1
|
Li F, Mai C, Liu Y, Deng Y, Wu L, Zheng X, He H, Huang Y, Luo Z, Wang J. Soybean PHR1-regulated low phosphorus-responsive GmRALF22 promotes phosphate uptake by stimulating the expression of GmPTs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112211. [PMID: 39122156 DOI: 10.1016/j.plantsci.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Rapid alkalisation factors (RALFs) play crucial roles in plant responses to nutrient stress. However, the functions of Glycine max RALFs (GmRALFs) under low P (LP) stress remain elusive. In this study, we first identified 27 GmRALFs in soybean and then revealed that, under LP conditions, GmRALF10, GmRALF11, and GmRALF22 were induced in both roots and leaves, whereas GmRALF5, GmRALF6, and GmRALF25 were upregulated in leaves. Furthermore, GmRALF22 was found to be the target gene of the transcription factor GmPHR1, which binds to the P1BS cis-element in the promoter of GmRALF22 via electrophoretic mobility shift assay and dual-luciferase experiments. Colonisation with Bacillus subtilis which delivers GmRALF22, increases the expression of the high-affinity phosphate (Pi) transporter genes GmPT2, GmPT11, GmPT13, and GmPT14, thus increasing the total amount of dry matter and soluble Pi in soybeans. RNA sequencing revealed that GmRALF22 alleviates LP stress by regulating the expression of jasmonic acid- (JA-), salicylic acid- (SA-), and immune-related genes. Finally, we verified that GmRALF22 was dependent on FERONIA (FER) to promote Arabidopsis primary root growth under LP conditions. In summary, the GmPHR1-GmRALF22 module positively regulates soybean tolerance to LP.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Wu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huijing He
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yilin Huang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxi Luo
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
2
|
Singh J, Yadav P, Budhlakoti N, Mishra DC, Bhardwaj NR, Rao M, Sharma P, Gupta NC. Exploration of the Sclerotinia sclerotiorum-Brassica pathosystem: advances and perspectives in omics studies. Mol Biol Rep 2024; 51:1097. [PMID: 39460825 DOI: 10.1007/s11033-024-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The polyphagous phytopathogen Sclerotinia sclerotiorum causing Stem rot disease is a major biotic stress in Brassica, and affects the yield and quality in various crops of agricultural significance. It affects the crop at pre-maturity which causes a reduction in the seed yield and deteriorates the oil quality in rapeseeds and Indian mustard globally. The hemibiotrophic nature and long persistence in the soil as sclerotia have made this pathogen difficult to manage through conventional agronomical practices. Hence, for alternative strategies, it is important to understand the basic aspects of the pathogen and the pathogenesis processes in the host. The current developments in technologies for omics studies including whole-genomes, transcriptomes, proteomes, and metabolomes have deciphered various genes, transcription factors, effectors and their target molecules involved in interaction, disease establishment and pathogen progress in the host tissues. The current review encompasses the studies that were conducted to decipher the Brassica-S. sclerotiorum pathosystem and the molecular factors identified through multi-omics studies for their application in building resistance to Sclerotinia stem rot disease in the susceptible cultivars of oilseed Brassica.
Collapse
Affiliation(s)
- Joshi Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Prashant Yadav
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
- ICAR- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | | |
Collapse
|
3
|
Xue B, Liang Z, Liu Y, Li D, Liu C. Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2883. [PMID: 39458830 PMCID: PMC11511124 DOI: 10.3390/plants13202883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Rapid Alkalization Factor (RALF) is a signaling molecule in plants that plays a crucial role in growth and development, reproductive processes, and responses to both biotic and abiotic stresses. Although RALF peptides have been characterized in Arabidopsis and rice, a comprehensive bioinformatics analysis of the ZmRALF gene family in maize is still lacking. In this study, we identified 20 RALF genes in the maize genome. Sequence alignment revealed significant structural variation among the ZmRALF family genes. Phylogenetic analysis indicates that RALF proteins from Arabidopsis, rice, and maize can be classified into four distinct clades. Duplication events suggest that the expansion of the RALF gene family in maize primarily relies on whole-genome duplication. ZmRALF genes are widely expressed across various tissues; ZmRALF1/15/18/19 are highly expressed in roots, while ZmRALF6/11/14/16 are predominantly expressed in anthers. RNA-seq and RT-qPCR demonstrated that the expression levels of ZmRALF7, ZmRALF9, and ZmRALF13 were significantly up-regulated and down-regulated in response to PEG and NaCl stresses, respectively. Overall, our study provides new insights into the role of the RALF gene family in abiotic stress.
Collapse
Affiliation(s)
- Baoping Xue
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zicong Liang
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Yue Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110866, China
| | - Dongyang Li
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Chang Liu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| |
Collapse
|
4
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
6
|
Zhou LZ, Wang L, Chen X, Ge Z, Mergner J, Li X, Küster B, Längst G, Qu LJ, Dresselhaus T. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. THE PLANT CELL 2024; 36:1673-1696. [PMID: 38142229 PMCID: PMC11062432 DOI: 10.1093/plcell/koad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Z. mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Z. mays LLG 1 and 2 (ZmLLG1/2), and Z. mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Xia Chen
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Zengxiang Ge
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Xingli Li
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), 85354 Freising, Germany
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Istomina EA, Korostyleva TV, Kovtun AS, Slezina MP, Odintsova TI. Transcriptome-Wide Identification and Expression Analysis of Genes Encoding Defense-Related Peptides of Filipendula ulmaria in Response to Bipolaris sorokiniana Infection. J Fungi (Basel) 2024; 10:258. [PMID: 38667929 PMCID: PMC11050963 DOI: 10.3390/jof10040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.
Collapse
Affiliation(s)
- Ekaterina A. Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana V. Korostyleva
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Alexey S. Kovtun
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia;
| | - Marina P. Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| |
Collapse
|
8
|
Yu X, Xing H, Sun J, Du X, Lu G, Zhu L. New insight into phytometabolism and phytotoxicity mechanism of widespread plasticizer di (2-ethylhexyl) phthalate in rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163254. [PMID: 37019237 DOI: 10.1016/j.scitotenv.2023.163254] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) as widely utilized plasticizer has aroused increasing concerns since its endocrine disrupting effects and continuous accumulation in biota. To date, the interaction mechanism between DEHP and rice plants has not been clearly illustrated at molecular level. Here, we investigated biological transformation and response of rice plants (Oryza sativa L.) to DEHP at realistic exposure concentrations. Nontargeted screening by UPLC-QTOF-MS was used to verify 21 transformation products derived from phase I metabolism (hydroxylation and hydrolysis) and phase II metabolism (conjugation with amino acids, glutathione, and carbohydrates) in rice. MEHHP-asp, MEHHP-tyr, MEHHP-ala, MECPP-tyr and MEOHP-tyr as the conjugation products with amino acids are observed for the first time. Transcriptomics analyses unraveled that DEHP exposure had strong negative effects on genes associated with antioxidative components synthesis, DNA binding, nucleotide excision repair, intracellular homeostasis, and anabolism. Untargeted metabolomics revealed that metabolic network reprogramming in rice roots was induced by DEHP, including nucleotide metabolism, carbohydrate metabolism, amino acid synthesis, lipid metabolism, synthesis of antioxidant component, organic acid metabolism and phenylpropanoid biosynthesis. The integrated analyses of interaction between differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) endorsed that metabolic network regulated by DEGs was significantly interfered by DEHP, resulting in cell dysfunction of roots and visible growth inhibition. Overall, these finding generated fresh perspective for crops security caused by plasticizer pollution and enhanced the public focus on dietary risk.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Huanhuan Xing
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Zhang R, Shi PT, Zhou M, Liu HZ, Xu XJ, Liu WT, Chen KM. Rapid alkalinization factor: function, regulation, and potential applications in agriculture. STRESS BIOLOGY 2023; 3:16. [PMID: 37676530 PMCID: PMC10442051 DOI: 10.1007/s44154-023-00093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 09/08/2023]
Abstract
Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Tao Shi
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min Zhou
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huai-Zeng Liu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Jia Y, Li Y. Genome-Wide Identification and Comparative Analysis of RALF Gene Family in Legume and Non-Legume Species. Int J Mol Sci 2023; 24:ijms24108842. [PMID: 37240187 DOI: 10.3390/ijms24108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rapid alkalinization factor (RALF) are small secreted peptide hormones that can induce rapid alkalinization in a medium. They act as signaling molecules in plants, playing a critical role in plant development and growth, especially in plant immunity. Although the function of RALF peptides has been comprehensively analyzed, the evolutionary mechanism of RALFs in symbiosis has not been studied. In this study, 41, 24, 17 and 12 RALFs were identified in Arabidopsis, soybean, Lotus and Medicago, respectively. A comparative analysis including the molecular characteristics and conserved motifs suggested that the RALF pre-peptides in soybean represented a higher value of isoelectric point and more conservative motifs/residues composition than other species. All 94 RALFs were divided into two clades according to the phylogenetic analysis. Chromosome distribution and synteny analysis suggested that the expansion of the RALF gene family in Arabidopsis mainly depended on tandem duplication, while segment duplication played a dominant role in legume species. The expression levels of most RALFs in soybean were significantly affected by the treatment of rhizobia. Seven GmRALFs are potentially involved in the release of rhizobia in the cortex cells. Overall, our research provides novel insights into the understanding of the role of the RALF gene family in nodule symbiosis.
Collapse
Affiliation(s)
- Yancui Jia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan 430070, China
| |
Collapse
|
11
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
12
|
Liu Y, Chen Y, Jiang H, Shui Z, Zhong Y, Shang J, Yang H, Sun X, Du J. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:1006028. [PMID: 36275562 PMCID: PMC9583537 DOI: 10.3389/fpls.2022.1006028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
RALFs (RAPID ALKALINIZATION FACTORs) are small peptides required for plant growth, development and immunity. RALF has recently been discovered to regulate plant resistance to fungal infection. However, little is known in crops, particularly in soybean. Here, 27 RALFs were identified in the genome of Glycine max. All Glycine max RALFs (GmRALFs) and 34 Arabidopsis RALFs were classified into 12 clades via the phylogenetic analyses. Gene structures, conserved motifs, chromosome distribution and cis-elements were analyzed in this study. Furthermore, 18 GmRALFs were found in response to Fusarium oxysporum (F. oxysporum) infection in soybean and to have distinct expression patterns. Among them, secretory function of two GmRALFs were identified, and three GmRALFs were detected to interact with FERONIA in Glycine max (GmFERONIA, GmFER). Our current study systematically identified and characterized GmRALFs in the soybean genome, laying a groundwork for further functional analyses and soybean breeding.
Collapse
Affiliation(s)
- Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Zhaowei Shui
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yujun Zhong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ. Genome-Wide Identification of Rapid Alkalinization Factor Family in Brassica napus and Functional Analysis of BnRALF10 in Immunity to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:877404. [PMID: 35592581 PMCID: PMC9113046 DOI: 10.3389/fpls.2022.877404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Rapid alkalinization factors (RALFs) were recently reported to be important players in plant immunity. Nevertheless, the signaling underlying RALF-triggered immunity in crop species against necrotrophic pathogens remains largely unknown. In this study, RALF family in the important oil crop oilseed rape (Brassica napus) was identified and functions of BnRALF10 in immunity against the devastating necrotrophic pathogen Sclerotinia sclerotiorum as well as the signaling underlying this immunity were revealed. The oilseed rape genome carried 61 RALFs, half of them were atypical, containing a less conserved YISY motif and lacking a RRXL motif or a pair of cysteines. Family-wide gene expression analyses demonstrated that patterns of expression in response to S. sclerotiorum infection and DAMP and PAMP treatments were generally RALF- and stimulus-specific. Most significantly responsive BnRALF genes were expressionally up-regulated by S. sclerotiorum, while in contrast, more BnRALF genes were down-regulated by BnPep5 and SsNLP1. These results indicate that members of BnRALF family are likely differentially involved in plant immunity. Functional analyses revealed that BnRALF10 provoked diverse immune responses in oilseed rape and stimulated resistance to S. sclerotiorum. These data support BnRALF10 to function as a DAMP to play a positive role in plant immunity. BnRALF10 interacted with BnFER. Silencing of BnFER decreased BnRALF10-induced reactive oxygen species (ROS) production and compromised rape resistance to S. sclerotiorum. These results back BnFER to be a receptor of BnRALF10. Furthermore, quantitative proteomic analysis identified dozens of BnRALF10-elicited defense (RED) proteins, which respond to BnRALF10 in protein abundance and play a role in defense. Our results revealed that BnRALF10 modulated the abundance of RED proteins to fine tune plant immunity. Collectively, our results provided some insights into the functions of oilseed rape RALFs and the signaling underlying BnRALF-triggered immunity.
Collapse
Affiliation(s)
- Yu-Han He
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhuo-Ran Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Song-Yu Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
14
|
Ginanjar EF, Teh OK, Fujita T. Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. THE NEW PHYTOLOGIST 2022; 233:2442-2457. [PMID: 34954833 DOI: 10.1111/nph.17942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Small signalling peptides are key molecules for cell-to-cell communications in plants. The cysteine-rich signalling peptide, rapid alkalinisation factors (RALFs) family are involved in diverse developmental and stress responses and have expanded considerably during land plant evolution, implying neofunctionalisations in the RALF family. However, the ancestral roles of RALFs when land plant first acquired them remain unknown. Here, we functionally characterised two of the three RALFs in bryophyte Physcomitrium patens using loss-of-function mutants, overexpressors, as well as fluorescent proteins tagged reporter lines. We showed that PpRALF1 and PpRALF2 have overlapping functions in promoting protonema tip growth and elongation, showing a homologous function as the Arabidopsis RALF1 in promoting root hair tip growth. Although both PpRALFs are secreted to the plasma membrane on which PpRALF1 symmetrically localised, PpRALF2 showed a polarised localisation at the growing tip. Notably, proteolytic cleavage of PpRALF1 is necessary for its function. Our data reveal a possible evolutionary origin of the RALF functions and suggest that functional divergence of RALFs is essential to drive complex morphogenesis and to facilitate other novel processes in land plants.
Collapse
Affiliation(s)
| | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaihdo University, Sapporo, 060-0817, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd, Nankang, Taipei, Taiwan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| |
Collapse
|
15
|
Lin H, Han X, Feng X, Chen X, Lu X, Yuan Z, Li Y, Ye W, Yin Z. Molecular traits and functional analysis of Rapid Alkalinization Factors (RALFs) in four Gossypium species. Int J Biol Macromol 2022; 194:84-99. [PMID: 34852258 DOI: 10.1016/j.ijbiomac.2021.11.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are plant-secreted, cysteine-rich polypeptides which are known to play essential roles in plant developmental processes and in several defense mechanisms. So far, RALF polypeptides have not been investigated in the Gossypium genus. In this study, 42, 38, 104 and 120 RALFs were identified from diploid G. arboreum and G. raimondi and tetraploid G. hirsutum and G. barbadense, respectively. These were further divided into four groups. Protein characteristics, sequence alignment, gene structure, conserved motifs, chromosomal location and cis-element identification were comprehensively analyzed. Whole genome duplication (WGD) /segmental duplication may be the reason why the number of RALF genes doubled in tetraploid Gossypium species. Expression patterns analysis showed that GhRALFs had different transcript accumulation patterns in the tested tissues and were differentially expressed in response to various abiotic stresses. Furthermore, GhRALF41-3 over-expressing (OE) plants showed reduction in root length and developed later with short stems and small rosettes than that of the wild type. The GhRALF14-8 and GhRALF27-8 OE plants, especially the latter, showed increase in seed abortion. Both transgenic Arabidopsis and VIGS cotton demonstrate that three GhRALFs are negative regulators in response to salt stress. Our systematic analyses provided insights into the characterization of RALF genes in Gossypium, which forms genetic basis for further exploration in their potential applications in cotton production.
Collapse
Affiliation(s)
- Huan Lin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China; Henan Institute of Grains and Cotton, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan, China.
| | - Xiulan Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China.
| | - Xuemei Feng
- Shandong Denghai Shofine Seed Limited Company, Jining, China.
| | - Xiugui Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China.
| | - Xuke Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China.
| | - Zeze Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China.
| | - Yan Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China.
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China; Henan Institute of Grains and Cotton, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan, China.
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, China; Henan Institute of Grains and Cotton, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan, China.
| |
Collapse
|
16
|
Abarca A, Franck CM, Zipfel C. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. PLANT PHYSIOLOGY 2021; 187:996-1010. [PMID: 34608971 PMCID: PMC8491022 DOI: 10.1093/plphys/kiab308] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 05/04/2023]
Abstract
Plant peptide hormones are important players that control various aspects of the lives of plants. RAPID ALKALINIZATION FACTOR (RALF) peptides have recently emerged as important players in multiple physiological processes. Numerous studies have increased our understanding of the evolutionary processes that shaped the RALF family of peptides. Nevertheless, to date, there is no comprehensive, family-wide functional study on RALF peptides. Here, we analyzed the phylogeny of the proposed multigenic RALF peptide family in the model plant Arabidopsis (Arabidopsis thaliana), ecotype Col-0, and tested a variety of physiological responses triggered by RALFs. Our phylogenetic analysis reveals that two of the previously proposed RALF peptides are not genuine RALF peptides, which leads us to propose a revision to the consensus AtRALF peptide family annotation. We show that the majority of AtRALF peptides, when applied exogenously as synthetic peptides, induce seedling or root growth inhibition and modulate reactive oxygen species (ROS) production in Arabidopsis. Moreover, our findings suggest that alkalinization and growth inhibition are, generally, coupled characteristics of RALF peptides. Additionally, we show that for the majority of the peptides, these responses are genetically dependent on FERONIA, suggesting a pivotal role for this receptor kinase in the perception of multiple RALF peptides.
Collapse
Affiliation(s)
- Alicia Abarca
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christina M. Franck
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
17
|
Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Konopkin AA, Shcherbakova LA, Odintsova TI. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Int J Mol Sci 2021; 22:ijms22115741. [PMID: 34072144 PMCID: PMC8198727 DOI: 10.3390/ijms22115741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cysteine-rich peptides (CRPs) play an important role in plant physiology. However, their role in resistance induced by biogenic elicitors remains poorly understood. Using whole-genome transcriptome sequencing and our CRP search algorithm, we analyzed the repertoire of CRPs in tomato Solanum lycopersicum L. in response to Fusarium oxysporum infection and elicitors from F. sambucinum. We revealed 106 putative CRP transcripts belonging to different families of antimicrobial peptides (AMPs), signaling peptides (RALFs), and peptides with non-defense functions (Major pollen allergen of Olea europaea (Ole e 1 and 6), Maternally Expressed Gene (MEG), Epidermal Patterning Factor (EPF)), as well as pathogenesis-related proteins of families 1 and 4 (PR-1 and 4). We discovered a novel type of 10-Cys-containing hevein-like AMPs named SlHev1, which was up-regulated both by infection and elicitors. Transcript profiling showed that F. oxysporum infection and F. sambucinum elicitors changed the expression levels of different overlapping sets of CRP genes, suggesting the diversification of functions in CRP families. We showed that non-specific lipid transfer proteins (nsLTPs) and snakins mostly contribute to the response of tomato plants to the infection and the elicitors. The involvement of CRPs with non-defense function in stress reactions was also demonstrated. The results obtained shed light on the mode of action of F. sambucinum elicitors and the role of CRP families in the immune response in tomato.
Collapse
Affiliation(s)
- Marina P. Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Ekaterina A. Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Tatyana V. Korostyleva
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Alexey S. Kovtun
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia;
| | - Artem S. Kasianov
- Laboratory of Plant Genomics, Institute for Information Transmission Problems RAS, 127051 Moscow, Russia;
| | - Alexey A. Konopkin
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Larisa A. Shcherbakova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, B. Vyazyomy, 143050 Moscow, Russia;
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
- Correspondence:
| |
Collapse
|
18
|
Wen Q, Sun M, Kong X, Yang Y, Zhang Q, Huang G, Lu W, Li W, Meng Y, Shan W. The novel peptide NbPPI1 identified from Nicotiana benthamiana triggers immune responses and enhances resistance against Phytophthora pathogens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:961-976. [PMID: 33205861 DOI: 10.1111/jipb.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
In plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89-amino acid NtPROPPI includes a 24-amino acid N-terminal signal peptide and NbPROPPI1/2-GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight-amino-acid segment in the NbPROPPI1 C-terminus was essential for its immune function and a synthetic 20-residue peptide, NbPPI1, derived from the C-terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen-activated protein kinases, and up-regulation of the defense genes Flg22-induced receptor-like kinase (FRK) and WRKY DNA-binding protein 33 (WRKY33). The NbPPI1-induced defense responses require Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.
Collapse
Affiliation(s)
- Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
19
|
The Roles of Peptide Hormones and Their Receptors during Plant Root Development. Genes (Basel) 2020; 12:genes12010022. [PMID: 33375648 PMCID: PMC7823343 DOI: 10.3390/genes12010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/03/2023] Open
Abstract
Peptide hormones play pivotal roles in many physiological processes through coordinating developmental and environmental cues among different cells. Peptide hormones are recognized by their receptors that convey signals to downstream targets and interact with multiple pathways to fine-tune plant growth. Extensive research has illustrated the mechanisms of peptides in shoots but functional studies of peptides in roots are scarce. Reactive oxygen species (ROS) are known to be involved in stress-related events. However, recent studies have shown that they are also associated with many processes that regulate plant development. Here, we focus on recent advances in understanding the relationships between peptide hormones and their receptors during root growth including outlines of how ROS are integrated with these networks.
Collapse
|
20
|
Wood AKM, Walker C, Lee WS, Urban M, Hammond-Kosack KE. Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol 2020; 124:753-765. [PMID: 32883427 PMCID: PMC7487784 DOI: 10.1016/j.funbio.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
The cereal infecting fungus Fusarium graminearum is predicted to possess a single homologue of plant RALF (rapid alkalinisation factor) peptides. Fusarium mutant strains lacking FgRALF were generated and found to exhibit wildtype virulence on wheat and Arabidopsis floral tissue. Arabidopsis lines constitutively overexpressing FgRALF exhibited no obvious change in susceptibility to F. graminearum leaf infection. In contrast transient virus-mediated over-expression (VOX) of FgRALF in wheat prior to F. graminearum infection, slightly increased the rate of fungal colonisation of floral tissue. Ten putative Feronia (FER) receptors of RALF peptide were identified bioinformatically in hexaploid wheat (Triticum aestivum). Transient silencing of two wheat FER homoeologous genes prior to F. graminearum inoculation did not alter the subsequent interaction outcome. Collectively, our VOX results show that the fungal RALF peptide may be a minor contributor in F. graminearum virulence but results from fungal gene deletion experiments indicate potential functional redundancy within the F. graminearum genome. We demonstrate that virus-mediated over-expression is a useful tool to provide novel information about gene/protein function when results from gene deletion/disruption experimentation were uninformative.
Collapse
Affiliation(s)
- Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Catherine Walker
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Wing-Sham Lee
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
21
|
Zhang XP, Ma CX, Sun LR, Hao FS. Roles and mechanisms of Ca 2+ in regulating primary root growth of plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1748283. [PMID: 32264747 PMCID: PMC7238873 DOI: 10.1080/15592324.2020.1748283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) as a universal signal molecule plays pivotal roles in plant growth and development. It regulates root morphogenesis mainly through mediating phytohormone and stress signalings or affecting these signalings. In recent years, much progress has been made in understanding the roles of Ca2+ in primary root development. Here, we summarize recent advances in the functions and mechanisms of Ca2+ in modulating primary root growth in plants under normal and stressful conditions.
Collapse
Affiliation(s)
- Xiao Pan Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Cai Xia Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Rong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fu Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
22
|
Lai JL, Liu ZW, Luo XG. A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121437. [PMID: 31899027 DOI: 10.1016/j.jhazmat.2019.121437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 05/28/2023]
Abstract
Uranium (U) is a nonessential element that is readily adsorbed and retained in plant roots, causing root damage plants, rather than being translocated to other parts of the plant. The phytotoxicity mechanism of U is poorly understood. In this study, Vicia faba, a model plant for toxicological research, was selected as experimental material to investigate the phytotoxicity mechanism of U. In this study, the effects of U on the growth and development, methonome, transcriptome and mineral nutrient metabolism of V. faba were studied under different U treatments (0-25 μM) by integrating metabolomics, transcriptomic, and mineral nutrient metabolism analysis techniques. The results showed that U accumulation in roots and aboveground parts reached 164.34-927.90 μg/pot, and 0.028-0.119 μg/pot, respectively. U was mainly accumulated in the cell wall of roots, which damaged the root microstructure and inhibited root growth and development. In terms of mineral nutrient metabolism, U treatment (0-25 μM) led to changes in mineral metabolic profiles of seedlings. In total, 612 different metabolites were identified in nontargeted metabolomics, including 309 significantly upregulated metabolites and 303 significantly downregulated metabolites. Using RNA-seq, 4974 differentially expressed genes (DEGs) were identified under the high-concentration U treatment (25 μM), including 1654 genes significantly upregulated genes and 3320 genes significantly downregulated genes. Metabolic pathway analysis showed that a high concentration of U led to an imbalance of mineral nutrient metabolism in plants and changes in the metabolism and transcriptome pathway of plants, including alterations in the function of plasmodesmata and auxin signal transduction pathway. The latter finding may potentially explain the toxic effect of U on plant roots.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Ze-Wei Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
23
|
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. THE NEW PHYTOLOGIST 2020; 225:2267-2282. [PMID: 31595506 DOI: 10.1111/nph.16241] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to diverse abiotic and biotic stresses, and thus have developed complex signaling mechanisms that orchestrate multiple stress responses. Plant peptides have recently emerged as key signaling molecules of stress responses, not only to mechanical wounding and pathogen infection but also to nutrient imbalance, drought and high salinity. The currently identified stress-related signaling peptides in plants are derived from proteolytic processing of protein precursors. Here, we review these protein-derived peptides and the evidence for their functions in stress signaling. We recommend potential research directions that could clarify their roles in stress biology, and propose possible crosstalk with regard to the physiological outcome. The stress-centric perspective allows us to highlight the crucial roles of peptides in regulating the dynamics of stress physiology. Inspired by historic and recent findings, we review how peptides initiate complex molecular interactions to coordinate biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
24
|
Frederick RO, Haruta M, Tonelli M, Lee W, Cornilescu G, Cornilescu CC, Sussman MR, Markley JL. Function and solution structure of the Arabidopsis thaliana RALF8 peptide. Protein Sci 2019; 28:1115-1126. [PMID: 31004454 PMCID: PMC6511734 DOI: 10.1002/pro.3628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
We report the recombinant preparation from Escherichia coli cells of samples of two closely related, small, secreted cysteine-rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well-resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, and in vivo root growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N-terminal His-tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with 15 N and 13 C for NMR analysis and obtained near complete 1 H, 13 C, and 15 N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges.
Collapse
Affiliation(s)
- Ronnie O. Frederick
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Miyoshi Haruta
- Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Marco Tonelli
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Woonghee Lee
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Claudia C. Cornilescu
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - Michael R. Sussman
- Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsin53706
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| | - John L. Markley
- National Magnetic Resonance Facility at MadisonUniversity of Wisconsin‐MadisonMadisonWisconsin53706
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsin53706
| |
Collapse
|
25
|
Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Taraxacum koksaghyz entails a high-biomass taproot phenotype. PLoS One 2019; 14:e0217454. [PMID: 31125376 PMCID: PMC6534333 DOI: 10.1371/journal.pone.0217454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of inulin and natural rubber because large amounts of both feedstocks can be extracted from its roots. However, the domestication of T. koksaghyz requires the development of stable agronomic traits such as higher yields of inulin and natural rubber, a higher root biomass, and an agronomically preferable root morphology which is more suitable for cultivation and harvesting. Arabidopsis thaliana Rapid Alkalinisation Factor 1 (RALF1) has been shown to suppress root growth. We identified the T. koksaghyz orthologue TkRALF-like 1 and knocked out the corresponding gene (TkRALFL1) using the CRISPR/Cas9 system to determine its impact on root morphology, biomass, and inulin and natural rubber yields. The TkRALFL1 knockout lines more frequently developed a taproot phenotype which is easier to cultivate and harvest, as well as a higher root biomass and greater yields of both inulin and natural rubber. The TkRALFL1 gene could therefore be suitable as a genetic marker to support the breeding of profitable new dandelion varieties with improved agronomic traits. To our knowledge, this is the first study addressing the root system of T. koksaghyz to enhance the agronomic performance.
Collapse
|
26
|
Identification of a Recombinant Human Interleukin-12 (rhIL-12) Fragment in Non-Reduced SDS-PAGE. Molecules 2019; 24:molecules24071210. [PMID: 30925680 PMCID: PMC6479496 DOI: 10.3390/molecules24071210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
During the past two decades, recombinant human interleukin-12 (rhIL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models and clinical studies. Purity is a critical quality attribute (CQA) in the quality control system of rhIL-12. In our study, rhIL-12 bulks from manufacturer B showed a different pattern in non-reduced SDS-PAGE compared with size-exclusion chromatography (SEC)-HPLC. A small fragment was only detected in non-reduced SDS-PAGE but not in SEC-HPLC. The results of UPLC/MS and N-terminal sequencing confirmed that the small fragment was a 261–306 amino acid sequence of a p40 subunit of IL-12. The cleavage occurs between Lys260 and Arg261, a basic rich region. With the presence of 0.2% SDS, the small fragment appeared in both native PAGE and in SEC-HPLC, suggesting that it is bound to the remaining part of the IL-12 non-covalently, and is dissociated in a denatured environment. The results of a bioassay showed that the fractured rhIL-12 proteins had deficient biological activity. These findings provide an important reference for the quality control of the production process and the final products of rhIL-12.
Collapse
|
27
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
28
|
Filippova A, Lyapina I, Kirov I, Zgoda V, Belogurov A, Kudriaeva A, Ivanov V, Fesenko I. Salicylic acid influences the protease activity and posttranslation modifications of the secreted peptides in the moss Physcomitrella patens. J Pept Sci 2018; 25:e3138. [PMID: 30575224 DOI: 10.1002/psc.3138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.
Collapse
Affiliation(s)
- Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Kirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Victor Zgoda
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Department of Proteomic Research and Mass Spectrometry, Moscow, Russian Federation
| | - Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
29
|
Campos WF, Dressano K, Ceciliato PHO, Guerrero-Abad JC, Silva AL, Fiori CS, Morato do Canto A, Bergonci T, Claus LAN, Silva-Filho MC, Moura DS. Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J Biol Chem 2018; 293:2159-2171. [PMID: 29282286 PMCID: PMC5808775 DOI: 10.1074/jbc.m117.808881] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/09/2017] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis thaliana rapid alkalinization factor 1 (AtRALF1) is a small secreted peptide hormone that inhibits root growth by repressing cell expansion. Although it is known that AtRALF1 binds the plasma membrane receptor FERONIA and conveys its signals via phosphorylation, the AtRALF1 signaling pathway is largely unknown. Here, using a yeast two-hybrid system to search for AtRALF1-interacting proteins in Arabidopsis, we identified calmodulin-like protein 38 (CML38) as an AtRALF1-interacting partner. We also found that CML38 and AtRALF1 are both secreted proteins that physically interact in a Ca2+- and pH-dependent manner. CML38-knockout mutants generated via T-DNA insertion were insensitive to AtRALF1, and simultaneous treatment with both AtRALF1 and CML38 proteins restored sensitivity in these mutants. Hybrid plants lacking CML38 and having high accumulation of the AtRALF1 peptide did not exhibit the characteristic short-root phenotype caused by AtRALF1 overexpression. Although CML38 was essential for AtRALF1-mediated root inhibition, it appeared not to have an effect on the AtRALF1-induced alkalinization response. Moreover, acridinium-labeling of AtRALF1 indicated that the binding of AtRALF1 to intact roots is CML38-dependent. In summary, we describe a new component of the AtRALF1 response pathway. The new component is a calmodulin-like protein that binds AtRALF1, is essential for root growth inhibition, and has no role in AtRALF1 alkalinization.
Collapse
Affiliation(s)
- Wellington F Campos
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Keini Dressano
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Paulo H O Ceciliato
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Juan Carlos Guerrero-Abad
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Aparecida Leonir Silva
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Celso S Fiori
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Amanda Morato do Canto
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Tábata Bergonci
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Lucas A N Claus
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Marcio C Silva-Filho
- the Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900, Brazil
| | - Daniel S Moura
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| |
Collapse
|
30
|
Dressano K, Ceciliato PHO, Silva AL, Guerrero-Abad JC, Bergonci T, Ortiz-Morea FA, Bürger M, Silva-Filho MC, Moura DS. BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genet 2017; 13:e1007053. [PMID: 29028796 PMCID: PMC5656322 DOI: 10.1371/journal.pgen.1007053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022] Open
Abstract
The rapid alkalinization factor (RALF) peptide negatively regulates cell expansion, and an antagonistic relationship has been demonstrated between AtRALF1, a root-specific RALF isoform in Arabidopsis, and brassinosteroids (BRs). An evaluation of the response of BR signaling mutants to AtRALF1 revealed that BRI1-associated receptor kinase1 (bak1) mutants are insensitive to AtRALF1 root growth inhibition activity. BAK1 was essential for the induction of AtRALF1-responsive genes but showed no effect on the mobilization of Ca2+ and alkalinization responses. Homozygous plants accumulating AtRALF1 and lacking the BAK1 gene did not exhibit the characteristic semi-dwarf phenotype of AtRALF1-overexpressors. Biochemical evidence indicates that AtRALF1 and BAK1 physically interact with a Kd of 4.6 μM and acridinium-labeled AtRALF1 was used to demonstrate that part of the specific binding of AtRALF1 to intact seedlings and to a microsomal fraction derived from the roots of Arabidopsis plants is BAK1-dependent. Moreover, AtRALF1 induces an increase in BAK1 phosphorylation, suggesting that the binding of AtRALF1 to BAK1 is functional. These findings show that BAK1 contains an additional AtRALF1 binding site, indicating that this protein may be part of a AtRALF1-containing complex as a co-receptor, and it is required for the negative regulation of cell expansion.
Collapse
Affiliation(s)
- Keini Dressano
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Paulo H. O. Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Aparecida L. Silva
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Juan Carlos Guerrero-Abad
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Tábata Bergonci
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Fausto Andrés Ortiz-Morea
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Marco Bürger
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Marcio C. Silva-Filho
- Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Daniel S. Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| |
Collapse
|
31
|
Abstract
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
Collapse
Affiliation(s)
- Miyoshi Haruta
- University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
32
|
Campbell L, Turner SR. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. FRONTIERS IN PLANT SCIENCE 2017; 8:37. [PMID: 28174582 PMCID: PMC5258720 DOI: 10.3389/fpls.2017.00037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth. Although RALF peptides have been identified within many species, a single wide-ranging phylogenetic analysis of the family across the plant kingdom has not yet been undertaken. Here, we identified RALF proteins from 51 plant species that represent a variety of land plant lineages. The inferred evolutionary history of the 795 identified RALFs suggests that the family has diverged into four major clades. We found that much of the variation across the family exists within the mature peptide region, suggesting clade-specific functional diversification. Clades I, II, and III contain the features that have been identified as important for RALF activity, including the RRXL cleavage site and the YISY motif required for receptor binding. In contrast, members of clades IV that represent a third of the total dataset, is highly diverged and lacks these features that are typical of RALFs. Members of clade IV also exhibit distinct expression patterns and physico-chemical properties. These differences suggest a functional divergence of clades and consequently, we propose that the peptides within clade IV are not true RALFs, but are more accurately described as RALF-related peptides. Expansion of this RALF-related clade in the Brassicaceae is responsible for the large number of RALF genes that have been previously described in Arabidopsis thaliana. Future experimental work will help to establish the nature of the relationship between the true RALFs and the RALF-related peptides, and whether they function in a similar manner.
Collapse
|
33
|
Eves-Van Den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. MOLECULAR PLANT PATHOLOGY 2016; 17:1265-75. [PMID: 26996971 PMCID: PMC5103176 DOI: 10.1111/mpp.12402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sedentary plant-parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active 'feeding sites'. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up-regulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up-regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non-CEP-containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced.
Collapse
Affiliation(s)
- Sebastian Eves-Van Den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
Sharma A, Hussain A, Mun BG, Imran QM, Falak N, Lee SU, Kim JY, Hong JK, Loake GJ, Ali A, Yun BW. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:82-90. [PMID: 27155375 DOI: 10.1016/j.plaphy.2016.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/14/2016] [Accepted: 03/27/2016] [Indexed: 05/04/2023]
Abstract
Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.
Collapse
Affiliation(s)
- Arti Sharma
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Adil Hussain
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea; Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan.
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Noreen Falak
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Jae Young Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju, Republic of Korea.
| | - Gary John Loake
- Institute of Molecular Plant Sciences, The University of Edinburgh, United Kingdom.
| | - Asad Ali
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan.
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genet 2016; 12:e1006147. [PMID: 27537183 PMCID: PMC4990239 DOI: 10.1371/journal.pgen.1006147] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction. The differentiation of distinct somatic and reproductive cells in flowers is required for the successful sexual reproduction of plants. The anther produces reproductive microsporocytes (pollen mother cells) that give rise to pollen (male gametophytes), as well as surrounding somatic cells (particularly the tapetal cells) that support the normal development of pollen. In animals, signals from somatic cells are known to influence reproductive cell fate determination, and vice versa. However, little is known about the molecular mechanisms underlying somatic and reproductive cell fate determination in plants. In this paper, we demonstrate that TPD1 (TAPETUM DETERMINANT1) is processed into a small secreted cysteine-rich protein ligand for the EMS1 (EXCESS MICROSPOROCYTES1) leucine-rich repeat receptor-like kinase (LRR-RLK). TPD1 is secreted from reproductive cells to the plasma membrane of somatic cells, where activated TPD1-EMS1 signaling first promotes periclinal cell division and then determines tapetal cell fate. Moreover, tapetal cells suppress microsporocyte proliferation. Our findings illuminate a novel mechanism by which reproductive cells determine somatic cell fate, and somatic cells in turn limit reproductive cell proliferation. Plants extensively employ LRR-RLKs to control growth, development, and defense. Our identification of TPD1 as the first small protein ligand for all LRR-RLKs characterized to date will provide a valuable system for studying how small protein ligands activate LRR-RLK signaling complexes.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Tianyu Zhang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lisa Linstroth
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Zachary Tillman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
36
|
Murphy E, Vu LD, Van den Broeck L, Lin Z, Ramakrishna P, van de Cotte B, Gaudinier A, Goh T, Slane D, Beeckman T, Inzé D, Brady SM, Fukaki H, De Smet I. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4863-75. [PMID: 27521602 PMCID: PMC4983113 DOI: 10.1093/jxb/erw281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lisa Van den Broeck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Brigitte van de Cotte
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D- 72076 Tübingen, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
37
|
Juvale PS, Wagner RL, Spalding MH. Opportunistic proteolytic processing of carbonic anhydrase 1 from Chlamydomonas in Arabidopsis reveals a novel route for protein maturation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2339-2351. [PMID: 26917556 PMCID: PMC4809292 DOI: 10.1093/jxb/erw044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteolytic processing of secretory proteins to yield an active form generally involves specific proteolytic cleavage of a pre-protein. Multiple specific proteases have been identified that target specific pre-protein processing sites in animals. However, characterization of site-specific proteolysis of plant pre-proteins is still evolving. In this study, we characterized proteolytic processing of Chlamydomonas periplasmic carbonic anhydrase 1 (CAH1) in Arabidopsis. CAH1 pre-protein undergoes extensive post-translational modification in the endomembrane system, including glycosylation, disulfide bond formation and proteolytic removal of a peptide 'spacer' region, resulting in a mature, heterotetrameric enzyme with two large and two small subunits. We generated a series of small-scale and large-scale modifications to the spacer and flanking regions to identify potential protease target motifs. Surprisingly, we found that the endoproteolytic removal of the spacer from the CAH1 pre-protein proceeded via an opportunistic process apparently followed by further maturation via amino and carboxy peptidases. We also discovered that the spacer itself is not required for processing, which appears to be dependent only on the number of amino acids separating two key disulfide-bond-forming cysteines. Our data suggest a novel, opportunistic route for pre-protein processing of CAH1.
Collapse
Affiliation(s)
- Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Ryan L Wagner
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, 202 Catt Hall, Ames, IA 50011-1301, USA
| |
Collapse
|
38
|
Wendlandt T, Moche M, Becher D, Stöhr C. A SDD1-like subtilase is exuded by tobacco roots. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:141-150. [PMID: 32480448 DOI: 10.1071/fp15211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/03/2015] [Indexed: 06/11/2023]
Abstract
Hydroponically grown tobacco (Nicotiana tabacum L. cv. Samsun) roots exude proteases under non-stressed conditions. Ten different proteases could be distinguished by 2D-zymography of root exudate. The majority of the gelatinolytic activity was susceptible to serine protease inhibitors. One of the proteases could be assigned to an EST (SGN-P361478) by mass spectrometry of immune-purified root exudate. The sequence was completed by RACE-PCR and shows typical serine protease features of subtilase family S8A. Thermostability and SDS-insensitivity indicate a kinetically stable enzyme. Phylogenetic classification of this highly gelatinolytic subtilase showed SDD1 to be the closest relative in Arabidopsis thaliana (L. Heynh.). Even closer related protein sequences could be found in other distant plant genera indicating a high conservation of the subtilase. A 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase-like protein and suberisation-associated anionic peroxidase-like protein were co-immune-purified and identified by mass spectrometry and may constitute potential interaction partners.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt-University, Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany
| | - Martin Moche
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany
| | - Christine Stöhr
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt-University, Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany
| |
Collapse
|
39
|
Chien PS, Nam HG, Chen YR. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5301-13. [PMID: 26093145 PMCID: PMC4526916 DOI: 10.1093/jxb/erv263] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance.
Collapse
Affiliation(s)
- Pei-Shan Chien
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, and Department of New Biology, DGIST, Daegu 711-873, Republic of Korea
| | - Yet-Ran Chen
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
40
|
Hamann T. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network. PHYTOCHEMISTRY 2015; 112:100-9. [PMID: 25446233 DOI: 10.1016/j.phytochem.2014.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses.
Collapse
Affiliation(s)
- Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
41
|
Capraro J, Sessa F, Magni C, Scarafoni A, Maffioli E, Tedeschi G, Croy RRD, Duranti M. Proteolytic cleavage at twin arginine residues affects structural and functional transitions of lupin seed 11S storage globulin. PLoS One 2015; 10:e0117406. [PMID: 25658355 PMCID: PMC4319833 DOI: 10.1371/journal.pone.0117406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/21/2014] [Indexed: 02/03/2023] Open
Abstract
The 11S storage globulin of white lupin seeds binds to a metal affinity chromatography matrix. Two unusual stretches of contiguous histidine residues, reminiscent of the multiple histidines forming metal binding motifs, at the C-terminal end of 11S globulin acidic chains were hypothesized as candidate elements responsible for the binding capacity. To prove this, the protein was incubated with a lupin seed endopeptidase previously shown to cleave at twin arginine motifs, recurrent in the sequence region of interest. Upon incubation with this enzyme, the loss of metal binding capacity paralleled that of the anti-his-tag reactive polypeptides. The recovered small proteolytic fragment was analyzed by mass spectrometry and N-terminal sequencing and found to correspond to the 24-mer region cleaved off at twin arginine residues and containing the natural his-tag-like region. Similarly, when lupin seeds were germinated for a few days, the his-tag containing 11S globulin chain was converted to a form devoid of such region, suggesting that this mechanism is a part of the natural degradatory process of the protein. The hypothesis that the ordered and controlled dismantling of storage proteins may generate peptide fragments with potential functional roles in plant ontogenesis is presented and discussed.
Collapse
Affiliation(s)
- Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Sessa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Magni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| | - Elisa Maffioli
- Department of Veterinary Science and Public Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Science and Public Health, Università degli Studi di Milano, Milan, Italy
| | - Ron R. D. Croy
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Marcello Duranti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Murphy E, De Smet I. Understanding the RALF family: a tale of many species. TRENDS IN PLANT SCIENCE 2014; 19:664-71. [PMID: 24999241 DOI: 10.1016/j.tplants.2014.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 05/02/2023]
Abstract
Small secreted peptides are gaining importance as signalling molecules in plants. Among the 1000 open reading frames (ORFs) in the Arabidopsis (Arabidopsis thaliana) genome potentially encoding small secreted peptides, the members of the RAPID ALKALINIZATION FACTOR (RALF) family of peptides have been linked to several physiological and developmental processes. Here, we provide a comprehensive overview of current knowledge on the RALF family. Discovered in tobacco (Nicotiana tabacum), the role of RALF peptides has been investigated in numerous plant species. Together, these observations suggest that RALF peptides impact on acidification and cell expansion during growth and development. Although few components of the signalling pathway have been revealed, the recent identification of FERONIA (FER) as a RALF receptor and plasma membrane H(+)-ATPase 2 as a downstream target provide a major step forward.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
43
|
Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Höfte H, Lerouge P, Schaller A, Pelloux J. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. ANNALS OF BOTANY 2014; 114:1161-75. [PMID: 24665109 PMCID: PMC4195543 DOI: 10.1093/aob/mcu035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/13/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform. METHODS Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development. KEY RESULTS A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm. CONCLUSIONS By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME-SBT pairs.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Lucile Graff
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Ogier Surcouf
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Paulo Marcelo
- ICAP, UPJV, 1-3 Rue des Louvels, F-80037 Amiens, France
| | - Catherine Rayon
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Sophie Bouton
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Alain Mareck
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Gregory Mouille
- IJPB, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles, France
| | - Annick Stintzi
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Herman Höfte
- IJPB, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles, France
| | - Patrice Lerouge
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Andreas Schaller
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
44
|
Bergonci T, Ribeiro B, Ceciliato PH, Guerrero-Abad JC, Silva-Filho MC, Moura DS. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2219-30. [PMID: 24620000 PMCID: PMC3991750 DOI: 10.1093/jxb/eru099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.
Collapse
Affiliation(s)
- Tábata Bergonci
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Bianca Ribeiro
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Paulo H.O. Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Juan Carlos Guerrero-Abad
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Marcio C. Silva-Filho
- Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Daniel S. Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| |
Collapse
|
45
|
Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 2014; 343:408-11. [PMID: 24458638 DOI: 10.1126/science.1244454] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H(+)-adenosine triphosphatase 2 at Ser(899), mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Morato do Canto A, Ceciliato PHO, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, Moura DS. Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:45-54. [PMID: 24368323 DOI: 10.1016/j.plaphy.2013.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/06/2013] [Indexed: 05/09/2023]
Abstract
RALF is a small (5 kDa) and ubiquitous plant peptide signal. It was first isolated from tobacco leaf protein extracts owing to its capacity to alkalinize the extracellular media of cell suspensions. RALFs inhibit root growth and hypocotyl elongation, and a role for RALFs in cell expansion has also been proposed. Arabidopsis has 37 RALF isoforms (AtRALF), but only a small group of nine has high primary structure identity to the original RALF peptide isolated from tobacco. Herein, we report the heterologous production of these nine peptides in Escherichia coli and the evaluation of their activity in five biological assays. All AtRALF peptides produced showed strong alkalinizing activities, with the exception of the pollen-specific isoform AtRALF4. Although it exhibited no inhibitory activity in the root growth and hypocotyl elongation assays, AtRALF4 is a strong inhibitor of pollen germination. Our data demonstrate that the divergence in the tissue specificity and gene expression patterns of the different AtRALFs does not change the fact that their main role seems to be the regulation of cell expansion. Furthermore, different activities in the alkalinization assays upon the addition of two consecutive and saturating doses of the peptides suggest that the peptides are likely being sensed by specific receptors.
Collapse
Affiliation(s)
- Amanda Morato do Canto
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Paulo H O Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Bianca Ribeiro
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Fausto Andrés Ortiz Morea
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Antonio Augusto Franco Garcia
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Marcio C Silva-Filho
- Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| | - Daniel S Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo - USP, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
47
|
Peptide ligands in plants. Enzymes 2014; 35:85-112. [PMID: 25740716 DOI: 10.1016/b978-0-12-801922-1.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants have evolved small peptide ligands as intercellular signaling molecules. Previous studies have uncovered pairs of ligands and receptors in cell-cell communications. This review focuses on signaling and function of key plant peptide ligands.
Collapse
|
48
|
Czyzewicz N, Yue K, Beeckman T, De Smet I. Message in a bottle: small signalling peptide outputs during growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5281-96. [PMID: 24014870 DOI: 10.1093/jxb/ert283] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor. Here, we assess the potential small signalling peptide outputs, namely the molecular, biochemical, and morphological changes they trigger in Arabidopsis. However, we also include some notable studies in other plant species, in order to illustrate the varied effects that can be induced by small signalling peptides. In addition, we touch on some evolutionary aspects of small signalling peptides, as studying their signalling outputs in single-cell green algae and early land plants will assist in our understanding of more complex land plants. Our overview illustrates the growing interest in the small signalling peptide research area and its importance in deepening our understanding of plant growth and development.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | |
Collapse
|
49
|
Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. PLANT PHYSIOLOGY 2013; 162:2028-41. [PMID: 23800991 PMCID: PMC3729780 DOI: 10.1104/pp.113.222372] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 05/18/2023]
Abstract
In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.
Collapse
Affiliation(s)
| | - Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
50
|
Utkina LL, Andreev YA, Rogozhin EA, Korostyleva TV, Slavokhotova AA, Oparin PB, Vassilevski AA, Grishin EV, Egorov TA, Odintsova TI. Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J 2013; 280:3594-608. [PMID: 23702306 DOI: 10.1111/febs.12349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/15/2022]
Abstract
A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize.
Collapse
Affiliation(s)
- Lyubov L Utkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|