1
|
Gilbert J, Paris L, Dubuffet A, Texier C, Delbac F, Diogon M. Nosema ceranae infection reduces the fat body lipid reserves in the honeybee Apis mellifera. J Invertebr Pathol 2024; 207:108218. [PMID: 39393624 DOI: 10.1016/j.jip.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Nosema ceranae is an intestinal parasite frequently found in Apis mellifera colonies. This parasite belongs to Microsporidia, a group of obligate intracellular parasites known to be strongly dependent on their host for energy and resources. Previous studies have shown that N. ceranae could alter several metabolic pathways, including those involved in the nutrient storage. To explore the impact of N. ceranae on the fat body reserves, newly emerged summer bees were experimentally infected, and we measured (1) the lipid percentage of the abdominal fat body at 2-, 7- and 14-days post-inoculation (p.i.) using diethyl ether lipid extraction, (2) the triglyceride and protein concentrations by spectrophotometric assay methods, and (3) the amount of intracellular lipid droplets in trophocytes at 14- and 21-days p.i. using Nile Red staining. Comparing the three methods used to evaluate lipid stores, our data revealed that Nile Red staining seemed to be the simplest, fastest and reliable method. Our results first revealed that the percentage of fat body lipids significantly decreased in infected bees at D14 p.i. The protein stores did not seem to be affected by the infection, while triglyceride concentration was reduced by 30% and lipid droplet amount by 50% at D14 p.i. Finally, a similar decrease in lipid droplet reserves in response to N. ceranae infection was observed in bees collected in fall.
Collapse
Affiliation(s)
- Juliette Gilbert
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Aurore Dubuffet
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Catherine Texier
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
2
|
Morfin N, Goodwin PH, Guzman-Novoa E, Legge N, Longstaffe J. 1H NMR Profiling of Honey Bee Brains across Varying Ages and Seasons. INSECTS 2024; 15:578. [PMID: 39194783 DOI: 10.3390/insects15080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Honey bees (Apis mellifera) provide a useful model for studying aging because of the differences in longevity between the relatively short-lived summer and long-lived winter bees, as well as bees lacking signs of cognitive senescence as they age. Bee brains were dissected from newly emerged, 14-day-, and 28-day- old bees in mid- and late summer, as well as brood nest bees in fall, winter, and spring, before, during, and after overwintering, respectively. Brains were examined with nuclear magnetic resonance (NMR) spectroscopy to analyze their metabolome. Nine variable importance in projection (VIP) variables were identified, primarily amino acids and choline derivatives. Differences in metabolite concentrations were found with different ages of summer bees, mostly between newly emerged and 14-day- old bees, such as a decrease in phenylalanine and an increase in β-alanine, but there were also changes in older adults, such as o-phosphocholine that declined in 28-day- old bees. Differences in brood nest bees were observed, including a decline in tryptophan and an increase in β-alanine. These may provide distinct metabolomic signatures with age and season. Such research holds promise for a better understanding of the complex interplays between bee physiology, development, and aging, which has implications for improving bee health and management.
Collapse
Affiliation(s)
- Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- The British Columbia Technology Transfer Program, British Columbia Honey Producers' Association, P.O. Box 5594, Station B, Victoria, BC V8R 6S4, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Legge
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Kojić D, Spremo J, Đorđievski S, Čelić T, Vukašinović E, Pihler I, Purać J. Spermidine supplementation in honey bees: Autophagy and epigenetic modifications. PLoS One 2024; 19:e0306430. [PMID: 38950057 PMCID: PMC11216588 DOI: 10.1371/journal.pone.0306430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
Polyamines (PAs), including putrescine (Put), spermidine (Spd), and spermine (Spm), are essential polycations with wide-ranging roles in cellular functions. PA levels decline with age, making exogenous PA supplementation, particularly Spd, an intriguing prospect. Previous research in honey bees demonstrated that millimolar Spd added to their diet increased lifespan and reinforced oxidative resilience. The present study is aimed to assess the anti-aging effects of spermidine supplementation at concentrations of 0.1 and 1 mM in honey bees, focusing on autophagy and associated epigenetic changes. Results showed a more pronounced effect at the lower Spd concentration, primarily in the abdomen. Spd induced site-specific histone 3 hypoacetylation at sites K18 and 27, hyperacetylation at K9, with no change at K14 in the entire body. Additionally, autophagy-related genes (ATG3, 5, 9, 13) and genes associated with epigenetic changes (HDAC1, HDAC3, SIRT1, KAT2A, KAT6B, P300, DNMT1A, DNMT1B) were upregulated in the abdomens of honey bees. In conclusion, our findings highlight profound epigenetic changes and autophagy promotion due to spermidine supplementation, contributing to increased honey bee longevity. Further research is needed to fully understand the precise mechanisms and the interplay between epigenetic alterations and autophagy in honey bees, underscoring the significance of autophagy as a geroprotective mechanism.
Collapse
Affiliation(s)
- Danijela Kojić
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Spremo
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Srđana Đorđievski
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana Čelić
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Elvira Vukašinović
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Pihler
- Faculty of Agriculture, Department of Animal Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Purać
- Faculty of Science, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
4
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2024:e2400075. [PMID: 38896501 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhien Hare
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Dohanik VT, Medeiros-Santana L, Santos CG, Santana WC, Serrão JE. Expression and function of the vitellogenin receptor in the hypopharyngeal glands of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22120. [PMID: 38739744 DOI: 10.1002/arch.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.
Collapse
Affiliation(s)
| | - Luanda Medeiros-Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Campus Rio Paranaíba, Rio Paranaíba, Brazil
| | | | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
6
|
Frunze O, Kim H, Lee JH, Kwon HW. The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. Int J Mol Sci 2024; 25:4271. [PMID: 38673857 PMCID: PMC11049949 DOI: 10.3390/ijms25084271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms underlying nutrient transformation, particularly proteins and their effects on development, health, and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by its high protein content and digestibility, was selected for further analysis from the other studied diets. Subsequently, machine learning was employed to identify six diet-related molecular markers: SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed a molecular model to elucidate the transition of long-lived honey bees from diapause to development, induced by nutrition. These findings carry implications for nutritional research and beekeeping, underscoring the vital role of honey bees in agriculture.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
7
|
Conradie TA, Lawson K, Allsopp M, Jacobs K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol Res 2024; 280:127587. [PMID: 38142516 DOI: 10.1016/j.micres.2023.127587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Honey bees (Apis mellifera) harbour a stable core microbial community within their gut, that is suggested to play a role in metabolic functioning, immune regulation, and host homeostasis. This microbiota presents a unique opportunity to observe the effects of stressors on honey bee health. We examined the effects of two common honey bee stressors: indirect fungicide contamination and nutrient limitation. These effects were observed through changes in their hind- and midgut microbiota using Automated Ribosomal Intergenic Spacer Analysis (ARISA), alongside high-throughput amplicon sequencing. Expression of the honey bees' immune response was examined through the expression of three immune-related genes, namely, immune deficiency (imd), proPhenolOxidase (proPO), and spaetzle (spz). Additionally, longevity of the honey bees was monitored through observation of the expression levels of Vitellogenin (Vg). Both treatment groups were compared to a negative control, and a diseased positive control. There was no effect on the hindgut microbiota due to the stressors, while significant changes in the midgut was observed. This was also observed in the expression of the immune-related genes within the treatment groups. The Imd pathway was substantially downregulated, with upregulation in the prophenoloxidase pathway. However, no significant effect was observed in the expression of spz, and only the pollen treatment group showed reduced longevity through a downregulation of Vg. Overall, the effect of these two common stressors indicate a compromise in honey bee immunity, and potential vulnerabilities within the immune defence mechanisms.
Collapse
Affiliation(s)
- Tersia A Conradie
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayla Lawson
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mike Allsopp
- Agricultural Research Council - Plant, Health & Protection, Stellenbosch 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
8
|
Hartke J, Ceron-Noriega A, Stoldt M, Sistermans T, Kever M, Fuchs J, Butter F, Foitzik S. Long live the host! Proteomic analysis reveals possible strategies for parasitic manipulation of its social host. Mol Ecol 2023; 32:5877-5889. [PMID: 37795937 DOI: 10.1111/mec.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.
Collapse
Affiliation(s)
- Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tom Sistermans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Fuchs
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
10
|
Anderson A, Keime N, Fong C, Kraemer A, Fassbinder-Orth C. Resilin Distribution and Abundance in Apis mellifera across Biological Age Classes and Castes. INSECTS 2023; 14:764. [PMID: 37754732 PMCID: PMC10532044 DOI: 10.3390/insects14090764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The presence of resilin, an elastomeric protein, in insect vein joints provides the flexible, passive deformations that are crucial to flapping flight. This study investigated the resilin gene expression and autofluorescence dynamics among Apis mellifera (honey bee) worker age classes and drone honey bees. Resilin gene expression was determined via ddPCR on whole honey bees and resilin autofluorescence was measured in the 1m-cu, 2m-cu, Cu-V, and Cu2-V joints on the forewing and the Cu-V joint of the hindwing. Resilin gene expression varied significantly with age, with resilin activity being highest in the pupae. Autofluorescence of the 1m-cu and the Cu-V joints on the ventral forewing and the Cu-V joint on the ventral hindwing varied significantly between age classes on the left and right sides of the wing, with the newly emerged honey bees having the highest level of resilin autofluorescence compared to all other groups. The results of this study suggest that resilin gene expression and deposition on the wing is age-dependent and may inform us more about the physiology of aging in honey bees.
Collapse
Affiliation(s)
- Audrey Anderson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 1400 R Street, Lincoln, NE 68588, USA;
| | - Noah Keime
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chandler Fong
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Carol Fassbinder-Orth
- Biology Department, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
11
|
Kovačić M, Uzunov A, Tlak Gajger I, Pietropaoli M, Soroker V, Adjlane N, Benko V, Charistos L, Dall’Olio R, Formato G, Hatjina F, Malagnini V, Freda F, Otmi A, Puškadija Z, Villar C, Büchler R. Honey vs. Mite-A Trade-Off Strategy by Applying Summer Brood Interruption for Varroa destructor Control in the Mediterranean Region. INSECTS 2023; 14:751. [PMID: 37754719 PMCID: PMC10531922 DOI: 10.3390/insects14090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
In this study, we investigated the effect of queen caging on honey bee colonies' post-treatment development and the optimal timing of method application on honey production during the main summer nectar flow. We conducted the study in nine apiaries (N = 9) across six Mediterranean countries, with a total of 178 colonies. The colonies were divided into three test groups: QC1, QC2, and C. The QC1 group involved queens caged for a total of 28 days before the expected harvesting day. In the QC2 group, queens were caged for 28 days, but only 14 days before the expected harvesting day. The C group consisted of queens that were not caged, and the colonies received common local treatments. In both the QC1 and QC2 groups, the colonies were treated with a 4.2% oxalic acid (OA) solution by trickling after the queen release. Our findings revealed no significant adverse effects (p > 0.05) on colony strength at the end of the study resulting from queen caging. However, significantly lower amounts of honey were extracted from the QC1 group compared to both the QC2 group (p = 0.001) and the C group (p = 0.009). Although there were no initial differences in Varroa destructor infestation between the groups, ten weeks later, a significantly higher infestation was detected in the C group compared to both the QC1 group (p < 0.01) and the QC2 group (p = 0.003). Overall, our study demonstrates that queen caging, in combination with the use of OA, is an effective treatment for controlling V. destructor. However, the timing of caging plays a crucial role in honey production outcomes.
Collapse
Affiliation(s)
- Marin Kovačić
- Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, V. Preloga 1, 31000 Osijek, Croatia; (M.K.); (Z.P.)
| | - Aleksandar Uzunov
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia;
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.P.); (G.F.)
| | - Victoria Soroker
- Agricultural Research Organization (ARO), The Volcani Center, 68 HaMacabim Road, Rishon LeZion 7505101, Israel; (V.S.); (A.O.)
| | - Noureddine Adjlane
- Department of Agronomy, Faculty of Science, University of Boumerdes, 35000 Boumerdes, Algeria;
| | - Valerija Benko
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia;
| | - Leonidas Charistos
- Department of Apiculture, Institute of Animal Sciences, Ellinikos Georgikos Organismos “DIMITRA”, 63 200 Nea Moudania, Greece; (L.C.); (F.H.)
| | | | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.P.); (G.F.)
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Sciences, Ellinikos Georgikos Organismos “DIMITRA”, 63 200 Nea Moudania, Greece; (L.C.); (F.H.)
| | - Valeria Malagnini
- Fondazione Edmund Mach, Centro Trasferimento Tecnologico, Via E. Mach, 1 San Michele all’Adige, 38098 Trento, Italy; (V.M.); (F.F.)
| | - Fabrizio Freda
- Fondazione Edmund Mach, Centro Trasferimento Tecnologico, Via E. Mach, 1 San Michele all’Adige, 38098 Trento, Italy; (V.M.); (F.F.)
| | - Asaf Otmi
- Agricultural Research Organization (ARO), The Volcani Center, 68 HaMacabim Road, Rishon LeZion 7505101, Israel; (V.S.); (A.O.)
| | - Zlatko Puškadija
- Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, V. Preloga 1, 31000 Osijek, Croatia; (M.K.); (Z.P.)
| | - Claudio Villar
- Consejería de Agricultura de la Junta de Comunidades de Castilla La Mancha, 02600 Albacete, Spain;
| | | |
Collapse
|
12
|
Furse S, Koch H, Wright GA, Stevenson PC. Sterol and lipid metabolism in bees. Metabolomics 2023; 19:78. [PMID: 37644282 PMCID: PMC10465395 DOI: 10.1007/s11306-023-02039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
13
|
Lidsky PV, Yuan J, Andino R. Reconsidering life history theory amid infectious diseases. Trends Ecol Evol 2023:S0169-5347(23)00127-1. [PMID: 37236881 DOI: 10.1016/j.tree.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Peter V Lidsky
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jing Yuan
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Brejcha M, Prušáková D, Sábová M, Peska V, Černý J, Kodrík D, Konopová B, Čapková Frydrychová R. Seasonal changes in ultrastructure and gene expression in the fat body of worker honey bees. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104504. [PMID: 36935036 DOI: 10.1016/j.jinsphys.2023.104504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The anatomical, physiological, and behavioral characteristics of honey bees are affected by the season as well as division of labor. In this study, we examined the structure, ultrastructure, and gene expression of fat body cells in both long-lived winter and short-lived summer worker bees (the youngest stage of hive bees and forager bees). In contrast to hive bees, foragers and winter bees have a higher metabolism due to intensive muscle activity during their flight (foragers) or endothermic heat production (winter bees). These workers differ from hive bees in the biology of their mitochondria, peroxisomes, and lysosomes as well as in the expression of the genes involved in lipid, carbohydrate, amino acid metabolism, insulin, and TGF- β signaling. Additionally, the expression of genes related to phospholipid metabolism was higher in the hive bees. However, we found no differences between workers in the expression of genes controlling cell organelles, such as the Golgi apparatus, endoplasmic reticulum, ribosomes, nucleus, and vacuoles, as well as genes for DNA replication, cell cycle control, and autophagy. Furthermore, lysosomes, autophagic processes and lipofuscin particles were more frequently observed in winter bees using electron microscopy.
Collapse
Affiliation(s)
- Miloslav Brejcha
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Daniela Prušáková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Michala Sábová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jan Černý
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Barbora Konopová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
15
|
Đorđievski S, Vukašinović EL, Čelić TV, Pihler I, Kebert M, Kojić D, Purać J. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci Rep 2023; 13:4329. [PMID: 36922548 PMCID: PMC10017671 DOI: 10.1038/s41598-023-31456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Honey bee health has been an important and ongoing topic in recent years. Honey bee is also an important model organism for aging studies. Polyamines, putrescine, spermidine and spermine, are ubiquitous polycations, involved in a wide range of cellular processes such as cell growth, gene regulation, immunity, and regulation of lifespan. Spermidine, named longevity elixir, has been most analysed in the context of aging. One of the several proposed mechanisms behind spermidine actions is antioxidative activity. In present study we showed that dietary spermidine supplementation: (a) improved survival, (b) increased the average lifespan, (c) influenced the content of endogenous polyamines by increasing the level of putrescine and spermidine and decreasing the level of spermine, (d) reduced oxidative stress (MDA level), (e) increased the antioxidant capacity of the organism (FRAP), (f) increased relative gene expression of five genes involved in polyamine metabolism, and (g) upregulated vitellogenin gene in honey bees. To our knowledge, this is the first study on honey bee polyamine levels in reference to their longevity. These results provide important information on possible strategies for improving honey bee health by introducing spermidine into their diet. Here, we offer spermidine concentrations that could be considered for that purpose.
Collapse
Affiliation(s)
- Srđana Đorđievski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| | - Elvira L Vukašinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana V Čelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Pihler
- Departmnent of Animal Sciences, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Purać
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
17
|
Sarioğlu-Bozkurt A, Topal E, Güneş N, Üçeş E, Cornea-Cipcigan M, Coşkun İ, Cuibus L, Mărgăoan R. Changes in Vitellogenin (Vg) and Stress Protein (HSP 70) in Honey Bee ( Apis mellifera anatoliaca) Groups under Different Diets Linked with Physico-Chemical, Antioxidant and Fatty and Amino Acid Profiles. INSECTS 2022; 13:985. [PMID: 36354809 PMCID: PMC9698881 DOI: 10.3390/insects13110985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Honey bee colonies are often subjected to diseases, nutrition quality, temperature and other stresses depending on environmental and climatic conditions. As a result of malnutrition, the level of Vg protein decreases, leading to overwintering losses. The Vg values must be high for a successful wintering, especially before wintering. If good nutrition is not reached, the long winter period may cause an increase in colony losses. Supplementary feeding is essential for colony sustainability when floral resources are insufficient, as in recent years with the emerging climate changes. Furthermore, quality food sources or nutrients are significant for maintaining honey bee health and longevity. This study examined the changes in HSP 70 and Vg proteins in 6 groups of 48 colonies fed with five different nutrients. The fatty acids that are present in the highest amount in Cistus creticus (Pink rock-rose), Papaver somniferum (Opium poppy) and mixed pollen samples were linoleic, palmitic and cis-9-oleic acids. The highest values in proline, lysine and glutamic acid were determined in C. creticus pollen. Regarding the P. somniferum pollen, the highest values were observed in lysine, proline, glutamic and aspartic acids. The highest values in lysine, proline, leucine and aspartic acid were noticed in mixed pollen. The effect of different feeding on Vg protein in nurse and forager bee samples was higher in the mixed pollen group in the fall period. In nurse bees, the mixed pollen group was followed by Cistus creticus pollen > Papaver somniferum pollen > sugar syrup > commercial bee cake > control group, respectively (p < 0.05). In forager bees, the order was mixed pollen, P. somniferum pollen, C. creticus pollen, commercial bee cake, sugar syrup and control. In the early spring period, the Vg levels were high in the mixed pollen group in the nurse bees and the commercial bee cake group in the forager bees. In the fall period, the HSP 70 value of the forager and nurse bees was the lowest in the C. creticus group (p < 0.05). In early spring, the active period of flora, a statistical difference was found between the treatment groups.
Collapse
Affiliation(s)
- Aybike Sarioğlu-Bozkurt
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Nilüfer, 16059 Bursa, Turkey
| | - Erkan Topal
- Izmir Food Control Laboratory Directorate, Bornova, 35100 Izmir, Turkey
| | - Nazmiye Güneş
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Nilüfer, 16059 Bursa, Turkey
| | - Engin Üçeş
- Apiculture Research Center, Aegean Agricultural Research Institute, 35660 Izmir, Turkey
| | - Mihaiela Cornea-Cipcigan
- Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - İlknur Coşkun
- Altıparmak Gıda Sanayi ve Ticaret A.Ş., 34782 Istanbul, Turkey
| | - Lucian Cuibus
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Rodica Mărgăoan
- Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Fisher Ii A, Glass JR, Ozturk C, DesJardins N, Raka Y, DeGrandi-Hoffman G, Smith BH, Fewell JH, Harrison JF. Seasonal variability in physiology and behavior affect the impact of fungicide exposure on honey bee (Apis mellifera) health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120010. [PMID: 36002100 DOI: 10.1016/j.envpol.2022.120010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.
Collapse
Affiliation(s)
- Adrian Fisher Ii
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
| | - Jordan R Glass
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Nicole DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Yash Raka
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Gloria DeGrandi-Hoffman
- United States Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E Allen Rd., Tucson, AZ, 85719, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
19
|
Ward R, Coffey M, Kavanagh K. Proteomic analysis of summer and winter Apis mellifera workers shows reduced protein abundance in winter samples. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104397. [PMID: 35537525 DOI: 10.1016/j.jinsphys.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Apis mellifera workers display two stages; short lived summer bees that engage in nursing, hive maintenance and foraging, and long lived winter bees (diutinus bees) which remain within the hive and are essential for thermoregulation and rearing the next generation of bees in spring before dying. Label free quantitative proteomic analysis was conducted on A. mellifera workers sampled in June and December to compare the proteomes of summer and winter bees. Proteomic analysis was performed on head, abdominal and venom sac samples and revealed an elevated level of protein abundance in summer bees. Head and abdominal samples displayed an increased abundance in cuticular proteins in summer samples whereas an increase in xenobiotic proteins was observed in winter samples. Several carbohydrate metabolism pathways which have been linked to energy production and longevity in insects were increased in abundance in winter samples in comparison to summer samples. Proteomic analysis of the venom sacs of summer samples showed an increased abundance of bee venom associated proteins in comparison to winter workers. These data provides an insight into the adaptions of A. mellifera workers in summer and winter and may aid in future treatment and disease studies on honeybee colonies. Data are available via ProteomeXchange with identifier PXD030483.
Collapse
Affiliation(s)
- Rachel Ward
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Plant Health Laboratories, Plant Science Division (Bee Health), Department of Agriculture, Celbridge, Co Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Martin N, Hulbert AJ, Mitchell TW, Else PL. Regulation of membrane phospholipids during the adult life of worker honey bee. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104310. [PMID: 34530044 DOI: 10.1016/j.jinsphys.2021.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Two female castes that are genetically identical are found in honey bees: workers and queens. Adult female honey bees differ in their morphology and behaviors, but the most intriguing difference between the castes is the difference in their longevity. Queens live for years while workers live generally for weeks. The mechanisms that mediate this extraordinary difference in lifespan remain mostly unknown. Both castes share similar developmental stages and are fed liquid food (i.e. a jelly) during development. However, after emergence, workers begin to feed on pollen while queens are fed the same larval food for their entire life. Pollen has a high content of polyunsaturated fatty acids (PUFA) while royal jelly has negligible amounts. The difference in food during adult life leads to drastic changes in membrane phospholipids of female honey bees, and those changes have been proposed as mechanisms that could explain the difference in lifespan. To provide further details on those mechanisms, we characterized the membrane phospholipids of adult workers at seven different ages covering all life-history stages. Our results suggest that the majority of changes in worker membranes occur in the first four days of adult life. Shortly after emergence, workers increase their level of total phospholipids by producing phospholipids that contained saturated (SFA) and monounsaturated fatty acids (MUFA). From the second day, workers start replacing fatty acid chains from those pre-synthesized molecules with PUFA acquired from pollen. After four days, worker membranes are set and appear to be maintained for the rest of adult life, suggesting that damaged PUFA are replaced effectively. Plasmalogen phospholipids increase continuously throughout worker adult life, suggesting that plasmalogen might help to reduce lipid peroxidation in worker membranes. We postulate that the diet-induced increase in PUFA in worker membranes makes them far more prone to lipid-based oxidative damage compared to queens.
Collapse
Affiliation(s)
- N Martin
- School of Medicine, University of Wollongong, NSW 2522, Australia; School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - A J Hulbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
| | - T W Mitchell
- School of Medicine, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - P L Else
- School of Medicine, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia.
| |
Collapse
|
21
|
Molecular underpinnings of division of labour among workers in a socially complex termite. Sci Rep 2021; 11:18269. [PMID: 34521896 PMCID: PMC8440649 DOI: 10.1038/s41598-021-97515-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Division of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.
Collapse
|
22
|
Strachecka A, Olszewski K, Kuszewska K, Chobotow J, Wójcik Ł, Paleolog J, Woyciechowski M. Segmentation of the subcuticular fat body in Apis mellifera females with different reproductive potentials. Sci Rep 2021; 11:13887. [PMID: 34230567 PMCID: PMC8260796 DOI: 10.1038/s41598-021-93357-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022] Open
Abstract
Evolution has created different castes of females in eusocial haplodiploids. The difference between them lies in their functions and vulnerability but above all in their reproductive potentials. Honeybee queens are highly fertile. On the other hand, the workers are facultatively sterile. However, rebel workers, i.e. workers that develop in a queenless colony, reproduce more often than normal workers. As a result, the fat body of these bees, which apart from acting as the energy reserve, is also the site of numerous metabolic processes, had to specialize in different functions perfected over millions of years of eusocial evolution. Assuming that the variety of functions manifests itself in the pleomorphic structure of the fat body cells, we predicted that also different parts of the fat body, e.g. from different segments of the abdomen, contain different sets of cells. Such differences could be expected between queens, rebels and normal workers, i.e. females with dramatically different reproductive potentials. We confirmed all these expectations. Although all bees had the same types of cells, their proportion and segmental character corresponded with the caste reproductive potential and physiological characteristics shaped in the evolutionary process. The females with an increased reproductive potential were characterized by the presence of oenocytes in the third tergite and high concentrations of compounds responsible for energy reserves, like glucose, glycogen and triglycerides. Queens had very large trophocytes, especially in the third tergite. Only in workers did we observe intercellular spaces in all the segments of the fat body, as well as high protein concentrations-especially in the sternite. As expected, the rebels combined many features of the queens and normal workers, what with other findings can help understand the ways that led to the origin of different castes in females of eusocial Hymenoptera.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Krzysztof Olszewski
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Łukasz Wójcik
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy Paleolog
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
23
|
Zhao F, Morandin C, Jiang K, Su T, He B, Lin G, Huang Z. Molecular evolution of bumble bee vitellogenin and vitellogenin-like genes. Ecol Evol 2021; 11:8983-8992. [PMID: 34257940 PMCID: PMC8258195 DOI: 10.1002/ece3.7736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Vitellogenin (Vg), a storage protein, has been significantly studied for its egg yolk precursor role in oviparous animals. Recent studies found that vitellogenin and its Vg-like homologs were fundamentally involved in many other biological processes in social insects such as female caste differences and oxidative stress resilience. In this study, we conducted the first large-scale molecular evolutionary analyses of vitellogenin coding genes (Vg) and Vg-like genes of bumble bees, a primitively eusocial insect belonging to the genus Bombus. We obtained sequences for each of the four genes (Vg, Vg-like-A, Vg-like-B, and Vg-like-C) from 27 bumble bee genomes (nine were newly sequenced in this study), and sequences from the two closest clades of Bombus, including five Apis species and five Tetragonula species. Our molecular evolutionary analyses show that in bumble bee, the conventional Vg experienced strong positive selection, while the Vg-like genes showed overall relaxation of purifying selection. In Apis and Tetragonula; however, all four genes were found under purifying selection. Furthermore, the conventional Vg showed signs of strong positive selection in most subgenera in Bombus, apart from the obligate parasitic subgenus Psithyrus which has no caste differentiation. Together, these results indicate that the conventional Vg, a key pleiotropic gene in social insects, is the most rapidly evolving copy, potentially due to its multiple known social functions for both worker and queen castes. This study shows that concerted evolution and purifying selection shaped the evolution of the Vg gene family following their ancient gene duplication and may be the leading forces behind the evolution of new potential protein function enabling functional social pleiotropy.
Collapse
Affiliation(s)
- Fang Zhao
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Claire Morandin
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Kai Jiang
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Tianjuan Su
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Bo He
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Gonghua Lin
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Zuhao Huang
- School of Life SciencesJinggangshan UniversityJi’anChina
| |
Collapse
|
24
|
Kramer BH, Nehring V, Buttstedt A, Heinze J, Korb J, Libbrecht R, Meusemann K, Paxton RJ, Séguret A, Schaub F, Bernadou A. Oxidative stress and senescence in social insects: a significant but inconsistent link? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190732. [PMID: 33678022 PMCID: PMC7938172 DOI: 10.1098/rstb.2019.0732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
The life-prolonging effects of antioxidants have long entered popular culture, but the scientific community still debates whether free radicals and the resulting oxidative stress negatively affect longevity. Social insects are intriguing models for analysing the relationship between oxidative stress and senescence because life histories differ vastly between long-lived reproductives and the genetically similar but short-lived workers. Here, we present the results of an experiment on the accumulation of oxidative damage to proteins, and a comparative analysis of the expression of 20 selected genes commonly involved in managing oxidative damage, across four species of social insects: a termite, two bees and an ant. Although the source of analysed tissue varied across the four species, our results suggest that oxidative stress is a significant factor in senescence and that its manifestation and antioxidant defenses differ among species, making it difficult to find general patterns. More detailed and controlled investigations on why responses to oxidative stress may differ across social species may lead to a better understanding of the relations between oxidative stress, antioxidants, social life history and senescence. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Boris H. Kramer
- Faculty of Science and Engineering, Theoretical Research in Evolutionary Life Sciences, RUG, 9747 AG Groningen, The Netherlands
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Anja Buttstedt
- Institute for Biology - Molecular Ecology, Martin-Luther-University Halle-Saale, Hoher Weg 4, 06099 Halle, Germany
| | - Jürgen Heinze
- Zoology, Department of Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Robert J. Paxton
- Institute for Biology - General Zoology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice Séguret
- Institute for Biology - General Zoology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Florentine Schaub
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Abel Bernadou
- Zoology, Department of Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Korb J, Heinze J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190727. [PMID: 33678019 PMCID: PMC7938171 DOI: 10.1098/rstb.2019.0727] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Jürgen Heinze
- Department of Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße, 93040 Regensburg, Germany
| |
Collapse
|
26
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
27
|
DeGrandi-Hoffman G, Corby-Harris V, Carroll M, Toth AL, Gage S, Watkins deJong E, Graham H, Chambers M, Meador C, Obernesser B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees ( Apis mellifera L.). INSECTS 2021; 12:insects12030235. [PMID: 33801848 PMCID: PMC8000538 DOI: 10.3390/insects12030235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/29/2023]
Abstract
Simple Summary Honey bees rely on pollen and nectar to provide nutrients to support their yearly colony cycle. Specifics of the cycle differ among geographic regions as do the species of flowering plants and the nutrients they provide. We examined responses of honey bees from two different queen lines fed pollens from locations that differed in floral species composition and yearly colony cycles. We detected differences between the queen lines in the amount of pollen they consumed and the size of their hypopharyngeal glands (HPG). There were also seasonal differences between the nutrient composition of pollens. Spring pollens collected from colonies in both locations had higher amino and fatty acid concentrations than fall pollens. There also were seasonal differences in responses to the pollens consumed by bees from both queen lines. Bees consumed more spring than fall pollen, but digested less of it so that bees consumed more protein from fall pollens. Though protein consumption was higher with fall pollen, HPG were larger in spring bees. Abstract Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
- Correspondence:
| | - Vanessa Corby-Harris
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Amy L. Toth
- Department of Entomology, Iowa State University, 2310 Pammel Drive, 339 Science Hall II, Ames, IA 50011, USA;
| | - Stephanie Gage
- Georgia Institute of Technology, School of Physics, Howey Physics Building, 837 State Street NW, Atlanta, GA 30313, USA;
| | - Emily Watkins deJong
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Bethany Obernesser
- Department of Entomology, University of Arizona, Forbes 410, P.O. Box 210036, Tucson, AZ 85721, USA;
| |
Collapse
|
28
|
Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. INSECTS 2021; 12:insects12030224. [PMID: 33807581 PMCID: PMC8000648 DOI: 10.3390/insects12030224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Honey bee overwintering health is essential to meet the demands of spring pollination. Managed honey bee colonies are overwintered in a variety of climates, and increasing rates of winter colony loss have prompted investigations into overwintering management, including indoor climate controlled overwintering. Central to colony health, the worker hindgut gut microbiota has been largely ignored in this context. We sequenced the hindgut microbiota of overwintering workers from both a warm southern climate and controlled indoor cold climate. Congruently, we sampled a cohort of known chronological age to estimate worker longevity in southern climates, and assess age-associated changes in the core hindgut microbiota. We found that worker longevity over winter in southern climates was much lower than that recorded for northern climates. Workers showed decreased bacterial and fungal load with age, but the relative structure of the core hindgut microbiome remained stable. Compared to cold indoor wintering, collective microbiota changes in the southern outdoor climate suggest compromised host physiology. Fungal abundance increased by two orders of magnitude in southern climate hindguts and was positively correlated with non-core, likely opportunistic bacteria. Our results contribute to understanding overwintering honey bee biology and microbial ecology and provide insight into overwintering strategies.
Collapse
|
29
|
Hopkins BK, Chakrabarti P, Lucas HM, Sagili RR, Sheppard WS. Impacts of Different Winter Storage Conditions on the Physiology of Diutinus Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:409-414. [PMID: 33386734 DOI: 10.1093/jee/toaa302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 06/12/2023]
Abstract
Global decline in insect pollinators, especially bees, have resulted in extensive research into understanding the various causative factors and formulating mitigative strategies. For commercial beekeepers in the United States, overwintering honey bee colony losses are significant, requiring tactics to overwinter bees in conditions designed to minimize such losses. This is especially important as overwintered honey bees are responsible for colony expansion each spring, and overwintered bees must survive in sufficient numbers to nurse the spring brood and forage until the new 'replacement' workers become fully functional. In this study, we examined the physiology of overwintered (diutinus) bees following various overwintering storage conditions. Important physiological markers, i.e., head proteins and abdominal lipid contents were higher in honey bees that overwintered in controlled indoor storage facilities, compared with bees held outdoors through the winter months. Our findings provide new insights into the physiology of honey bees overwintered in indoor and outdoor environments and have implications for improved beekeeping management.
Collapse
Affiliation(s)
| | | | - Hannah M Lucas
- Oregon State University, 4017 Agriculture and Life Sciences, Corvallis, OR
| | - Ramesh R Sagili
- Oregon State University, 4017 Agriculture and Life Sciences, Corvallis, OR
| | | |
Collapse
|
30
|
Koubová J, Sábová M, Brejcha M, Kodrík D, Čapková Frydrychová R. Seasonality in telomerase activity in relation to cell size, DNA replication, and nutrients in the fat body of Apis mellifera. Sci Rep 2021; 11:592. [PMID: 33436732 PMCID: PMC7803764 DOI: 10.1038/s41598-020-79912-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
In honeybees (Apis mellifera), the rate of aging is modulated through social interactions and according to caste differentiation and the seasonal (winter/summer) generation of workers. Winter generation workers, which hatch at the end of summer, have remarkably extended lifespans as an adaptation to the cold season when the resources required for the growth and reproduction of colonies are limited and the bees need to maintain the colony until the next spring. In contrast, the summer bees only live for several weeks. To better understand the lifespan differences between summer and winter bees, we studied the fat bodies of honeybee workers and identified several parameters that fluctuate in a season-dependent manner. In agreement with the assumption that winter workers possess greater fat body mass, our data showed gradual increases in fat body mass, the size of the fat body cells, and Vg production as the winter season proceeded, as well as contrasting gradual decreases in these parameters in the summer season. The differences in the fat bodies between winter and summer bees are accompanied by respective increases and decreases in telomerase activity and DNA replication in the fat bodies. These data show that although the fat bodies of winter bees differ significantly from those of summer bees, these differences are not a priori set when bees hatch at the end of summer or in early autumn but instead gradually evolve over the course of the season, depending on environmental factors.
Collapse
Affiliation(s)
- Justina Koubová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michala Sábová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Miloslav Brejcha
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
31
|
Brent CS. Diapause Termination and Postdiapause in Lygus hesperus (Heteroptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:4. [PMID: 33400796 PMCID: PMC7785046 DOI: 10.1093/jisesa/ieaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The western tarnished plant bug, Lygus hesperus Knight, overwinters as a diapausing adult in response to short day lengths. Once environmental conditions are favorable, the bugs revert to an active reproductive state. To determine the impact on life-history traits of diverting resources toward diapause rather than oogenesis during early adulthood, diapausing and nondiapausing L. hesperus females were reared from the same cohorts. Body mass, ovarian maturation, ovipositional activity, and survivorship were monitored starting either at the time of release from diapause-inducing conditions or at adult eclosion for diapausers and nondiapausers, respectively. Females that had gone through 2 wk of diapause were larger and able to mobilize the resources necessary for oogenesis faster than nondiapausers, initiating oogenesis and ovipositing sooner and at a faster initial rate. However, lifetime egg production and average daily rates were similar for both groups. Postdiapausers lived longer than nondiapausers by an average of 19 d, which is five more than the 2-wk period when they were reproductively senescent. Overall, the results indicate that short-term diapause does not have a negative impact on life history. Furthermore, the extra endogenous resources stored during diapause may be able to enhance the alacrity with which the female can take advantage of improved environmental conditions and may prolong life by shielding the females against environmental stressors such as temperature extremes, oxidative agents, or food deficits.
Collapse
Affiliation(s)
- Colin S Brent
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ
| |
Collapse
|
32
|
Lemanski NJ, Bansal S, Fefferman NH. The sensitivity of a honeybee colony to worker mortality depends on season and resource availability. BMC Evol Biol 2020; 20:139. [PMID: 33121428 PMCID: PMC7596992 DOI: 10.1186/s12862-020-01706-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background Honeybees have extraordinary phenotypic plasticity in their senescence rate, making them a fascinating model system for the evolution of aging. Seasonal variation in senescence and extrinsic mortality results in a tenfold increase in worker life expectancy in winter as compared to summer. To understand the evolution of this remarkable pattern of aging, we must understand how individual longevity scales up to effects on the entire colony. In addition, threats to the health of honey bees and other social insects are typically measured at the individual level. To predict the effects of environmental change on social insect populations, we must understand how individual effects impact colony performance. We develop a matrix model of colony demographics to ask how worker age-dependent and age-independent mortality affect colony fitness and how these effects differ by seasonal conditions. Results We find that there are seasonal differences in honeybee colony elasticity to both senescent and extrinsic worker mortality. Colonies are most elastic to extrinsic (age-independent) nurse and forager mortality during periods of higher extrinsic mortality and resource availability but most elastic to age-dependent mortality during periods of lower extrinsic mortality and lower resource availability. Conclusions These results suggest that seasonal changes in the strength of selection on worker senescence partly explain the observed pattern of seasonal differences in worker aging in honey bees. More broadly, these results extend our understanding of the role of extrinsic mortality in the evolution of senescence to social animals and improve our ability to model the effects of environmental change on social insect populations of economic or conservation concern.
Collapse
Affiliation(s)
- Natalie J Lemanski
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. .,Department of Ecology and Evolutionary Biology, University of California, 4114 Life Sciences Building, Los Angeles, CA, 90024, USA.
| | - Siddhant Bansal
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
33
|
Saleem MS, Huang ZY, Milbrath MO. Neonicotinoid Pesticides Are More Toxic to Honey Bees at Lower Temperatures: Implications for Overwintering Bees. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.556856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Guo S, Wang X, Kang L. Special Significance of Non- Drosophila Insects in Aging. Front Cell Dev Biol 2020; 8:576571. [PMID: 33072758 PMCID: PMC7536347 DOI: 10.3389/fcell.2020.576571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aging is the leading risk factor of human chronic diseases. Understanding of aging process and mechanisms facilitates drug development and the prevention of aging-related diseases. Although many aging studies focus on fruit fly as a canonical insect system, minimal attention is paid to the potentially significant roles of other insects in aging research. As the most diverse group of animals, insects provide many aging types and important complementary systems for aging studies. Insect polyphenism represents a striking example of the natural variation in longevity and aging rate. The extreme intraspecific variations in the lifespan of social insects offer an opportunity to study how aging is differentially regulated by social factors. Insect flight, as an extremely high-intensity physical activity, is suitable for the investigation of the complex relationship between metabolic rate, oxidative stress, and aging. Moreover, as a "non-aging" state, insect diapause not only slows aging process during diapause phase but also affects adult longevity during/after diapause. In the past two decades, considerable progress has been made in understanding the molecular basis of aging regulation in insects. Herein, the recent research progress in non-Drosophila insect aging was reviewed, and its potential utilization in aging in the future was discussed.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Osborne B, Bakula D, Ben Ezra M, Dresen C, Hartmann E, Kristensen SM, Mkrtchyan GV, Nielsen MH, Petr MA, Scheibye-Knudsen M. New methodologies in ageing research. Ageing Res Rev 2020; 62:101094. [PMID: 32512174 DOI: 10.1016/j.arr.2020.101094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest developments in cutting edge technologies applied across the field of ageing research. We cover emerging model organisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a glimpse of what will be pushing the field onwards and upwards.
Collapse
Affiliation(s)
- Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ben Ezra
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Dresen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Esben Hartmann
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stella M Kristensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Malte H Nielsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Bernadou A, Hoffacker E, Pable J, Heinze J. Lipid content influences division of labour in a clonal ant. J Exp Biol 2020; 223:jeb219238. [PMID: 32107304 DOI: 10.1242/jeb.219238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Abstract
The fat body, a major metabolic hub in insects, is involved in many functions, e.g. energy storage, nutrient sensing and immune response. In social insects, fat appears to play an additional role in division of labour between egg layers and workers, which specialize in non-reproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in fat content have been associated with the transition from inside to outside work or reproductive activities. However, most studies have been correlative and we still need to unravel the causal interrelationships between fat content and division of both reproductive and non-reproductive labour. Clonal ants, e.g. Platythyrea punctata, are ideal models for studying task partitioning without confounding variation in genotype and morphology. In this study, we examined the range of variation and flexibility of fat content throughout the lifespan of workers, the threshold of corpulence associated with foraging or reproduction and whether low fat content is a cause rather than a consequence of the transition to foraging. We found that lipid stores change with division of labour from corpulent to lean and, in reverted nurses, back to corpulent. In addition, our data show the presence of fat content thresholds that trigger the onset of foraging or egg-laying behaviour. Our study supports the view that mechanisms that regulate reproduction and foraging in solitary insects, in particular the nutritional status of individuals, have been co-opted to regulate division of labour in colonies of social insects.
Collapse
Affiliation(s)
- Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elisabeth Hoffacker
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Pable
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
37
|
dos Santos Conceição Lopes B, Campbell AJ, Contrera FAL. Queen loss changes behavior and increases longevity in a stingless bee. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME JOURNAL 2019; 14:801-814. [PMID: 31836840 PMCID: PMC7031341 DOI: 10.1038/s41396-019-0568-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
Abstract
Adult honeybees harbor a specialized gut microbiota of relatively low complexity. While seasonal differences in community composition have been reported, previous studies have focused on compositional changes rather than differences in absolute bacterial loads. Moreover, little is known about the gut microbiota of winter bees, which live much longer than bees during the foraging season, and which are critical for colony survival. We quantified seven core members of the bee gut microbiota in a single colony over 2 years and characterized the community composition in 14 colonies during summer and winter. Our data show that total bacterial loads substantially differ between foragers, nurses, and winter bees. Long-lived winter bees had the highest bacterial loads and the lowest community α-diversity, with a characteristic shift toward high levels of Bartonella and Commensalibacter, and a reduction of opportunistic colonizers. Using gnotobiotic bee experiments, we show that diet is a major contributor to the observed differences in bacterial loads. Overall, our study reveals that the gut microbiota of winter bees is remarkably different from foragers and nurses. Considering the importance of winter bees for colony survival, future work should focus on the role of the gut microbiota in winter bee health and disease.
Collapse
Affiliation(s)
- Lucie Kešnerová
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michaël Troilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
39
|
Dolezal AG, St Clair AL, Zhang G, Toth AL, O'Neal ME. Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape. Proc Natl Acad Sci U S A 2019; 116:25147-25155. [PMID: 31767769 PMCID: PMC6911205 DOI: 10.1073/pnas.1912801116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intensive agriculture can contribute to pollinator decline, exemplified by alarmingly high annual losses of honey bee colonies in regions dominated by annual crops (e.g., midwestern United States). As more natural or seminatural landscapes are transformed into monocultures, there is growing concern over current and future impacts on pollinators. To forecast how landscape simplification can affect bees, we conducted a replicated, longitudinal assessment of honey bee colony growth and nutritional health in an intensively farmed region where much of the landscape is devoted to production of corn and soybeans. Surprisingly, colonies adjacent to soybean fields surrounded by more cultivated land grew more during midseason than those in areas of lower cultivation. Regardless of the landscape surrounding the colonies, all experienced a precipitous decline in colony weight beginning in August and ended the season with reduced fat stores in individual bees, both predictors of colony overwintering failure. Patterns of forage availability and colony nutritional state suggest that late-season declines were caused by food scarcity during a period of extremely limited forage. To test if habitat enhancements could ameliorate this response, we performed a separate experiment in which colonies provided access to native perennials (i.e., prairie) were rescued from both weight loss and reduced fat stores, suggesting the rapid decline observed in these agricultural landscapes is not inevitable. Overall, these results show that intensively farmed areas can provide a short-term feast that cannot sustain the long-term nutritional health of colonies; reintegration of biodiversity into such landscapes may provide relief from nutritional stress.
Collapse
Affiliation(s)
- Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801;
| | - Ashley L St Clair
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA 50011
- Department of Entomology, Iowa State University, Ames, IA 50011
| | - Ge Zhang
- Department of Entomology, Iowa State University, Ames, IA 50011
| | - Amy L Toth
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA 50011
- Department of Entomology, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
40
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
41
|
Galvani GL, Soto EM, Canavoso LE, Settembrini BP. Fat body morphology, but not body size, changes in forager bees of Scaptotrigona jujuyensis (Apidae: Meliponini) during foraging season. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Shen Y, Chen YZ, Lou YH, Zhang CX. Vitellogenin and Vitellogenin-Like Genes in the Brown Planthopper. Front Physiol 2019; 10:1181. [PMID: 31620015 PMCID: PMC6759490 DOI: 10.3389/fphys.2019.01181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenin (Vg) is precursor of vitellin. Here, we identified a Vg (NlVg) and two Vg-likes (NlVg-like1 and NlVg-like2) in the brown planthopper, Nilaparvata lugens. Phylogenetic analyses showed that NlVg-like1 and NlVg-like2 are not clustered with the conventional insect Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that the NlVg and NlVg-like2 transcript levels increased significantly 24 h after emergence and were primarily expressed in female adults. However, NlVg-like1 was expressed during all stages, and in both genders. Tissue-specific analyses showed that all three genes were most highly expressed in the fat body. The injection of double-stranded RNA targeting NlVg showed that NlVg is essential not only for oocyte development but also for nymph development. The knockdown of NlVg-like1 in female adults resulted in failure to hatch or death before eggshell emergence in 18% of offspring embryos, suggesting that NlVg-like1 plays an important role during late embryogenesis. Approximately 65% of eggs laid by females that were treated with double-stranded RNA targeting NlVg-like2 failed to hatch, indicating that NlVg-like2 plays a role in nutrition absorption during oocyte, or embryonic development. Our results illustrate the structural and functional differences among the Vg and Vg-like genes and provide potential targets for RNA-interference-based insect pest management strategies.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yuan-Zhi Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yi-Han Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Abstract
The demonstration of life span plasticity in natural populations would provide a powerful test of evolutionary theories of senescence. Plastic senescence is not easily explained by mutation accumulation or antagonistic pleiotropy but is a corollary of the disposable soma theory. The life span differences among castes of the eusocial Hymenoptera are potentially some of the most striking and extreme examples of life span plasticity. Although these differences are often assumed to be plastic, this has never been demonstrated conclusively because differences in life span may be caused by the proximate effects of different levels of environmental hazard experienced by castes. Here age-dependent and age-independent components of instantaneous mortality rates of the honey bee (Apis mellifera) were estimated from published life tables for natural and seminatural populations to determine whether differences in life span between queens and workers and between different types of workers are indeed plastic. These differences in life span were found to be due to differences in the rate of actuarial senescence, which correlate positively with the rate of extrinsic mortality, in accordance with the central prediction of evolutionary theories of senescence. Although all three evolutionary theories of senescence could in principle explain such plastic senescence, given differential gene expression between castes or life stages, only the disposable soma theory adequately explains the adaptive regulation of somatic maintenance in response to different environmental conditions that appears to underlie life span plasticity.
Collapse
|
44
|
Christen V, Vogel MS, Hettich T, Fent K. A Vitellogenin Antibody in Honey Bees (Apis mellifera): Characterization and Application as Potential Biomarker for Insecticide Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1074-1083. [PMID: 30714192 DOI: 10.1002/etc.4383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 05/21/2023]
Abstract
The insect yolk precursor vitellogenin is a lipoglycoprotein synthesized and stored in the fat body and secreted into the hemolymph. In honey bees, vitellogenin displays crucial functions in hormone signaling, behavioral transition of nurse bees to foragers, stress resistance, and longevity in workers. Plant protection products such as neonicotinoids, pyrethroids, and organophosphates alter the transcriptional expression of vitellogenin. To assess plant protection product-induced alterations on the protein level, we developed a rabbit polyclonal vitellogenin antibody. After characterization, we assessed its specificity and vitellogenin levels in different tissues of worker bees. The vitellogenin antibody recognized full-length 180-kDa vitellogenin and the lighter fragment of 150 kDa in fat body, hemolymph, and brain. In hemolymph, a band of approximately 75 kDa was detected. Subsequent mass spectrometric analysis (liquid chromatography-mass spectrometry) confirmed the 180- and 150-kDa bands as vitellogenin. Subsequently, we evaluated vitellogenin expression in brain, fat body, and hemolymph on 24-h exposure of bees to 3 ng/bee to the neonicotinoid clothianidin. Full-length vitellogenin was upregulated 3-fold in the fat body, and the 150-kDa fragment was upregulated in the brain of exposed honey bees, whereas no alteration occurred in the hemolymph. Upregulation of the vitellogenin protein by the neonicotinoid clothianidin is in line with the previously shown induction of its transcript. We conclude that vitellogenin might serve as a potential biomarker for neonicotinoid and other pesticide exposure in bees. Environ Toxicol Chem 2019;00:1-10. © 2019 SETAC.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Maren Susanne Vogel
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Timm Hettich
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
45
|
Ricigliano VA, Mott BM, Maes PW, Floyd AS, Fitz W, Copeland DC, Meikle WG, Anderson KE. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci Rep 2019; 9:4894. [PMID: 30894619 PMCID: PMC6426953 DOI: 10.1038/s41598-019-41281-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
Honey bee colony performance and health are intimately linked to the foraging environment. Recent evidence suggests that the US Conservation Reserve Program (CRP) has a positive impact on environmental suitability for supporting honey bee apiaries. However, relatively little is known about the influence of habitat conservation efforts on honey bee colony health. Identifying specific factors that influence bee health at the colony level incorporates longitudinal monitoring of physiology across diverse environments. Using a pooled-sampling method to overcome individual variation, we monitored colony-level molecular biomarkers during critical pre- and post-winter time points. Major categories of colony health (nutrition, oxidative stress resistance, and immunity) were impacted by apiary site. In general, apiaries within foraging distance of CRP lands showed improved performance and higher gene expression of vitellogenin (vg), a nutritionally regulated protein with central storage and regulatory functions. Mirroring vg levels, gene transcripts encoding antioxidant enzymes and immune-related proteins were typically higher in colonies exposed to CRP environments. Our study highlights the potential of CRP lands to improve pollinator health and the utility of colony-level molecular diagnostics to assess environmental suitability for honey bees.
Collapse
Affiliation(s)
- Vincent A Ricigliano
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.
- USDA-ARS, Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, 70820, USA.
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Patrick W Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Amy S Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - William Fitz
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- Department of Microbiology, School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - William G Meikle
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.
| |
Collapse
|
46
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
47
|
Rodriguez Messan M, Page RE, Kang Y. Effects of vitellogenin in age polyethism and population dynamics of honeybees. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
DeGrandi-Hoffman G, Gage SL, Corby-Harris V, Carroll M, Chambers M, Graham H, Watkins deJong E, Hidalgo G, Calle S, Azzouz-Olden F, Meador C, Snyder L, Ziolkowski N. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:114-124. [PMID: 29990468 DOI: 10.1016/j.jinsphys.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/16/2018] [Accepted: 07/03/2018] [Indexed: 05/24/2023]
Abstract
Free-ranging herbivores have yearly life cycles that generate dynamic resource needs. Honey bee colonies also have a yearly life cycle that might generate nutritional requirements that differ between times of brood rearing and colony expansion in the spring and population contraction and preparation for overwintering in the fall. To test this, we analyzed polyfloral mixes of spring and fall pollens to determine if the nutrient composition differed with season. Next, we fed both types of seasonal pollens to bees reared in spring and fall. We compared the development of brood food glands (i.e., hypopharyngeal glands - HPG), and the expression of genes in the fat body between bees fed pollen from the same (in-season) or different season (out-of-season) when they were reared. Because pathogen challenges often heighten the effects of nutritional stress, we infected a subset of bees with Nosema to determine if bees responded differently to the infection depending on the seasonal pollen they consumed. We found that spring and fall pollens were similar in total protein and lipid concentrations, but spring pollens had higher concentrations of amino and fatty acids that support HPG growth and brood production. Bees responded differently when fed in vs. out of season pollen. The HPG of both uninfected and Nosema-infected spring bees were larger when they were fed spring (in-season) compared to fall pollen. Spring bees differentially regulated more than 200 genes when fed in- vs. out-of-season pollen. When infected with Nosema, approximately 400 genes showed different infection-induced expression patterns in spring bees depending on pollen type. In contrast, HPG size in fall bees was not affected by pollen type, though HPG were smaller in those infected with Nosema. Very few genes were differentially expressed with pollen type in uninfected (4 genes) and infected fall bees (5 genes). Pollen type did not affect patterns of infection-induced expression in fall bees. Our data suggest that physiological responses to seasonal pollens differ between bees reared in the spring and fall with spring bees being significantly more sensitive to pollen type especially when infected with Nosema. This study provides evidence that seasonal pollens may provide levels of nutrients that align with the activities of honey bees during their yearly colony cycle. The findings are important for the planning and establishment of forage plantings to sustain honey bees, and in the development of seasonal nutritional supplements fed to colonies when pollen is unavailable.
Collapse
Affiliation(s)
| | | | | | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | | | | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Farida Azzouz-Olden
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY, USA
| | | | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | |
Collapse
|
49
|
Ricigliano VA, Mott BM, Floyd AS, Copeland DC, Carroll MJ, Anderson KE. Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep 2018; 8:10475. [PMID: 29992997 PMCID: PMC6041268 DOI: 10.1038/s41598-018-28732-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Honey bee colony nutritional ecology relies on the acquisition and assimilation of floral resources across a landscape with changing forage conditions. Here, we examined the impact of nutrition and queen age on colony health across extended periods of reduced forage in a southern climate. We measured conventional hive metrics as well as colony-level gene expression of eight immune-related genes and three recently identified homologs of vitellogenin (vg), a storage glycolipoprotein central to colony nutritional state, immunity, oxidative stress resistance and life span regulation. Across three apiary sites, concurrent longitudinal changes in colony-level gene expression and nutritional state reflected the production of diutinus (winter) bees physiologically altered for long-term nutrient storage. Brood production by young queens was significantly greater than that of old queens, and was augmented by feeding colonies supplemental pollen. Expression analyses of recently identified vg homologs (vg-like-A, -B, and -C) revealed distinct patterns that correlated with colony performance, phenology, and immune-related gene transcript levels. Our findings provide new insights into dynamics underlying managed colony performance on a large scale. Colony-level, molecular physiological profiling is a promising approach to effectively identify factors influencing honey bee health in future landscape and nutrition studies.
Collapse
Affiliation(s)
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.,Department of Microbiology, School of Animal & Comparative Biomedical Sciences; University of Arizona, Tucson, AZ, 85721, USA
| | - Mark J Carroll
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA. .,Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
50
|
Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS One 2018; 13:e0198322. [PMID: 29927967 PMCID: PMC6013123 DOI: 10.1371/journal.pone.0198322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Collapse
Affiliation(s)
- Ashish K. Shah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Claus D. Kreibich
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro V. Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|