1
|
Park S, Park BS, Lee HJ, Heo CM, Ko J, Lee DA, Park KM. Choroid plexus enlargement in patients with end-stage renal disease: implications for glymphatic system dysfunction. Front Neurol 2024; 15:1459356. [PMID: 39469069 PMCID: PMC11513315 DOI: 10.3389/fneur.2024.1459356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Objectives The choroid plexus plays a role in eliminating detrimental metabolites from the brain as an integral component of the glymphatic system. This study aimed to investigate alterations in choroid plexus volume in patients with end-stage renal disease (ESRD) compared with healthy controls. Methods We enrolled 40 patients with ESRD and 42 healthy controls. They underwent brain magnetic resonance imaging (MRI), specifically using three dimensional T1-weighted imaging. We analyzed choroid plexus volumes and compared them between patients with ESRD and healthy controls. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was calculated. We compared the DTI-ALPS index between the ESRD patients and healthy controls. Additionally, we evaluated the association between choroid plexus volume and neuropsychological tests results in patients with ESRD. Results There were significant differences in choroid plexus volumes between patients with ESRD and healthy controls. The choroid plexus volumes in patients with ESRD were higher than those in healthy controls (1.392 vs. 1.138%, p < 0.001). The DTI-ALPS index in patients with ESRD was lower than that in healthy controls (1.470 ± 0.239 vs. 1.641 ± 0.266, p = 0.005). There were no differences in choroid plexus volumes between patients with ESRD, regardless of the presence of cognitive impairment. However, among the neuropsychological tests, the scores for word-list recognition in verbal memory were negatively correlated with the choroid plexus volume (r = -0.428, p = 0.006). Conclusion We demonstrated a significant enlargement of the choroid plexus volume in patients with ESRD compared to healthy controls. This finding suggests that patients with ESRD have glymphatic system dysfunction, which may be related to cognitive impairment.
Collapse
Affiliation(s)
- Sihyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chang Min Heo
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
2
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
3
|
Holl D, Hau WF, Julien A, Banitalebi S, Kalkitsas J, Savant S, Llorens-Bobadilla E, Herault Y, Pavlovic G, Amiry-Moghaddam M, Dias DO, Göritz C. Distinct origin and region-dependent contribution of stromal fibroblasts to fibrosis following traumatic injury in mice. Nat Neurosci 2024; 27:1285-1298. [PMID: 38849523 PMCID: PMC11239523 DOI: 10.1038/s41593-024-01678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.
Collapse
Affiliation(s)
- Daniel Holl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wing Fung Hau
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shervin Banitalebi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jannis Kalkitsas
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Savant
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enric Llorens-Bobadilla
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David Oliveira Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong.
| |
Collapse
|
4
|
Lim J, Rhee S, Choi H, Lee J, Kuttappan S, Yves Nguyen TT, Choi S, Kim Y, Jeon NL. Engineering choroid plexus-on-a-chip with oscillatory flow for modeling brain metastasis. Mater Today Bio 2023; 22:100773. [PMID: 37664794 PMCID: PMC10474164 DOI: 10.1016/j.mtbio.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The human brain choroid plexus (ChP) is a highly organized secretory tissue with a complex vascular system and epithelial layers in the ventricles of the brain. The ChP is the body's principal source of cerebrospinal fluid (CSF); it also functions as a barrier to separate the blood from CSF, because the movement of CSF through the body is pulsatile in nature. Thus far, it has been challenging to recreate the specialized features and dynamics of the ChP in a physiologically relevant microenvironment. In this study, we recapitulated the ChP structure by developing a microfluidic chip in accordance with established design rules. Furthermore, we used image processing and analysis to mimic CSF flow dynamics within a rlcking system; we also used a hydrogel containing laminin to mimic brain extracellular matrix (ECM). Human ChP cells were cultured in the ChP-on-a-chip with in vivo-like CSF dynamic flow and an engineered ECM. The key ChP characteristics of capillaries, the epithelial layer, and secreted components were recreated in the adjusted microenvironment of our human ChP-on-a-chip. The drug screening capabilities of the device were observed through physiologically relevant drug responses from breast cancer cells that had spread in the ChP. ChP immune responses were also recapitulated in this device, as demonstrated by the motility and cytotoxic effects of macrophages, which are the most prevalent immune cells in the ChP. Our human ChP-on-a-chip will facilitate the elucidation of ChP pathophysiology and support the development of therapeutics to treat cancers that have metastasized into the ChP.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Stephen Rhee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Jungseub Lee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Shruthy Kuttappan
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| | - Tri Tho Yves Nguyen
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Sunbeen Choi
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Noo Li Jeon
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
6
|
Morphological and mitochondrial changes in murine choroid plexus epithelial cells during healthy aging. Fluids Barriers CNS 2023; 20:19. [PMID: 36918889 PMCID: PMC10012601 DOI: 10.1186/s12987-023-00420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Choroid plexuses (ChPs) are intraventricular structures mainly composed by specialized epithelial cells interconnected by tight junctions that establish the blood-cerebrospinal fluid (CSF) barrier. ChPs are essential to produce CSF and transport solutes from and into the brain. Deterioration of ChP function and morphology has been correlated to worsening of neurodegenerative disorders. We here map morpho-functional changes in the ChP epithelial cells during healthy aging, starting from young adult to 2-years old mice. METHODS We used a multi-tiered approach, including transmission electron microscopy (TEM), immunohistochemistry, RT-qPCR, Western Blot and 2-photon microscopy (2-PM) at multiple timepoints ranging from young adult to 2-years old mice. RESULTS We identified distinct morpho-functional modifications in epithelial cells of ChP starting from 8 to 12 months of age, which mostly remained stable up to 2 years. These changes include flattening of the epithelium, reduction of microvilli length and an augmentation of interrupted tight junctions. We also found a decrease in mitochondria density together with elongation of mitochondria in older mice. Morphological mitochondrial rearrangements were accompanied by increased superoxide levels, decreased membrane potential and decreased mitochondrial motility in aged mice. Interestingly, most of the age-related changes were not accompanied by modification of protein and/or gene expression levels and aged mitochondria effectively responded to acute pharmacological stressful stimuli. CONCLUSIONS Our study suggests a long-term progression of multiple morpho-functional features of the mouse choroid plexus epithelium during adulthood followed by structural remodeling during the aging process. These findings can lead to a better understanding on how functional and morphological rearrangements of ChP are correlated during aging.
Collapse
|
7
|
Thompson D, Brissette CA, Watt JA. The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 2022; 19:75. [PMID: 36088417 PMCID: PMC9463972 DOI: 10.1186/s12987-022-00372-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
8
|
Van De Vyver AJ, Walz AC, Heins MS, Abdolzade-Bavil A, Kraft TE, Waldhauer I, Otteneder MB. Investigating brain uptake of a non-targeting monoclonal antibody after intravenous and intracerebroventricular administration. Front Pharmacol 2022; 13:958543. [PMID: 36105215 PMCID: PMC9465605 DOI: 10.3389/fphar.2022.958543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies play an important role in the treatment of various diseases. However, the development of these drugs against neurological disorders where the drug target is located in the brain is challenging and requires a good understanding of the local drug concentration in the brain. In this original research, we investigated the systemic and local pharmacokinetics in the brain of healthy rats after either intravenous (IV) or intracerebroventricular (ICV) administration of EGFRvIII-T-Cell bispecific (TCB), a bispecific monoclonal antibody. We established an experimental protocol that allows serial sampling in serum, cerebrospinal fluid (CSF) and interstitial fluid (ISF) of the prefrontal cortex in freely moving rats. For detection of drug concentration in ISF, a push-pull microdialysis technique with large pore membranes was applied. Brain uptake into CSF and ISF was characterized and quantified with a reduced brain physiologically-based pharmacokinetic model. The model allowed us to interpret the pharmacokinetic processes of brain uptake after different routes of administration. The proposed model capturing the pharmacokinetics in serum, CSF and ISF of the prefrontal cortex suggests a barrier function between the CSF and ISF that impedes free antibody transfer. This finding suggests that ICV administration may not be better suited to reach higher local drug exposure as compared to IV administration. The model enabled us to quantify the relative contribution of the blood-brain barrier (BBB) and Blood-CSF-Barrier to the uptake into the interstitial fluid of the brain. In addition, we compared the brain uptake of three monoclonal antibodies after IV dosing. In summary, the presented approach can be applied to profile compounds based on their relative uptake in the brain and provides quantitative insights into which pathways are contributing to the net exposure in the brain.
Collapse
Affiliation(s)
- Arthur J. Van De Vyver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
- *Correspondence: Antje-Christine Walz,
| | | | - Afsaneh Abdolzade-Bavil
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Thomas E. Kraft
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Michael B. Otteneder
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
9
|
Rey S, Ohm H, Klämbt C. Axonal ion homeostasis and glial differentiation. FEBS J 2022. [PMID: 35943294 DOI: 10.1111/febs.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
The brain is the ultimate control unit of the body. It conducts accurate, fast and reproducible calculations to control motor actions affecting mating, foraging and flight or fight decisions. Therefore, during evolution, better and more efficient brains have emerged. However, even simple brains are complex organs. They are formed by glial cells and neurons that establish highly intricate networks to enable information collection, processing and eventually, a precise motor control. Here, we review and connect some well-established and some hidden pieces of information to set the focus on ion homeostasis as a driving force in glial differentiation promoting signalling speed and accuracy.
Collapse
Affiliation(s)
- Simone Rey
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | - Henrike Ohm
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | | |
Collapse
|
10
|
Hobin K, Costas-Rodríguez M, Van Wonterghem E, Vandenbroucke RE, Vanhaecke F. High-Precision Isotopic Analysis of Cu and Fe via Multi-Collector Inductively Coupled Plasma-Mass Spectrometry Reveals Lipopolysaccharide-Induced Inflammatory Effects in Blood Plasma and Brain Tissues. Front Chem 2022; 10:896279. [PMID: 35783204 PMCID: PMC9241339 DOI: 10.3389/fchem.2022.896279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The concentration and the isotopic composition of the redox-active essential elements Cu and Fe were investigated in blood plasma and specific brain regions (hippocampus, cortex, brain stem and cerebellum) of mice to assess potential alterations associated with sepsis-associated encephalopathy induced by lipopolysaccharide (LPS) administration. Samples were collected from young (16-22 weeks) and aged (44-65 weeks) mice after intraperitoneal injection of the LPS, an endotoxin inducing neuroinflammation, and from age- and sex-matched controls, injected with phosphate-buffered saline solution. Sector-field single-collector inductively coupled plasma-mass spectrometry was relied upon for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry for isotopic analysis. Significant variations were observed for the Cu concentration and for the Cu and Fe isotope ratios in the blood plasma. Concentrations and isotope ratios of Cu and Fe also varied across the brain tissues. An age- and an inflammatory-related effect was found affecting the isotopic compositions of blood plasma Cu and cerebellum Fe, whereas a regional Cu isotopic redistribution was found within the brain tissues. These findings demonstrate that isotopic analysis of essential mineral elements picks up metabolic changes not revealed by element quantification, making the two approaches complementary.
Collapse
Affiliation(s)
- Kasper Hobin
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Marta Costas-Rodríguez
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Vanhaecke
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Gonzalez-Marrero I, Hernández-Abad LG, Castañeyra-Ruiz L, Carmona-Calero EM, Castañeyra-Perdomo A. Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. Neurologia 2022; 37:371-382. [PMID: 30060976 DOI: 10.1016/j.nrl.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The choroid plexuses, blood vessels, and brain barriers are closely related both in terms of morphology and function. Hypertension causes changes in cerebral blood flow and in small vessels and capillaries of the brain. This review studies the effects of high blood pressure (HBP) on the choroid plexuses and brain barriers. DEVELOPMENT The choroid plexuses (ChP) are structures located in the cerebral ventricles, and are highly conserved both phylogenetically and ontogenetically. The ChPs develop during embryogenesis, forming a functional barrier during the first weeks of gestation. They are composed of highly vascularised epithelial tissue covered by microvilli, and their main function is cerebrospinal fluid (CSF) production. The central nervous system (CNS) is protected by the blood-brain barrier (BBB) and the blood-CSF barrier (BCSFB). While the BBB is formed by endothelial cells of the microvasculature of the CNS, the BCSFB is formed by epithelial cells of the choroid plexuses. Chronic hypertension induces vascular remodelling. This prevents hyperperfusion at HBPs, but increases the risk of ischaemia at low blood pressures. In normotensive individuals, in contrast, cerebral circulation is self-regulated, blood flow remains constant, and the integrity of the BBB is preserved. CONCLUSIONS HBP induces changes in the choroid plexuses that affect the stroma, blood vessels, and CSF production. HBP also exacerbates age-related ChP dysfunction and causes alterations in the brain barriers, which are more marked in the BCSFB than in the BBB. Brain barrier damage may be determined by quantifying blood S-100β and TTRm levels.
Collapse
Affiliation(s)
- I Gonzalez-Marrero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España
| | - L G Hernández-Abad
- Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España
| | - L Castañeyra-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España
| | - E M Carmona-Calero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España
| | - A Castañeyra-Perdomo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España.
| |
Collapse
|
12
|
Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021; 9:1734. [PMID: 34829963 PMCID: PMC8615927 DOI: 10.3390/biomedicines9111734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of central nervous system (CNS) pathologies is severely hampered by the presence of tightly regulated CNS barriers that restrict drug delivery to the brain. An increasing amount of data suggests that extracellular vesicles (EVs), i.e., membrane derived vesicles that inherently protect and transfer biological cargoes between cells, naturally cross the CNS barriers. Moreover, EVs can be engineered with targeting ligands to obtain enriched tissue targeting and delivery capacities. In this review, we provide a detailed overview of the literature describing a natural and engineered CNS targeting and therapeutic efficiency of different cell type derived EVs. Hereby, we specifically focus on peripheral administration routes in a broad range of CNS diseases. Furthermore, we underline the potential of research aimed at elucidating the vesicular transport mechanisms across the different CNS barriers. Finally, we elaborate on the practical considerations towards the application of EVs as a brain drug delivery system.
Collapse
Affiliation(s)
- Marie J. Pauwels
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
14
|
Santa-Maria AR, Walter FR, Figueiredo R, Kincses A, Vigh JP, Heymans M, Culot M, Winter P, Gosselet F, Dér A, Deli MA. Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. J Cereb Blood Flow Metab 2021; 41:2201-2215. [PMID: 33563079 PMCID: PMC8393308 DOI: 10.1177/0271678x21992638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microfluidic lab-on-a-chip (LOC) devices allow the study of blood-brain barrier (BBB) properties in dynamic conditions. We studied a BBB model, consisting of human endothelial cells derived from hematopoietic stem cells in co-culture with brain pericytes, in an LOC device to study fluid flow in the regulation of endothelial, BBB and glycocalyx-related genes and surface charge. The highly negatively charged endothelial surface glycocalyx functions as mechano-sensor detecting shear forces generated by blood flow on the luminal side of brain endothelial cells and contributes to the physical barrier of the BBB. Despite the importance of glycocalyx in the regulation of BBB permeability in physiological conditions and in diseases, the underlying mechanisms remained unclear. The MACE-seq gene expression profiling analysis showed differentially expressed endothelial, BBB and glycocalyx core protein genes after fluid flow, as well as enriched pathways for the extracellular matrix molecules. We observed increased barrier properties, a higher intensity glycocalyx staining and a more negative surface charge of human brain-like endothelial cells (BLECs) in dynamic conditions. Our work is the first study to provide data on BBB properties and glycocalyx of BLECs in an LOC device under dynamic conditions and confirms the importance of fluid flow for BBB culture models.
Collapse
Affiliation(s)
- Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ricardo Figueiredo
- GenXPro GmbH, Frankfurt-Am-Main, Germany.,Johann Wolfgang Goethe University, Frankfurt, Frankfurt-Am-Main, Germany
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Marjolein Heymans
- Université d'Artois, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Maxime Culot
- Université d'Artois, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | | | - Fabien Gosselet
- Université d'Artois, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
15
|
Geribaldi-Doldán N, Fernández-Ponce C, Quiroz RN, Sánchez-Gomar I, Escorcia LG, Velásquez EP, Quiroz EN. The Role of Microglia in Glioblastoma. Front Oncol 2021; 10:603495. [PMID: 33585220 PMCID: PMC7879977 DOI: 10.3389/fonc.2020.603495] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GB), the most aggressive malignant glioma, is made up of a large percentage of glioma-associated microglia/macrophages (GAM), suggesting that immune cells play an important role in the pathophysiology of GB. Under physiological conditions, microglia, the phagocytes of the central nervous system (CNS), are involved in various processes such as neurogenesis or axonal growth, and the progression of different conditions such as Alzheimer's disease. Through immunohistochemical studies, markers that enhance GB invasiveness have been shown to be expressed in the peritumoral area of the brain, such as Transforming Growth Factor α (TGF-α), Stromal Sell-Derived Factor 1 (SDF1/CXCL12), Sphingosine-1-Phosphate (S1P) and Neurotrophic Factor Derived from the Glial cell line (GDNF), contributing to the increase in tumor mass. Similarly, it has also been described 17 biomarkers that are present in hypoxic periarteriolar HSC niches in bone marrow and in hypoxic periarteriolar GSC niches in glioblastoma. Interestingly, microglia plays an important role in the microenvironment that supports GB progression, being one of the most important focal points in the study of therapeutic targets for the development of new drugs. In this review, we describe the altered signaling pathways in microglia in the context of GB. We also show how microglia interact with glioblastoma cells and the epigenetic mechanisms involved. Regarding the interactions between microglia and neurogenic niches, some authors indicate that glioblastoma stem cells (GSC) are similar to neural stem cells (NSC), common stem cells in the subventricular zone (SVZ), suggesting that this could be the origin of GB. Understanding the similarities between SVZ and the tumor microenvironment could be important to clarify some mechanisms involved in GB malignancy and to support the discovering of new therapeutic targets for the development of more effective glioblastoma treatments.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Cecilia Fernández-Ponce
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública. Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Roberto Navarro Quiroz
- CMCC-Centro de Matemática, Computação e Cognição, Laboratório do Biologia Computacional e Bioinformática–LBCB, Universidade Federal do ABC, Sao Paulo, Brazil
| | - Ismael Sánchez-Gomar
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública. Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Lorena Gómez Escorcia
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
- Centro de investigación e innovación en Biomoleculas, Care4You, Barranquilla, Colombia
| | | | - Elkin Navarro Quiroz
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
- Centro de investigación e innovación en Biomoleculas, Care4You, Barranquilla, Colombia
| |
Collapse
|
16
|
Novielli-Kuntz NM, Press ER, Barr K, Prado MAM, Laird DW. Mutant Cx30-A88V mice exhibit hydrocephaly and sex-dependent behavioral abnormalities, implicating a functional role for Cx30 in the brain. Dis Model Mech 2021; 14:14/1/dmm046235. [PMID: 33735099 PMCID: PMC7859702 DOI: 10.1242/dmm.046235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Connexin 30 (Cx30; also known as Gjb6 when referring to the mouse gene) is expressed in ependymal cells of the brain ventricles, in leptomeningeal cells and in astrocytes rich in connexin 43 (Cx43), leading us to question whether patients harboring GJB6 mutations exhibit any brain anomalies. Here, we used mice harboring the human disease-associated A88V Cx30 mutation to address this gap in knowledge. Brain Cx30 levels were lower in male and female Cx30A88V/A88V mice compared with Cx30A88V/+ and Cx30+/+ mice, whereas Cx43 levels were lower only in female Cx30 mutant mice. Characterization of brain morphology revealed a disrupted ependymal cell layer, significant hydrocephalus and enlarged ventricles in 3- to 6-month-old adult male and female Cx30A88V/A88V mice compared with Cx30A88V/+ or Cx30+/+ sex-matched littermate mice. To determine the functional significance of these molecular and morphological changes, we investigated a number of behavioral activities in these mice. Interestingly, only female Cx30A88V/A88V mice exhibited abnormal behavior compared with all other groups. Cx30A88V/A88V female mice demonstrated increased locomotor and exploratory activity in both the open field and the elevated plus maze. They also exhibited dramatically reduced ability to learn the location of the escape platform during Morris water maze training, although they were able to swim as well as other genotypes. Our findings suggest that the homozygous A88V mutation in Cx30 causes major morphological changes in the brain of aging mice, possibly attributable to an abnormal ependymal cell layer. Remarkably, these changes had a more pronounced consequence for cognitive function in female mice, which is likely to be linked to the dysregulation of both Cx30 and Cx43 levels in the brain.
Collapse
Affiliation(s)
- Nicole M Novielli-Kuntz
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | - Eric R Press
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | - Kevin Barr
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | - Marco A M Prado
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada N6A 5K8
| | - Dale W Laird
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 .,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
17
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
18
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
19
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
20
|
Bannai D, Lutz O, Lizano P. Neuroimaging considerations when investigating choroid plexus morphology in idiopathic psychosis. Schizophr Res 2020; 224:19-21. [PMID: 32732088 PMCID: PMC7722065 DOI: 10.1016/j.schres.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Deepthi Bannai
- Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Olivia Lutz
- University of Chicago, Committee on Computational Neuroscience, Chicago, IL 60637,United States of America
| | - Paulo Lizano
- Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America; Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
21
|
Abou-Mrad Z, Alomari SO, Bsat S, Moussalem CK, Alok K, El Houshiemy MN, Alomari AO, Minassian GB, Omeis IA. Role of connexins in spinal cord injury: An update. Clin Neurol Neurosurg 2020; 197:106102. [DOI: 10.1016/j.clineuro.2020.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/25/2023]
|
22
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Zamboni M, Llorens-Bobadilla E, Magnusson JP, Frisén J. A Widespread Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. Cell Stem Cell 2020; 27:605-617.e5. [PMID: 32758425 PMCID: PMC7534841 DOI: 10.1016/j.stem.2020.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Parenchymal astrocytes have emerged as a potential reservoir for new neurons in non-neurogenic brain regions. It is currently unclear how astrocyte neurogenesis is controlled molecularly. Here we show that Notch signaling-deficient astrocytes can generate new neurons after injury. Using single-cell RNA sequencing, we found that, when Notch signaling is blocked, astrocytes transition to a neural stem cell-like state. However, only after injury do a few of these primed astrocytes unfold a neurogenic program, including a self-amplifying progenitor-like state. Further, reconstruction of the trajectories of individual cells allowed us to uncouple astrocyte neurogenesis from reactive gliosis, which occur along independent branches. Finally, we show that cortical neurogenesis molecularly recapitulates canonical subventricular zone neurogenesis with remarkable fidelity. Our study supports a widespread potential of parenchymal astrocytes to function as dormant neural stem cells.
Collapse
Affiliation(s)
- Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Jens Peter Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
24
|
Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. NEUROLOGÍA (ENGLISH EDITION) 2020; 37:371-382. [DOI: 10.1016/j.nrleng.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 01/04/2023] Open
|
25
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Wu J, Yang J, Yu M, Sun W, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride causes blood–brain barrier disruption through intracellular calcium-mediated RhoA/Rho kinase signaling and myosin light chain kinase. Metallomics 2020; 12:2075-2083. [DOI: 10.1039/d0mt00187b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanum caused endothelial barrier hyperpermeability, loss of VE-cadherin and rearrangement of the actin cytoskeleton, though intracellular Ca2+-mediated RhoA/ROCK and MLCK pathways.
Collapse
Affiliation(s)
- Jie Wu
- Department of Occupational and Environmental Health
- School of Public Health
- Jinzhou Medical University
- Jinzhou 121001
- P. R. China
| | - Jinghua Yang
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Miao Yu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Wenchang Sun
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yarao Han
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Xiaobo Lu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Cuihong Jin
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Shengwen Wu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yuan Cai
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| |
Collapse
|
28
|
Shu J, Neugebauer H, Li F, Lulé D, Müller HP, Zhang J, Ludolph AC, Huang Y, Kassubek J, Zhang W. Clinical and neuroimaging disparity between Chinese and German patients with cerebral small vessel disease: a comparative study. Sci Rep 2019; 9:20015. [PMID: 31882609 PMCID: PMC6934729 DOI: 10.1038/s41598-019-55899-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Ethnic disparity of cerebral small vessel disease (CSVD) has been reported previously but understanding of its clinical-anatomical is sparse. Two cohorts of CSVD patients from Peking University First Hospital, China and University Hospital of Ulm, Germany were retrospectively collected between 2013 and 2017. Visual rating scales and semiautomatic computer-assisted quantitative analysis were used to describe the neuroimaging features of CSVD, including lacunes, enlarged perivascular spaces, white matter changes and microbleeds. After exclusion of confounding neurological disorders, 165 out of 220 Chinese and 86 out of 98 German patients’ data were analyzed. Mean age of patients was 64.0 ± 11.9 years in China and 73.9 ± 10.3 years in Germany. Cognitive deficits were more prominent in the German group, mainly in the cognitive domains of language and delayed recall. Neuroimaging comparison showed that lacunes were more common and white matter lesion load was more severe in German than Chinese patients. Spatial distribution analysis suggested that Chinese patients showed more deep and infratentorial lesions (microbleeds and lacunes), while lesions in German patients were more frequently located in the lobes or subcortical white matter. In conclusion, different age of onset and anatomical distribution of lesions exist between Chinese and German CSVD patients in the observed population.
Collapse
Affiliation(s)
- Junlong Shu
- Department of Neurology, Peking University First Hospital, Xishiku Street 7, Beijing, 100034, China
| | - Hermann Neugebauer
- Department of Neurology, Ulm University Clinic, Oberer Eselsberg 45, Ulm, 89081, Germany.,Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Xishiku Street 7, Beijing, 100034, China
| | - Dorothée Lulé
- Department of Neurology, Ulm University Clinic, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Clinic, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Jing Zhang
- Department of Neurology, Peking University First Hospital, Xishiku Street 7, Beijing, 100034, China
| | - Albert C Ludolph
- Department of Neurology, Ulm University Clinic, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Xishiku Street 7, Beijing, 100034, China
| | - Jan Kassubek
- Department of Neurology, Ulm University Clinic, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Xishiku Street 7, Beijing, 100034, China.
| |
Collapse
|
29
|
Tachikawa M, Murakami K, Akaogi R, Akanuma SI, Terasaki T, Hosoya KI. Polarized hemichannel opening of pannexin 1/connexin 43 contributes to dysregulation of transport function in blood-brain barrier endothelial cells. Neurochem Int 2019; 132:104600. [PMID: 31712070 DOI: 10.1016/j.neuint.2019.104600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023]
Abstract
Dysregulation of blood-brain barrier (BBB) transport exacerbates brain damage in acute ischemic stroke. Here, we aimed to investigate the mechanism of this BBB transport dysregulation by studying the localization and function of pannexin (Px) and connexin (Cx) hemichannels in blood-brain barrier endothelial cells of rat (TR-BBB13 cells) and human (hCMEC/D3 cells) under acute ischemic stroke-mimicking oxygen/glucose deprivation (OGD) and extracellular Ca2+ ([Ca2+]e)-free conditions. TR-BBB13 cells showed increased uptake of hemichannel-permeable sulforhodamine 101, and this increase was markedly inhibited by carbenoxolone, a hemichannel inhibitor. Transcripts of Px1 and Cx43 were detected in TR-BBB13 cells and freshly isolated brain microvascular endothelial cells. The basal compartment-to-cell uptake of hemichannel-permeable propidium iodide was selectively enhanced in hCMEC/D3 cells under [Ca2+]e-free conditions in the basal Transwell chamber. Immunohistochemical analysis revealed the predominant localization of Cx43 on the lateral membranes of hCMEC/D3 cells. [3H]Taurine uptake by hCMEC/D3 cells was significantly reduced in the absence of [Ca2+]e. Functional knock-down of Px1 and Cx43 with mimetic peptides significantly inhibited the increase of ATP release from hCMEC/D3 cells under [Ca2+]e-free conditions. These results suggest that polarized Px1/Cx43 hemichannel opening in brain capillary endothelial cells under acute ischemic stroke-mimicking conditions contributes to dysregulation of BBB transport function, resulting in release of intracellular taurine and ATP.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Koji Murakami
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryo Akaogi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
30
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|
31
|
Gorlé N, Vandenbroucke RE. Interferons: A molecular switch between damage and repair in ageing and Alzheimer's disease. Mech Ageing Dev 2019; 183:111148. [PMID: 31541624 DOI: 10.1016/j.mad.2019.111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease was first described over 100 years ago, yet it remains incurable and affects 44 million people worldwide. Traditionally, research has largely focused on the amyloid cascade hypothesis, but interest in the importance of inflammation in the progression of the disease has recently been increasing. Interferons, a large family of cytokines that trigger the immune system, are believed to play a crucial role in the pathology of Alzheimer's disease. This review focuses on how interferons affect the brain during ageing and whether they could be candidate therapeutic targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N Gorlé
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - R E Vandenbroucke
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
32
|
Stofkova A, Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron Med 2019; 5:14. [PMID: 32232103 PMCID: PMC7098223 DOI: 10.1186/s42234-019-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The brain, spinal cord and retina are protected from blood-borne compounds by the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB) and blood-retina barrier (BRB) respectively, which create a physical interface that tightly controls molecular and cellular transport. The mechanical and functional integrity of these unique structures between blood vessels and nervous tissues is critical for maintaining organ homeostasis. To preserve the stability of these barriers, interplay between constituent barrier cells, such as vascular endothelial cells, pericytes, glial cells and neurons, is required. When any of these cells are defective, the barrier can fail, allowing blood-borne compounds to encroach neural tissues and cause neuropathologies. Autoimmune diseases of the central nervous system (CNS) and retina are characterized by barrier disruption and the infiltration of activated immune cells. Here we review our recent findings on the role of neural activity in the regulation of these barriers at the vascular endothelial cell level in the promotion of or protection against the development of autoimmune diseases. We suggest nervous system reflexes, which we named gateway reflexes, are fundamentally involved in these diseases. Although their reflex arcs are not completely understood, we identified the activation of specific sensory neurons or receptor cells to which barrier endothelial cells respond as effectors that regulate gateways for immune cells to enter the nervous tissue. We explain this novel mechanism and describe its role in neuroinflammatory conditions, including models of multiple sclerosis and posterior autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- 1Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| | - Masaaki Murakami
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| |
Collapse
|
33
|
Lizano P, Lutz O, Ling G, Lee AM, Eum S, Bishop JR, Kelly S, Pasternak O, Clementz B, Pearlson G, Sweeney JA, Gershon E, Tamminga C, Keshavan M. Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. Am J Psychiatry 2019; 176:564-572. [PMID: 31164007 PMCID: PMC6676480 DOI: 10.1176/appi.ajp.2019.18070825] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The choroid plexus is an important physiological barrier and produces CSF and neurotrophic, angiogenic, and inflammatory factors involved in brain development. Choroid plexus abnormalities have been implicated in both schizophrenia and bipolar disorder. A previous choroid plexus transcriptomic analysis of schizophrenia identified an upregulation of immune and inflammatory genes that correlated with peripheral inflammatory markers. The purpose of this study was to examine choroid plexus volume in probands across the psychosis spectrum and in their first-degree and axis II cluster A relatives, as well as choroid plexus familiality and choroid plexus covariance with clinical, cognitive, brain, and peripheral marker measures. METHODS Choroid plexus volume was quantified (using FreeSurfer) in psychosis probands, their first-degree and axis II cluster A relatives, and healthy control subjects, organized by DSM-IV-TR diagnosis. Analyte, structural connectivity, and genotype data were collected from a subset of study subjects. RESULTS Choroid plexus volume was significantly larger in probands compared with first-degree relatives or healthy control subjects; first-degree relatives had intermediate enlargement compared with healthy control subjects; and total choroid plexus volume was significantly heritable. Larger volume was associated with worse cognition, smaller total gray matter and amygdala volume, larger lateral ventricle volume, and lower structural connectivity in probands. Associations between larger volume and higher levels of interleukin 6 in probands was also observed. CONCLUSIONS These findings suggest the involvement of the choroid plexus across the psychosis spectrum with a potential pathophysiological mechanism involving the neuroimmune axis, which functions in maintaining brain homeostasis and interacting with the peripheral immune and inflammatory system. The choroid plexus may be an important target in future research.
Collapse
Affiliation(s)
- Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia Lutz
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - George Ling
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Adam M. Lee
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Seenae Eum
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Jeffrey R. Bishop
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Sinead Kelly
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Brett Clementz
- The Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia, USA
| | - Godfrey Pearlson
- The Olin Neuropsychiatry Research Center/Institute of Living, Hartford Hospital, Hartford, Connecticut, USA
| | - John A. Sweeney
- The Department of Psychiatry, University of Cincinnati, Cincinnati, USA
| | - Elliot Gershon
- The Department of Psychiatry, University of Chicago, Illinois, USA
| | - Carol Tamminga
- The Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matcheri Keshavan
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
35
|
Rönnbäck C, Hansson E. The Importance and Control of Low-Grade Inflammation Due to Damage of Cellular Barrier Systems That May Lead to Systemic Inflammation. Front Neurol 2019; 10:533. [PMID: 31191433 PMCID: PMC6549124 DOI: 10.3389/fneur.2019.00533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/03/2019] [Indexed: 01/04/2023] Open
Abstract
Systemic low-grade inflammation can be initiated in vivo after traumatic injury or in chronic diseases such as neurodegenerative, metabolic, and autoimmune diseases. Inducers of inflammation trigger production of inflammatory mediators, which alter the functionality of tissues and organs and leads to harmful induction of different barrier systems in the body, where the blood-brain barrier, the blood-retinal barrier, blood-nerve barrier, blood-lymph barrier and the blood-cerebrospinal fluid barrier play major roles. The different barriers are unique but structured in a similar way. They are equipped with sophisticated junctional complexes where different connexins, protein subunits of gap junction channels and hemichannels, constitute important partners. The cells involved in the various barriers are coupled in networks, are excitable but do not express action potentials and may be targets for inflammation leading to changes in several biochemical cellular parameters. During any type of inflammation barrier break-down is observed where any form of injury can start with low-grade inflammation and may lead to systemic inflammation.
Collapse
Affiliation(s)
- Cecilia Rönnbäck
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
37
|
Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW. Connexins and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029348. [PMID: 28778872 DOI: 10.1101/cshperspect.a029348] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer and pleiotropic syndromes such as oculodentodigital dysplasia (ODDD). Although incomplete by virtue of space and the extent of the topic, this review emphasizes the fact that connexin function is not only associated with gap junction channel formation. As such, both canonical and noncanonical functions of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morten S Nielsen
- Department of Biological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vytautas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11790
| |
Collapse
|
38
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
39
|
Mat Nor N, Guo CX, Rupenthal ID, Chen YS, Green CR, Acosta ML. Sustained Connexin43 Mimetic Peptide Release From Loaded Nanoparticles Reduces Retinal and Choroidal Photodamage. Invest Ophthalmol Vis Sci 2018; 59:3682-3693. [PMID: 30029255 DOI: 10.1167/iovs.17-22829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the long-term effect on inflammation and inflammasome activation of intravitreally delivered connexin43 mimetic peptide (Cx43MP) in saline or incorporated within nanoparticles (NPs) for the treatment of the light-damaged rat eye. Methods Light-induced damage to the retina was created by exposure of adult albino Sprague-Dawley rats to intense light for 24 hours. A single dose of Cx43MP, Cx43MP-NPs, or saline was injected intravitreally at 2 hours after onset of light damage. Fluorescein isothiocyanate (FITC)-labelled Cx43MP-NPs were intravitreally injected to confirm delivery into the retina. Electroretinogram (ERG) recordings were performed at 24 hours, 1 week, and 2 weeks post cessation of light damage. The retinal and choroidal layers were analyzed in vivo using optical coherence tomography (OCT) and immunohistochemistry was performed on harvested tissues using glial fibrillary acidic protein (GFAP), leukocyte common antigen (CD45), and Cx43 antibodies. Results FITC was visualized 30 minutes after injection in the ganglion cell layer and in the choroid. Cx43MP and Cx43MP-NP treatments improved a-wave and b-wave function of the ERG compared with saline-injected eyes at 1 week and 2 weeks post treatment, and prevented photoreceptor loss by 2 weeks post treatment. Inflammation was also reduced and this was in parallel with downregulation of Cx43 expression. Conclusions The slow release of Cx43MP incorporated into NPs is more effective at treating retinal injury than a single dose of native Cx43MP in solution by reducing inflammation and maintaining both retinal structure and function. This NP preparation has clinical relevance as it reduces possible ocular complications associated with repeated intravitreal injections.
Collapse
Affiliation(s)
- Nasir Mat Nor
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,Faculty of Medicine, University of Sultan Zainal Abidin, Kuala Terengganu, Malaysia.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Cindy X Guo
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Buchanan Ocular Therapeutics Unit, University of Auckland, Auckland, New Zealand
| | - Ying-Shan Chen
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Buchanan Ocular Therapeutics Unit, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Abstract
Mammalian circadian clocks have a hierarchical organization, governed by the suprachiasmatic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hierarchy remains unclear. We examine circadian oscillations of clock gene expression in various brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and modeling show that the CP achieves these properties by synchronization of “twist” circadian oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning behavioral circadian rhythms. The suprachiasmatic nucleus (SCN) has been thought of as the master circadian clock, but peripheral circadian clocks do exist. Here, the authors show that the choroid plexus displays oscillations more robust than the SCN and that can be described as a Poincaré oscillator with negative twist.
Collapse
|
41
|
Gorlé N, Blaecher C, Bauwens E, Vandendriessche C, Balusu S, Vandewalle J, Van Cauwenberghe C, Van Wonterghem E, Van Imschoot G, Liu C, Ducatelle R, Libert C, Haesebrouck F, Smet A, Vandenbroucke RE. The choroid plexus epithelium as a novel player in the stomach-brain axis during Helicobacter infection. Brain Behav Immun 2018; 69:35-47. [PMID: 29258921 DOI: 10.1016/j.bbi.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
Several studies suggest a link between shifts in gut microbiota and neurological disorders. Recently, we reported a high prevalence of Helicobacter suis (H. suis) in patients with Parkinson's disease. Here, we evaluated the effect of gastric H. suis infection on the brain in mice. One month of infection with H. suis resulted in increased brain inflammation, reflected in activation of microglia and cognitive decline. Additionally, we detected choroid plexus inflammation and disruption of the epithelial blood-cerebrospinal fluid (CSF) barrier upon H. suis infection, while the endothelial blood-brain barrier (BBB) remained functional. These changes were accompanied by leakage of the gastrointestinal barrier and low-grade systemic inflammation, suggesting that H. suis-evoked gastrointestinal permeability and subsequent peripheral inflammation induces changes in brain homeostasis via changes in blood-CSF barrier integrity. In conclusion, this study shows for the first time that H. suis infection induces inflammation in the brain associated with cognitive decline and that the choroid plexus is a novel player in the stomach-brain axis.
Collapse
Affiliation(s)
- N Gorlé
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - C Blaecher
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium
| | - E Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium
| | - C Vandendriessche
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - S Balusu
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - J Vandewalle
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - C Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - E Van Wonterghem
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - G Van Imschoot
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - C Liu
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium
| | - C Libert
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium
| | - A Smet
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, B-9820 Merelbeke, Belgium; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, B-2610 Antwerp, Belgium
| | - R E Vandenbroucke
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
42
|
Bose A, Basu R, Maulik M, Das Sarma J. Loss of Cx43-Mediated Functional Gap Junction Communication in Meningeal Fibroblasts Following Mouse Hepatitis Virus Infection. Mol Neurobiol 2018; 55:6558-6571. [PMID: 29327203 PMCID: PMC7090783 DOI: 10.1007/s12035-017-0861-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 10/28/2022]
Abstract
Mouse hepatitis virus (MHV) infection causes meningoencephalitis by disrupting the neuro-glial and glial-pial homeostasis. Recent studies suggest that MHV infection alters gap junction protein connexin 43 (Cx43)-mediated intercellular communication in brain and primary cultured astrocytes. In addition to astrocytes, meningeal fibroblasts also express high levels of Cx43. Fibroblasts in the meninges together with the basal lamina and the astrocyte endfeet forms the glial limitans superficialis as part of the blood-brain barrier (BBB). Alteration of glial-pial gap junction intercellular communication (GJIC) in MHV infection has the potential to affect the integrity of BBB. Till date, it is not known if viral infection can modulate Cx43 expression and function in cells of the brain meninges and thus affect BBB permeability. In the present study, we have investigated the effect of MHV infection on Cx43 localization and function in mouse brain meningeal cells and primary meningeal fibroblasts. Our results show that MHV infection reduces total Cx43 levels and causes its intracellular retention in the perinuclear compartments reducing its surface expression. Reduced trafficking of Cx43 to the cell surface in MHV-infected cells is associated with loss functional GJIC. Together, these data suggest that MHV infection can directly affect expression and cellular distribution of Cx43 resulting in loss of Cx43-mediated GJIC in meningeal fibroblasts, which may be associated with altered BBB function observed in acute infection.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
43
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
44
|
Mazaré N, Gilbert A, Boulay AC, Rouach N, Cohen-Salmon M. Connexin 30 is expressed in a subtype of mouse brain pericytes. Brain Struct Funct 2017; 223:1017-1024. [PMID: 29143947 DOI: 10.1007/s00429-017-1562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Pericytes are mural cells of blood microvessels which play a crucial role at the neurovascular interface of the central nervous system. They are involved in the regulation of blood-brain barrier integrity, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, and neuroinflammation, and they demonstrate stem cell activity. Morphological and molecular studies to characterize brain pericytes recently pointed out some heterogeneity in pericyte population. Nevertheless, a clear definition of pericyte subtypes is still lacking. Here, we demonstrate that a fraction of brain pericytes express Connexin 30 (Cx30), a gap junction protein, which, in the brain parenchyma, was thought to be exclusively found in astrocytes. Cx30 could thus be a candidate protein in the composition of the gap junction channels already described between endothelial cells and pericytes. It could also form hemichannels or acts in a channel-independent manner to regulate pericyte morphology, as already observed in astrocytes. Altogether, our results suggest that Cx30 defines a novel brain pericyte subtype.
Collapse
Affiliation(s)
- Noémie Mazaré
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Nathalie Rouach
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France. .,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France.
| |
Collapse
|
45
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
46
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
47
|
Kim Y, Davidson JO, Green CR, Nicholson LFB, O'Carroll SJ, Zhang J. Connexins and Pannexins in cerebral ischemia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:224-236. [PMID: 28347700 DOI: 10.1016/j.bbamem.2017.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Louise F B Nicholson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Simon J O'Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Jie Zhang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland.
| |
Collapse
|
48
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
49
|
Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability. Nat Commun 2016; 7:12982. [PMID: 27653841 PMCID: PMC5036146 DOI: 10.1038/ncomms12982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids.
Collapse
|
50
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|