recovery. Int J Mol Sci 2022; 23:ijms231810373. [PMID: 36142283 PMCID: PMC9499691 DOI: 10.3390/ijms231810373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.
Collapse
|
17
|
Davidson I, Parker ZJ. Falls in people post-Guillain-Barré syndrome in the United Kingdom: A national cross-sectional survey of community based adults. HEALTH & SOCIAL CARE IN THE COMMUNITY 2022; 30:e2590-e2603. [PMID: 35015326 PMCID: PMC9546005 DOI: 10.1111/hsc.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Guillain-Barré syndrome (GBS) has several enduring effects that can lead to further harm and/or lower quality of life. These effects include falling and body pain, neither of which have been fully explored. This study aims to examine the risk factors associated with falling and potential causes of body pain in a post-GBS population. A cross-sectional survey of 216 participants was conducted using an electronic questionnaire that included. Self-report measures for: overall health, balance, anxiety and depression levels, body pain and demographics related to GBS experience and falls. A large proportion of individuals post-GBS experience ongoing problems beyond those expected with ageing. Comparative tests indicated that people reporting falls in the previous 12 months had: poorer levels of mobility, poorer F-scores, higher levels of body pain, poorer balance, poorer anxiety and depression scores and higher levels of fatigue. Gender did not appear to contribute to falls. Injuries following falls were associated with a lack of physiotherapy postdischarge and time since GBS. In a regression analysis of the identified and expected key variables, age and body pain statistically predicted falls. In over a quarter of cases reported here, respondents did not receive community physiotherapy following hospital discharge. In the midst and aftermath of COVID-19, provision of rehabilitation needs to be recalibrated, not just for COVID patients, but the wider community with ongoing needs. Issues around well-being and quality of life in the post-GBS community also need further consideration.
Collapse
Affiliation(s)
- Ian Davidson
- Department of Health ProfessionalsManchester Metropolitan UniversityManchesterUK
| | | |
Collapse
|
18
|
Li S, Yang Y, Li N, Li H, Xu J, Zhao W, Wang X, Ma L, Gao C, Ding Y, Ji X, Ren C. Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice. Biomolecules 2022; 12:biom12081137. [PMID: 36009031 PMCID: PMC9405712 DOI: 10.3390/biom12081137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22–25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Emergency Department, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518054, China
| | - Linqing Ma
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou 215129, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83198931; Fax: +86-10-63010085
| |
Collapse
|
19
|
Sanchez-Priego C, Hu R, Boshans LL, Lalli M, Janas JA, Williams SE, Dong Z, Yang N. Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs. Cell Rep 2022; 39:110877. [PMID: 35649373 PMCID: PMC9219592 DOI: 10.1016/j.celrep.2022.110877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with psychiatric diseases, yet there is a lack of understanding of disease pathophysiology. Common risk variants can shed light on the underlying molecular mechanisms; however, identifying causal variants remains challenging. We map cis-regulatory elements in human neurons derived from pluripotent stem cells. This system allows us to determine enhancers that activate the transcription of neuronal activity-regulated gene programs, which are thought to be critical for synaptic plasticity and are not possible to identify from postmortem tissues. Using the activity-by-contact model, we create variant-to-gene maps to interpret the function of GWAS variants. Our work nominates a subset of variants to elucidate the molecular mechanisms involving GWAS-significant loci. It also highlights that in vitro human cellular models are a powerful platform for identifying and mechanistic studies of human trait-associated genetic variants in cell states that are inaccessible from other types of human samples.
Collapse
Affiliation(s)
- Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Williams
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Foschi M, Padroni M, Abu-Rumeileh S, Abdelhak A, Russo M, D'Anna L, Guarino M. Diagnostic and Prognostic Blood Biomarkers in Transient Ischemic Attack and Minor Ischemic Stroke: An Up-To-Date Narrative Review. J Stroke Cerebrovasc Dis 2022; 31:106292. [PMID: 35026496 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Early diagnosis and correct risk stratification in patients with transient ischemic attack (TIA) and minor ischemic stroke (MIS) is crucial for the high rate of subsequent disabling stroke. Although highly improved, diagnosis and prognostication of TIA/MIS patients remain still based on clinical and neuroimaging findings, with some inter-rater variability even among trained neurologists. OBJECTIVES To provide an up-to-date overview of diagnostic and prognostic blood biomarkers in TIA and MIS patients. MATERIAL AND METHODS We performed a bibliographic search on PubMed database with last access on July 10th 2021. More than 680 articles were screened and we finally included only primary studies on blood biomarkers. RESULTS In a narrative fashion, we discussed about blood biomarkers investigated in TIA/MIS patients, including inflammatory, thrombosis, neuronal injury and cardiac analytes, antibodies and microRNAs. Other soluble molecules have been demonstrated to predict the risk of recurrent cerebrovascular events or treatment response in these patients. A rapid point of care assay, combining the determination of different biomarkers, has been developed to improve triage recognition of acute cerebrovascular accidents. CONCLUSIONS The implementation of blood biomarkers in the clinical management of TIA/MIS could ameliorate urgent identification, risk stratification and individual treatment choice. Large prospective and longitudinal studies, adopting standardized sampling and analytic procedures, are needed to clarify blood biomarkers kinetic and their relationship with TIA and minor stroke etiology.
Collapse
Affiliation(s)
- Matteo Foschi
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Marina Padroni
- Neurology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA; Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Michele Russo
- Department of Cardiovascular Diseases, Division of Cardiology - S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Biswas A, Natarajan M, Subramanian SK, Solomon JM. Development and feasibility testing of action observation training videos in acute stroke survivors: Preliminary findings. F1000Res 2022; 11:524. [PMID: 36891251 PMCID: PMC9986771 DOI: 10.12688/f1000research.118969.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Action observation training (AOT) is used for lower limb (LL) stroke rehabilitation in subacute and chronic stages, but concise information regarding the types of activities to be used and the feasibility of administration in the acute stroke population is unknown. The aim of this study was to develop and validate videos of appropriate activities for LL AOT and test administrative feasibility in acute stroke. Method: A video inventory of LL activities was created after a literature survey and expert scrutiny. Five stroke rehabilitation experts validated the videos per domains of relevance, comprehension, clarity, camera position and brightness. LL AOT was then tested on ten individuals with acute stroke for uncovering barriers for clinical use in a feasibility study. Participants watched the activities and attempted imitation of the same. Determination of administrative feasibility was undertaken via participant interviews. Results: Suitable LL activities for stroke rehabilitation were identified. Content validation of videos led to improvements in selected activities and video quality. Expert scrutiny led to further video processing to include different perspectives of view and speeds of projected movements. Barriers identified included inability to imitate actions shown in videos and increased distractibility for some participants. Conclusion: A video catalogue of LL activities was developed and validated. AOT was deemed safe and feasible for acute stroke rehabilitation and may be used in future research and clinical practice.
Collapse
Affiliation(s)
- Arunima Biswas
- Department of Physiotherapy, Manipal College of Health Professions,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manikandan Natarajan
- Department of Physiotherapy, Manipal College of Health Professions,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandeep K Subramanian
- Department of Physiotherapy, Manipal College of Health Professions,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Departments of Physical Therapy, Physician Assistant Studies and Rehabilitation Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - John M Solomon
- Department of Physiotherapy, Manipal College of Health Professions,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
22
|
Dagra A, Barpujari A, Bauer SZ, Olowofela BO, Mohamed S, McGrath K, Robinson C, Robicsek S, Snyder A, Lucke-Wold B. Epigenetics of Neurotrauma. NEUROLOGY (CHICAGO, ILL.) 2022; 2:42-47. [PMID: 36507115 PMCID: PMC9732507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic changes have been linked to a host of disease states. Besides the physiological function of epigenetic changes in regulating cellular function, recent data indicates that key changes in epigenetic activity also play an important pathophysiologic role following neurotrauma specifically. Such manifestations occur through the activation or silencing of different genes. Histone methylation has emerged as a critical component of this process and can be selectively modulated after injury. Pre-clinical studies have resulted in key discoveries regarding specific methylation sites of interest. This focused review highlights some of these early findings and their relationship to clinical outcomes. These findings suggest areas of future investigation and discovery in the quest to develop ideal biomarkers and methods to utilize them in developing therapeutic interventions.
Collapse
Affiliation(s)
- A Dagra
- College of Medicine, University of Florida, USA
| | - A Barpujari
- College of Liberal Arts and Sciences, University of Florida, USA
| | - SZ Bauer
- College of Medicine, University of Nevada, USA
| | | | - S Mohamed
- College of Medicine, University of Florida, USA
| | - K McGrath
- College of Medicine, University of Florida, USA
| | - C Robinson
- Departments of Neurology and Neuroscience, McKnight Brain Institute, University of Florida, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and Brain Injury Rehabilitation and Neuroresilience Center, University of Florida, USA
| | - S Robicsek
- Department of Anesthesiology, University of Florida, USA
| | - A Snyder
- Department of Neuropsychology, University of Florida, USA
| | - B Lucke-Wold
- Department of Neurosurgery, University of Florida, USA
| |
Collapse
|
23
|
Heinsberg LW, Weeks DE, Alexander SA, Minster RL, Sherwood PR, Poloyac SM, Deslouches S, Crago EA, Conley YP. Iron homeostasis pathway DNA methylation trajectories reveal a role for STEAP3 metalloreductase in patient outcomes after aneurysmal subarachnoid hemorrhage. EPIGENETICS COMMUNICATIONS 2021; 1:4. [PMID: 35083470 PMCID: PMC8788201 DOI: 10.1186/s43682-021-00003-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans. DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery, making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow Outcome Scale [GOS, unfavorable = 1-3] and death) patient outcomes after aSAH. RESULTS Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene (STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we observed significant associations (i.e., based on p-values less than an empirical significance threshold) with unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3 and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR = 8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0, p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups. CONCLUSION Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.
Collapse
Affiliation(s)
- Lacey W. Heinsberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sheila A. Alexander
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paula R. Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sandra Deslouches
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A. Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P. Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
25
|
Kujawa K, Zurek G, Kwiatkowska A, Olejniczak R, Żurek A. Assessment of Language Functions in Patients With Disorders of Consciousness Using an Alternative Communication Tool. Front Neurol 2021; 12:684362. [PMID: 34354661 PMCID: PMC8329337 DOI: 10.3389/fneur.2021.684362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to describe the percentage of tasks involving language functions that were completed by patients diagnosed with disorders of consciousness, as observed during neurorehabilitation conducted for different periods of time using an alternative communication tool. The project involved six participants, who were observed for 1 month, 6 months, and 1 year. The patients were asked to solve tasks involving language functions with the use of an eye-controlled device. The language functions were evaluated on the basis of the average number of tasks performed by the patients, which was 70.45% for the whole subject group. It is not entirely clear what determined the changes in language functions during the research. It is crucial that patients performed the presented tasks even though their state of consciousness, as confirmed through medical documentation (unresponsive wakefulness syndrome), did not suggest the possibility of establishing any contact with them.
Collapse
Affiliation(s)
- Katarzyna Kujawa
- Department of Biostructure University School of Physical Education in Wroclaw, Wroclaw, Poland
- Neurorehabilitation Clinic, Wroclaw, Poland
| | - Grzegorz Zurek
- Department of Biostructure University School of Physical Education in Wroclaw, Wroclaw, Poland
| | | | | | - Alina Żurek
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
26
|
Liu C, Yin Q, Li M, Fan Y, Shen C, Yang R. ACTB Methylation in Blood as a Potential Marker for the Pre-clinical Detection of Stroke: A Prospective Nested Case-Control Study. Front Neurosci 2021; 15:644943. [PMID: 34054407 PMCID: PMC8160447 DOI: 10.3389/fnins.2021.644943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background Stroke is the second leading cause of death worldwide. If risk of stroke could be evaluated early or even at a preclinical stage, the mortality rate could be reduced dramatically. However, the identified genetic factors only account for 5-10% of the risk of stroke. Studies on the risk factors of stroke are urgently needed. We investigated the correlation between blood-based β-actin (ACTB) methylation and the risk of stroke in a prospective nested case-control study. Methods The methylation level of ACTB was quantitatively determined by mass spectrometry in 139 stroke cases who developed stroke within 2 years after recruitment and 147 age- and sex-matched controls who remained stroke-free in a median follow-up of 2.71 years. Results We observed a highly significant correlation between hypomethylation of one CpG site of ACTB and increased risk of stroke in an onset-time-dependent manner (for onset time ≤ 1.5 years: odds ratio (OR) per + 10% methylation = 0.76, P = 0.001; for onset time ≤ 1.32 years: OR per + 10% methylation = 0.59, P = 7.82 × 10-7; for onset time ≤ 1 year: OR per + 10% methylation = 0.43, P = 3.00 × 10-6), and the increased cumulative incidence of stroke (log-rank P = 3.13 × 10-7). Neighboring CpG sites showed an inverse correlation with age and drinking status in controls (P < 0.05) but not in stroke cases. Conclusion We firstly reported the blood-based ACTB methylation as a marker for the risk evaluation and preclinical detection of stroke, which can be further modified by age and drinking.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiming Yin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Wang X, Liu X, Wang Z, Tong S, Jin Z, Guo X. Different reorganizations of functional brain networks after first-ever and recurrent ischemic stroke. Brain Res 2021; 1765:147494. [PMID: 33887252 DOI: 10.1016/j.brainres.2021.147494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Even though recurrent stroke patients constitute a large percentage of the stroke population, few studies specifically investigated their neural reorganization. In this study, we recruited seventeen first-ever stroke patients as well as fourteen recurrent stroke patients, and recorded their resting EEG signals and NIHSS score before and after two weeks of recovery, to compare their neural reorganization from network scale. The clinical improvements were comparable in two groups during the two weeks. However, their brain networks were differently reorganized, especially in the delta band. The recurrent stroke patients showed an increased clustering coefficient and a decreased characteristic path length of the delta network, along with increased ipsilesional intrahemispheric connectivity; while no such changes were observed in the first-ever stroke patients. Our results suggest that stroke history influences neural reorganization during recovery.
Collapse
Affiliation(s)
- Xu Wang
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaonan Liu
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhuo Wang
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Jin
- Department of Neurology, Minhang Branch of Yueyang Hospital, Chinese Medicine University of Shanghai, Shanghai 200241, China.
| | - Xiaoli Guo
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Qi S, Al Mamun A, Ngwa C, Romana S, Ritzel R, Arnold AP, McCullough LD, Liu F. X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation 2021; 18:70. [PMID: 33712031 PMCID: PMC7953638 DOI: 10.1186/s12974-021-02120-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rodney Ritzel
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Kumar A, Misra S, Nair P, Algahtany M. Epigenetics Mechanisms in Ischemic Stroke: A Promising Avenue? J Stroke Cerebrovasc Dis 2021; 30:105690. [PMID: 33684709 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke has emerged as the second most common cause of mortality worldwide and is a major public health problem. It is a multi-factorial disease and genetics plays an important role in its pathophysiology, however, mechanisms of genome involvement in the disease remain unclear. Both genetic and epigenetic mechanisms could play a role in the development of stroke disease. Although epigenetic characteristics may also be heritable, they can be modified during the lifetime under different environmental exposure in response to lifestyle. Recent studies provide clear evidence that epigenetic factors play an important role in the pathological mechanisms leading to an elevated risk of cardiovascular diseases and stroke. Epigenetic changes are reversible therefore; studying epigenetic factors may serve as a marker for disease progression, biomarker for disease diagnosis, and development of novel targets for therapeutic intervention. Identifying the factors which predispose the risk of stroke provides information for the mechanism of stroke and the design of new drug targets where epigenetic modifications play a significant role. Epigenetic modifications play an essential role in a large variety of multifactorial diseases. This review will focus on the evidence that epigenetic mechanisms play a crucial role in the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shubham Misra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Pallavi Nair
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
30
|
Huang ZX, Gu HQ, Yang X, Wang CJ, Wang YJ, Li ZX. Risk factors for in-hospital mortality among acute ischemic stroke patients in China: a nationwide prospective study. Neurol Res 2020; 43:387-395. [PMID: 33357098 DOI: 10.1080/01616412.2020.1866356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: We aimed to investigate factors related to in-hospital mortality (IHM) in acute ischemic stroke (AIS) patients.Methods: We prospectively investigated 827,314 patients who were admitted within 7 days of AIS between August 2015 and July 2019. Demographic characteristics, risk factors, and clinical and laboratory characteristics of patients were assessed. Univariate and multivariate logistic regression analyses were performed to identify predictors associated with IHM.Results: The IHM rate in this study was 0.5% in women and 0.3% in men. Factors associated with IHM in AIS included diabetes (odds ratio [OR] 1.21, 95% confidence interval [CI] 1.03-1.43), female (OR 0.84, 95%CI 0.74-0.96), hypertension (OR 1.16, 95%CI 1.01-1.34), atrial fib/flutter (OR 1.51, 95%CI 1.29-1.77), other heart disease (OR1.43, 95%CI 1.23-1.67), prior myocardial infarction (OR 2.00, 95%CI 1.54-2.60), antiplatelet therapies (OR 0.71, 95%CI 0.60-0.84), gastrointestinal bleeding (OR 3.54, 95%CI 2.83-4.44), pulmonary embolism (OR 2.53, 95%CI1.41-4.53), dysphagia(OR7.32, 95%CI6.23-8.61), glycosylated hemoglobin (OR1.05, 95%CI 1.02-1.09), serum creatinine (OR 1.001, 95%CI 1.001-1.002), urea nitrogen (OR 1.10, 95%CI 1.08-1.12), National Institutes of Health Stroke Scale (NIHSS) score (4-5 vs. 0-4: OR 3.58; ≥15 vs. 0-4: OR 8.78), stroke rehabilitation (OR 0.27, 95%CI 0.23-0.30), age (third IQR vs. first IQR: OR 1.57; fourth IQR vs. first IQR: OR 2.23), and in-hospital stroke/TIArecurrence (OR 2.38, 95%CI 2.03-2.78).Conclusions: The findings from this study may help clinicians control the risk of IHM better for patients with AIS.
Collapse
Affiliation(s)
- Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.,Department of Neurology, The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Qiu Gu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xin Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chun-Juan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zi-Xiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
31
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
32
|
Xiang Y, Xin J, Le W, Yang Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front Aging Neurosci 2020; 12:584743. [PMID: 33132903 PMCID: PMC7573493 DOI: 10.3389/fnagi.2020.584743] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) is a small protein usually expressed in granule-like structures in pyramidal cells of the hippocampus and cortex. However, its clinical value is not fully clear so far. Currently, Ng is proved to be involved in synaptic plasticity, synaptic regeneration, and long-term potentiation mediated by the calcium- and calmodulin-signaling pathways. Due to both the synaptic integrity and function as the growing concerns in the pathogenesis of a wide variety of neurological and mental diseases, a series of researches published focused on the associations between Ng and these kinds of diseases in the past decade. Therefore, in this review, we highlight several diseases, which include, but are not limited to, Alzheimer’s disease, Parkinson disease, Creutzfeldt–Jakob disease, neuro-HIV, neurosyphilis, schizophrenia, depression, traumatic brain injury, and acute ischemic stroke, and summarize the associations between cerebrospinal fluid or blood-derived Ng with these diseases. We propose that Ng is a potential and promising biomarker to improve the diagnosis, prognosis, and severity evaluation of these diseases in the future.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayan Xin
- North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Weidong Le
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjian Yang
- Department of Cardiovasology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
33
|
Liu X, Fan B, Chopp M, Zhang Z. Epigenetic Mechanisms Underlying Adult Post Stroke Neurogenesis. Int J Mol Sci 2020; 21:E6179. [PMID: 32867041 PMCID: PMC7504398 DOI: 10.3390/ijms21176179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke remains the leading cause of adult disability. Post-stroke neurogenesis contributes to functional recovery. As an intrinsic neurorestorative process, it is important to elucidate the molecular mechanism underlying stroke-induced neurogenesis and to develop therapies designed specifically to augment neurogenesis. Epigenetic mechanisms include DNA methylation, histone modification and its mediation by microRNAs and long-non-coding RNAs. In this review, we highlight how epigenetic factors including DNA methylation, histone modification, microRNAs and long-non-coding RNAs mediate stroke-induced neurogenesis including neural stem cell self-renewal and cell fate determination. We also summarize therapies targeting these mechanisms in the treatment of stroke.
Collapse
Affiliation(s)
- Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| |
Collapse
|
34
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Zhang K, Yang Y, Ge H, Wang J, Chen X, Lei X, Zhong J, Zhang C, Xian J, Lu Y, Tan L, Feng H. Artesunate promotes the proliferation of neural stem/progenitor cells and alleviates Ischemia-reperfusion Injury through PI3K/Akt/FOXO-3a/p27 kip1 signaling pathway. Aging (Albany NY) 2020; 12:8029-8048. [PMID: 32379706 PMCID: PMC7244066 DOI: 10.18632/aging.103121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/24/2020] [Indexed: 01/02/2023]
Abstract
Stroke is one of the leading causes of death worldwide that also result in long-term disability. Endogenous neural stem/progenitor cells (NSPCs) within subventricular (SVZ) and dentate gyrus (DG) zone, stimulated by cerebral infarction, can promote neural function recovery. However, the proliferation of eNSPCs triggered by ischemia is not enough to induce neural repair, which may contribute to the permanent disability in stroke patients. In this study, our results showed that following the treatment with artesunate (ART, 150 mg/kg), the functional recovery was significantly improved, the infarct volume was notably reduced, and the expression of Nestin, a proliferation marker of NSPCs in the infarcted cortex, was also increased. Additionally, the proliferative activity of NSPCs with or without oxygen-glucose deprivation/reperfusion was significantly promoted by ART treatment, and the therapeutic concentration was 0.8 μmol/L (without OGD/R) or 0.4 μmol/L (with OGD/R) in the in vitro model. Furthermore, the effects of ART can be abolished by the treatment of PI3K inhibitor wortmannin. The expression levels of related molecules in PI3K/Akt/FOXO-3a/p27kip1 signaling pathway (p-AKT, p-FOXO-3a, p27kip1) were examined using western blotting. The results suggested ART could inhibit the transcriptional function of FOXO-3a by inducing its phosphorylation, subsequently downregulating p27kip1 and enhancing neural stem cell proliferation in the infarcted cortex via PI3K/AKT signaling, further alleviating ischemia-reperfusion injury after ischemic stroke.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Chao Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jishu Xian
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yongling Lu
- Clinical Research Center, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
36
|
Felling RJ, Rafay MF, Bernard TJ, Carpenter JL, Dlamini N, Hassanein SMA, Jordan LC, Noetzel MJ, Rivkin MJ, Shapiro KA, Slim M, deVeber G. Predicting Recovery and Outcome after Pediatric Stroke: Results from the International Pediatric Stroke Study. Ann Neurol 2020; 87:840-852. [PMID: 32215969 DOI: 10.1002/ana.25718] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To characterize predictors of recovery and outcome following pediatric arterial ischemic stroke, hypothesizing that age influences recovery after stroke. METHODS We studied children enrolled in the International Pediatric Stroke Study between January 1, 2003 and July 31, 2014 with 2-year follow-up after arterial ischemic stroke. Outcomes were defined at discharge by clinician grading and at 2 years by the Pediatric Stroke Outcome Measure. Demographic, clinical, and radiologic outcome predictors were examined. We defined changes in outcome from discharge to 2 years as recovery (improved outcome), emerging deficit (worse outcome), or no change. RESULTS Our population consisted of 587 patients, including 174 with neonatal stroke and 413 with childhood stroke, with recurrent stroke in 8.2% of childhood patients. Moderate to severe neurological impairment was present in 9.4% of neonates versus 48.8% of children at discharge compared to 8.0% versus 24.7% after 2 years. Predictors of poor outcome included age between 28 days and 1 year (compared to neonates, odds ratio [OR] = 3.58, p < 0.05), underlying chronic disorder (OR = 2.23, p < 0.05), and involvement of both small and large vascular territories (OR = 2.84, p < 0.05). Recovery patterns differed, with emerging deficits more common in children <1 year of age (p < 0.05). INTERPRETATION Outcomes after pediatric stroke are generally favorable, but moderate to severe neurological impairments are still common. Age between 28 days and 1 year appears to be a particularly vulnerable period. Understanding the timing and predictors of recovery will allow us to better counsel families and target therapies to improve outcomes after pediatric stroke. ANN NEUROL 2020;87:840-852.
Collapse
Affiliation(s)
- Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mubeen F Rafay
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Timothy J Bernard
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Jessica L Carpenter
- Departments of Pediatrics and Neurology, George Washington University Children's National Medical Center, Washington, District of Columbia, USA
| | - Nomazulu Dlamini
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sahar M A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J Noetzel
- Departments of Neurology and Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael J Rivkin
- Departments of Neurology, Radiology, and Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin A Shapiro
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Mahmoud Slim
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Majumdar G, Yadav G, Hamaide J, Coussement L, De Meyer T, Verhoye M, Vanden Berghe W, Van Der Linden A, Balthazart J. Molecular correlates of hypothalamic development in songbird ontogeny in comparison with the telencephalon. FASEB J 2020; 34:4997-5015. [PMID: 32052887 DOI: 10.1096/fj.201902477r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 11/11/2022]
Abstract
Development of the songbird brain provides an excellent experimental model for understanding the regulation of sex differences in ontogeny. Considering the regulatory role of the hypothalamus in endocrine, in particular reproductive, physiology, we measured the structural (volume) and molecular correlates of hypothalamic development during ontogeny of male and female zebra finches. We quantified by relative quantitative polymerase chain reaction (rqPCR) the expression of 14 genes related to thyroid and steroid hormones actions as well as 12 genes related to brain plasticity at four specific time points during ontogeny and compared these expression patterns with the expression of the same genes as detected by transcriptomics in the telencephalon. These two different methodological approaches detected specific changes with age and demonstrated that in a substantial number of cases changes observed in both brain regions are nearly identical. Other genes however had a tissue-specific developmental pattern. Sex differences or interactions of sex by age were detected in the expression of a subset of genes, more in hypothalamus than telencephalon. These results correlate with multiple known aspects of the developmental and reproductive physiology but also raise a number of new functional questions.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Garima Yadav
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis Coussement
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Annemie Van Der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liege, Liege, Belgium
| |
Collapse
|
38
|
Carbone F, Bonaventura A, Montecucco F. Neutrophil-Related Oxidants Drive Heart and Brain Remodeling After Ischemia/Reperfusion Injury. Front Physiol 2020; 10:1587. [PMID: 32116732 PMCID: PMC7010855 DOI: 10.3389/fphys.2019.01587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response associated with myocardial and brain ischemia/reperfusion injury (IRI) is a critical determinant of tissue necrosis, functional organ recovery, and long-term clinical outcomes. In the post-ischemic period, reactive oxygen species (ROS) are involved in tissue repair through the clearance of dead cells and cellular debris. Neutrophils play a critical role in redox signaling due to their early recruitment and the large variety of released ROS. Noteworthy, ROS generated during IRI have a relevant role in both myocardial healing and activation of neuroprotective pathways. Anatomical and functional differences contribute to the responses in the myocardial and brain tissue despite a significant gene overlap. The exaggerated activation of this signaling system can result in adverse consequences, such as cell apoptosis and extracellular matrix degradation. In light of that, blocking the ROS cascade might have a therapeutic implication for cardiomyocyte and neuronal loss after acute ischemic events. The translation of these findings from preclinical models to clinical trials has so far failed because of differences between humans and animals, difficulty of agents to penetrate into specific cellular organs, and specifically unravel oxidant and antioxidant pathways. Here, we update knowledge on ROS cascade in IRI, focusing on the role of neutrophils. We discuss evidence of ROS blockade as a therapeutic approach for myocardial infarction and ischemic stroke.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
40
|
Malone LA, Felling RJ. Pediatric Stroke: Unique Implications of the Immature Brain on Injury and Recovery. Pediatr Neurol 2020; 102:3-9. [PMID: 31371122 PMCID: PMC6959511 DOI: 10.1016/j.pediatrneurol.2019.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Pediatric stroke causes significant morbidity for children resulting in lifelong neurological disability. Although hyperacute recanalization therapies are available for pediatric patients, most patients are ineligible for these treatments. Therefore the mainstay for pediatric stroke treatment relies on rehabilitation to improve outcomes. Little is known about the ideal rehabilitation therapies for pediatric patients with stroke and the unique interplay between the developing brain and our models of stroke recovery. In this review, we first discuss the consequences of pediatric stroke. Second, we examine the scientific evidence that exists between the mechanisms of recovery and how they are different in the pediatric developing brain. Finally, we evaluate potential interventions that could improve outcomes.
Collapse
Affiliation(s)
- Laura A. Malone
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| | - Ryan J. Felling
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| |
Collapse
|
41
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
42
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
43
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
44
|
Abstract
Next to cancer, Alzheimer's disease (AD) and dementia is probably the most worrying health problem facing the Western world today. A large number of clinical trials have failed to show any benefit of the tested drugs in stabilizing or reversing the steady decline in cognitive function that is suffered by dementia patients. Although the pathological features of AD consisting of beta-amyloid plaques and tau tangles are well established, considerable debate exists concerning the genetic or lifestyle factors that predispose individuals to developing dementia. Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to stimulate healing, relieve pain and inflammation, and prevent tissue from dying. In recent years PBM has been applied for a diverse range of brain disorders, frequently applied in a non-invasive manner by shining light on the head (transcranial PBM). The present review discusses the mechanisms of action of tPBM in the brain, and summarizes studies that have used tPBM to treat animal models of AD. The results of a limited number of clinical trials that have used tPBM to treat patients with AD and dementia are discussed.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
|
46
|
Peng H, Chen MW, Lin YY, Zhao F, Zhou YX, Wang GX. [Mitochondrial DNA hydroxymethylation level in the cerebral cortex of neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:300-304. [PMID: 30907358 PMCID: PMC7389350 DOI: 10.7499/j.issn.1008-8830.2019.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the methylation level and dynamic change of 5-hydroxymethylcytosine (5hmC) in mitochondrial DNA (mtDNA) in the cerebral cortex of neonatal rats with hypoxic-ischemic brain damage. METHODS A total of 24 male Sprague-Dawley rats aged 7 days were randomly divided into control group, 24-hour model group and 48-hour model group (n=8 each). Common carotid artery ligation combined with hypoxic treatment was performed to establish an animal model of hypoxic-ischemic brain damage. The rats in the control group were not given ligation or hypoxic treatment. Oxidative bisulfite sequencing was used to measure the level of 5hmC in the cerebral cortex. Western blot was used to measure the expression of 5hmC-related enzymes TET1, TET2 and DNMT1. RESULTS The 24- and 48-hour model groups had a significantly higher level of 5hmC than the control group (P<0.05). Western blot showed a significant increase in the expression of DNMT1 in the 24- and 48-hour model groups (P<0.05). Compared with the control group, the 24- and 48-hour model groups had significant differences in the 5hmC level at multiple mitochondrial genetic loci (P<0.05). CONCLUSIONS The level of DNMT1, a key enzyme for 5hmC modification in mtDNA, in the cerebral cortex increases in neonatal rats with hypoxic-ischemic brain damage, suggesting that there is an abnormal methylation level of 5hmC after hypoxic-ischemic brain damage, which might be associated with the regulation of hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- Hua Peng
- Department of Pediatrics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | | | | | | | | | | |
Collapse
|
47
|
Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast 2019; 2019:9708905. [PMID: 30936915 PMCID: PMC6415310 DOI: 10.1155/2019/9708905] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Stroke is the second cause of death and more importantly first cause of disability in people over 40 years of age. Current therapeutic management of ischemic stroke does not provide fully satisfactory outcomes. Stroke management has significantly changed since the time when there were opened modern stroke units with early motor and speech rehabilitation in hospitals. In recent decades, researchers searched for biomarkers of ischemic stroke and neuroplasticity in order to determine effective diagnostics, prognostic assessment, and therapy. Complex background of events following ischemic episode hinders successful design of effective therapeutic strategies. So far, studies have proven that regeneration after stroke and recovery of lost functions may be assigned to neuronal plasticity understood as ability of brain to reorganize and rebuild as an effect of changed environmental conditions. As many neuronal processes influencing neuroplasticity depend on expression of particular genes and genetic diversity possibly influencing its effectiveness, knowledge on their mechanisms is necessary to understand this process. Epigenetic mechanisms occurring after stroke was briefly discussed in this paper including several mechanisms such as synaptic plasticity; neuro-, glio-, and angiogenesis processes; and growth of axon.
Collapse
|
48
|
Zeiler SR. Should We Care About Early Post-Stroke Rehabilitation? Not Yet, but Soon. Curr Neurol Neurosci Rep 2019; 19:13. [DOI: 10.1007/s11910-019-0927-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Sriganesh R, Joseph Ponniah R. Genetics of language and its implications on language interventions. J Genet 2018; 97:1485-1491. [PMID: 30555099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic variation of language genes affect neurophysiology of brain and can thus influence the way people respond to environmental language input, leading to differences in terms of their response to environmental language learning. Conversely, language learning environment too can affect gene expressions through neuroepigenetic mechanisms, leading to increasedinterindividual differences. Further, language-related cognitive processes such as learning, working memory and perception; and language-related affective factors such as stress and positive emotion involve neuroplasticity, which is also epigenetically regulated. Language intervention methods must understand the extent and the type of difficulties, and must offer personalized learning andmedical solutions. Medical intervention in terms of epigenetics and neurotransmitter regulation is proposed in addition to effectiveteaching methods to aid in effective language acquisition.
Collapse
|
50
|
|