1
|
Ramírez V, Gálvez-Ontiveros Y, de Bobadilla VAF, González-Palacios P, Salcedo-Bellido I, Samaniego-Sánchez C, Álvarez-Cubero MJ, Martínez-González LJ, Zafra-Gómez A, Rivas A. Exploring the role of genetic variability and exposure to bisphenols and parabens on excess body weight in Spanish children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117206. [PMID: 39427540 DOI: 10.1016/j.ecoenv.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Gene-environment interaction studies are emerging as a promising tool to shed light on the reasons for the rapid increase in excess body weight (overweight and obesity). We aimed to investigate the influence of several polymorphisms on excess weight in Spanish children according to a short- and long-term exposure to bisphenols and parabens, combining individual approach with the joint effect of them. This case-control study included 144 controls and 98 cases children aged 3-12 years. Thirty SNPs in genes involved in obesity-related pathways, xenobiotic metabolism and hormone systems were genotyped using the GSA microchip technology and qPCRs with Taqman® probes. Levels of bisphenols and parabens in urine and hair were used to assess short- and long-term exposure, respectively, via UHPLC-MS/MS system. LEPR rs9436303 was identified as a relevant risk variant for excess weight (ORDom:AAvsAG+GG=2.65, p<0.001), and this effect persisted across exposure-stratified models. For long-term exposure, GPX1 rs1050450 was associated with increased excess weight at low single paraben exposure (ORGvsA=2.00, p=0.028, p-interaction=0.016), whereas LEPR rs1137101 exhibited a protective function at high co-exposure (ORDom:AAvsAG+GG=0.17, p=0.007, p-interaction=0.043). ESR2 rs3020450 (ORDom:GGvsAG+AA=5.17, p=0.020, p-interaction=0.028) and CYP2C19 rs4244285 (ORDom:GGvsAG+AA=3.54, p=0.039, p-interaction=0.285) were identified as predisposing variants at low and high co-exposure, respectively. In short-term exposure, higher odds were observed for INSIG2 rs7566605 at high bisphenol exposure (ORCvsG=2.97, p=0.035, p-interaction=0.017) and for GSTP1 rs1695 at low levels (ORDom:AAvsAG+GG=5.38, p=0.016, p-interaction=0.016). At low and medium co-exposure, SH2B1 rs7498665 (ORAvsG=0.17, p=0.015, p-interaction=0.085) and MC4R rs17782313 (ORAvsG=0.10, p=0.023, p-interaction=0.045) displayed a protective effect, whereas ESR2 rs3020450 maintained its contributing role (ORGvsA=3.12, p=0.030, p-interaction=0.010). Our findings demonstrate for the first time that understanding the genetic variation in excess weight and how the level of exposure to bisphenols and parabens might interact with it, is crucial for a more in-depth comprehension of the complex polygenic and multifactorial aetiology of overweight and obesity.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | | | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Dogra K, Lalwani D, Dogra S, Panday DP, Raval NP, Trivedi M, Mora A, Hernandez MSG, Snyder SA, Mahlknecht J, Kumar M. Indian and global scenarios of Bisphenol A distribution and its new analogues: Prevalence & probability exceedance. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135128. [PMID: 39094315 DOI: 10.1016/j.jhazmat.2024.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
We compare, the prevalence, fate, and sources of Bisphenol A both globally and in India. India has the highest concentration of BPA and Bisphenol S(BPS) in general, with vegetables, particularly corn, beans, strings, and raw or canned vegetables, being the largest contributors. Among all the matrices, bisphenols (BPs) are found in the highest concentration in food, followed by surface water, wastewater, and indoor dust. BPA, BPS, and BPF are the most commonly reported analogues in India, with BPA being the most dominant category used worldwide. The highest concentration of BPs is observed in Uttar Pradesh, Punjab and Haryana that are three major agricultural states of India however, there is still a research gap regarding the dietary exposure to BPs on an individual level. Environmentally detected BPA occurs in a range of below detection to 10636 ng. L-1, with significant geographic variations. Interestingly, the order of abundance in India was maximum for BPS, which is contrary to the global average, where BPA is observed as most abundant. BPS is found to be the most common BPs analogue in surface water worldwide, with limited removal efficiency by both naturally remediation and conventional treatment methods. Similar patterns were observed in the US-India and Japan-Korea regions in terms of their source-sink-prevalence-fate dynamics. The probability of exceeding safe concentrations of BPs is higher in India and Korea, suggesting that these countries are more vulnerable to high prevalence concentrations and the subsequent public health hazards.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Dipa Lalwani
- Department of Environmental Science & Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Anand, Gujarat, India
| | - Shiwangi Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering, SRM University-AP, Andhra Pradesh, 522240, India
| | - Murgesh Trivedi
- Department of Environmental and Life Science, KSKV Kachchh University, Bhuj, 370001, Gujarat, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Shane A Snyder
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; School of Civil & Environmental Engineering, Georgia Institute of Technology, 30332 USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| |
Collapse
|
3
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
5
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
6
|
Abdulazeez ZM, Yazici F, Aksoy A. Influence of UV light, ultrasound, and heat treatment on the migration of bisphenol A from polyethylene terephthalate bottle into the food simulant. Food Chem 2024; 439:138162. [PMID: 38100872 DOI: 10.1016/j.foodchem.2023.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
This research examined the impacts of ultrasound, UV light, storage time, and temperature on the leaching of bisphenol A (BPA) from polyethylene terephthalate (PET) drinking water bottles in Turkey. The initial phase of the investigation encompassed the quantification of BPA in two distinct brands of bottled water. Samples were extracted by solid- phase extraction (SPE) and analyzed by high performance liquid chromatography with fluorescence detection (HPLC-FLD). According to the results in the first part, the highest BPA levels were found in bottled water. In the second part of the study, 10 to 30 min of ultrasound treatment increased the BPA migration with increased time in simulants. In the first and second weeks of storage at 25 °C, the effect of storage on BPA migration was below the detection limit (
Collapse
Affiliation(s)
- Zana M Abdulazeez
- Department of Food Science and Quality Control, Faculty of Agricultural Engineering Sciences, University of Sulaimani, Iraq.
| | - Fehmi Yazici
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Turkey
| | - Abdurrahman Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
7
|
Sendra M, Cavia-Saiz M, Múñiz P. Are the BPA analogues an alternative to classical BPA? Comparison between 2D and alternative 3D in vitro neuron model to assess cytotoxic and genotoxic effects. Toxicology 2024; 502:153715. [PMID: 38211720 DOI: 10.1016/j.tox.2023.153715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BPA is used in a wide range of consumer products with very concern toxicological properties. The European Union has restricted its use to protect human health. Industry has substituted BPA by BPA analogues. However, there is a lack of knowledge about their impacts. In this work, BPA and 5 BPA analogues (BPS, BPAP, BPAF, BPFL and BPC) have been studied in classical SH-SY5Y and the alternative 3D in vitro models after 24 and 96 h of exposure. Cell viability, percentage of ROS, cell cycle phases as well as the morphology of the spheroids were measured. The 2D model was more sensitive than the 3D models with differences in cell viability higher than 60% after 24 h of exposure, and different mechanisms of ROS production. After chronic exposure, both models were more affected in comparison to the 24 h exposure. After a recovery time (96 h), the spheroids exposed to 2.5-40 µM were able to recover cell viability and the morphology. Among the BPs tested, BPFL>BPAF>BPAP and >BPC revealed higher toxicological effects, while BPS was the only one with lower effects than BPA. To conclude, the SH-SY5Y 3D model is a suitable candidate to perform more reliable in vitro neurotoxicity tests.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), R&D Center, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain
| | - Pilar Múñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain
| |
Collapse
|
8
|
Zheng Q, Xiao J, Zhang D, Li X, Xu J, Ma J, Xiao Q, Fu J, Guo Z, Zhu Y, Ji J, Lu S. Bisphenol analogues in infant foods in south China and implications for infant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168509. [PMID: 37977386 DOI: 10.1016/j.scitotenv.2023.168509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Bisphenol analogues (BPs) are commonly used as modifiers, stabilizers and photo-initiators in polymer materials, including those used in food packaging. Compared to adults, infants are more sensitive to chemicals because their bodies are growing and not fully developed. Therefore, it is essential to determine the concentrations of BPs in common infant foods to assess infant exposure and prevent hazards. We collected 54 infant formula (IF) samples, 90 complementary food (CMF) samples and 62 breastmilk samples from breastfeeding women in south China. Tandem mass spectrometry coupled to liquid chromatography separation (HPLC-MS/MS) was used to detect the concentrations of 8 BPs in the three types of food samples. The estimated daily intake (EDI) of infants was also assessed. The results showed that the detection frequency of bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) were relatively high among the different infant foods. BPF, BPP and BPS were predominant among the detected BPs. The lowest 95th EDI for BPA was 0.67 ng kg-bw-1 day-1, exceeding the tolerable daily intake (TDI) limit for BPA set by the European Food Safety Authority in 2023. Thus, BP exposure is a significant risk to infants. More attention should be paid to the presence of BPs in daily use products and food, and intake limits should be set for BPs other than BPA.
Collapse
Affiliation(s)
- Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
González N, Souza MCO, Cezarette GN, Rocha BA, Devoz PP, Dos Santos LC, Barcelos GRM, Nadal M, Domingo JL, Barbosa F. Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168294. [PMID: 37924872 DOI: 10.1016/j.scitotenv.2023.168294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Organic pollutants are widely distributed in the environment. Due to their physical and chemical characteristics, they tend to be biomagnified in food chains, mainly in aquatic organisms. Therefore, food consumption is a significant route of lifelong exposure. Although the Amazon River basin contains the highest freshwater biodiversity on Earth, there is scarce literature focusing on the levels of organic pollutants in the local population. The present study was aimed at assessing the levels of several environmental pollutants (polycyclic aromatic hydrocarbons, bisphenols, parabens, and benzophenones) in urine samples from riverside communities along the Tapajós and Amazon Rivers in the Brazilian Amazon region. The results show a 100 % detection of naphthalene metabolites (namely, 1-hydroxy-naphthalene (1OH-NAP), 2-hydroxy-naphthalene (2OH-NAP)), with the highest levels belonging to benzylparaben (BzP) (17.3 ng/mL). Gender-specific analysis revealed that women had significantly higher levels of certain PAH metabolites (i.e., 1OH-NAP and 2-hydroxy-fluorene (2OH-FLU)) than men. In turn, most of the evaluated compounds were higher in urine samples from people living near the Amazon River, which presents increased traffic of boats and ships than the Tapajós River. On the other hand, the human health risk assessment suggested that all communities are at risk of suffering non-carcinogenic effects from exposure to PAHs. At the same time, they are also at risk of carcinogenic effects from exposure to benzo[a]pyrene metabolites. Thus, further studies are needed in order to evaluate the potential health effects of exposure to a mixture of these organic pollutants and other contaminants present in the area, such as mercury.
Collapse
Affiliation(s)
- Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Paula Pícoli Devoz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Cassulatti Dos Santos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | | | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Lucarini F, Gasco R, Staedler D. Simultaneous Quantification of 16 Bisphenol Analogues in Food Matrices. TOXICS 2023; 11:665. [PMID: 37624170 PMCID: PMC10458576 DOI: 10.3390/toxics11080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Exposure to bisphenol analogues can occur in several ways throughout the food production chain, with their presence at higher concentrations representing a risk to human health. This study aimed to develop effective analytical methods to simultaneously quantify BPA and fifteen bisphenol analogues (i.e., bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol TMC, and tetramethyl bisphenol F) present in canned foods and beverages. Samples of foods and beverages available in the Swiss and EU markets (n = 22), including canned pineapples, ravioli, and beer, were prepared and analyzed using QuEChERS GC-MS. The quantification method was compared to a QuEChERS LC-MS/MS analysis. This allowed for the selective and efficient simultaneous quantitative analysis of bisphenol analogues. Quantities of these analogues were present in 20 of the 22 samples tested, with the most frequent analytes at higher concentrations: BPA and BPS were discovered in 78% and 48% of cases, respectively. The study demonstrates the robustness of QuEChERS GC-MS for determining low quantities of bisphenol analogues in canned foods. However, further studies are necessary to achieve full knowledge of the extent of bisphenol contamination in the food production chain and its associated toxicity.
Collapse
Affiliation(s)
- Fiorella Lucarini
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
- School of Engineering and Architecture, Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland, 1700 Fribourg, Switzerland
| | - Rocco Gasco
- Department for Environmental and Aquatic Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Davide Staedler
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
11
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Palacios Colón L, Rascón AJ, Ballesteros E. Determination of Parabens and Phenolic Compounds in Dairy Products through the Use of a Two-Step Continuous SPE System Including an Enhanced Matrix Removal Sorbent in Combination with UHPLC-MS/MS. Foods 2023; 12:2909. [PMID: 37569177 PMCID: PMC10418826 DOI: 10.3390/foods12152909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy products can be contaminated by parabens and phenolic compounds from a vast variety of sources, such as packaging and manufacturing processes, or livestock through feed and environmental water. A two-step continuous solid-phase extraction (SPE) and purification methodology was developed here for the determination of both types of compounds. In the first step, a sample extract is passed in sequence through an EMR-lipid sorbent and an Oasis PRiME HBL sorbent to remove fat and preconcentrate the analytes for subsequent detection and quantification by UHPLC-MS/MS. This method enabled the determination of 28 parabens and phenolic contaminant with excellent recovery (91-105%) thanks to the SPE sorbent combination used. The proposed method was validated through the determination of the target compounds, and was found to provide low detection limits (1-20 ng/kg) with only slight matrix effects (0-10%). It was used to analyse 32 different samples of dairy products with different packaging materials. Bisphenol A and bisphenol Z were the two phenolic compounds quantified in the largest number of samples, at concentrations over the range of 24-580 ng/kg, which did not exceed the limit set by European regulations. On the other hand, ethylparaben was the paraben found at the highest levels (33-470 ng/kg).
Collapse
Affiliation(s)
| | | | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, 23700 Linares, Jaén, Spain; (L.P.C.); (A.J.R.)
| |
Collapse
|
13
|
Herrero M, Souza MCO, González N, Marquès M, Barbosa F, Domingo JL, Nadal M, Rovira J. Dermal exposure to bisphenols in pregnant women's and baby clothes: Risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163122. [PMID: 37001656 DOI: 10.1016/j.scitotenv.2023.163122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Textile manufacturing consists of a multiple-step process in which a wide range of chemicals is used, some of them remaining in the final product. Bisphenols (BPs) are non-intentionally added compounds in textiles, whose prolonged skin contact may mean a significant source of daily human exposure, especially in vulnerable groups of the population. The present study aimed to determine the levels of bisphenol A (BPA) and some BP analogs (BPB, BPF, and BPS) in 120 new clothes commercialized in Spain for pregnant women, newborns, and toddlers. In addition, exposure assessment and risk characterization were also carried out. Traces of BPA were found in all the samples, with a median concentration of 7.43 ng/g. The highest values were detected in textile samples made of polyester. Regarding natural fibers, higher concentrations of BPs were observed in garments made of conventional cotton than in those made of organic cotton, with a significant difference for BPS (1.24 vs. 0.76 ng/g, p < 0.05). Although toddlers have a larger skin-area-to-body-weight ratio, pregnant women showed higher exposure to BPs than children. Anyhow, the non-carcinogenic risks associated with BPA exposure were below the unity, even under the upper-bound scenario. However, risks could be underestimated because other exposure routes were not considered in this study. The use of BPA has been restricted in some food-related products; therefore, BPA should also be regulated in the textile industry.
Collapse
Affiliation(s)
- Marta Herrero
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain; University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, ASTox - Analytical and System Toxicology Laboratory, Av. do Café s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Neus González
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Montse Marquès
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, ASTox - Analytical and System Toxicology Laboratory, Av. do Café s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Joaquim Rovira
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
14
|
Talari K, Ganji SK, Tiruveedula RR. Gas chromatography-mass spectrometric determination of bisphenol residues by dispersive solid phase extraction followed by activated carbon spheres cleanup from fish feed samples. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023:14690667231174446. [PMID: 37186780 DOI: 10.1177/14690667231174446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bisphenols are known endocrine disruptors commonly utilized in food packaging and storage materials, which frequently come into touch with multiple food products packed in them. The bisphenols in fish feed and other feed materials for aquatic organisms are harmful. The consumption of such marine foods is hazardous. Hence, the feed of aquatic products needs to be verified for the presence of bisphenols. The present study was focused on developing and validating a rapid, selective, and sensitive method to quantify 11 bisphenols from the fish feed with dispersive solid-phase extraction, which was cleaned by an optimized amount of activated carbon spheres and silylated by N,O-bis(trimethylsilyl)trifluoro acetamide and analyzed by gas chromatography-mass spectrometry. The new method was rigorously tested and verified after carefully tuning various parameters affecting analyte recovery. Limit of detection (LOD) were set at 0.5-5 ng/g and limit of quantification (LOQ) at 1-10 ng/g, respectively, resulting in 95-114% recoveries. Interday and intraday precisions in terms of relative standard deviation were found to be less than 11%. The proposed approach was effectively applied in floating and sinking fish feeds. The obtained results showed that higher concentration of bisphenol A, followed by bisphenol TMC, and bisphenol M at a concentration of 256.10, 159.01, and 168.82 ng/g in floating feed and 88.04, 200.79, and 98.03 ng/g in sinking feed samples, respectively.
Collapse
Affiliation(s)
- Kalpana Talari
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
- Department of Chemistry, Government College for Women (A), Guntur, Andhra Pradesh, India
| | - Sai Krishna Ganji
- Centre for Mass Spectrometry, Analytical and Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | |
Collapse
|
15
|
Ni L, Zhong J, Chi H, Lin N, Liu Z. Recent Advances in Sources, Migration, Public Health, and Surveillance of Bisphenol A and Its Structural Analogs in Canned Foods. Foods 2023; 12:foods12101989. [PMID: 37238807 DOI: 10.3390/foods12101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The occurrence of bisphenol A (BPA) and its structural analogs, known as endocrine disruptors is widely reported. Consumers could be exposed to these chemicals through canned foods, leading to health risks. Considerable advances have occurred in the pathogenic mechanism, migration law, and analytical methodologies for these compounds in canned foods. However, the confusion and controversies on sources, migration, and health impacts have plagued researchers. This review aimed to provide insights and perspectives on sources, migration, effects on human health, and surveillance of these chemicals in canned food products. Current trends in the determination of BPA and its structural analogs have focused on mass spectroscopy and electrochemical sensor techniques. Several factors, including pH, time, temperature, and volume of the headspace in canned foods, could affect the migration of the chemicals. Moreover, it is necessary to quantify the proportion of them originating from the can material used in canned product manufacturing. In addition, adverse reaction research about exposure to low doses and combined exposure with other food contaminants will be required. We strongly believe that the information presented in this paper will assist in highlighting the research needs on these chemicals in canned foods for future risk evaluations.
Collapse
Affiliation(s)
- Ling Ni
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology & Nutrition, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
16
|
Agarwal R, Joshi SS. Toxicity of Bisphenol in Pregnant Females: First Review of Literature in Humans. Cureus 2023; 15:e39168. [PMID: 37332408 PMCID: PMC10276200 DOI: 10.7759/cureus.39168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Bisphenol analogues are widely used in consumer products such as disposable dinnerware, canned food, personal care products, bottled beverages, and more, and dietary exposure is the main pathway. Bisphenol A is used to manufacture synthetic resins and commercial plastics in large quantities. According to epidemiological and animal studies, bisphenols disrupt the reproductive, immunological, and metabolic systems. These analogues are estrogenic like Bisphenol A, although human studies are limited. We did a thorough search of the literature on the toxicity of bisphenol on reproductive and endocrine systems in pregnancy, focusing particularly on human studies. Hence, we present a comprehensive literature review on this topic. During our literature search, three epidemiological studies and one human observational study demonstrated a substantial link between bisphenol toxicity and recurrent miscarriages. The aforementioned research shows that bisphenol may harm pregnancy and cause miscarriages. We believe this is the first literature review on the topic.
Collapse
Affiliation(s)
- Radhika Agarwal
- Physiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, IND
| | - Shrirang S Joshi
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
17
|
Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography−mass spectrometry. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Toptancı İ. Risk assessment of bisphenol related compounds in canned convenience foods, olives, olive oil, and canned soft drinks in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54177-54192. [PMID: 36869959 DOI: 10.1007/s11356-023-26228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The presence of Bisphenol A (BPA), Bisphenol A Diglycidyl Ether (BADGE), and their derivatives in seventy-nine samples of food products available in Turkish stores was determined using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Among Bisphenol A and its analogues, BPA was the most detected migrant with 56.97%. Fish products had the highest level of BPA with 0.102 mg/kg although only three fish samples exceeded the Specific Migration Limit (SML) for BPA of 0.05 mg/kg of food. The BPF, BPS, and BPB in all analyzed foods ranged between 0-0.021, 0-0.036, and 0.072 mg/kg, respectively. BADGE derivates, BADGE·2H2O and cyclo-di-BADGE (CdB) were present in 57 and 52 samples with concentrations ranging between 0-0.354, and 0-1.056 mg/kg, respectively. All the analyzed traditional Turkish ready-to-eat meals and fish products were contaminated with BADGE·2H2O and CdB. The overall levels of BADGE and the derivates were below the specific migration limit. CdB was found at higher concentrations in traditional Turkish ready-to-eat meals, up to 1.056 mg/kg. The CdB concentration in most of the samples was above the highest figure with 0.05 mg/kg authorized by the German Federal Institute for Risk Assessment. The predominant chlorinated derivative was BADGE·H2O·HCl which was found in thirty-seven samples in the range of 0.007-0.061 mg/kg.
Collapse
Affiliation(s)
- İsra Toptancı
- Department of Food Contact Material and Dioxin, Istanbul Food Control Laboratory, Istanbul, Türkiye.
| |
Collapse
|
19
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
|
20
|
Li T, Wang R, Yin R, Xu H, Han X, Du Q, Cheng J, Lin Z, Wang P. Effective Extraction of Bisphenol Compounds from Milk with Stable Zr(IV)-Based Metal-Organic Framework Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4272-4280. [PMID: 36857603 DOI: 10.1021/acs.jafc.2c09085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol compounds (BPs) have recently been the subject of growing interest due to their wide use in industrial and consumer products. Besides their adverse effects on human endocrine system, effective extraction of BPs and their elimination from complex sample matrix are still significant challenges in food analysis. Herein, a novel Zr(IV)-based metal-organic framework (MOF), named BUT-16, has been synthesized and utilized for the extraction and enrichment of BPs in milk samples. Bisphenol A (BPA), one of the highest production volume BPs, is used as a model molecule. The uptake capacity for BPA can reach up to 48 mg/g, and the adsorption rate is rapid (∼10 min), because of the larger surface area and cooperation of multiple functionalities of BUT-16. Employing BUT-16 in solid-phase extraction, coupled with ultra-performance liquid chromatography-tandem mass spectrometry detection, we generated a rapid, facile, and robust method for the enrichment and detection of trace BPA and its 12 substitutes in milk samples. After optimization, the limits of detection and quantification for BPs can be achieved as low as 0.05 and 0.2 ng/mL, respectively. Without the correction of the isotopic internal standard, the average recoveries of BPs at the different spiked concentrations varied from 63.8 to 120.6%, with a satisfactory precision (RSD ≤ 8.2%). Furthermore, the proposed method was successfully applied to the detection of BPs in real milk samples, and the results were in accordance with those of methods reported previously.
Collapse
Affiliation(s)
- Tong Li
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruiguo Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruijie Yin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Hongyan Xu
- Inner Mongolia Yili Industrial Group Co.,Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Xiaoxu Han
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Qiuling Du
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Jie Cheng
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Peilong Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| |
Collapse
|
21
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
22
|
Wang X, Nag R, Brunton NP, Bakar Siddique MA, Harrison SM, Monahan FJ, Cummins E. Hazard characterization of bisphenol A (BPA) based on rodent models - Multilevel meta-analysis and dose-response analysis for reproductive toxicity. Food Chem Toxicol 2023; 172:113574. [PMID: 36566970 DOI: 10.1016/j.fct.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol A (BPA) is a widely used synthetic industrial compound frequently detected in food. Dietary exposure to BPA has been recognised as a potential health concern. However, there are uncertainties regarding BPA toxicity. The primary objective of this study was to summarise and analyse multiple toxicity endpoints of adverse reproductive effects caused by BPA exposure in rodent models. Therefore, a multilevel meta-analysis and subsequent dose-response analysis were conducted. Relevant articles published in English between 2012 and 2021 were collected from online databases, viz. Scopus, EmBase, Web of Science, and PubMed. In total, 41 studies were included for statistical analysis. All statistical analyses were performed using open-source RStudio packages. Summary effects indicated the statistical significance of BPA exposure on decreased sperm concentration (Hedges' g: -1.35) and motility (Hedges' g: -1.12) on average, while no significant effects were observed on the absolute and relative weight of male and female reproductive organs. The lowest mean toxicological reference dose values of 0.0011 mg (kg bw)-1 day-1 was proposed for BPA exposure on sperm concentration from the dose-response model. In conclusion, potential health risks from BPA exposure were shown with regards to reproductive toxicity, especially that sperm concentration and sperm motility require further attention.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Tvrdý V, Dias P, Nejmanová I, Carazo A, Jirkovský E, Pourová J, Fadraersada J, Moravcová M, Peterlin Mašič L, Sollner Dolenc M, Mladěnka P. The effects of bisphenols on the cardiovascular system ex vivo and in vivo. CHEMOSPHERE 2023; 313:137565. [PMID: 36528156 DOI: 10.1016/j.chemosphere.2022.137565] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The human population is regularly exposed to bisphenols. The first compound of this class, bisphenol A, is burdened by numerous reports of its potential toxicity and has been hence replaced by its analogues, so-called next generation bisphenols. Their widespread use has made them pervasive throughout the environment. These endocrine disrupting chemicals can affect the cardiovascular system, and hence the aim of this study was to test 14 bisphenols (A, AF, AP, B, BP, C, E, F, G, M, P, PH, S and Z), and compare their effects in vitro (human and rat cell lines), ex vivo (isolated rat aorta) and in vivo (Wistar Han rats, acutely or chronically exposed to low environmental and high toxic doses). The majority of the tested bisphenols relaxed rat aorta, but their potency varied markedly. The most potent compound, bisphenol AF, had an EC50 of 57 μM. The mechanism of action was likely based on the inhibition of calcium influx via L-type calcium channels. The cytotoxicity of bisphenols towards 4 human and rat cell lines (H9c2, A-10, MCF7/S0.5 and MCF7/182R-6) showed variable potencies ranging from units of micromolar to millimolar concentrations. Based on these data, an effect on arterial blood pressure and possible cardiotoxicity was expected. Contrarily, the in vivo acute effects of three doses (0.005, 0.05 and 2.5 mg/kg) of bisphenol AF and 3 other analogues (A, S and F) on the cardiovascular system were rather biologically negligible. The most potent bisphenol, AF, was also administered chronically at a dose of 2.5 mg/kg for 4 weeks to rats, but had no impact on arterial blood pressure. Our results showed that bisphenols can relax vascular smooth muscles, but the effective concentrations are too high to produce clear cardiovascular effects in relation to common biological exposure as was confirmed with the most potent bisphenol AF.
Collapse
Affiliation(s)
- Václav Tvrdý
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Patrícia Dias
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Iveta Nejmanová
- The Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Eduard Jirkovský
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Jana Pourová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Jaka Fadraersada
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Monika Moravcová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
24
|
Hahladakis JN, Iacovidou E, Gerassimidou S. An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:45-62. [PMID: 35362236 DOI: 10.1002/ieam.4611] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
With over 95% of bisphenol-A (BPA) used in the production of polycarbonate (PC) and epoxy resins, termed here as BPA-based plastic materials, components, and products (MCPs), an investigation of human exposure to BPA over the whole lifecycle of BPA-based plastic MCPs is necessary. This mini-review unpacks the implications arising from the long-term human exposure to BPA and its potential accumulation across the lifecycle of BPA-based plastics (production, use, and management). This investigation is timely and necessary in promoting a sustainable circular economy model. Restrictions of BPA in the form of bans and safety standards are often specific to products, while safety limits rely on traditional toxicological and biomonitoring methods that may underestimate human health implications and therefore the "safety" of BPA exposure. Controversies in regards to the: (a) dose-response curves; (b) the complexity of sources, release mechanisms, and pathways of exposure; and/or (c) the quality and reliability of toxicological studies, appear to currently stifle progress toward the regulation of BPA-based plastic MCPs. Due to the abundance of BPA in our MCPs production, consumption, and management systems, there is partial and inadequate evidence on the contribution of BPA-based plastic MCPs to human exposure to BPA. Yet, the production, use, and end-of-life management of plastic MCPs constitute the most critical BPA source and potential exposure pathways that require further investigation. Active collaboration among risk assessors, government, policy-makers, and researchers is needed to explore the impacts of BPA in the long term and introduce restrictions to BPA-based MCPs. Integr Environ Assess Manag 2023;19:45-62. © 2022 SETAC.
Collapse
Affiliation(s)
- John N Hahladakis
- Waste Management (FEWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Eleni Iacovidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, London, UK
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | | |
Collapse
|
25
|
Gély CA, Lacroix MZ, Roques BB, Toutain PL, Gayrard V, Picard-Hagen N. Comparison of toxicokinetic properties of eleven analogues of Bisphenol A in pig after intravenous and oral administrations. ENVIRONMENT INTERNATIONAL 2023; 171:107722. [PMID: 36584424 DOI: 10.1016/j.envint.2022.107722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to the restrictions of its use, Bisphenol A (BPA) has been replaced by many structurally related bisphenols (BPs) in consumer products. The endocrine disrupting potential similar to that of BPA has been described for several bisphenols, there is therefore an urgent need of toxicokinetic (TK) data for these emerging BPs in order to evaluate if their internal exposure could increase the risk of endocrine disruption. We investigated TK behaviors of eleven BPA substitutes (BPS, BPAF, BPB, BPF, BPM, BPZ, 3-3BPA, BP4-4, BPAP, BPP, and BPFL) by intravenous and oral administrations of mixtures of them to piglets and serial collection of blood over 72 h and urine over 24 h, to evaluate their disposition. Data were analyzed using nonlinear mixed-effects modeling and a comparison was made with TK predicted by the generic model HTTK package. The low urinary excretion of some BPs, in particular BPM, BPP and BPFL, is an important aspect to consider in predicting human exposure based on urine biomonitoring. Despite their structural similarities, for the same oral dose, all BPA analogues investigated showed a higher systemic exposure (area under the plasma concentration-time curve (AUC) of the unconjugated Bisphenol) than BPA (2 to 4 fold for 3-3BPA, BPAF, BPB and BPZ, 7-20 fold for BP4-4, BPAP, BPP, BPFL, BPF and BPM and 150 fold for BPS) due mainly to a considerable variation of oral bioavailability (proportion of BP administered by oral route that attains the systemic circulation unchanged). Given similarities in the digestive tract between pigs and humans, our TK data suggest that replacing BPA with some of its alternatives, particularly BPS, will likely lead to higher internal exposure to potential endocrine disruptive compounds. These findings are crucial for evaluating the risk of human exposure to these emerging BPs.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
26
|
Li H, Li H, Wu X, Wu Y, Zhang J, Niu Y, Wu Y, Li J, Zhao Y, Lyu B, Shao B. Human dietary exposure to bisphenol-diglycidyl ethers in China: Comprehensive assessment through a total diet study. ENVIRONMENT INTERNATIONAL 2022; 170:107578. [PMID: 36244230 DOI: 10.1016/j.envint.2022.107578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Despite the widespread use of bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) in various consumer products as protective plasticizer, studies on human dietary exposure to these compounds are scare. In this study, nine bisphenol diglycidyl ethers (BDGEs) including BADGE, BFDGE, and seven of their derivatives were determined in the Chinese adult population based on composite dietary samples collected from the sixth (2016-2019) China total diet study (TDS). Contamination level of nine BDGEs was determined in 288 composite dietary samples from 24 provinces in China. BADGE·2H2O and BADGE are the most frequently detected and BADGE·2H2O presented the highest mean concentration (2.402 μg/kg). The most contaminated food composite is meats, with a mean ∑9BDGEs of 8.203 μg/kg, followed by aquatic products (4.255 μg/kg), eggs (4.045 μg/kg), and dairy products (3.256 μg/kg). The estimated daily intake (EDI) of ∑9BDGEs based on the mean and 95th percentile concentrations are 121.27 ng/kg bw/day and 249.71 ng/kg bw/day. Meats, eggs, and aquatic products are the main source of dietary exposure. Notably, beverages and water, alcohols were the main contributors of dietary exposure to BADGE and BADGE·2H2O, followed by animal-derived foods. Dietary exposure assessment demonstrated that human dietary BDGEs do not pose risks to general population based on the mean and 95th percentile hazard index with < 1. This is the first comprehensive national dietary exposure assessment of BDGEs in Chinese general population.
Collapse
Affiliation(s)
- Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Heli Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Jatkowska N, Kubica P. Extraction and Analysis of Bisphenols and Their Derivatives in Infant and Toddler Ready-to-feed Meals by Ultrasound-assisted Membrane Extraction Followed by LC MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Qiao JY, Pang YH, Yan ZY, Shen XF. Electro-enhanced solid-phase microextraction with membrane protection for enrichment of bisphenols in canned meat. J Chromatogr A 2022; 1685:463592. [DOI: 10.1016/j.chroma.2022.463592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
29
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Souza JMO, Souza MCO, Rocha BA, Nadal M, Domingo JL, Barbosa F. Levels of phthalates and bisphenol in toys from Brazilian markets: Migration rate into children's saliva and daily exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154486. [PMID: 35278545 DOI: 10.1016/j.scitotenv.2022.154486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are extensively used in toys and childcare products. Therefore, children may be exposed to these compounds, causing potential adverse effects. Despite the strict control of the levels of these contaminants in toys by some nations, routine testing in Brazil is very scarce. The present study was aimed at determining the concentrations of PAEs and BPs in toys commercialized in Brazil, employing GC-MS and LC-MS/MS, respectively. Furthermore, the migration capacity of PAEs into saliva and the daily intake (EDI) were also estimated. Di-2-ethylhexyl phthalate (DEHP) was the PAE with the highest detection rate (93%) and migration rate (0.26 μg/min). Moreover, the levels of DEHP in some samples were above the threshold values set by the European Commission and the Brazilian Institute of Metrology, Standardization, and Industrial Quality. Among the BPs analogs, BPA and BPS presented the highest positive detection rates (72% and 30%, respectively). However, their levels were below the permitted values in all analyzed samples. A daily intake of DEHP was estimated at 29.8 μg/kg bw/day, being this exposure similar to those found in other countries and below the EFSA acceptable intake limit (50 μg/kg bw/day). However, our data are referred to exposure through oral contact with the analyzed toys, while the contribution of other potential sources, such as food consumption, were not here considered. To the best of our knowledge, this is the first study estimating the exposure of Brazilian children to PAEs and BPs, considering toys as the exposure source. These preliminary data may become a valuable guide for the control of EDC levels in toys commercialized in Brazil, as well as for future studies regarding estimation of exposure to EDCs by children taking into account multiple potential sources.
Collapse
Affiliation(s)
- Juliana Maria Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Marília Cristina Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Bruno Alves Rocha
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Jose Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory.
| |
Collapse
|
31
|
Shaaban H, Mostafa A, Alqarni AM, Almohamed Y, Abualrahi D, Hussein D, Alghamdi M. Simultaneous determination of bisphenol A and its analogues in foodstuff using UPLC-MS/MS and assessment of their health risk in adult population. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wang Q, Feng Q, Hu G, Gao Z, Zhu X, Epua Epri J. Simultaneous determination of seven bisphenol analogues in surface water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ao J, Huo X, Zhang J, Mao Y, Li G, Ye J, Shi Y, Jin F, Bao S, Zhang J. Environmental exposure to bisphenol analogues and unexplained recurrent miscarriage: A case-control study. ENVIRONMENTAL RESEARCH 2022; 204:112293. [PMID: 34728239 DOI: 10.1016/j.envres.2021.112293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The use of bisphenol A (BPA) has been substantially limited since 2010 due to its toxicity to human health. A group of bisphenol analogues that are structurally similar to BPA have been developed as the alternatives and used widely. The reproductive toxicity of these emerging chemicals has caused substantial concerns in recent years. Whether bisphenol analogues affect miscarriage, especially unexplained recurrent miscarriage (URM), remains to be explored. We conducted a hospital-based, case-control study with 1180 URM cases and 571 controls in China from 2014 to 2016. Concentrations of six bisphenol analogues (BPA, BPAF, BPAP, BPB, BPP and BPS) were measured in the urine samples collected at median intervals of 7.6 months after last miscarriage (interquartile ranges: 4.8, 14.7 months). Multiple logistic regression, Bayesian kernel machine regression (BKMR) and quantile g-computation (q-gcomp) were used to assess the relationship of bisphenol analogues with URM risk. We observed significantly higher levels of all urinary bisphenols in the cases than the controls. After controlling for potential confounders, bisphenol analogues were significantly associated with increased odds of URM in varying degrees. A dose-response pattern was observed for the associations of BPAF, BPAP and BPB quartiles with URM. The mixed exposure of six bisphenol analogues was positively associated with the risk of URM (adjusted odds ratio (aOR) = 1.25; 1.11-1.42), which was mainly driven by BPAP (60.1%), BPAF (25.1%) and BPA (14.8%). After age stratification, the risks tended to be higher in women aged 30 years or older, compared to women <30 years. Our large case-control study indicates that environmental exposure to bisphenol analogues is associated with an increased risk of URM. Older women may be more vulnerable to the insult.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaona Huo
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Yuchan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jiangfeng Ye
- Department of Clinical Epidemiology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Fan Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
34
|
Maršálek P, Kovaříková S, Lueerssen F, Večerek V. Determination of bisphenol A in commercial cat food marketed in the Czech Republic. J Feline Med Surg 2022; 24:160-167. [PMID: 34013813 PMCID: PMC10812174 DOI: 10.1177/1098612x211013745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. It is used in the synthesis of polycarbonate plastics, epoxy resins and other polymer materials. Owing to its excellent chemical and physical properties, it is used to produce food and beverage containers or the linings for metal products. BPA has been mentioned as a possible cause of feline hyperthyroidism. Cat food is considered one of the main sources of BPA intake. The purpose of this study was to evaluate BPA concentration in various types of commercial cat food available in the Czech Republic. METHODS In total, 172 samples prepared from 86 different types of commercial cat food were assessed. The concentration of BPA was measured using liquid chromatography-tandem mass spectrometry. RESULTS Measurable concentration of BPA was found in all samples (range 0.065-131 ng/g), with the highest concentration (mean ± SD) of BPA in canned food (24.6 ± 34.8 ng/g). When comparing BPA concentration in food trays (1.58 ± 0.974 ng/g), pouches (0.591 ± 0.592 ng/g) and dry food (1.18 ± 0.518 ng/g), concentrations of BPA in food trays and dry food were significantly higher (P <0.01) compared with pouches. Comparing BPA concentrations in canned food of different manufacturers, statistically significant differences were found as well. CONCLUSIONS AND RELEVANCE The highest concentrations of BPA were found in cans. Thus, cans represent the highest possibility of exposure to BPA in comparison with other types of commercial feline food.
Collapse
Affiliation(s)
- Petr Maršálek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Simona Kovaříková
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Friedrich Lueerssen
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimír Večerek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
35
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Lin N, Ma D, Liu Z, Wang X, Ma L. Migration of bisphenol A and its related compounds in canned seafood and dietary exposure estimation. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The present study sought to investigate the migration of target bisphenols, such as BPA, BPF, BADGE, BADGE·H2O, BADGE·2H2O, and BFDGE in 102 samples of several canned seafood, namely canned Antarctic krill, scallop, oysters, mussel, clam, and mantis shrimp stored for months at different temperatures through a high-performance liquid chromatographic-fluorescence detector (HPLC-FLD) combined with a microwave-assisted extraction method. Except for BFDGE, the other five bisphenols were observed in most of the analyzed samples. The canned shrimp showed the highest migration of BPA (0.089 mg/kg), exceeding the specific migration limit (SML) of BPA (0.05 mg/kg) specified by the European Union (EU), while the migration levels of BADGE and its derivatives were within their SMLs. The migration behavior of bisphenols in the canned seafood was majorly affected by the analytes, storage conditions, and food types. BPA, BADGE·H2O, and BADGE·2H2O were characterized by a rapid migration during the first half of the shelf life, which increased with the increase of temperature, followed by a stabilization or decline of their concentrations for prolonged durations. Besides, the migration of target bisphenols was significantly influenced by the storage temperature in some seafood species. Notably, higher migration level of BPA was found in samples with higher fat content. The average dietary exposure of Chinese adults to BPA, BPF, BADGE·2H2O, BADGE·H2O, and BADGE of canned seafood was estimated at 11.69, 1.21, 6.47, 8.74, and 4.71 ng/kg bw/day, respectively. The target hazard quotient (THQ) values of all the analyzed bisphenols were below 1 for the Chinese adults, suggesting an insignificant exposure to these bisphenols through canned seafood consumption.
Collapse
Affiliation(s)
- Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Derong Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | | | - Liyan Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
37
|
Chen HC, Chang JW, Sun YC, Chang WT, Huang PC. Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. TOXICS 2022; 10:toxics10010021. [PMID: 35051063 PMCID: PMC8781104 DOI: 10.3390/toxics10010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
The development of a rapid analytical approach for determining levels of antibacterial agents, plasticizers, and ultraviolet filters in biosamples is crucial for individual exposure assessment. We developed an analytical method to determine the levels of four parabens—bisphenols A (BPA) and its analogs, triclosan (TCS), triclocarban, and benzophenone-3 (BP-3)—in human urine. We further measured the levels of these chemicals in children and adolescents. We used a supported liquid extraction (SLE) technique coupled with an isotope-dilution ultraperformance liquid chromatography-tandem mass spectrometry (ID-UPLC-MS/MS) method to assess the detection performance for these chemicals. Forty-one urine samples from 13 children and 28 adolescents were assessed to demonstrate the capability and feasibility of our method. An acceptable recovery (75.6–102.4%) and matrix effect (precision < 14.2%) in the three-level spiked artificial urine samples were achieved, and good performance of the validated ID-UPLC-MS/MS method regarding linearity, limits of detection, and quantitation was achieved. The within-run and between-run accuracy and precision also demonstrated the sensitivity and stability of this analytical method, applied after SLE. We concluded that the ID-UPLC-MS/MS method with SLE pretreatment is a valuable analytical method for the investigation of urinary antibacterial agents, plasticizers, and ultraviolet filters in humans, useful for human biomonitoring.
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan (R.O.C.); (H.-C.C.); (Y.-C.S.)
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan (R.O.C.)
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan (R.O.C.);
| | - Yi-Chen Sun
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan (R.O.C.); (H.-C.C.); (Y.-C.S.)
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan (R.O.C.);
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan (R.O.C.);
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40678, Taiwan (R.O.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (R.O.C.)
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 360302, Taiwan (R.O.C.)
- Correspondence:
| |
Collapse
|
38
|
Application of Microgel as a Sorbent for Bisphenol Analysis in Liquid Food Samples. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bisphenols are well-known endocrine disruptors that can easily migrate from plastic and can containers to food. Due to the complicated matrix and ultra-low concentrations of bisphenols in food, samples require extensive preparation before instrumental analysis. In this paper, an environmental sensitive microgel was employed as a sorbent for the preconcentration of four bisphenols, bisphenol A (BPA), bisphenol B (BPB), bisphenol E (BPE) and bisphenol F (BPF), from liquid food samples. Liquid chromatography with fluorescence detection (LC-FLD) was used for the quantification of bisphenols. By applying microgel solid-phase extraction procedure, the limits of detections achieved in liquid food samples can be lowered to 0.9 µg·L−1 for BPF and BPA, 2.3 µg·L−1 for BPE and 2.9 µg·L−1 for BPB. Only 5 mg of microgel was sufficient to achieve good recoveries (70.5–109%) with precision (RSD 0.21–5.01%, n = 3) for different analyzed liquid food samples spiked at concentration levels of 50 µg·L−1. In five out of twelve of the analyzed samples (pineapple, mandarin, peach, mushroom and pickles), they were contaminated with BPA, and the determined concentration was in the range of 6.2–22 µg·L−1; however, these results are below the specific migration limit (SML) set for BPA (50 µg·kg−1).
Collapse
|
39
|
Xiao Z, Wang S, Suo D, Wang R, Huang Y, Su X. Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118457. [PMID: 34742818 DOI: 10.1016/j.envpol.2021.118457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Huang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
40
|
Wang Q, Zhang Y, Feng Q, Hu G, Gao Z, Meng Q, Zhu X. Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1430-1445. [PMID: 34351581 DOI: 10.1007/s11356-021-15711-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogs (BPs) are widely used in industrial and commercial products and have been detected in surface water, sediment, sewage, and sludge. The presence of BPs in the natural environment poses threats to the aquatic ecosystem and human health. The concentration, distribution, seasonal variation, and risk assessment of BPA and BPA structural analogs including BPB, BPF, BPS, BPZ, BPAF, and BPAP in surface water and sediment during dry season and flood season in Luoma Lake and its inflow rivers in Jiangsu Province, China, were investigated in this study. The detection frequency of BPA and BPF was 100%. Although the use of BPA is restricted, BPA is still the dominant BPs in surface water and sediment. The concentration of BPs in surface water during flood season was higher than that in dry season. The concentrations of BPs in Fangting River, Zhongyun River, and Bulao River were higher than those in Luoma Lake. The average concentrations of BPs in surface water were in the order of BPA > BPF> BPS> BPB > BPZ > BPAF> BPAP. Compared with other studies, the concentration of BPs in Luoma Lake was moderate. There is no significant spatial distribution and difference in seasonal variation of BPs concentration in sediment (p > 0.05). Compared with other studies, the contamination of BPs in sediment of Luoma Lake was relatively low. Risk quotient (RQ) was used to evaluate the ecological risk of BPs in water environment, and the 17β estradiol equivalent (EEQ) method was used to estimate the estrogenic activity of BPs. The risk assessment showed no high ecological risk (RQ < 1.0) and estrogenic risk (EEQ < 1.0 ng/L) in dry season and flood season. The estimated RQ and EEQt indicated that the ecological and human health impacts were negligible in the short term.
Collapse
Affiliation(s)
- Qiuxu Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Guanjiu Hu
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Zhanqi Gao
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Qingjun Meng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
41
|
Santonicola S, Ferrante MC, Colavita G, Mercogliano R. Development of a high-performance liquid chromatography method to assess bisphenol F levels in milk. Ital J Food Saf 2021; 10:9975. [PMID: 35036367 PMCID: PMC8696387 DOI: 10.4081/ijfs.2021.9975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Bisphenol F (BPF) is a bisphenol A (BPA) analogue. As an endocrine disruptor, BPF shows a similar BPA hormonal activity and greater endocrine effects. To assess BPF levels in milk a selective method based on solvent extraction with acetonitrile, solid-phase extraction (SPE), high-performance liquid chromatography with fluorescence detection (HPLC-FD) system, was developed. The method showed high recovery values (from 97.60 to 107.16%), and good detection and quantification limits (LOD=0.03 μg/L; LOQ=0.1 μg/L). To validate the analytical method, quantitative analyses of n.20 milk samples of whole milk were preliminarily carried out applying a monitoring system based on the control of different stages of pasteurized whole milk processing at a dairy company. The proposed method is simple, sensitive, and might be suitable to detect BPF residues in milk processing. At the dairy company, the occurrence of BPF levels ranging from
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences, University of Molise, Campobasso
| | | | - Giampaolo Colavita
- Department of Medicine and Health Sciences, University of Molise, Campobasso
| | | |
Collapse
|
42
|
Russo G, Laneri S, Di Lorenzo R, Ferrara L, Grumetto L. The occurrence of selected endocrine-disrupting chemicals in water and sediments from an urban lagoon in Southern Italy. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1944-1958. [PMID: 33794056 DOI: 10.1002/wer.1566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are agents able to exert perturbation toward the endocrine system via a broad array of signalling pathways. Some EDCs are released into the environment as a result of antropogenic activities. Analytical surveillance plays a critical role in investigating the prevalence of such chemicals in environmental samples. A study was carried out in a lagoon in Southern Italy, a water basin relates to the sea through a mouth channel, making this water body a "dynamic environment". The screening of fourteen EDCs in surface waters and sediments, includes a fast and cost-effective sample preparation, based on a solid-liquid (sediments) and liquid-liquid (surface waters) extraction and a chromatographic analysis by liquid chromatography tandem UV and fluorescence detection. Only four chemicals out the fourteen investigated EDCs were detected in both matrices with a frequency higher than 60%. The average concentrations of the single EDC were higher in sediments (730-155.000 ng kg-1 dw) than in surface waters (132-28.000 ng L-1 ). Limited to the assayed EDCs, the ecosystem has a low risk regarding to the conservation of biodiversity of the animal species living thereby, since the total estrogenic activity does not exceed 1 ng L-1 . PRACTITIONER POINTS: Occurrence of selected EDCs was investigated in an Italian lagoon in Southern Italy. BPAF, BADGE, and BPA were the most frequently and highly detected compounds in both waters and sediments. Concentration levels were greater in the sediment than in water samples. Low risk for the ecosystem biodiversity concerning investigated EDCs.
Collapse
Affiliation(s)
- Giacomo Russo
- Consorzio Interuniversitario INBB, Rome, Italy
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luciano Ferrara
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Lucia Grumetto
- Consorzio Interuniversitario INBB, Rome, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
Zheng J, Tian L, Bayen S. Chemical contaminants in canned food and can-packaged food: a review. Crit Rev Food Sci Nutr 2021; 63:2687-2718. [PMID: 34583591 DOI: 10.1080/10408398.2021.1980369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Canning, as a preservation technique, is widely used to extend the shelf life as well as to maintain the quality of perishable foods. During the canning process, most of the microorganisms are killed, reducing their impact on food quality and safety. However, the presence of a range of undesirable chemical contaminants has been reported in canned foods and in relation to the canning process. The present review provides an overview of these chemical contaminants, including metals, polymeric contaminants and biogenic amine contaminants. They have various origins, including migration from the can materials, formation during the canning process, or contamination during steps required prior to canning (e.g. the disinfection step). Some other can-packaged foods (e.g. beverages or milk powder), which are not canned foods by definition, were also discussed in this review, as they have been frequently studied simultaneously with canned foods in terms of contamination. The occurrence of these contaminants, the analytical techniques involved, and the factors influencing the presence of these contaminants in canned food and can-packaged food are summarized and discussed.
Collapse
Affiliation(s)
- Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
44
|
Buekers J, Verheyen V, Remy S, Covaci A, Colles A, Koppen G, Govarts E, Bruckers L, Leermakers M, St-Amand A, Schoeters G. Combined chemical exposure using exposure loads on human biomonitoring data of the 4th Flemish Environment and Health Study (FLEHS-4). Int J Hyg Environ Health 2021; 238:113849. [PMID: 34547602 DOI: 10.1016/j.ijheh.2021.113849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
To improve our understanding of internal exposure to multiple chemicals, the concept exposure load (EL) was used on human biomonitoring (HBM) data of the 4th FLEHS (Flemish Environment and Health Study; 2016-2020). The investigated chemicals were per- and polyfluoroalkyl substances (PFASs), bisphenols, phthalates and alternative plasticizers, flame retardants, pesticides, toxic metals, organochlorine compounds and polycyclic aromatic hydrocarbons (PAHs). The EL calculates "the number of chemicals to which individuals are internally exposed above a predefined threshold". In this study, the 50th and 90th percentile of each of the 45 chemicals were applied as thresholds for the EL calculations for 387 study participants. Around 20% of the participants were exposed to >27 chemicals above the P50 and to >6 chemicals above the P90 level. This shows that participants can be internally exposed to multiple chemicals in relatively high concentrations. When the chemical composition of the EL was considered, the variability between individuals was driven by some chemicals more than others. The variability of the chemical profiles at high exposure loads (EL-P90) was somewhat dominated by e.g. organochlorine chemicals, PFASs, phthalates, PAHs, organophosphate flame retardants, bisphenols (A & F), pesticides, metals, but to a lesser extent by brominated flame retardants, the organophosphorus flame retardants TCIPP & TBOEP, naphthalene and benzene, bisphenols S, B & Z, the pesticide 2,4-D, the phthalate DEP and alternative plasticizer DINCH. Associations between the EL and exposure determinants suggested determinants formerly associated with fat soluble chemicals, PFASs, bisphenols, and PAHs. This information adds to the knowledge needed to reduce the exposure by policymakers and citizens. However, a more in depth study is necessary to explore in detail the causes for the higher EL in some individuals. Some limitations in the EL concept are that a binary number is used for exposure above or below a threshold, while toxicity and residence time in the body are not accounted for and the sequence of exposure in different life stages is unknown. However, EL is a first useful step to get more insight in multiple chemical exposure in higher exposed subpopulations (relative to the rest of the sampled population).
Collapse
Affiliation(s)
- Jurgen Buekers
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium.
| | - Veerle Verheyen
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Sylvie Remy
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium
| | - Ann Colles
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Liesbeth Bruckers
- Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Diepenbeek, Belgium
| | - Martine Leermakers
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Greet Schoeters
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
45
|
Rahman MS, Adegoke EO, Pang MG. Drivers of owning more BPA. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126076. [PMID: 34004580 DOI: 10.1016/j.jhazmat.2021.126076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin worldwide. Despite the many studies documenting the toxicity of this substance, it remains a popular choice for consumer products. The internet, magazine articles, and newspaper reports are replete with tips on how to avoid BPA exposure, which mostly spread contradictory and often unscientific information. Therefore, based on a comprehensive search of the available biomedical literature, we summarized several confounding factors that may be directly or indirectly related to human BPA exposure. We found that the unique properties of BPA materials (i.e. low cost, light-weight, resistance to corrosion, and water/air-tightness), lack of personal health and hygiene education, fear of BPA-substitutes (with yet unknown risks), inappropriate production, processing, and marketing of materials containing BPA, as well as the state of regulatory guidance are influencing the increased exposure to BPA. Besides, we detailed the disparities between scientifically derived safe dosages of BPA and those designated as "safe" by government regulatory agencies. Therefore, in addition to providing a current assessment of the states of academic research, government policies, and consumer behaviors, we make several reasonable and actionable recommendations for limiting human exposure to BPA through improved labeling, science-based dosage limits, and public awareness campaigns.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
46
|
Jia LL, Zhang YJ, Gao CJ, Guo Y. Parabens and bisphenol A and its structural analogues in over-the-counter medicines from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45266-45275. [PMID: 33860894 DOI: 10.1007/s11356-021-13931-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals, such as over-the-counter (OTC) medicines, may be an important source of human exposure to several endocrine disruptors, though unnoticed to date. In the present study, we investigated the presence of six parabens and nine bisphenol A (BPA) and its analogues in OTC medicines manufactured in China. Parabens and bisphenols were present in more than 90% of the samples. The total measured concentrations of parabens and bisphenols were in the range of non-detectable (ND) to 213 ng/g and ND to 415 ng/g, respectively. Regarding parabens, methyl paraben (MeP) was the predominant analog, accounting for 43 ± 36% of the total amount, followed by ethyl paraben (EtP) (39 ± 35%), and others (< 10%). Bisphenol F and BPA were the predominant bisphenols, accounting for 24 ± 28% and 22 ± 26% of the total amount, respectively. The median values of estimated daily intakes (EDIs) of parabens and bisphenols were the highest for infants (2.96 and 3.14 ng/kg_bw/day, respectively) and the lowest for adults (0.69 and 0.25 ng/kg_bw/day, respectively); moreover, the EDIs of parabens and bisphenols were higher in Chinese patent medicines than in western pediatric medicines. The hazard quotient (HQ) for sum of MeP and EtP (∑(MeP + EtP)) and BPA in three age groups were within the safe zone (HQ < 0.0004). Monte Carlo simulation was applied to predict the human exposure risk of parabens and bisphenols. The predicted ranges of EDIs of parabens and bisphenols were much wider, and the extreme predicted values were observed in all four age groups, which were higher than the acceptable daily intake. The extreme predicted values of ∑(MeP + EtP) and BPA were indicative of carcinogenic risk in toddlers. These results implied potential risks for the Chinese people existed. Considering the huge export of Chinese traditional medicines and western medicines worldwide, and easy access to OTC medicines for the general population, the presence of parabens, bisphenols, and other environmental contaminants in medicines still need to be monitored.
Collapse
Affiliation(s)
- Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Chong-Jing Gao
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
47
|
Gély CA, Lacroix MZ, Morin M, Vayssière C, Gayrard V, Picard-Hagen N. Comparison of the materno-fetal transfer of fifteen structurally related bisphenol analogues using an ex vivo human placental perfusion model. CHEMOSPHERE 2021; 276:130213. [PMID: 34088095 DOI: 10.1016/j.chemosphere.2021.130213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by a variety of alternatives in consumer products. Due to their structural similarity to BPA, these alternatives are under surveillance, however, for potential endocrine disruption. Understanding the materno-fetal transfer of these BPA-related alternatives across the placenta is therefore crucial to assess prenatal exposure risks. The objective of the study was to assess and compare the placental transfer of a set of 15 selected bisphenols (BPs) (BP 4-4, BPA, BPAF, BPAP, 3-3 BPA, BPB, BPBP, BPC, BPE, BPF, BPFL, BPM, BPP, BPS and BPZ) using the ex vivo human placental perfusion model. The UHPLC-MS/MS method for simultaneous quantification of these BPs in perfusion media, within a concentration range of 0.003-5 μM, was able to measure placenta transfer rates as low as 0.6%-4%. Despite their structural similarities, these BPs differed greatly in placental transport efficiency. The placental transfer rates of BP4-4, BPAP, BPE, BPF, 3-3BPA, BPB, BPA were similar to that of antipyrine, indicating that their main transport mechanism was passive diffusion. By contrast, the placental transfer rates of BPFL and BPS were very limited, and intermediate for BPBP, BPZ, BPC, BPM, BPP and BPAF, suggesting weak diffusional permeability and/or that their passage might involve efflux transport. These placental transfer data will be particularly useful for predicting the fetal exposure of this important class of emerging contaminants.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Mathieu Morin
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France.
| | - Christophe Vayssière
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France; UMR 1027 INSERM, Team SPHERE, Université de Toulouse, France.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
48
|
Lestido-Cardama A, Sendón R, Bustos J, Santillana MI, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. Multi-analyte method for the quantification of bisphenol related compounds in canned food samples and exposure assessment of the Spanish adult population. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Khan MR, Ouladsmane M, Alammari AM, Azam M. Bisphenol A leaches from packaging to fruit juice commercially available in markets. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Sol CM, van Zwol - Janssens C, Philips EM, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Jaddoe VWV, Trasande L, Santos S. Maternal bisphenol urine concentrations, fetal growth and adverse birth outcomes: A population-based prospective cohort. Environ Health 2021; 20:60. [PMID: 33992119 PMCID: PMC8126069 DOI: 10.1186/s12940-021-00747-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/05/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to bisphenols may affect fetal growth and development. The trimester-specific effects of bisphenols on repeated measures of fetal growth remain unknown. Our objective was to assess the associations of maternal bisphenol urine concentrations with fetal growth measures and birth outcomes and identify potential critical exposure periods. METHODS In a population-based prospective cohort study among 1379 pregnant women, we measured maternal bisphenol A, S and F urine concentrations in the first, second and third trimester. Fetal head circumference, length and weight were measured in the second and third trimester by ultrasound and at birth. RESULTS An interquartile range increase in maternal pregnancy-averaged bisphenol S concentrations was associated with larger fetal head circumference (difference 0.18 (95% confidence interval (CI) 0.01 to 0.34) standard deviation scores (SDS), p-value< 0.05) across pregnancy. When focusing on specific critical exposure periods, any detection of first trimester bisphenol S was associated with larger second and third trimester fetal head circumference (difference 0.15 (95% CI 0.05 to 0.26) and 0.12 (95% CI 0.02 to 0.23) SDS, respectively) and fetal weight (difference 0.12 (95% CI 0.02 to 0.22) and 0.16 (95% CI 0.06 to 0.26) SDS, respectively). The other bisphenols were not consistently associated with fetal growth outcomes. Any detection of bisphenol S and bisphenol F in first trimester was also associated with a lower risk of being born small size for gestational age (Odds Ratio 0.56 (95% CI 0.38 to 0.74) and 0.55 (95% CI 0.36 to 0.85), respectively). Bisphenols were not associated with risk of preterm birth. CONCLUSIONS Higher maternal bisphenol S urine concentrations, especially in the first trimester, seem to be related with larger fetal head circumference, higher weight and a lower risk of being small size for gestational age at birth.
Collapse
Affiliation(s)
- Chalana M. Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charissa van Zwol - Janssens
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elise M. Philips
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Alexandros G. Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
- Department of Chemistry, the Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pediatrics, New York University School of Medicine, New York City, NY 10016 USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY 10016 USA
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, NY 10016 USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY 10016 USA
- Department of Population Health, New York University School of Medicine, New York City, NY USA
- New York Wagner School of Public Service, New York City, NY 10016 USA
- New York University Global Institute of Public Health, New York City, NY 10016 USA
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|