1
|
Riva M, Ferreira S, Hayashi K, Saillour Y, Medvedeva VP, Honda T, Hayashi K, Altersitz C, Albadri S, Rosello M, Dang J, Serafini M, Causeret F, Henry OJ, Roux CJ, Bellesme C, Freri E, Josifova D, Parrini E, Guerrini R, Del Bene F, Nakajima K, Bahi-Buisson N, Pierani A. De novo monoallelic Reelin missense variants cause dominant neuronal migration disorders via a dominant-negative mechanism. J Clin Invest 2024; 134:e153097. [PMID: 38980724 PMCID: PMC11324310 DOI: 10.1172/jci153097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function, showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria behaved as loss-of-function, leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing WT RELN secretion in culture, animal models, and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Sofia Ferreira
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Kotaro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Yoann Saillour
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Vera P. Medvedeva
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Takao Honda
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Claire Altersitz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Julie Dang
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Malo Serafini
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Olivia J. Henry
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Charles-Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Céline Bellesme
- Pediatric Neurology, Bicêtre University Hospital, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Elena Freri
- Dipartimento di Neuroscienze Pediatriche Fondazione Istituto Neurologico “C. Besta,” Milan, Italy
| | - Dragana Josifova
- Department of Clinical Genetics, Guy’s and St Thomas’ Hospital NHS Trust, London, United Kingdom
| | - Elena Parrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Nadia Bahi-Buisson
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Institut des Sciences Biologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
2
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying amyloid-β and tau pathology are associated with cognitive dysfunction in Alzheimer's disease. Cell Rep 2024; 43:113691. [PMID: 38244198 PMCID: PMC10926093 DOI: 10.1016/j.celrep.2024.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aβ and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. These findings may explain the discordance between regional Aβ and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik T Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Qiuting Wen
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
3
|
Chien MH, Yang YC, Ho KH, Ding YF, Chen LH, Chiu WK, Chen JQ, Tung MC, Hsiao M, Lee WJ. Cyclic increase in the ADAMTS1-L1CAM-EGFR axis promotes the EMT and cervical lymph node metastasis of oral squamous cell carcinoma. Cell Death Dis 2024; 15:82. [PMID: 38263290 PMCID: PMC10805752 DOI: 10.1038/s41419-024-06452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Reive BS, Lau V, Sánchez-Lafuente CL, Henri-Bhargava A, Kalynchuk LE, Tremblay MÈ, Caruncho HJ. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1099-1119. [PMID: 38995785 PMCID: PMC11380287 DOI: 10.3233/jad-240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.
Collapse
Affiliation(s)
- Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Victor Lau
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexandre Henri-Bhargava
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Vancouver Island Health Authority, Victoria, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying regional vulnerability to amyloid-β and tau pathologies and their relationships to cognitive dysfunction in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.12.23294017. [PMID: 37645867 PMCID: PMC10462206 DOI: 10.1101/2023.08.12.23294017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We studied the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies leveraging two large independent cohorts (n = 715) of participants along the AD continuum. We identified several AD susceptibility genes and gene modules in a gene co-expression network with expression profiles related to regional vulnerability to Aβ and tau pathologies in AD. In particular, we found that the positive APOE -to-tau association was only seen in the AD cohort, whereas patients with AD and frontotemporal dementia shared similar positive MAPT -to-tau association. Some AD candidate genes showed sex-dependent negative gene-to-Aβ and gene-to-tau associations. In addition, we identified distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. Finally, we proposed a novel analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations. Taken together, our study identified distinct gene expression profiles and biochemical pathways that may explain the discordance between regional Aβ and tau pathologies, and filled the gap between gene-to-pathology associations and cognitive dysfunction in individual AD patients that may ultimately help identify novel personalized pathogenetic biomarkers and therapeutic targets. One Sentence Summary We identified replicable cognition-related associations between regional gene expression profiles and selectively regional vulnerability to amyloid-β and tau pathologies in AD.
Collapse
|
6
|
Li Q, Morrill NK, Moerman-Herzog AM, Barger SW, Joly-Amado A, Peters M, Soueidan H, Diemler C, Prabhudeva S, Weeber EJ, Nash KR. Central repeat fragment of reelin leads to active reelin intracellular signaling and rescues cognitive deficits in a mouse model of reelin deficiency. Cell Signal 2023:110763. [PMID: 37315752 DOI: 10.1016/j.cellsig.2023.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.
Collapse
Affiliation(s)
- Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Andréa M Moerman-Herzog
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Melinda Peters
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Hana Soueidan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cory Diemler
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Stoyanova II, Lutz D. Functional Diversity of Neuronal Cell Adhesion and Recognition Molecule L1CAM through Proteolytic Cleavage. Cells 2022; 11:cells11193085. [PMID: 36231047 PMCID: PMC9562852 DOI: 10.3390/cells11193085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The neuronal cell adhesion and recognition molecule L1 does not only 'keep cells together' by way of homophilic and heterophilic interactions, but can also promote cell motility when cleaved into fragments by several proteases. It has largely been thought that such fragments are signs of degradation. Now, it is clear that proteolysis contributes to the pronounced functional diversity of L1, which we have reviewed in this work. L1 fragments generated at the plasma membrane are released into the extracellular space, whereas other membrane-bound fragments are internalised and enter the nucleus, thus conveying extracellular signals to the cell interior. Post-translational modifications on L1 determine the sequence of cleavage by proteases and the subcellular localisation of the generated fragments. Inside the neuronal cells, L1 fragments interact with various binding partners to facilitate morphogenic events, as well as regenerative processes. The stimulation of L1 proteolysis via injection of L1 peptides or proteases active on L1 or L1 mimetics is a promising tool for therapy of injured nervous systems. The collective findings gathered over the years not only shed light on the great functional diversity of L1 and its fragments, but also provide novel mechanistic insights into the adhesion molecule proteolysis that is active in the developing and diseased nervous system.
Collapse
Affiliation(s)
- Irina I. Stoyanova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9002 Varna, Bulgaria
- Department of Brain Ischemia Mechanisms, Research Institute, Medical University, 9002 Varna, Bulgaria
- Correspondence: (I.I.S.); (D.L.)
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum,
44801 Bochum, Germany
- Correspondence: (I.I.S.); (D.L.)
| |
Collapse
|
8
|
Lopez-Font I, Lennol MP, Iborra-Lazaro G, Zetterberg H, Blennow K, Sáez-Valero J. Altered Balance of Reelin Proteolytic Fragments in the Cerebrospinal Fluid of Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:7522. [PMID: 35886870 PMCID: PMC9318932 DOI: 10.3390/ijms23147522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Reelin binds to the apolipoprotein E receptor apoER2 to activate an intracellular signaling cascade. The proteolytic cleavage of reelin follows receptor binding but can also occur independently of its binding to receptors. This study assesses whether reelin proteolytic fragments are differentially affected in the cerebrospinal fluid (CSF) of Alzheimer's disease (AD) subjects. CSF reelin species were analyzed by Western blotting, employing antibodies against the N- and C-terminal domains. In AD patients, we found a decrease in the 420 kDa full-length reelin compared with controls. In these patients, we also found an increase in the N-terminal 310 kDa fragment resulting from the cleavage at the so-called C-t site, whereas the 180 kDa fragment originated from the N-t site remained unchanged. Regarding the C-terminal proteolytic fragments, the 100 kDa fragment resulting from the cleavage at the C-t site also displayed increased levels, whilst the one resulting from the N-t site, the 250 kDa fragment, decreased. We also detected the presence of an aberrant reelin species with a molecular mass of around 500 kDa present in AD samples (34 of 43 cases), while it was absent in the 14 control cases analyzed. These 500 kDa species were only immunoreactive to N-terminal antibodies. We validated the occurrence of these aberrant reelin species in an Aβ42-treated reelin-overexpressing cell model. When we compared the AD samples from APOE genotype subgroups, we only found minor differences in the levels of reelin fragments associated to the APOE genotype, but interestingly, the levels of fragments of apoER2 were lower in APOE ε4 carriers with regards to APOE ε3/ε3. The altered proportion of reelin/apoER2 fragments and the occurrence of reelin aberrant species suggest a complex regulation of the reelin signaling pathway, which results impaired in AD subjects.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Matthew P. Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
| | - Guillermo Iborra-Lazaro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden; (H.Z.); (K.B.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 413 90 Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden; (H.Z.); (K.B.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 413 90 Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
9
|
Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 10:917575. [PMID: 35733853 PMCID: PMC9207388 DOI: 10.3389/fcell.2022.917575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.
Collapse
Affiliation(s)
- Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry I—Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| | - Mohammad I. K. Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| |
Collapse
|
10
|
Nakao Y, Yokawa S, Kohno T, Suzuki T, Hattori M. Visualization of Reelin secretion from primary cultured neurons by bioluminescence imaging. J Biochem 2022; 171:591-598. [PMID: 35171273 DOI: 10.1093/jb/mvac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Reelin is a secreted glycoprotein important for brain development and synaptic plasticity in the adult brain. Some reports suggest that Reelin is secreted from the nerve terminals and functions as a neurotransmitter. However, the mechanism of Reelin secretion is unknown. In this study, we visualized Reelin secretion by bioluminescence imaging using a fusion protein of Reelin and Gaussia luciferase (GLase-Reelin). GLase-Reelin expressed in HEK293T cells was correctly processed and secreted. Luminescence signals from the secreted GLase-Reelin of primary cultured neurons were visualized by bioluminescence microscopy. Reelin secretory events were observed at neurites and cell bodies. Bioluminescence imaging was also performed before and after KCl depolarization to compare the secretory events of Reelin and brain-derived neurotrophic factor (BDNF). The secretion of BDNF increased markedly shortly after depolarization. In contrast, the frequency of Reelin secretion did not change significantly by depolarization. Thus, Reelin secretion from neurites might not be regulated in a neuronal activity-dependent manner.
Collapse
Affiliation(s)
- Yousuke Nakao
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Satoru Yokawa
- Department of Analytical Chemistry and Biophysics, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
11
|
Serum Glycoproteomics and Identification of Potential Mechanisms Underlying Alzheimer’s Disease. Behav Neurol 2021; 2021:1434076. [PMID: 34931130 PMCID: PMC8684523 DOI: 10.1155/2021/1434076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives. This study compares glycoproteomes in Thai Alzheimer’s disease (AD) patients with those of cognitively normal individuals. Methods. Study participants included outpatients with clinically diagnosed AD (
) and healthy controls without cognitive impairment (
). Blood samples were collected from all participants for biochemical analysis and for
(APOE) genotyping by real-time TaqMan PCR assays. Comparative serum glycoproteomic profiling by liquid chromatography-tandem mass spectrometry was then performed to identify differentially abundant proteins with functional relevance. Results. Statistical differences in age, educational level, and APOE ɛ3/ɛ4 and ɛ4/ɛ4 haplotype frequencies were found between the AD and control groups. The frequency of the APOE ɛ4 allele was significantly higher in the AD group than in the control group. In total, 871 glycoproteins were identified, including 266 and 259 unique proteins in control and AD groups, respectively. There were 49 and 297 upregulated and downregulated glycoproteins, respectively, in AD samples compared with the controls. Unique AD glycoproteins were associated with numerous pathways, including Alzheimer’s disease-presenilin pathway (16.6%), inflammation pathway mediated by chemokine and cytokine signaling (9.2%), Wnt signaling pathway (8.2%), and apoptosis signaling pathway (6.7%). Conclusion. Functions and pathways associated with protein-protein interactions were identified in AD. Significant changes in these proteins can indicate the molecular mechanisms involved in the pathogenesis of AD, and they have the potential to serve as AD biomarkers. Such findings could allow us to better understand AD pathology.
Collapse
|
12
|
Hattori M, Kohno T. Regulation of Reelin functions by specific proteolytic processing in the brain. J Biochem 2021; 169:511-516. [PMID: 33566063 DOI: 10.1093/jb/mvab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
The secreted glycoprotein Reelin plays important roles in both brain development and function. During development, Reelin regulates neuronal migration and dendrite development. In the mature brain, the glycoprotein is involved in synaptogenesis and synaptic plasticity. It has been suggested that Reelin loss or decreased function contributes to the onset and/or deterioration of neuropsychiatric diseases, including schizophrenia and Alzheimer's disease. While the molecular mechanisms underpinning Reelin function remain unclear, recent studies have suggested that the specific proteolytic cleavage of Reelin may play central roles in the embryonic and postnatal brain. In this review, we focus on Reelin proteolytic processing and review its potential physiological roles.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
13
|
Nagae M, Suzuki K, Yasui N, Nogi T, Kohno T, Hattori M, Takagi J. Structural studies of reelin N-terminal region provides insights into a unique structural arrangement and functional multimerization. J Biochem 2021; 169:555-564. [PMID: 33377147 DOI: 10.1093/jb/mvaa144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
The large, secreted glycoprotein reelin regulates embryonic brain development as well as adult brain functions. Although reelin binds to its receptors via its central part, the N-terminal region directs multimer formation and is critical for efficient signal transduction. In fact, the inhibitory antibody CR-50 interacts with the N-terminal region and prevents higher-order multimerization and signalling. Reelin is a multidomain protein in which the central part is composed of eight characteristic repeats, named reelin repeats, each of which is further divided by insertion of a epidermal growth factor (EGF) module into two subrepeats. In contrast, the N-terminal region shows unique 'irregular' domain architecture since it comprises three consecutive subrepeats without the intervening EGF module. Here, we determined the crystal structure of the murine reelin fragment named RX-R1 including the irregular region and the first reelin repeat at 2.0-Å resolution. The overall structure of RX-R1 has a branched Y-shaped form. Interestingly, two incomplete subrepeats cooperatively form one entire subrepeat structure, though an additional subrepeat is inserted between them. We further reveal that Arg335 of RX-R1 is crucial for binding CR-50. A possible self-association mechanism via the N-terminal region is proposed based on our results.
Collapse
Affiliation(s)
- Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kei Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Norihisa Yasui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
15
|
Kement D, Reumann R, Schostak K, Voß H, Douceau S, Dottermusch M, Schweizer M, Schlüter H, Vivien D, Glatzel M, Galliciotti G. Neuroserpin Is Strongly Expressed in the Developing and Adult Mouse Neocortex but Its Absence Does Not Perturb Cortical Lamination and Synaptic Proteome. Front Neuroanat 2021; 15:627896. [PMID: 33708076 PMCID: PMC7940840 DOI: 10.3389/fnana.2021.627896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor that regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin is strongly expressed during nervous system development as well as during adulthood, when it is predominantly found in regions eliciting synaptic plasticity. In the hippocampus, neuroserpin regulates developmental neurogenesis, synaptic maturation and in adult mice it modulates synaptic plasticity and controls cognitive and social behavior. High expression levels of neuroserpin in the neocortex starting from prenatal stage and persisting during adulthood suggest an important role for the serpin in the formation of this brain region and in the maintenance of cortical functions. In order to uncover neuroserpin function in the murine neocortex, in this work we performed a comprehensive investigation of its expression pattern during development and in the adulthood. Moreover, we assessed the role of neuroserpin in cortex formation by comparing cortical lamination and neuronal maturation between neuroserpin-deficient and control mice. Finally, we evaluated a possible regulatory role of neuroserpin at cortical synapses in neuroserpin-deficient mice. We observed that neuroserpin is expressed starting from the beginning of corticogenesis until adulthood throughout the neocortex in several classes of glutamatergic projection neurons and GABA-ergic interneurons. However, in the absence of neuroserpin we did not detect any alteration either in cortical layer formation, or in neuronal soma size and dendritic length. Furthermore, no significant quantitative changes were observed in the proteome of cortical synapses upon neuroserpin deficiency. We conclude that, although strongly expressed in the neocortex, absence of neuroserpin does not lead to gross developmental abnormalities, and does not perturb the composition of the cortical synaptic proteome.
Collapse
Affiliation(s)
- Dilara Kement
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebecca Reumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Schostak
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Douceau
- Physiopathology and Imaging of Neurological Disorders, Université Caen Normandie, INSERM U1237, Normandie Université, Caen, France
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Université Caen Normandie, INSERM U1237, Normandie Université, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Centre Hospitalier Universitaire, Caen, France
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
17
|
Okugawa E, Ogino H, Shigenobu T, Yamakage Y, Tsuiji H, Oishi H, Kohno T, Hattori M. Physiological significance of proteolytic processing of Reelin revealed by cleavage-resistant Reelin knock-in mice. Sci Rep 2020; 10:4471. [PMID: 32161359 PMCID: PMC7066138 DOI: 10.1038/s41598-020-61380-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Reelin is a secreted protein that plays versatile roles in neuronal development and function. The strength of Reelin signaling is regulated by proteolytic processing, but its importance in vivo is not yet fully understood. Here, we generated Reelin knock-in (PA-DV KI) mice in which the key cleavage site of Reelin was abolished by mutation. As expected, the cleavage of Reelin was severely abrogated in the cerebral cortex and hippocampus of PA-DV KI mice. The amount of Dab1, whose degradation is induced by Reelin signaling, decreased in these tissues, indicating that the signaling strength of Reelin was augmented. The brains of PA-DV KI mice were largely structurally normal, but unexpectedly, the hippocampal layer was disturbed. This phenotype was ameliorated in hemizygote PA-DV KI mice, indicating that excess Reelin signaling is detrimental to hippocampal layer formation. The neuronal dendrites of PA-DV KI mice had more branches and were elongated compared to wild-type mice. These results present the first direct evidence of the physiological importance of Reelin cleavage.
Collapse
Affiliation(s)
- Eisuke Okugawa
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tomofumi Shigenobu
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
18
|
Mohamedi Y, Fontanil T, Cobo T, Cal S, Obaya AJ. New Insights into ADAMTS Metalloproteases in the Central Nervous System. Biomolecules 2020; 10:biom10030403. [PMID: 32150898 PMCID: PMC7175268 DOI: 10.3390/biom10030403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Components of the extracellular matrix (ECM) are key players in regulating cellular functions throughout the whole organism. In fact, ECM components not only participate in tissue organization but also contribute to processes such as cellular maintenance, proliferation, and migration, as well as to support for various signaling pathways. In the central nervous system (CNS), proteoglycans of the lectican family, such as versican, aggrecan, brevican, and neurocan, are important constituents of the ECM. In recent years, members of this family have been found to be involved in the maintenance of CNS homeostasis and to participate directly in processes such as the organization of perineural nets, the regulation of brain plasticity, CNS development, brain injury repair, axonal guidance, and even the altering of synaptic responses. ADAMTSs are a family of “A disintegrin and metalloproteinase with thrombospondin motifs” proteins that have been found to be involved in a multitude of processes through the degradation of lecticans and other proteoglycans. Recently, alterations in ADAMTS expression and activity have been found to be involved in neuronal disorders such as stroke, neurodegeneration, schizophrenia, and even Alzheimer’s disease, which in turn may suggest their potential use as therapeutic targets. Herein, we summarize the different roles of ADAMTSs in regulating CNS events through interactions and the degradation of ECM components (more specifically, the lectican family of proteoglycans).
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Asturias, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
19
|
Kohno T, Ogino H, Yamakage Y, Hattori M. Expression and Preparation of Recombinant Reelin and ADAMTS-3 Proteins. Methods Mol Biol 2020; 2043:93-104. [PMID: 31463905 DOI: 10.1007/978-1-4939-9698-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reelin is a large secreted protein that is essential for the brain development and function. Reelin is negatively regulated by the specific cleavage by a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3) which is also secreted from neurons. It is likely that there are other proteases that can cleave Reelin. This chapter describes the protocol for expression and handling of recombinant Reelin and ADAMTS-3 proteins to facilitate investigation of these proteins.
Collapse
Affiliation(s)
- Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
20
|
Bradshaw NJ, Trossbach SV, Köber S, Walter S, Prikulis I, Weggen S, Korth C. Disrupted in Schizophrenia 1 regulates the processing of reelin in the perinatal cortex. Schizophr Res 2020; 215:506-513. [PMID: 28433501 DOI: 10.1016/j.schres.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a prominent gene in mental illness research, encoding a scaffold protein known to be of importance in the developing cerebral cortex. Reelin is a critical extracellular protein for development and lamination of the prenatal cortex and which has also been independently implicated in mental illness. Regulation of reelin activity occurs through processing by the metalloproteinases ADAMTS-4 and ADAMTS-5. Through cross-breeding of heterozygous transgenic DISC1 mice with heterozygous reeler mice, which have reduced reelin, pups heterozygous for both phenotypes were generated. From these, we determine that transgenic DISC1 leads to a reduction in the processing of reelin, with implications for its downstream signalling element Dab1. An effect of DISC1 on reelin processing was confirmed in vitro, and revealed that intracellular DISC1 affects ADAMTS-4 protein, which in turn is exported and affects processing of extracellular reelin. In transgenic rat cortical cultures, an effect of DISC1 on reelin processing could also be seen specifically in early, immature neurons, but was lost in calretinin and reelin-positive mature neurons, suggesting cell-type specificity. DISC1 therefore acts upstream of reelin in the perinatal cerebral cortex in a cell type/time specific manner, leading to regulation of its activity through altered proteolytic cleavage. Thus a functional link is demonstrated between two proteins, each of independent importance for both cortical development and associated cognitive functions leading to behavioural maladaptation and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sabrina Köber
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Susanne Walter
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Ogino H, Yamakage Y, Yamashita MB, Kohno T, Hattori M. Assay for Reelin-Cleaving Activity of ADAMTS and Detection of Reelin and Its Fragments in the Brain. Methods Mol Biol 2020; 2043:105-111. [PMID: 31463906 DOI: 10.1007/978-1-4939-9698-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteolytic cleavage of the secreted signaling protein Reelin has been suggested to play causative roles in many neuropsychiatric and neurodegenerative disorders. Therefore, characterization of the proteolytic activity against Reelin is important not only for understanding how the brain works but also for the development of novel therapy for these disorders. Notably, ADAMTS family proteases are the primary suspects of Reelin-cleaving proteases under many, though not all, circumstances. Here we describe how to measure the Reelin-cleaving activity of ADAMTS (or of any other protease that may cleave Reelin), how to purify the Reelin-cleaving protease ADAMTS-3 from the culture supernatant of cortical neurons, and how to detect endogenous Reelin protein and its fragments in the brain.
Collapse
Affiliation(s)
- Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mihoshi B Yamashita
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
22
|
Yamakage Y, Kato M, Hongo A, Ogino H, Ishii K, Ishizuka T, Kamei T, Tsuiji H, Miyamoto T, Oishi H, Kohno T, Hattori M. A disintegrin and metalloproteinase with thrombospondin motifs 2 cleaves and inactivates Reelin in the postnatal cerebral cortex and hippocampus, but not in the cerebellum. Mol Cell Neurosci 2019; 100:103401. [PMID: 31491533 DOI: 10.1016/j.mcn.2019.103401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Reelin plays important roles in regulating neuronal development, modulating synaptic function, and counteracting amyloid β toxicity. A specific proteolytic cleavage (N-t cleavage) of Reelin abolishes its biological activity. We recently identified ADAMTS-3 (a disintegrin and metalloproteinase with thrombospondin motifs 3) as the major N-t cleavage enzyme in the embryonic and early postnatal brain. The contribution of other proteases, particularly in the postnatal brain, has not been demonstrated in vivo. ADAMTS-2, -3 and -14 share similar domain structures and substrate specificity, raising the possibility that ADAMTS-2 and -14 may cleave Reelin. We found that recombinant ADAMTS-2 protein expressed in cultured cell lines cleaves Reelin at the N-t site as efficiently as ADAMTS-3 while recombinant ADAMTS-14 hardly cleaves Reelin. The disintegrin domain is necessary for the Reelin-cleaving activity of ADAMTS-2 and -3. ADAMTS-2 is expressed in the adult brain at approximately the same level as ADAMTS-3. We generated ADAMTS-2 knockout (KO) mice and found that ADAMTS-2 significantly contributes to the N-t cleavage and inactivation of Reelin in the postnatal cerebral cortex and hippocampus, but much less in the cerebellum. Therefore, it was suggested that ADAMTS-2 can be a therapeutic target for adult brain disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Michinao Kato
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Aya Hongo
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Keisuke Ishii
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takumi Ishizuka
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takana Kamei
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Tomomi Miyamoto
- Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
23
|
ADAMTS18 Deficiency Affects Neuronal Morphogenesis and Reduces the Levels of Depression-like Behaviors in Mice. Neuroscience 2018; 399:53-64. [PMID: 30579834 DOI: 10.1016/j.neuroscience.2018.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/18/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022]
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that modify extracellular matrix components and play crucial roles in development and numerous diseases. ADAMTS18 is a member of the ADAMTS family, and genome-wide association studies made an initial association of ADAMTS18 with white matter integrity in healthy people of 72-74 years old. However, the potential roles of ADAMTS18 in central nervous system remain unclear. In this study, we showed that Adamts18 mRNA is highly abundant in developing brains, especially in the cerebellum granular cell layer and the hippocampus dentate gyrus (DG) granular cell layer. Adamts18 knockout (KO) mice displayed higher dendritic branching complexity and spine density on hippocampal DG granular cells. Behavioral tests showed that Adamts18 KO mice had reduced levels of depression-like behaviors compared to their wild-type (WT) littermates. The increased neurite formation could be attributed in part to reduced phosphorylation levels of the collapsin response mediator protein-2 (CRMP2) due to activation of the laminin/PI3K/AKT/GSK-3β signaling pathway. Our findings revealed a critical role of ADAMTS18 in neuronal morphogenesis and emotional control in mice.
Collapse
|
24
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Lutz D, Sharaf A, Drexler D, Kataria H, Wolters-Eisfeld G, Brunne B, Kleene R, Loers G, Frotscher M, Schachner M. Proteolytic cleavage of transmembrane cell adhesion molecule L1 by extracellular matrix molecule Reelin is important for mouse brain development. Sci Rep 2017; 7:15268. [PMID: 29127326 PMCID: PMC5681625 DOI: 10.1038/s41598-017-15311-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule L1 and the extracellular matrix protein Reelin play crucial roles in the developing nervous system. Reelin is known to activate signalling cascades regulating neuronal migration by binding to lipoprotein receptors. However, the interaction of Reelin with adhesion molecules, such as L1, has remained poorly explored. Here, we report that full-length Reelin and its N-terminal fragments N-R2 and N-R6 bind to L1 and that full-length Reelin and its N-terminal fragment N-R6 proteolytically cleave L1 to generate an L1 fragment with a molecular mass of 80 kDa (L1-80). Expression of N-R6 and generation of L1-80 coincide in time at early developmental stages of the cerebral cortex. Reelin-mediated generation of L1-80 is involved in neurite outgrowth and in stimulation of migration of cultured cortical and cerebellar neurons. Morphological abnormalities in layer formation of the cerebral cortex of L1-deficient mice partially overlap with those of Reelin-deficient reeler mice. In utero electroporation of L1-80 into reeler embryos normalised the migration of cortical neurons in reeler embryos. The combined results indicate that the direct interaction between L1 and Reelin as well as the Reelin-mediated generation of L1-80 contribute to brain development at early developmental stages.
Collapse
Affiliation(s)
- David Lutz
- Institute for Structural Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Ahmed Sharaf
- Institute for Structural Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Dagmar Drexler
- Institute for Structural Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Bianka Brunne
- Institute for Structural Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Gabriele Loers
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA. .,Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guandong, 515041, China.
| |
Collapse
|
26
|
Kohno T. Regulatory Mechanisms and Physiological Significance of Reelin Function. YAKUGAKU ZASSHI 2017; 137:1233-1240. [DOI: 10.1248/yakushi.17-00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
27
|
Antonioli-Santos R, Lanzillotta-Mattos B, Hedin-Pereira C, Serfaty CA. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system. Neuroscience 2017; 357:264-272. [PMID: 28602919 DOI: 10.1016/j.neuroscience.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.
Collapse
Affiliation(s)
- Rachel Antonioli-Santos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil; Institute of Biomedical Research, Marcílio Dias Navy Hospital, Rio de Janeiro, Brazil
| | - Bruna Lanzillotta-Mattos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil
| | - Cecília Hedin-Pereira
- Federal University of Rio de Janeiro, Institute of Biomedical Sciences, Laboratory of Cellular Neuroanatomy - Rio de Janeiro, Brazil; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil.
| |
Collapse
|
28
|
Song I, Dityatev A. Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull 2017; 136:101-108. [PMID: 28284900 DOI: 10.1016/j.brainresbull.2017.03.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) molecules in the central nervous system form highly organized ECM structures around cell somata, axon initial segments, and synapses and play prominent roles in early development by guiding cell migration, neurite outgrowth and synaptogenesis, and by regulating closure of the critical period of development, synaptic plasticity and stability, cognitive flexibility, and axonal regeneration in adults. Major components of neural ECM, including chondroitin sulfate proteoglycans (CSPGs), tenascin-R and hyaluronic acid, are synthesized by both neurons and glial cells. The expression of these molecules is dynamically regulated during brain development in physiological conditions, shaping both neuronal and glial functions through multitude of molecular mechanisms. Upregulation of particular CSPGs and other ECM molecules, in particular by reactive astrocytes, after CNS injuries, during aging, neuroinflammation, and neurodegeneration on the one hand results in formation of growth-impermissive environment and impaired synaptic plasticity. On the other hand, ECM appeared to have a neuroprotective effect, at least in the form of perineuronal nets. CSPGs-degrading matrix metalloproteinases (MMPs) and several members of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases are secreted by neurons and glia and may drive neural ECM remodeling in physiological conditions as well as after brain injury and other brain disorders. Thus, targeting expression of specific ECM molecules, associated glycans and degrading enzymes may lead to development of new therapeutic strategies promoting regeneration and synaptic plasticity.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
29
|
Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin. J Neurosci 2017; 37:3181-3191. [PMID: 28213441 DOI: 10.1523/jneurosci.3632-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders.SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease.
Collapse
|
30
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
31
|
Gurses MS, Ural MN, Gulec MA, Akyol O, Akyol S. Pathophysiological Function of ADAMTS Enzymes on Molecular Mechanism of Alzheimer's Disease. Aging Dis 2016; 7:479-90. [PMID: 27493839 PMCID: PMC4963191 DOI: 10.14336/ad.2016.0111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is an environment that has various enzymes attended in regeneration and restoration processes which is very important to sustain physiological and biological functions of central nervous system (CNS). One of the participating enzyme systems in ECM turnover is matrix metalloproteinases. A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS) is a unique family of ECM proteases found in mammals. Components of this family may be distinguished from the ADAM (A Disintegrin and Metalloproteinase) family based on the multiple copies of thrombospondin 1-like repeats. The considerable role of the ADAMTS in the CNS continues to develop. Evidences indicate that ADAMTS play an important role in neuroplasticity as well as nervous system pathologies such as Alzheimer's disease (AD). It is hopeful and possible that ADAMTS family members may be utilized to develop therapies for CNS pathologies, ischemic injuries, neurodegenerative and neurological diseases. To understand and provide definitive data on ADAMTS to improve structural and functional recovery in CNS injury and diseases, this review aimed to enlighten the subject extensively to reach certain information on metalloproteinases and related molecules/enzymes. It will be interesting to examine how ADAMTS expression and action would affect the initiation/progression of above-mentioned clinical situations, especially AD.
Collapse
Affiliation(s)
- Murat Serdar Gurses
- Department of Forensic Medicine, School of Medicine, Uludag University, Bursa, Turkey
| | - Mustafa Numan Ural
- Department of Forensic Medicine, School of Medicine, Uludag University, Bursa, Turkey
| | - Mehmet Akif Gulec
- Department of Medical Biochemistry, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Omer Akyol
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sumeyya Akyol
- Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
32
|
Lussier AL, Weeber EJ, Rebeck GW. Reelin Proteolysis Affects Signaling Related to Normal Synapse Function and Neurodegeneration. Front Cell Neurosci 2016; 10:75. [PMID: 27065802 PMCID: PMC4809875 DOI: 10.3389/fncel.2016.00075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/11/2016] [Indexed: 01/13/2023] Open
Abstract
Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer’s diseases (AD) tissues including cerebral spinal fluid (CSF), showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- April L Lussier
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Disease Institute, University of South Florida Tampa, FL, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Disease Institute, University of South Florida Tampa, FL, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Washington, DC, USA
| |
Collapse
|
33
|
Sato Y, Kobayashi D, Kohno T, Kidani Y, Prox J, Becker-Pauly C, Hattori M. Determination of cleavage site of Reelin between its sixth and seventh repeat and contribution of meprin metalloproteases to the cleavage. J Biochem 2015; 159:305-12. [PMID: 26491063 DOI: 10.1093/jb/mvv102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/06/2015] [Indexed: 02/02/2023] Open
Abstract
Reelin is a secreted glycoprotein whose function is regulated by proteolysis. One of the specific cleavage sites of Reelin, called C-t, is located approximately between the sixth and seventh Reelin repeat but its exact site was unknown. We here show that a metalloprotease present in the culture supernatant of cerebellar granular neurons (CGN) cleaves Reelin between Ala2688 and Asp2689. A Reelin mutant in which Asp2689 is replaced by Lys (Reelin-DK) is resistant to C-t cleavage by culture supernatant of CGN. From biochemical characteristics and the cleavage site preference, meprin α and meprin β were suggested candidate proteases and both were confirmed to cleave Reelin at the C-t site. Meprin α cleaved Reelin-DK but meprin β did not. Actinonin, a meprin α and meprin β inhibitor, did not inhibit the Reelin-cleaving activity of CGN and the amount of Reelin fragments in brains of meprin β knock-out mice was not significantly different from that of the wild-type, indicating that meprin β does not play a major role in Reelin cleavage under basal conditions. We propose that meprin α and meprin β join the modulators of Reelin signalling as they cleave Reelin at a specific site and are upregulated under specific pathological conditions.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Daichi Kobayashi
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Yujiro Kidani
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Johannes Prox
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Germany
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| |
Collapse
|
34
|
Gottschall PE, Howell MD. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol 2015; 44-46:70-6. [PMID: 25622912 PMCID: PMC5068130 DOI: 10.1016/j.matbio.2015.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/21/2022]
Abstract
The components of the adult extracellular matrix in the central nervous system form a lattice-like structure that is deposited as perineuronal nets, around axon initial segments and as synapse-associated matrix. An abundant component of this matrix is the lecticans, chondroitin sulfate-bearing proteoglycans that are the major substrate for several members of the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) family. Since lecticans are key regulators of neural plasticity, ADAMTS cleavage of lecticans would likely also contribute to neuroplasticity. Indeed, many studies have examined the neuroplastic contribution of the ADAMTSs to damage and recovery after injury and in central nervous system disease. Much of this data supports a role for the ADAMTSs in recovery and repair following spinal cord injury by stimulating axonal outgrowth after degradation of a glial scar and improving synaptic plasticity following seizure-induced neural damage in the brain. The action of the ADAMTSs in chronic diseases of the central nervous system appears to be more complex and less well-defined. Increasing evidence indicates that lecticans participate in synaptic plasticity in neurodegenerative disease states. It will be interesting to examine how ADAMTS expression and action would affect the progression of these diseases.
Collapse
Affiliation(s)
- Paul E Gottschall
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
35
|
Levy C, Brooks JM, Chen J, Su J, Fox MA. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol 2014; 523:629-48. [PMID: 25349050 DOI: 10.1002/cne.23701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022]
Abstract
Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.
Collapse
Affiliation(s)
- C Levy
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, 24016; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | | | | | | | | |
Collapse
|
36
|
Aujla PK, Huntley GW. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol 2014; 522:1249-63. [PMID: 24114974 DOI: 10.1002/cne.23468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that contribute to pericellular remodeling in a variety of tissues, including brain, where they function in adult hippocampal synaptic structural and functional plasticity. Synaptic plasticity and remodeling are also important for development of connectivity, but it is unclear whether MMPs--particularly MMP-2 and -9, the major MMPs operative in brain--contribute at these stages. Here, we use a combination of biochemical and anatomical methods to characterize expression and localization of MMP-2 and MMP-9 in early postnatal and adult rat hippocampus. Gene and protein expression of these MMPs were evident throughout hippocampus at all ages examined, but expression levels were highest during the first postnatal week. MMP-2 and MMP-9 immunolocalized to punctate structures within the neuropil that codistributed with foci of proteolytic activity, as well as with markers of growing axons and synapses. Taken together, discrete foci of MMP proteolysis are likely important for actively shaping and remodeling cellular and connectional architecture as hippocampal circuitry is becoming established during early postnatal life.
Collapse
Affiliation(s)
- Paven K Aujla
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | |
Collapse
|
37
|
Extracellular proteolysis of reelin by tissue plasminogen activator following synaptic potentiation. Neuroscience 2014; 274:299-307. [PMID: 24892761 DOI: 10.1016/j.neuroscience.2014.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
The secreted glycoprotein reelin plays an indispensable role in neuronal migration during development and in regulating adult synaptic functions. The upstream mechanisms responsible for initiating and regulating the duration and magnitude of reelin signaling are largely unknown. Here we report that reelin is cleaved between EGF-like repeats 6-7 (R6-7) by tissue plasminogen activator (tPA) under cell-free conditions. No changes were detected in the level of reelin and its fragments in the brains of tPA knockouts, implying that other unknown proteases are responsible for generating reelin fragments found constitutively in the adult brain. Induction of NMDAR-independent long-term potentiation with the potassium channel blocker tetraethylammonium chloride (TEA-Cl) led to a specific up-regulation of reelin processing at R6-7 in wild-type mice. In contrast, no changes in reelin expression and processing were observed in tPA knockouts following TEA-Cl treatment. These results demonstrate that synaptic potentiation results in tPA-dependent reelin processing and suggest that extracellular proteolysis of reelin may regulate reelin signaling in the adult brain.
Collapse
|
38
|
Koie M, Okumura K, Hisanaga A, Kamei T, Sasaki K, Deng M, Baba A, Kohno T, Hattori M. Cleavage within Reelin repeat 3 regulates the duration and range of the signaling activity of Reelin protein. J Biol Chem 2014; 289:12922-30. [PMID: 24644294 DOI: 10.1074/jbc.m113.536326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reelin is a secreted glycoprotein that plays essential roles in the brain. Reelin is specifically cleaved at two distinct sites, called N-t and C-t, with the former being the major one. N-t cleavage can occur both in the extracellular space and in the endosomes, although the physiological importance of endosomal N-t cleavage has not been investigated. In this study, we first determined the exact N-t cleavage site catalyzed by a protease secreted by cerebral cortical neurons. Cleavage occurred between Pro-1244 and Ala-1245 within Reelin repeat 3. A Reelin mutant in which Pro-1244 was replaced with aspartate (Reelin-PD) was resistant to a protease secreted by cultured cerebral cortical neurons, and its biological activity stayed active longer than that of wild-type Reelin. Interestingly, Reelin-PD remained in the intracellular compartments longer than wild-type Reelin and persistently activated downstream signaling. Therefore, N-t cleavage of Reelin is required for halting the signaling machinery in the extracellular space as well as within endosomes of target neurons. We established a monoclonal antibody specific to uncleaved Reelin protein and found that it is localized in the vicinity of Reelin-producing cells, whereas the N-terminal fragment diffuses, or is transported, to distant regions. These data demonstrate that N-t cleavage of Reelin plays critical roles in regulating the duration and range of Reelin functions both in the extracellular milieu and in the intracellular compartments.
Collapse
Affiliation(s)
- Mari Koie
- From the Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Balmaceda V, Cuchillo-Ibáñez I, Pujadas L, García-Ayllón MS, Saura CA, Nimpf J, Soriano E, Sáez-Valero J. ApoER2 processing by presenilin-1 modulates reelin expression. FASEB J 2013; 28:1543-54. [PMID: 24344333 DOI: 10.1096/fj.13-239350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reelin signaling protein and its downstream components have been associated with synaptic plasticity and neurotransmission. The reelin signaling pathway begins with the binding of reelin to the transmembrane lipoprotein receptor apolipoprotein E receptor 2 (ApoER2), which in turns induces the sequential cleavage of ApoER2 by the sequential action of α- and γ-secretases. Using conditional-knockout mice of the catalytic component of the γ-secretase complex, presenilin 1 (PS1), we demonstrated increased brain ApoER2 and reelin protein and transcript levels, with no changes in the number of reelin-positive cells. Using the human SH-SY5Y neuroblastoma cell line, we showed that ApoER2 processing occurs in the presence of PS1, producing an intracellular ApoER2 C-terminal fragment. In addition, the pharmacologic inhibition of γ-secretase in SH-SY5Y cells led to increased reelin levels. Overexpression of ApoER2 decreased reelin mRNA levels in these cells. A luciferase reporter gene assay and nuclear fractionation confirmed that increased amounts of intracellular fragment of ApoER2 suppressed reelin expression at a transcriptional level. Chromatin immunoprecipitation experiments corroborated that the intracellular fragment of ApoER2 bound to the RELN promoter region. Our study suggests that PS1/γ-secretase-dependent processing of the reelin receptor ApoER2 inhibits reelin expression and may regulate its signaling.
Collapse
Affiliation(s)
- Valeria Balmaceda
- 1Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d'Alacant, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013; 68:122-35. [PMID: 22981949 PMCID: PMC3632377 DOI: 10.1016/j.neuropharm.2012.08.015] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/21/2022]
Abstract
Reelin is a glycoprotein that serves important roles both during development (regulation of neuronal migration and brain lamination) and in adulthood (maintenance of synaptic function). A number of neuropsychiatric disorders including autism, schizophrenia, bipolar disorder, major depression, Alzheimer's disease and lissencephaly share a common feature of abnormal Reelin expression in the brain. Altered Reelin expression has been hypothesized to impair neuronal connectivity and synaptic plasticity, leading ultimately to the cognitive deficits present in these disorders. The mechanisms for abnormal Reelin expression in some of these disorders are currently unknown although possible explanations include early developmental insults, mutations, hypermethylation of the promoter for the Reelin gene (RELN), miRNA silencing of Reelin mRNA, FMRP underexpression and Reelin processing abnormalities. Increasing Reelin expression through pharmacological therapies may help ameliorate symptoms resulting from Reelin deficits. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Tinnes S, Ringwald J, Haas CA. TIMP-1 inhibits the proteolytic processing of Reelin in experimental epilepsy. FASEB J 2013; 27:2542-52. [PMID: 23493620 DOI: 10.1096/fj.12-224899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temporal lobe epilepsy is frequently associated with granule cell dispersion (GCD), an abnormal widening of the granule cell layer in the dentate gyrus. There is increasing evidence that a loss and the functional inactivation of the positional signal Reelin is involved in GCD formation. Reelin is synthesized and released by Cajal-Retzius cells and interneurons, and its function depends on proteolytic cleavage after secretion. Epileptic conditions impair Reelin processing by inhibition of matrix metalloprotease (MMP) activity and cause the extracellular accumulation of unprocessed Reelin. Here we investigated how epileptic conditions inhibit MMP activity. We used kainate (KA) treatment of organotypic hippocampal slice cultures as an epilepsy model and found a significant increase of tissue inhibitor of metalloproteases 1 (TIMP-1) levels and strongly enhanced TIMP-1 immunolabeling in hippocampal neurons. Functional inhibition of TIMP-1 prevented the KA-induced impairment of Reelin cleavage indicating that TIMP-1 inhibits MMP activity. Moreover, application of recombinant TIMP-1 alone was sufficient to impair Reelin processing and to induce GCD, similar to that observed after KA treatment. In summary, we present evidence that epileptic conditions inhibit MMP activity by up-regulation of endogenous TIMP-1, which in turn leads to extracellular accumulation of uncleaved and inactive Reelin and thereby to GCD.
Collapse
Affiliation(s)
- Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
42
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|
43
|
Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology. ASN Neuro 2012; 5:e00106. [PMID: 23298182 PMCID: PMC3575035 DOI: 10.1042/an20120060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders). In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon). Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.
Collapse
|