1
|
Ahmed R, Zaitone SA, Abdelmaogood AKK, Atef HM, Soliman MFM, Badawy AM, Ali HS, Zaid A, Mokhtar HI, Elabbasy LM, Kandil E, Yosef AM, Mahran RI. Chemotherapeutic potential of betanin/capecitabine combination targeting colon cancer: experimental and bioinformatic studies exploring NFκB and cyclin D1 interplay. Front Pharmacol 2024; 15:1362739. [PMID: 38645563 PMCID: PMC11026609 DOI: 10.3389/fphar.2024.1362739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Betanin (C₂₄H₂₆N₂O₁₃) is safe to use as food additives approved by the FDA with anti-inflammatory and anticancer effects in many types of cancer cell lines. The current experiment was designed to test the chemotherapeutic effect of the combination of betanin with the standard chemotherapeutic agent, capecitabine, against chemically induced colon cancer in mice. Methods: Bioinformatic approach was designed to get information about the possible mechanisms through which the drugs may control cancer development. Five groups of mice were assigned as, (i) saline, (ii) colon cancer, (iii) betanin, (iv) capecitabine and (v) betanin/capecitabine. Drugs were given orally for a period of six weeks. Colon tissues were separated and used for biological assays and histopathology. Results: In addition, the mRNA expression of TNF-α (4.58-fold), NFκB (5.33-fold), IL-1β (4.99-fold), cyclin D1 (4.07-fold), and IL-6 (3.55-fold) and protein levels showed several folds increases versus the saline group. Tumor histopathology scores in the colon cancer group (including cryptic distortion and hyperplasia) and immunostaining for NFκB (2.94-fold) were high while periodic-acid Schiff staining demonstrated poor mucin content (33% of the saline group). These pathologic manifestations were reduced remarkably in betanin/capecitabine group. Conclusion: Collectively, our findings demonstrated the usefulness of betanin/capecitabine combination in targeting colon cancer and highlighted that betanin is a promising adjuvant therapy to capecitabine in treating colon cancer patients.
Collapse
Affiliation(s)
- Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Huda M. Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damiettta, Egypt
| | - Alaa M. Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - AbdelNaser Zaid
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
- Department of General Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Lamiaa M. Elabbasy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Emad Kandil
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Asmaa Mokhtar Yosef
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Rama I. Mahran
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Cirilo MAS, Santos VBS, Lima NKS, Muzi-Filho H, Paixão ADO, Vieyra A, Vieira LD. Reactive oxygen species impair Na+ transport and renal components of the renin-angiotensin-aldosterone system after paraquat poisoning. AN ACAD BRAS CIENC 2024; 96:e20230971. [PMID: 38597493 DOI: 10.1590/0001-3765202420230971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.
Collapse
Affiliation(s)
- Marry A S Cirilo
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Valéria B S Santos
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Natália K S Lima
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Humberto Muzi-Filho
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana D O Paixão
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Adalberto Vieyra
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- Grande Rio University, 1160 Professor José de Souza Herdy Street, Building C, Second Floor, 25071-202 Duque de Caxias, RJ, Brazil
| | - Leucio D Vieira
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Holliday MW, Majeti RN, Sheikh-Hamad D. Chronic Interstitial Nephritis in Agricultural Communities: Observational and Mechanistic Evidence Supporting the Role of Nephrotoxic Agrochemicals. Clin J Am Soc Nephrol 2024; 19:538-545. [PMID: 37678249 PMCID: PMC11020436 DOI: 10.2215/cjn.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Chronic interstitial nephritis in agricultural communities (CINAC) is an epidemic of kidney disease affecting specific tropical and subtropical regions worldwide and is characterized by progressive CKD in the absence of traditional risk factors, such as hypertension and diabetes. CINAC prevalence is higher among young, male agricultural workers, but it also affects women, children, and nonagricultural workers in affected areas. Biopsies from patients with CINAC across regions commonly demonstrate tubular injury with lysosomal aggregates, tubulointerstitial inflammation, and fibrosis and variable glomerular changes. Each endemic area holds environmental risk factors and patient/genetic milieus, resulting in uncertainty about the cause(s) of the disease. Currently, there is no specific treatment available for CINAC. We highlight survey findings of Houston-based migrant workers with CINAC and draw similarities between kidney injury phenotype of patients with CINAC and mice treated chronically with paraquat, an herbicide used worldwide. We propose potential pathways and mechanisms for kidney injury in patients with CINAC, which may offer clues for potential therapies.
Collapse
Affiliation(s)
- Michael W. Holliday
- Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
4
|
Wang Y, Adekolurejo OO, Wang B, McDermott K, Do T, Marshall LJ, Boesch C. Bioavailability and excretion profile of betacyanins - Variability and correlations between different excretion routes. Food Chem 2024; 437:137663. [PMID: 37879158 DOI: 10.1016/j.foodchem.2023.137663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
The present study addresses the knowledge gap in betalain bioavailability, transformation and excretion. Analysis of renal and fecal excretion profiles in humans after consumption of beetroot revealed very low bioavailability (renal recovery of 0.13 %) and fast elimination of pigments (renal elimination rate constant of 0.16 h-1), while the majority of betalains underwent severe depletion during GI transit, evidenced by decarboxylation, deglucosidation and dehydrogenation. Betacyanin metabolite levels in human urine were positively associated with those in stools (p < 0.05), indicating significant impact of pigment metabolism in the gut on their bioavailability. In addition, the current study revealed large inter-individual and compositional variabilities of pigment after colonic fermentation compared with systemic metabolism, likely attributed to the increasing complexity of intestinal environment with diverse gut microbiota. To conclude, intestinal uptake and systemic metabolism of betacyanins are intimately associated with their intestinal biotransformation, with gut microbiota serving as a crucial factor.
Collapse
Affiliation(s)
- Yunqing Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Opeyemi O Adekolurejo
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom; School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Binying Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Katie McDermott
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, LS2 9LU, United Kingdom
| | - Lisa J Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
5
|
Chen K, Li M, Tang Y, Lu Z. Mitochondrial reactive oxygen species initiate gasdermin D-mediated pyroptosis and contribute to paraquat-induced nephrotoxicity. Chem Biol Interact 2024; 390:110873. [PMID: 38237652 DOI: 10.1016/j.cbi.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Chen K, Tang Y, Lan L, Li M, Lu Z. Autophagy mediated FTH1 degradation activates gasdermin E dependent pyroptosis contributing to diquat induced kidney injury. Food Chem Toxicol 2024; 184:114411. [PMID: 38128689 DOI: 10.1016/j.fct.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) induced by diquat (DQ) progresses rapidly, leading to high mortality, and there is no specific antidote for this chemical. Our limited knowledge of the pathogenic toxicological mechanisms of DQ has hindered the development of treatments against DQ poisoning. Pyroptosis is a form of programmed cell death and was recently identified as a novel molecular mechanism of drug-induced AKI. To explore the role of pyroptosis in HK-2 cells exposed to DQ, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDME. Proteomics analysis was performed to explore the mechanism of DQ induced nephrotoxicity. FerroOrange probe was used to measure the intracellular Fe2+ levels. Herein, we show that DQ induces pyroptosis in HK-2 cells. Mechanistically, DQ induces the accumulation of mitochondrial ROS and initiates the cleavage of gasdermin E (GSDME) in an intrinsic mitochondrial pathway. Knockout of GSDME attenuated DQ-induced cell death. Further analysis revealed that loss of FTH1 induces Fe2+ accumulation, contributing to DQ-induced pyroptosis. Knockdown LC3B could help restore the expression of FTH1 and improve cell viability. Moreover, we found DFO, an iron chelator, could reduce cellular Fe2+ levels and inhibit pyroptosis. Collectively, these findings suggest an unrecognized mechanism for GSDME-dependent pyroptosis in DQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
8
|
Henarejos-Escudero P, Méndez-García FF, Hernández-García S, Martínez-Rodríguez P, Gandía-Herrero F. Design, Synthesis and Gene Modulation Insights into Pigments Derived from Tryptophan-Betaxanthin, Which Act against Tumor Development in Caenorhabditis elegans. Int J Mol Sci 2023; 25:63. [PMID: 38203234 PMCID: PMC10778952 DOI: 10.3390/ijms25010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The use of betalains, which are nitrogenous plant pigments, by the food industry is widespread and reflects their safety after intake. The recent research showed outstanding results for L-tryptophan-betaxanthin, a phytochemical present in traditional Chinese medicine, as an antitumoral agent when the activity was evaluated in the animal model Caenorhabditis elegans. Thus, L-tryptophan-betaxanthin is now presented as a lead compound, from which eleven novel structurally related betaxanthins have been designed, biotechnologically produced, purified, and characterized. The antitumoral effect of the derived compounds was evaluated on the JK1466 tumoral strain of C. elegans. All the tested molecules significantly reduced the tumoral gonad sizes in a range between 31.4% and 43.0%. Among the novel compounds synthesized, tryptophan methyl ester-betaxanthin and tryptophan benzyl ester-betaxanthin, which are the first betalains to contain an ester group in their structures, caused tumor size reductions of 43.0% and 42.6%, respectively, after administration to the model animal. Since these were the two most effective molecules, their mechanism of action was investigated by microarray analysis. Differential gene expression analysis showed that tryptophan methyl ester-betaxanthin and tryptophan benzyl ester-betaxanthin were able to down-regulate the key genes of the mTOR pathway, such as daf-15 and rict-1.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Gandía-Herrero
- Department of Biochemistry and Molecular Biology A, Faculty of Biology, Regional Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (P.H.-E.); (F.F.M.-G.); (S.H.-G.); (P.M.-R.)
| |
Collapse
|
9
|
Hu L, Lan Q, Tang C, Yang J, Zhu X, Lin F, Yu Z, Wang X, Wen C, Zhang X, Lu Z. Abnormalities of serum lipid metabolism in patients with acute paraquat poisoning caused by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115543. [PMID: 37827095 DOI: 10.1016/j.ecoenv.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
As the mechanism of paraquat (PQ) poisoning is still not fully elucidated, and no specific treatment has been developed in medical practice, the management of PQ poisoning continues to present a medical challenge. In this study, the objective was to investigate the early metabolic changes in serum metabolism and identify the key metabolic pathways involved in patients with PQ poisoning. Quantitative analysis was conducted to determine the relevant metabolites. Additionally, experiments were carried out in both plasma and cell to elucidate the mechanisms underlying metabolic disorder and cell death in PQ poisoning. The study found that polyunsaturated fatty acids (PUFAs) and their metabolites, such as arachidonic acid (AA) and hydroxy eicosatetraenoic acids (HETEs), were significantly increased by non-enzymatic oxidative reaction. Reactive oxygen species (ROS) production increased rapidly at 2 h after PQ poisoning, followed by an increase in PUFAs at 12 h, and intracellular glutathione, cysteine (Cys), and Fe2+ at 24 h. However, at 36 h later, intracellular glutathione and Cys decreased, HETEs increased, and the expression of SLC7A11 and glutathione peroxidase 4 (GPX4) decreased. Ultrastructural examination revealed the absence of mitochondrial cristae. Deferoxamine was found to alleviate lipid oxidation, and increase the viability of PQ toxic cells in the low dose. In conclusion, unsaturated fatty acids metabolism was the key metabolic pathways in PQ poisoning. PQ caused cell death through the induction of ferroptosis. Inhibition of ferroptosis could be a novel strategy for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qin Lan
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; West China Hospital, Sichuan University
| | - Congrong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xingjie Zhu
- Department of Theater, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feiyan Lin
- Clinical research center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Wen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhua Zhang
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
10
|
Rajabian F, Rajabian A, Tayarani-Najaran Z. The Antioxidant Activity of Betanin protects MRC-5 cells Against Cadmium Induced Toxicity. Biol Trace Elem Res 2023; 201:5183-5191. [PMID: 37099220 DOI: 10.1007/s12011-023-03662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
Cadmium (Cd) can induce both acute and chronic effects in the lungs depending on the time and the exposure route. Betanin is a component derived from the roots of red beets and it is well-known for its antioxidant and anti-apoptosis effects. The current study aimed to survey the protective effects of betanin on cell toxicity induced by Cd. Different concentration of Cd alone and in combination with betanin was assessed in MRC-5 cells. The viability and oxidative stress were measured using resazurin and DCF-DA methods respectively. Apoptotic cells were assessed by PI staining of the fragmented DNA and western blot analysis detected the activation of caspase 3 and PARP proteins. Cd exposure for 24 h declined viability and increased ROS production in MRC-5 cells compared to the control group (p < 0.001). Also, Cd (35 μM) elevated DNA fragmentation (p < 0.05), and the level of caspase 3-cleaved and cleaved PARP proteins in MRC-5 cells (p < 0.001). Co-treatment of cells with betanin for 24 h significantly enhanced viability in concentrations of 1.25 and 2.5 μM (p < 0.001) and 5 μM (p < 0.05) and declined ROS generation (1.25 and 5 μM p < 0.001, and 2.5 μM p < 0.01). As well as, betanin reduced DNA fragmentation (p < 0.01), and the markers of apoptosis (p < 0.001) compared to the Cd-treated group. In conclusion, betanin protects lung cells against Cd-induced toxicity through antioxidant activity and inhibition of apoptosis.
Collapse
Affiliation(s)
- Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Da Silva DVT, Baião DDS, Magalhães A, Almeida NF, Conte CA, Paschoalin VMF. Combining Conventional Organic Solvent Extraction, Ultrasound-Assisted Extraction, and Chromatographic Techniques to Obtain Pure Betanin from Beetroot for Clinical Purposes. Antioxidants (Basel) 2023; 12:1823. [PMID: 37891902 PMCID: PMC10604211 DOI: 10.3390/antiox12101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Red beetroot extract (E162) is a natural colorant that owes its color to betanin, its major red pigment. Betanin displays remarkable antioxidant, anti-inflammatory, and chemoprotective properties mediated by its structure and influence on gene expression. However, the betanin employed in most preclinical assays is a beetroot extract diluted in dextrin, not pure betanin, as no isolated compound is commercially available. This makes its use inaccurate concerning product content estimates and biological effect assessments. Herein, a combination of conventional extraction under orbital shaking and ultrasound-assisted extraction (UAE) to purify betanin by semi-preparative HPLC was performed. The employed methodology extracts betalains at over a 90% yield, achieving 1.74 ± 0.01 mg of pure betanin/g beetroot, a 41% yield from beetroot contents increasing to 50 %, considering the betalains pool. The purified betanin exhibited an 85% purity degree against 32 or 72% of a commercial standard evaluated by LC-MS or HPLC methods, respectively. The identity of purified betanin was confirmed by UV-Vis, LC-MS, and 1H NMR. The combination of a conventional extraction, UAE, and semi-preparative HPLC allowed for betanin purification with a high yield, superior purity, and almost three times more antioxidant power compared to commercial betanin, being, therefore, more suitable for clinical purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (D.V.T.D.S.); (D.d.S.B.); (A.M.); (N.F.A.); (C.A.C.J.)
| |
Collapse
|
12
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Saber A, Abedimanesh N, Somi MH, Khosroushahi AY, Moradi S. Anticancer properties of red beetroot hydro-alcoholic extract and its main constituent; betanin on colorectal cancer cell lines. BMC Complement Med Ther 2023; 23:246. [PMID: 37464362 DOI: 10.1186/s12906-023-04077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Red beetroot (Beta vulgaris) contains Betanin as its major betacyanin, possessing wide proapoptotic effects. This study aimed to investigate the anticancer and pro-papoptotic effects of beetroot hydro-alcoholic extract (BHE) and betanin, on colorectal cancer cell lines. BHE and betanin were used to treat Caco-2 and HT-29 colorectal cancer cells. MTT assay, DAPI staining, and FACS-flow cytometry tests were used to determine the half-maximal inhibitory concentration (IC50) and apoptosis-inducing evaluations. Intended genes were assessed by real-time polymerase chain reaction (RT-PCR). The IC50 for HT-29 and Caco-2 cell lines were 92 μg/mL, 107 μg/mL for BHE, and 64 μg/mL, 90 μg/mL for betanin at 48 h, respectively. BHE and betanin significantly inhibited the growth of both cancer cell lines time and dose-dependently. DAPI staining and flow cytometry results revealed significant apoptosis symptoms in treated cancerous cell lines. The expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than in untreated and normal cells. In contrast, the anti-apoptotic gene (Bcl-2) was significantly downregulated. BHE and betanin effectively inhibited cancer cell proliferation and induced apoptosis via the modification of effective genes.
Collapse
Affiliation(s)
- Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran.
| | - Nasim Abedimanesh
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Moradi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran
- Student Research Committee, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Dai J, Zheng M, He Y, Zhou Y, Wang M, Chen B. Real-time response counterattack strategy of tolerant microalgae Chlorella vulgaris MBFJNU-1 in original swine wastewater and free ammonia. BIORESOURCE TECHNOLOGY 2023; 377:128945. [PMID: 36958682 DOI: 10.1016/j.biortech.2023.128945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work was the first time to systematically clarify the potential tolerance mechanism of an indigenous Chlorella vulgaris MBFJNU-1 towards the free ammonia (FA) during the original swine wastewater (OSW) treatment by transcriptome analysis using C. vulgaris UETX395 as the control group. The obtained results showed that C. vulgaris MBFJNU-1 was found to be more resistant to the high levels of FA (115 mg/L) and OSW in comparison to C. vulgaris UETX395 (38 mg/L). Moreover, the transcriptomic results stated that some key pathways from arginine biosynthesis, electron generation and transmission, ATP synthesis in chloroplasts, and glutathione synthesis of C. vulgaris MBFJNU-1 were greatly related with the OSW and FA. Additionally, C. vulgaris MBFJNU-1 in OSW and FA performed similar results in the common differentially expressed genes from these mentioned pathways. Overall, these obtained results deliver essential details in microalgal biotechnology to treat swine wastewater and high free ammonia wastewater.
Collapse
Affiliation(s)
- Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
15
|
ElSayed MH, Atif HM, Eladl MA, Elaidy SM, Helaly AMN, Hisham FA, Farag NE, Osman NMS, Ibrahiem AT, Khella HWZ, Bilasy SE, Albalawi MA, Helal MA, Alzlaiq WA, Zaitone SA. Betanin improves motor function and alleviates experimental Parkinsonism via downregulation of TLR4/MyD88/NF-κB pathway: Molecular docking and biological investigations. Biomed Pharmacother 2023; 164:114917. [PMID: 37244180 DOI: 10.1016/j.biopha.2023.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neuroinflammatory and degenerative disease. In this study, we investigated the neuroprotective action of betanin in the rotenone-induced Parkinson-like mice model. Twenty-eight adult male Swiss albino mice were divided into four groups: Vehicle, Rotenone, Rotenone + Betanin 50 mg/kg, and Rotenone + Betanin 100 mg/kg. Parkinsonism was induced by subcutaneous injection of 9 doses of rotenone (1 mg/kg/48 h) plus betanin at 50 and 100 mg/kg/48 h in rotenone + betanin groups for twenty days. Motor dysfunction was assessed after the end of the therapeutic period using the pole, rotarod, open-field, grid, and cylinder tests. Malondialdehyde, reduced glutathione (GSH), Toll-like receptor 4 (TLR4), myeloid differentiation primary response-88 (MyD88), nuclear factor kappa- B (NF-κB), neuronal degeneration in the striatum were evaluated. In addition, we assessed the immunohistochemical densities of tyrosine hydroxylase (TH) in Str and in substantia nigra compacta (SNpc). Our results showed that rotenone remarkably decreased (results of tests), increased decreased TH density with a significant increase in MDA, TLR4, MyD88, NF-κB, and a decrease in GSH (p < 0.05). Treatment with betanin significantly results of tests), increased TH density. Furthermore, betanin significantly downregulated malondialdehyde and improved GSH. Additionally, the expression of TLR4, MyD88, and NF-κB was significantly alleviated. Betanin's powerful antioxidative and anti-inflammatory properties can be related to its neuroprotective potential as well as its ability to delay or prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Huda M Atif
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Samah M Elaidy
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed M N Helaly
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma Azzahraa Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Noha E Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Noura M S Osman
- Department of Anatomy, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Heba W Z Khella
- Department of Clinical Education, Canadian Memorial Chiropractic College, Toronto, ON M2H 3J1, Canada
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; College of Dental Medicine, California Northstate University, 9700 Taron Dr., Elk Grove, CA 95757, USA
| | | | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12587, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Wafa Ali Alzlaiq
- Department of Clinical Pharmacy, College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
16
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Hernández-García S, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Characterization of betalain-loaded liposomes and its bioactive potential in vivo after ingestion. Food Chem 2023; 407:135180. [PMID: 36521390 DOI: 10.1016/j.foodchem.2022.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Betalains are plant pigments characterized by showing a wide range of beneficial properties for health. Its bioactive potential has been studied for the first time after its encapsulation in liposomes and subsequent administration to the animal model Caenorhabditis elegans. Phenylalanine-betaxanthin and indoline carboxylic acid-betacyanin encapsulated at concentrations of 25 and 500 μM managed to reduce lipid accumulation and oxidative stress in the nematodes. Highly antioxidant betalains dopaxanthin and betanidin were also included in the survival analyses. The results showed that phenylalanine-betaxanthin was the most effective betalain by increasing the lifespan of C. elegans by 21.8%. In addition, the administration of encapsulated natural betanidin increased the nematodes' survival rate by up to 13.8%. The preservation of the bioactive properties of betalains manifested in this study means that the stabilization of the plant pigments through encapsulation in liposomes can be postulated as a new way for administration in pharmacological and food applications.
Collapse
Affiliation(s)
- Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
17
|
Sakr S, Hamed A, Atef M. Betanin ameliorates fipronil-induced nephrotoxicity via activation of Nrf2-HO-1/NQO-1 pathway in albino rat model. Toxicol Res (Camb) 2022; 11:975-986. [PMID: 36569480 PMCID: PMC9773064 DOI: 10.1093/toxres/tfac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Fipronil (FPN) is phenylpyrazole insecticide extensively used to control a wide variety of pests. Betanin (BET) is a natural colorant with promising antioxidant and anti-inflammatory effects. This study aimed to investigate the potential protective effect of BET on FPN induced nephrotoxicity in adult male albino rats. Forty rats were assigned into 4 equal groups; Group I (Control); Group II (BET) received 20 mg/kg b.wt/day; Group III (FPN) received 4.8 mg/kg b.wt/day; and Group IV (BET/FPN). All treatments were given orally for 90 days. At the end of experiment, blood samples were collected for analysis of serum urea and creatinine. Kidneys were harvested for determination of kidney injury molecule-1(KIM-1) level; gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase-1 (NQO-1); oxidative stress biomarkers including malondialdehyde (MDA), protein carbonyl content (PCC), catalase activity (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH). Histopathological examination and immunohistochemical investigation of Nrf2, nuclear factor kappa B (NF-κB), and caspase-3 were also undertaken. The results revealed kidney dysfunction, downregulation of Nrf2, HO-1, and NQO-1 genes, redox imbalance, structural damage, decreased Nrf2 and increased NF-κB immune-expression, in addition to strong caspase-3 immunoreactivity in FPN-treated group. In the combined group, BET co-administration resulted in functional and structural amelioration, up-regulation of Nrf2, HO-1, and NQO-1 genes, mitigation of redox imbalance, and strong anti-inflammatory and antiapoptotic effects. In conclusion, BET via activation of Nrf2-HO-1/NQO-1 pathway, exhibits beneficial antioxidant, anti-inflammatory, and antiapoptotic effects against FPN-induced nephrotoxicity.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| | - Amira Hamed
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| | - Mona Atef
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| |
Collapse
|
18
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
19
|
Yen TH, Chang CW, Tsai HR, Fu JF, Yen HC. Immunosuppressive therapies attenuate paraquat-induced renal dysfunction by suppressing inflammatory responses and lipid peroxidation. Free Radic Biol Med 2022; 191:249-260. [PMID: 36031164 DOI: 10.1016/j.freeradbiomed.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Although paraquat (PQ) induces oxidative damage and inflammatory responses in the lungs, the mechanism underlying PQ-induced acute kidney injury in patients is unclear. Immunosuppressive therapy with glucocorticoids and the immunosuppressant cyclophosphamide (CP) has been employed to treat patients with PQ poisoning. This study examined whether PQ could concurrently cause renal injury, inflammatory responses, and oxidative damage in the kidneys, and whether CP and dexamethasone (DEX) could suppress PQ-induced alterations. Mice were assigned to eight groups: Control, PQ, DEX, PQ plus DEX, CP, PQ plus CP, DEX plus CP, and PQ plus DEX with CP. DEX, CP, and DEX plus CP reversed PQ-induced renal injury, as indicated by urinary albumin-to-creatinine ratios and urea nitrogen levels in serum. The treatments also attenuated PQ-induced renal infiltration of leukocytes and macrophages and induction of the Il6, Tnf, Icam, Cxcl2, Tlr4, and Tlr9 genes encoding the inflammatory mediators in the kidneys. However, DEX only partially suppressed the macrophage infiltration, whereas DEX plus CP provided stronger protection than DEX or CP alone for the induction of Il6 and Cxcl2. Moreover, through the detection of F2-isoprostanes (F2-IsoPs) and isofurans in the kidneys and lungs and F2-IsoPs in the plasma and urine, the therapies were found to suppress PQ-induced lipid peroxidation, although DEX was less effective. Finally, PQ decreased ubiquinol-9:ubiquinone-9 ratios in the kidneys. This effect of PQ was not found under CP treatment, but the ratio was lower than that of the control group. Our findings suggest that the suppression of PQ-induced inflammatory responses by DEX and CP in the kidneys can mitigate oxidative damage and acute kidney injury.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Ru Tsai
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiu-Chuan Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Holliday MW, Li Q, Bustamante EG, Niu J, Huang L, Espina IM, Dominguez JR, Truong L, Murray KO, Fan L, Anumudu SJ, Shah M, Fischer RS, Vangala C, Mandayam S, Perez J, Pan JS, Ali S, Awan AA, Sheikh-Hamad D. Potential Mechanisms Involved in Chronic Kidney Disease of Unclear Etiology. Clin J Am Soc Nephrol 2022; 17:1293-1304. [PMID: 35944911 PMCID: PMC9625092 DOI: 10.2215/cjn.16831221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES The etiology of chronic kidney disease of unclear etiology, also known as Mesoamerican nephropathy, remains unclear. We investigated potential etiologies for Mesoamerican nephropathy in an immigrant dialysis population. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Migrants with Mesoamerican nephropathy kidney failure (n=52) were identified by exclusion of known causes of kidney disease and compared using a cross-sectional survey with demographically similar patients with kidney failure from other causes (n=63) and age/sex/place of origin-matched healthy participants (n=16). Survey results were extended to the bench; C57BL/6 mice (n=73) received 10-15 weekly intraperitoneal injections of paraquat (a reactive oxygen species-generating herbicide) or vehicle. Kidney function, histology, and expression of organic cation transporter-2 (proximal tubule entry for paraquat) and multidrug and toxin extrusion 1 (extrusion pathway) were examined. Kidney biopsies from Nicaraguan patients with acute Mesoamerican nephropathy were stained for the above transporters and compared with patients with tubulointerstitial nephritis and without Mesoamerican nephropathy. RESULTS Patients with Mesoamerican nephropathy and kidney failure were young agricultural workers, almost exclusively men; the majority were from Mexico and El Salvador; and they had prior exposures to agrochemicals, including paraquat (27%). After adjustment for age/sex, exposure to any agrochemical or paraquat was associated with Mesoamerican nephropathy kidney failure (odds ratio, 4.86; 95% confidence interval, 1.82 to 12.96; P=0.002 and odds ratio, 12.25; 95% confidence interval, 1.51 to 99.36; P=0.02, respectively). Adjusted for age/sex and other covariates, 1 year of agrochemical exposure was associated with Mesoamerican nephropathy kidney failure (odds ratio, 1.23; 95% confidence interval, 1.04 to 1.44; P=0.02). Compared with 16 matched healthy controls, Mesoamerican nephropathy kidney failure was significantly associated with exposure to paraquat and agrochemicals. Paraquat-treated male mice developed kidney failure and tubulointerstitial nephritis consistent with Mesoamerican nephropathy. Organic cation transporter-2 expression was higher in male kidneys versus female kidneys. Paraquat treatment increased organic cation transporter-2 expression and decreased multidrug and toxin extrusion 1 expression in male kidneys; similar results were observed in the kidneys of Nicaraguan patients with Mesoamerican nephropathy. CONCLUSIONS Exposure to agrochemicals is associated with Mesoamerican nephropathy, and chronic exposure of mice to paraquat, a prototypical oxidant, induced kidney failure similar to Mesoamerican nephropathy.
Collapse
Affiliation(s)
- Michael W. Holliday
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases, Houston, Texas
| | - Qingtian Li
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Jingbo Niu
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Luping Huang
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ilse M. Espina
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jose R. Dominguez
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Kristy O. Murray
- School of Tropical Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lei Fan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Samaya J. Anumudu
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maulin Shah
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca S.B. Fischer
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, Houston, Texas
| | - Chandan Vangala
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sreedhar Mandayam
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose Perez
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jenny S. Pan
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sehrish Ali
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ahmed A. Awan
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - David Sheikh-Hamad
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases, Houston, Texas
- Department of Nutrition, Harris Health System, Houston, Texas
| |
Collapse
|
21
|
Wang Y, Fernando GSN, Sergeeva NN, Vagkidis N, Chechik V, Do T, Marshall LJ, Boesch C. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11081627. [PMID: 36009345 PMCID: PMC9405451 DOI: 10.3390/antiox11081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to compare the absorption and transport patterns of three main betalains, betanin, vulgaxanthin I and indicaxanthin, into intestinal epithelial cells and to assess their distinct molecular effects on inflammatory and redox-related cell signalling in association with their radial scavenging potencies. All three betalains showed anti-inflammatory effects (5–80 μM), reflected by attenuated transcription of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO-synthase. Concomitant increases in antioxidant enzymes such as heme oxygenase-1 were only observed for betanin. Moreover, betanin uniquely demonstrated a potent dose-dependent radical scavenging activity in EPR and cell-based assays. Results also indicated overall low permeability for the three betalains with Papp of 4.2–8.9 × 10−7 cm s−1. Higher absorption intensities of vulgaxanthin and indicaxanthin may be attributed to smaller molecular sizes and greater lipophilicity. In conclusion, betanin, vulgaxanthin I and indicaxanthin have differentially contributed to lowering inflammatory markers and mitigating oxidative stress, implying the potential to ameliorate inflammatory intestinal disease. Compared with two betaxanthins, the greater efficacy of betanin in scavenging radical and promoting antioxidant response might, to some extent, compensate for its poorer absorption efficiency, as demonstrated by the Caco-2 cell model.
Collapse
Affiliation(s)
- Yunqing Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Ganwarige Sumali N. Fernando
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalia N. Sergeeva
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Design, Faculty of Art, Humanities and Cultures, University of Leeds, Leeds LS2 9JT, UK
| | | | - Victor Chechik
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | - Lisa J. Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-1133430268
| |
Collapse
|
22
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
23
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
24
|
Alizadeh S, Anani-Sarab G, Amiri H, Hashemi M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes. Heliyon 2022; 8:e09895. [PMID: 35855999 PMCID: PMC9287805 DOI: 10.1016/j.heliyon.2022.e09895] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/26/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Paraquat (PQ) is a herbicide belonging to the group of bipyridylium salts. The objective of this study was to evaluate oxidative stress, DNA damage, and cytotoxicity induced by paraquat in peripheral lymphocyte cells in vivo as well as pathological changes in various tissues. For this purpose, 28 male Wistar rats in 6 different groups were poisoned by paraquat gavage and blood samples were taken from the hearts of rats after during the poisoning period. Oxidative stress, DNA damage, cell membrane integrity, serum lactate dehydrogenase, and cytotoxicity, were investigated by Ferric Reducing Antioxidant Potential (FRAP) test, alkaline comet assay, measuring serum lactate dehydrogenase (LDH), Hoechst staining and flow cytometry with propidium iodide (PI) respectively. The lung, kidney, and liver tissues were also examined pathologically. Paraquat caused dose-dependent DNA damage in peripheral lymphocyte cells and significant oxidative cell membrane damage. The most damage was caused by a single dose of 200 mg/kg b.w of paraquat by gavage. The gradual exposure to a dose of 300 mg/kg b.w of paraquat showed less damage, which could be due to the activation of the antioxidant defense mechanism. Paraquat induced oxidative stress. Paraquat increases serum lactate dehydrogenase. Oxidative stress Inducted by exposure to paraquat Inducted DNA damage.
Collapse
Affiliation(s)
- Soheila Alizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Anani-Sarab
- Medical Toxicology & Drug Abuse Research Center Birjand University of Medical Sciences, Birjand, Iran.,School of Allied Medical Sciences Birjand University of Medical Sciences, Birjand, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Isorhapontigenin Modulates SOX9/TOLLIP Expression to Attenuate Cell Apoptosis and Oxidative Stress in Paraquat-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3328623. [PMID: 35720190 PMCID: PMC9203234 DOI: 10.1155/2022/3328623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.
Collapse
|
26
|
Ramírez-Rodríguez Y, Ramírez V, Robledo-Márquez K, García-Rojas N, Rojas-Morales P, Arango N, Pedraza-Chaverri J, Medina-Campos O, Pérez-Rojas J, Flores-Ramírez R, Winkler R, Riego-Ruiz L, Trujillo J. Stenocereus huastecorum-fruit juice concentrate protects against cisplatin-induced nephrotoxicity by nitric oxide pathway activity and antioxidant and antiapoptotic effects. Food Res Int 2022; 160:111337. [DOI: 10.1016/j.foodres.2022.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
|
27
|
Ramírez-Moreno E, Arias-Rico J, Jiménez-Sánchez RC, Estrada-Luna D, Jiménez-Osorio AS, Zafra-Rojas QY, Ariza-Ortega JA, Flores-Chávez OR, Morales-Castillejos L, Sandoval-Gallegos EM. Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods 2022; 11:foods11091232. [PMID: 35563955 PMCID: PMC9101148 DOI: 10.3390/foods11091232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a disease characterized by an inflammatory process in the adipose tissue due to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of several diseases, such as cardiovascular diseases, diabetes, and cancer. Their treatment is based on nutritional and pharmacological strategies. However, natural products are currently implemented as complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds with potential action to reduce inflammation through several pathways and play an important role in the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber, from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent in vitro and in vivo studies.
Collapse
Affiliation(s)
- Esther Ramírez-Moreno
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Arias-Rico
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Reyna Cristina Jiménez-Sánchez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Diego Estrada-Luna
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Angélica Saraí Jiménez-Osorio
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Quinatzin Yadira Zafra-Rojas
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Alberto Ariza-Ortega
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - Olga Rocío Flores-Chávez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Lizbeth Morales-Castillejos
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Eli Mireya Sandoval-Gallegos
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
- Correspondence:
| |
Collapse
|
28
|
Palipoch S, Punsawad C, Koomhin P, Poonsawat W. Thunbergia laurifolia aqueous leaf extract ameliorates paraquat-induced kidney injury by regulating NADPH oxidase in rats. Heliyon 2022; 8:e09234. [PMID: 35399379 PMCID: PMC8987613 DOI: 10.1016/j.heliyon.2022.e09234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
We aim to study the antioxidant ability of Thunbergia laurifolia (TL) aqueous leaf extract against PQ-induced kidney injury. Rats were divided into four groups (n = 4 per group): control group, the rats received subcutaneous injection of 1 ml/kg body weight (BW) normal saline; PQ group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride; PQ + TL-low dose (LD) group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride and were orally gavaged with TL leaf extract (100 mg/kg BW); and PQ + TL-high dose (HD) group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride and were orally gavaged with TL leaf extract (200 mg/kg BW). This study analyzed blood urea nitrogen (BUN) and creatinine levels, renal malondialdehyde (MDA) levels, kidney histopathology, mRNA expressions of renal NADPH oxidase (NOX) and protein expressions of renal NOX-1 and NOX-4 using immunohistochemistry. The PQ group showed a significant increase in BUN and creatinine levels, renal MDA level, and a upregulation of the mRNA expression of renal NOX compared with the control group. It also demonstrated mild hydropic degeneration of the tubules. Immunohistochemistry displayed a significant increase in the protein expressions of renal NOX-1 and NOX-4 compared with the control group. TL aqueous leaf extract especially in the high dose group significantly reduced the BUN and creatinine levels, the renal MDA level, and downregulated the mRNA expression of renal NOX and protein expressions of renal NOX-1 and NOX-4 compared with the PQ group. Furthermore, it can improve PQ-induced kidney injury. TL aqueous leaf extract can ameliorate PQ-induced kidney injury by regulating oxidative stress through inhibiting NOX, especially NOX-1 and NOX-4 expressions.
Collapse
|
29
|
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of Plant Origin for the Treatment of Metabolic Disorders. Front Bioeng Biotechnol 2022; 9:811917. [PMID: 35223819 PMCID: PMC8873594 DOI: 10.3389/fbioe.2021.811917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are major clinical challenges of health that are progressing globally. A concurrence of metabolic disorders such as obesity, insulin resistance, atherogenic dyslipidemia, and systematic hypertension leads to metabolic syndrome. Over the past years, the metabolic syndrome leads to a five- and two-fold rise in diabetes mellitus type II and cardiovascular diseases. Natural products specifically plant extracts have insulin-sensitizing, anti-inflammatory, and antioxidant properties and are also considered as an alternative option due to few adverse effects. Nanotechnology is one of the promising strategies, which improves the effectiveness of treatment and limits side effects. This review mainly focuses on plant extract-based nanosystems in the management of the metabolic syndrome. Numerous nano-drug delivery systems, i.e., liposomes, hydrogel nanocomposites, nanoemulsions, micelles, solid lipid, and core–shell nanoparticles, have been designed using plant extracts. It has been found that most of the nano-formulations successfully reduced oxidative stress, insulin resistance, chronic inflammation, and lipid profile in in vitro and in vivo studies as plant extracts interfere with the pathways of metabolic syndrome. Thus, these novel plant-based nanosystems could act as a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Fang Hu
- Medical Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dong-Sheng Sun
- Department of Geriatric Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kai-Li Wang
- Department of Cardiology, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dan-Ying Shang
- Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Dan-Ying Shang,
| |
Collapse
|
30
|
Jia C, Zhang Z, Wang J, Nie Z. Silymarin protects the rats against paraquat-induced acute kidney injury via Nrf2. Hum Exp Toxicol 2022; 41:9603271221074334. [PMID: 35128959 DOI: 10.1177/09603271221074334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Paraquat (PQ) poisoning induces severe acute kidney injury and causes extremely high rate of death. In this study, we aimed to investigate the protective effects of silymarin on PQ-induced acute kidney injury and explore the underlying mechanisms. METHODS A rat model was established through intraperitoneal injection of PQ. Rats were administrated with saline or silymarin for 3 days. Then, survival rate, physiological parameters, and renal injury score were evaluated. The apoptosis and oxidative stress in kidney tissues were determined through hematoxylin and eosin staining, quantitative reverse transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assays. RESULTS Silymarin administration could significantly increase the survival rate of PQ-poisoned rats. It was found that silymarin treatment improved renal function, decreased injury score in kidney tissues, and inhibited the apoptosis and oxidative stress in PQ-induced acute kidney injury through the activating the signaling pathway of Nrf2 and promoting its nuclear translocation. CONCLUSION Silymarin exhibited a protective effect against PQ-induced kidney injury, suggesting that treatment with this flavonoid could be a potential therapeutic agent for the treatment of acute kidney injury.
Collapse
Affiliation(s)
- C Jia
- Department of Emergency, 585241Xingtai People's Hospital of Hebei Province, Xingtai, China
| | - Z Zhang
- Department of Emergency, 585241Xingtai People's Hospital of Hebei Province, Xingtai, China
| | - J Wang
- Department of Emergency, 585241Xingtai People's Hospital of Hebei Province, Xingtai, China
| | - Z Nie
- Department of Emergency, 585241Xingtai People's Hospital of Hebei Province, Xingtai, China
| |
Collapse
|
31
|
Akhtar MF, Mehal MO, Saleem A, El Askary A, Abdel-Daim MM, Anwar F, Ayaz M, Zeb A. Attenuating effect of Prosopis cineraria against paraquat-induced toxicity in prepubertal mice, Mus musculus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15215-15231. [PMID: 34628617 DOI: 10.1007/s11356-021-16788-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Several herbicides, especially paraquat, are persistent organic pollutants which cause damage to humans and animals through reactive oxygen and nitrogen species. Prosopis cineraria (L.) Druce exhibits antioxidant activity and can effectively manage tremors. Therefore, the present research assessed the preventive effect of Prosopis cineraria (L.) Druce ethanolic extract (PCDE) against paraquat-induced toxicity in prepubertal mice. The plant extract was chemically characterized by a high-performance liquid chromatography-diode array detector (HPLC-DAD). The PCDE was orally administered to prepubertal mice for continuous 21 days, 2 h before paraquat exposure (2 mg/kg for consecutive 3 days per week for 3 weeks). The changes in behavior, motor coordination, memory, muscle movement, anxiety, and neurotransmitter levels in the brain were assessed. Histopathology and estimation of oxidative stress parameters in the brain, liver, kidney, and heart tissues were also carried out. HPLC-DAD analysis showed a high amount of quercetin, kaempferol, and ellagic acid derivatives in the plant extract. The PCDE showed improved muscle coordination, muscle movement and memory, and reduced anxiety in prepubertal mice. Moreover, levels of dopamine and noradrenaline were increased in the brain. It successfully ameliorated the oxidative stress in different organs by increasing the level of glutathione and superoxide dismutase and by reducing malondialdehyde. The histopathological assessment showed the plant extract effectively mitigated paraquat-induced pathological lesions in the neurons, neuroglia, hepatocytes, and kidney tissues. It is concluded from the present study that the treatment with PCDE had prevented the paraquat-induced toxicity in the brain, liver, kidney, and heart through the reduction of oxidative stress possibly due to the presence of phenolic compounds and flavonoids.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Muhammad Omer Mehal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, 18800, Pakistan
| |
Collapse
|
32
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
34
|
Qian J, Liu XR, Li Q, Wang B, Lin KW, Deng T, Huang QF, Xu SQ, Wang HF, Wu XX, Li N, Yi Y, Peng JC, Huang Y. Anthrahydroquinone-2,6-disulfonate alleviates paraquat-induced kidney injury via the apelin-APJ pathway in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Smeriglio A, De Francesco C, Denaro M, Trombetta D. Prickly Pear Betalain-Rich Extracts as New Promising Strategy for Intestinal Inflammation: Plant Complex vs. Main Isolated Bioactive Compounds. Front Pharmacol 2021; 12:722398. [PMID: 34594220 PMCID: PMC8476807 DOI: 10.3389/fphar.2021.722398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, many studies have highlighted the health effects of betalains beyond their use as food dyes. The present study investigated betalain-rich extracts with different colors and their main bioactive compounds in order to provide first evidence as a new promising strategy for intestinal inflammation management. Prickly pear betalain–rich extracts, obtained by a QuEChERS method, have been characterized by LC-DAD-ESI-MS/MS analysis. The potential role of betanin, indicaxanthin, and prickly pear extracts in counteracting the antioxidant and anti-inflammatory events was evaluated by several in vitro cell-free and cell-based assays. Indicaxanthin and betanin represent the most abundant compounds (≥22.27 ± 4.50 and 1.16 ± 0.17 g/100 g dry extract, respectively). Prickly pear extracts showed the strongest antioxidant and anti-inflammatory activities with respect to the pure betalains both on in vitro cell-free and cell-based assays, demonstrating the occurrence of synergistic activity, without any cytotoxicity or alteration of the barrier systems. The release of reactive oxygen species (ROS) and key inflammatory markers (IL-6, IL-8, and NO) was strongly inhibited by both betalains and even more by prickly pear extracts, which showed a similar and sometimes better profile than the reference compounds trolox and dexamethasone in counteracting the IL-1β–induced intestinal inflammation.
Collapse
Affiliation(s)
- A Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - C De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - M Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Rashidipour M, Rasoulian B, Maleki A, Davari B, Pajouhi N, Mohammadi E. Pectin/chitosan/tripolyphosphate encapsulation protects the rat lung from fibrosis and apoptosis induced by paraquat inhalation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104919. [PMID: 34446195 DOI: 10.1016/j.pestbp.2021.104919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Paraquat poisoning leads to lung injury and pulmonary fibrosis. The effect of paraquat encapsulation by previously described Pectin/Chitosan/Tripolyphosphate nanoparticles on its pulmonary toxicity was investigated in present study in a rat model of poison inhalation. MATERIAL AND METHOD The rats inhaled nebulized different formulation of paraquat (n = 5) for 30 min in various experimental groups. Lung injury and fibrosis scores, Lung tissue enzymatic activities, apoptosis markers were determined compared among groups. RESULTS Encapsulation of paraquat significantly rescued both lung injury and fibrosis scores. Lung MDA level was reduced by encapsulation. Paraquat poisoning led to lung tissue apoptosis as was evidenced by higher Caspase-3 and Bax/Bcl2 expressions in rats subjected to paraquat inhalation instead of normal saline or free nanoparticles. Again, nanoencapsulation reduced these apoptosis markers significantly. Alpha-SMA expression was also reduced by encapsulation. Nanoparticles per se have no or little toxicity as was evidenced by inflammatory and apoptotic markers and histological scores. CONCLUSION In a rat model of inhalation toxicity of paraquat, loading of this herbicide on PEC/CS/TPP nanoparticles reduced acute lung injury and fibrosis. The encapsulation also led to lower apoptosis, oxidative stress and alpha-SMA expression in the lung tissue.
Collapse
Affiliation(s)
- Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Rasoulian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behroz Davari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Medical Entomology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Naser Pajouhi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
38
|
Qiu R, Chen S, Hua F, Bian S, Chen J, Li G, Wu X. Betanin Prevents Experimental Abdominal Aortic Aneurysm Progression by Modulating the TLR4/NF-κB and Nrf2/HO-1 Pathways. Biol Pharm Bull 2021; 44:1254-1262. [PMID: 34471054 DOI: 10.1248/bpb.b21-00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Betanin, a bioactive ingredient mostly isolated from beetroots, exhibits a protective effect against cardiovascular diseases. However, its effects on abdominal aortic aneurysm (AAA) have not been elucidated. In this study, an AAA model was constructed by infusion of porcine pancreatic elastase in C57BL/6 mice. Mice were then administered with betanin or saline intragastrically once daily for 14 d. Our results showed that treatment with betanin remarkably limited AAA enlargement and mitigated the infiltration of inflammatory cells in the adventitia. The increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) was also significantly alleviated following betanin treatment. Furthermore, betanin suppressed the activation of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling in the aortic wall, and downregulated the levels of tissue-reactive oxygen species as well as circulating 8-isoprostane by stimulating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Taken together, these data suggest that betanin may attenuate AAA progression and may be used as a therapeutic drug against AAA.
Collapse
Affiliation(s)
- Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shouguang People Hospital
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Fang Hua
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
39
|
Tural K, Ozden O, Bilgi Z, Kubat E, Ermutlu CS, Merhan O, Tasoglu I. The protective effect of betanin and copper on spinal cord ischemia-reperfusion injury. J Spinal Cord Med 2021; 44:704-710. [PMID: 32223592 PMCID: PMC8477937 DOI: 10.1080/10790268.2020.1737788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Context: Both copper and betanin have been implicated as having significant bioactivity against ischemic damage in a variety of experimental and clinical settings. The aim of this study is to investigate whether betanin and copper have any protective effect on spinal cord in an ischemia-reperfusion (I/R) model in rats.Design: Spraque-Dawley rats were used in four groups: Sham group (n = 7), control group (laparotomy and cross-clamping of aorta, n = 7), betanin treatment group (dosage of 100 mg/kg of betanin administered intraperitoneally (i.p.) 60 min before laparotomy, n = 7), copper sulfate treatment group (administered copper sulfate i.p. at a dose of 0.1 mg/kg/day for 7 days before laparotomy, n = 7). Malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) and superoxide dismutase (SOD) activity were measured. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was also performed to evaluate apoptosis.Setting: Kafkas University, Faculty of Medicine, Kars, Turkey.Results: I/R injury was successfully demonstrated with the surgical model. Betanin and copper treatment significantly decreased MDA levels, MPO activity and the number of apoptotic cells in the spinal cord. Betanin and copper treatment significantly increased GSH levels. Copper treatment significantly increased SOD activity, whereas betanin was not as effective. Apoptotic cells were significantly decreased in both treatment groups.Conclusion: I/R injury of the spinal cord can be successfully demonstrated by aortic clamping in this surgical model. Betanin/Copper sulphate has ameliorative effects against operative I/R injury. Low toxicity of those agents makes them ideal targets for clinical research for this purpose.
Collapse
Affiliation(s)
- Kevser Tural
- Medical Faculty, Department of Cardiovascular Surgery, Kafkas University, Kars, Turkey,Correspondence to: Kevser Tural, Medical Faculty, Department of Cardiovascular Surgery, Kafkas University, Kars, 36100, Turkey; Ph: 0474 2252105.
| | - Ozkan Ozden
- Faculty of Engineering and Architecture, Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Zeynep Bilgi
- Medical Faculty, Department of Thoracic Surgery, Medeniyet University, İstanbul, Turkey
| | - Emre Kubat
- Gulhane Education and Research Hospital, Clinic of Cardiovascular Surgery, Ankara, Turkey
| | - Celal Sahin Ermutlu
- Faculty of Veterinary, Department of Surgery, Kafkas University, Kars, Turkey
| | - Oguz Merhan
- Faculty of Veterinary, Department of Biochemistry, Kafkas University, Kars, Turkey
| | - Irfan Tasoglu
- Department of Cardiovascular Surgery, Turkiye Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
40
|
Protective Activity of Aspirin Eugenol Ester on Paraquat-Induced Cell Damage in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6697872. [PMID: 34394831 PMCID: PMC8360752 DOI: 10.1155/2021/6697872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4′6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
41
|
Refaie AA, Shalby AB, Kassem SM, Khalil WKB. DNA Damage and Expression Profile of Genes Associated with Nephrotoxicity Induced by Butralin and Ameliorating Effect of Arabic Gum in Female Rats. Appl Biochem Biotechnol 2021; 193:3454-3468. [PMID: 34240313 DOI: 10.1007/s12010-021-03607-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Nephrotoxicity induced by exposure to environmental pollution, including herbicides, is becoming a global problem. Natural products are the prime alternative scientific research as they express better medicinal activity and minor side effects compared with a variety of synthetic drugs. This study was performed to evaluate the nephroprotective proficiency of Arabic gum against butralin-induced nephrotoxicity. Adult female rats were supplemented with Arabic gum (4.3 g/kg b.wt) and/or butralin (312 mg/L) in drinking water for 30 days. The results found that markers of serum kidney function, oxidative stress biomarkers, DNA damage, and expression of kidney specific genes (Acsm2, Ace, and Ace2) as well as histopathological examination in treated rats were conducted. Butralin-treated rats showed a rise in serum creatinine (41%), BUN (47.3%), and MDA (140.9%) as well as decrease in activity of the antioxidant markers (CAT (-21%); GPx (-70.7%); and TAC (43.2%)) in comparison with the control group. In addition, butralin treatment increased the DNA damage (221%); altered the expression levels of Acsm2, Ace, and Ace2 (-51.6%, 141.6%, and 143% respectively); and elevated histopathological lesions in the kidney tissues. Pretreatment of Arabic gum prevented butralin-prompted degenerative changes of kidney tissues. The results suggested that the protective effect provided by Arabic gum on renal tissues exposed to the herbicide butralin could be attributed to enhancement of antioxidants and increase the free radical scavenging activity in vivo.
Collapse
Affiliation(s)
- Amel A Refaie
- Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre (NRC), 33 El Bohouth Street, P.O. 12622, Dokki, Giza, Egypt
| | - Aziza B Shalby
- Department of Hormones, National Research Centre (NRC), 33 El Bohouth Street, P.O. 12622, Dokki, Giza, Egypt.
| | - Salwa M Kassem
- Department of Cell Biology, National Research Centre, 33-Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, 33-Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
42
|
Milton-Laskibar I, Martínez JA, Portillo MP. Current Knowledge on Beetroot Bioactive Compounds: Role of Nitrate and Betalains in Health and Disease. Foods 2021; 10:foods10061314. [PMID: 34200431 PMCID: PMC8229785 DOI: 10.3390/foods10061314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
An increase in the prevalence of noncommunicable chronic diseases has been occurring in recent decades. Among the deaths resulting from these conditions, cardiovascular diseases (CVD) stand out as the main contributors. In this regard, dietary patterns featuring a high content of vegetables and fruits, such as the Mediterranean and the DASH diets, are considered beneficial, and thus have been extensively studied. This has resulted in growing interest in vegetable-derived ingredients and food-supplements that may have potential therapeutic properties. Among these supplements, beetroot juice, which is obtained from the root vegetable Beta vulgaris, has gained much attention. Although a significant part of the interest in beetroot juice is due to its nitrate (NO3-) content, which has demonstrated bioactivity in the cardiovascular system, other ingredients with potential beneficial properties such as polyphenols, pigments and organic acids are also present. In this context, the aim of this review article is to analyze the current knowledge regarding the benefits related to the consumption of beetroot and derived food-supplements. Therefore, this article focuses on nitrate and betalains, which are considered to be the major bioactive compounds present in beetroot, and thus in the derived dietary supplements.
Collapse
Affiliation(s)
- Iñaki Milton-Laskibar
- Precision Nutrition and Cardiometabolic Health Program, IMDEA—Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM + CSIC, Spanish National Research Council, 28049 Madrid, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-917278100
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health Program, IMDEA—Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM + CSIC, Spanish National Research Council, 28049 Madrid, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
| | - María P. Portillo
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
43
|
Zheng Q, Zhang Y, Zhao Z, Shen H, Zhao H, Zhao M. Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression. Toxicol Appl Pharmacol 2021; 420:115521. [PMID: 33838153 DOI: 10.1016/j.taap.2021.115521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/13/2023]
Abstract
Isorhynchophylline (IRN) is an alkaloid with anti-inflammatory and anti-oxidative activities in cardiovascular and brain diseases, but its role in paraquat (PQ)-induced acute kidney injury (AKI) is yet unknown. The model of PQ-induced AKI in rats was established by intraperitoneal injection of PQ (25 mg/kg). We found that the tail vein injection of IRN (4 mg/kg) significantly increased the survival rate of PQ-intoxicated rats. IRN administration alleviated PQ-induced renal injury and renal dysfunction in rats, as evidenced by decreased apoptosis in renal cortex and reduced serum creatinine, serum BUN, and urine NGAL levels. Furthermore, IRN treatment improved the PQ-triggered oxidative stress in renal cortex by increasing the levels of anti-oxidant indicators (SOD activity, GSH/GSSG ratio, levels of Nrf-2, NQO-1, and HO-1 in renal cortex) and decreasing the levels of oxidative stress indexes (ROS and MDA levels in renal cortex). Interestingly, toll-interacting protein (Tollip), a negative regulator of interleukin 1 receptor associated kinase 1 (IRAK1) phosphorylation, was demonstrated to be increased by IRN injection in the renal cortex of PQ-intoxicated rats. In vitro experiments revealed that IRN protected renal tubular epithelial cells against PQ toxicity through suppressing oxidative stress and mitochondrial damage, and these protective effects were reversed by Tollip shRNA. Collectively, the present study demonstrated that IRN ameliorated PQ-induced AKI by attenuating oxidative stress and mitochondrial damage through upregulating Tollip, which provides new insights into the pathogenesis and treatment of PQ poisoning.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yuan Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zheng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Hongyu Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
44
|
Kwankaew N, Okuda H, Aye-Mon A, Ishikawa T, Hori K, Sonthi P, Kozakai Y, Ozaki N. Antihypersensitivity effect of betanin (red beetroot extract) via modulation of microglial activation in a mouse model of neuropathic pain. Eur J Pain 2021; 25:1788-1803. [PMID: 33961320 DOI: 10.1002/ejp.1790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuropathic pain (NeP) medications have several side effects that affect NeP patients' quality of life. Betanin, the most common betacyanin pigment, has been shown to have potent antioxidant and anti-inflammatory properties in vivo; thus, it has potential as a healthcare treatment. In this study, we focused on betanin (red beetroot extract) as a potential therapy for NeP. METHODS Mice model of NeP were made by chronic constriction injury (CCI), and the development of mechanical hypersensitivity was confirmed using the von Frey test. Motor coordination and locomotor activity were assessed using open field tests and rotarod tests, respectively. The expression level of glial markers in the spinal cords was analyzed by immunostaining. The direct effects of betanin on microglial cells were investigated using primary cultured microglial cells. RESULTS In CCI model mice, repeated betanin treatment, both intraperitoneally and orally, attenuated developing mechanical hypersensitivity in a dose-dependent manner without impairing motor coordination. Betanin treatment also attenuated mechanical hypersensitivity that had developed and prevented the onset of mechanical hypersensitivity in CCI mice. Microglial activation in the spinal cord is known to play a key role in the development of NeP; betanin treatment reduced CCI-induced microglial activation in the spinal cord of model mice. Moreover, in primary microglia cultured cells, the activation of microglia by lipopolysaccharide application was suppressed by betanin treatment. CONCLUSION Betanin treatment appears to ameliorate mechanical hypersensitivity related to CCI-induced NeP in mice by inhibiting microglial activation. SIGNIFICANCE This article supports findings of the effect of betanin on NeP and provides a potential therapeutic candidate for NeP. Furthermore, elucidating the underlying mechanism of the effect of betanin on microglial activation could assist the development of new treatments for chronic pain.
Collapse
Affiliation(s)
- Nichakarn Kwankaew
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Aye Aye-Mon
- Department of Anatomy, University of Medicine (1), Yangon, Myanmar
| | - Tatsuya Ishikawa
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Phattarapon Sonthi
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yu Kozakai
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
45
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology 2021; 453:152721. [PMID: 33592258 DOI: 10.1016/j.tox.2021.152721] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, PQ is highly toxic and can cause various complications and acute organ damage. Aspirin eugenol ester (AEE) is a potential new compound with anti-inflammatory and antioxidant stress pharmacological activity. The present study was to reveal the therapeutic effects and the protective effect of AEE against PQ-induced acute lung injury (ALI) with the help of PQ-induced oxidative damage in A549 cells and PQ-induced lung injury in rats. AEE might have no significant therapeutic effect on PQ-induced lung injury in rats. However, AEE had a significant protective effect on PQ-induced lung injury in rats. AEE pretreatment significantly reduced the stimulatory effect of PQ on malondialdehyde (MDA), the inhibitory effect of PQ on catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, the ratio of GSH/GSSH, the activity of caspase-3 and the overexpression of p38 mitogen-activated protein kinase (MAPK) phosphorylation in vivo. In vitro, A549 cells were treated with 250 μM PQ for 24 h. Incubation of A549 cells with PQ led to apoptosis, and increased the level of superoxide anions, reactive oxygen species (ROS), malondialdehyde and the activity of caspase-3 and up-regulation of phosphorylated p38-MAPK, reduced mitochondrial membrane potential (ΔΨm) and the activity of SOD. However, after 24 h on AEE pretreatment of A549 cells, the above-mentioned adverse reactions caused by PQ were significantly alleviated. In addition, AEE pretreatment reduced p38-MAPK phosphorylation in PQ-treated A549 cells. SB203580, the specific p38-MAPK inhibitor, and p38-MAPK shRNA attenuated the activation of the p38-MAPK signaling pathway. N-acetylcysteine (NAC) reduced the level of phosphorylated p38-MAPK and the production of intracellular ROS and inhibited apoptosis. The results showed that AEE may inhibit PQ-induced cell damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
46
|
Expressions and related mechanisms of miR-212 and KLF4 in rats with acute kidney injury. Mol Cell Biochem 2021; 476:1741-1749. [PMID: 33428060 DOI: 10.1007/s11010-020-04016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Acute kidney injury (AKI) occurs in 30%-70% of critically ill patients. Multiple organ failure (MOF), which is most often secondary to hypotension and septicemia, is a global public health problem. The prognosis of patients is poor. Currently, there is no specific therapeutic method. Finding new therapeutic targets is significant to improve the prognosis of AKI patients. This study explores expressions and related mechanisms of miR-212 and Kruppel-like factor 4 (KLF4) in rats with AKI. Sixty Wistar rats were randomly divided into 6 groups: Control group, sham operation group, model group, miR-212-agomir group, miR-212-antagomir group, miR-212-agomir+APTO-253 (joint group), n = 10. The expressions of miR-212, KLF4, inflammatory factors [tumor necrosis factor α (TNF-α), interleukin 6 (IL-6)], oxidative stress factors [superoxide dismutase (SOD), malondialdehyde (MDA)], and apoptosis-related proteins (bax, bcl-2) in renal tissue of rats were detected, and the relationship between miR-212 and KLF4 and the severity of AKI in rats were analyzed. The expression level of miR-212 increased (P < 0.05) and the expression level of KLF4 decreased (P < 0.05) in renal tissue of rats with AKI. miR-212 was negatively correlated with KLF4 expression (P < 0.05). MiR-212 was positively correlated with expressions of TNF-α, IL-6, MDA, and bax (P < 0.05), negatively correlated with expressions of SOD and bcl-2 (P < 0.05), KLF4 was negatively correlated with expressions of TNF-α, IL-6, MDA and bax (P < 0.05), and positively correlated with expressions of SOD and bcl-2 (P < 0.05). MiR-212 mimics can inhibit the luciferase activity of Wt-KLF4 (P < 0.05), and miR-212 inhibitor can promote the luciferase activity of Wt-KLF4 (P < 0.05). Down-regulation of miR-212 plays a protective role by targeting up-regulation of KLF4 to inhibit renal tissue inflammation, oxidative stress, and apoptosis in rats with AKI, which may be a potential target for clinical treatment of AKI in the future.
Collapse
|
47
|
Nouri A, Heibati F, Heidarian E. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1-9. [PMID: 32734364 PMCID: PMC7917173 DOI: 10.1007/s00210-020-01931-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
Abstract
Paraquat (PRQ) is a toxic chemical compound that is very noxious to animals and humans. Gallic acid is a phenolic compound that has antioxidant properties. In this study, we evaluated the ameliorative effect of gallic acid against PRQ-induced renal injury and oxidative stress. In this research, the rats were segregated into six groups. Group 1 is the control group; group 2 received paraquat only; group 3 received gallic acid only; and groups 4, 5, and 6 received paraquat plus gallic acid at doses of 25, 50, and 100 mg/kg bw respectively. Findings of this work displayed that the renal contents of the vitamin C, superoxide dismutase (SOD), and catalase (CAT) significantly reduced and the levels of the serum protein carbonyl, creatinine, serum glutamate pyruvate transaminase (sGPT), urea, serum glutamate oxaloacetate transaminase (sGOT), uric acid, MDA, serum IL-1β, and the kidney IL-1β gene expression were remarkably increased in the group receiving PRQ only compared with that in the control group. On the other hand, treatment with gallic acid after exposure to PRQ led to a significant elevation in renal vitamin C, SOD, and CAT levels plus a remarkable decrease in the serum protein carbonyl, creatinine, sGPT, urea, sGOT, uric acid, MDA, IL-1β, and renal gene expression of IL-1β in comparison with the PRQ-only-treated rats. Histological changes were also ameliorated by gallic acid administration. The data approve that gallic acid diminished the deleterious effects of PRQ exposure. In this regard, our results indicated that the administration of gallic acid could alleviate the noxious effects of PRQ on the antioxidant defense system and renal tissue.
Collapse
Affiliation(s)
- Ali Nouri
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heibati
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
48
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front Med (Lausanne) 2020; 7:589011. [PMID: 33392217 PMCID: PMC7773779 DOI: 10.3389/fmed.2020.589011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
49
|
Thong-Asa W, Prasartsri S, Klomkleaw N, Thongwan N. The neuroprotective effect of betanin in trimethyltin-induced neurodegeneration in mice. Metab Brain Dis 2020; 35:1395-1405. [PMID: 32894390 DOI: 10.1007/s11011-020-00615-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
Abstract
Betanin, a natural food colorant with powerful antioxidative properties, has not been studied in terms of neurodegenerative disease intervention. Therefore, the present study aimed to investigate the neuroprotective effects of betanin against trimethyltin chloride (TMT) -induced neurodegeneration in mice. Forty male ICR mice were randomly divided into four groups: Sham-veh, TMT-veh, TMT-Bet50 and TMT-Bet100. In the TMT groups, neurodegeneration was induced with a one-time intraperitoneal injection of 2.6 mg/kg TMT. Betanin-treated groups (Bet) were given oral doses of 50 or 100 mg/kg dissolved in normal saline solution. Administrations were started 24 h prior to TMT injection and continued for 2 weeks. Anxious behavior and spatial cognition were evaluated, respectively. After behavioral tests, brain oxidative status, hippocampal histology and choline acetyltransferase (ChAT) activity were evaluated. Results showed that TMT significant induce anxious behavior and spatial learning and memory deficits (p < 0.05). These were found concurrently with significant decreases in CA1 ChAT activity, brain tissue catalase (CAT) and superoxide dismutase (SOD) activities with significant increase in hippocampal CA1 degeneration (p < 0.05). Betanin 100 mg/kg exhibited significant anxiolytic effect, preventive effect on CA1 degeneration and CA1 ChAT activity alteration as well as improvement of spatial learning and memory deficits (p < 0.05). These were found concurrently with significant increases of reduced glutathione, CAT and SOD activities as well as the decrease in malondialdehyde (p < 0.05). We conclude that betanin 100 mg/kg exhibits neuroprotective effects against TMT-induced neurodegeneration in mice via its anti-oxidative properties, protective against hippocampal CA1 degeneration and ChAT activity alteration. Therefore, betanin is interesting in further neurodegenerative therapeutic study and applications.
Collapse
Affiliation(s)
- Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | - Supakorn Prasartsri
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nattakan Klomkleaw
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nutnicha Thongwan
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
50
|
Li ZC, Zhang JY, Wu YQ, Zhan YL, Chang XL. Adsorption and desorption studies of betaxanthin from yellow beet onto macroporous resins. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1826966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhi-cheng Li
- School of Life Sciences, Yantai University, Yantai, China
| | - Jie-yu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Yu-qian Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Ya-li Zhan
- Qingdao Pengyuan Kanghua Natural Products Company, Co. Ltd., Laixi, China
| | - Xiu-lian Chang
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|