1
|
Congur I, Mingrone G, Guan K. Targeting endoplasmic reticulum stress as a potential therapeutic strategy for diabetic cardiomyopathy. Metabolism 2025; 162:156062. [PMID: 39515414 DOI: 10.1016/j.metabol.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis. In obesity and type 2 diabetes mellitus (T2DM), accumulating data indicate that persistent ER stress due to maladaptive UPR interacts with insulin/leptin signaling, which may be the potential and central mechanistic link between obesity-/T2DM-induced metabolic dysregulation (chronic hyperglycemia, dyslipidemia and lipotoxicity in cardiomyocytes), insulin/leptin resistance and the development of diabetic cardiomyopathy (DiabCM). Meanwhile, these pathological conditions further exacerbate ER stress. However, their interrelationships and the underlying molecular mechanisms are not fully understood. A deeper understanding of ER stress-mediated pathways in DiabCM is needed to develop novel therapeutic strategies. The aim of this review is to discuss the crosstalk between ER stress and leptin/insulin signaling and their involvement in the development of DiabCM focusing on mitochondria-associated ER membranes and chronic inflammation. We also present the current direction of drug development and important considerations for translational research into targeting ER stress for the treatment of DiabCM.
Collapse
Affiliation(s)
- Irem Congur
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom; Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany.
| |
Collapse
|
2
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Lund C, Ranea-Robles P, Falk S, Rausch DM, Skovbjerg G, Vibe-Petersen VK, Krauth N, Skytte JL, Vana V, Roostalu U, Pers TH, Lund J, Clemmensen C. Protection against overfeeding-induced weight gain is preserved in obesity but does not require FGF21 or MC4R. Nat Commun 2024; 15:1192. [PMID: 38331907 PMCID: PMC10853283 DOI: 10.1038/s41467-024-45223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
Collapse
Affiliation(s)
- Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra ApS, Hørsholm, Denmark
| | | | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
6
|
Hammerschmidt P, Steculorum SM, Bandet CL, Del Río-Martín A, Steuernagel L, Kohlhaas V, Feldmann M, Varela L, Majcher A, Quatorze Correia M, Klar RFU, Bauder CA, Kaya E, Porniece M, Biglari N, Sieben A, Horvath TL, Hornemann T, Brodesser S, Brüning JC. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice. Nat Commun 2023; 14:7824. [PMID: 38016943 PMCID: PMC10684560 DOI: 10.1038/s41467-023-42595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
Dysregulation of hypothalamic ceramides has been associated with disrupted neuronal pathways in control of energy and glucose homeostasis. However, the specific ceramide species promoting neuronal lipotoxicity in obesity have remained obscure. Here, we find increased expression of the C16:0 ceramide-producing ceramide synthase (CerS)6 in cultured hypothalamic neurons exposed to palmitate in vitro and in the hypothalamus of obese mice. Conditional deletion of CerS6 in hypothalamic neurons attenuates high-fat diet (HFD)-dependent weight gain and improves glucose metabolism. Specifically, CerS6 deficiency in neurons expressing pro-opiomelanocortin (POMC) or steroidogenic factor 1 (SF-1) alters feeding behavior and alleviates the adverse metabolic effects of HFD feeding on insulin sensitivity and glucose tolerance. POMC-expressing cell-selective deletion of CerS6 prevents the diet-induced alterations of mitochondrial morphology and improves cellular leptin sensitivity. Our experiments reveal functions of CerS6-derived ceramides in hypothalamic lipotoxicity, altered mitochondrial dynamics, and ER/mitochondrial stress in the deregulation of food intake and glucose metabolism in obesity.
Collapse
Affiliation(s)
- Philipp Hammerschmidt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sophie M Steculorum
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Research Group Neurocircuit Wiring and Function, Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Cécile L Bandet
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Almudena Del Río-Martín
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vivien Kohlhaas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marvin Feldmann
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Marta Quatorze Correia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Rhena F U Klar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ecem Kaya
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nasim Biglari
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Sieben
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamas L Horvath
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
7
|
Kim KK, Lee TH, Park BS, Kang D, Kim DH, Jeong B, Kim JW, Yang HR, Kim HR, Jin S, Back SH, Park JW, Kim JG, Lee BJ. Bridging Energy Need and Feeding Behavior: The Impact of eIF2α Phosphorylation in AgRP Neurons. Diabetes 2023; 72:1384-1396. [PMID: 37478284 DOI: 10.2337/db23-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Eukaryotic translation initiation factor 2α (eIF2α) is a key mediator of the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). In mammals, eIF2α is phosphorylated by overnutrition-induced ER stress and is related to the development of obesity. Here, we studied the function of phosphorylated eIF2α (p-eIF2α) in agouti-related peptide (AgRP) neurons using a mouse model (AgRPeIF2αA/A) with an AgRP neuron-specific substitution from Ser 51 to Ala in eIF2α, which impairs eIF2α phosphorylation in AgRP neurons. These AgRPeIF2αA/A mice had decreases in starvation-induced AgRP neuronal activity and food intake and an increased responsiveness to leptin. Intriguingly, impairment of eIF2α phosphorylation produced decreases in the starvation-induced expression of UPR and autophagy genes in AgRP neurons. Collectively, these findings suggest that eIF2α phosphorylation regulates AgRP neuronal activity by affecting intracellular responses such as the UPR and autophagy during starvation, thereby participating in the homeostatic control of whole-body energy metabolism. ARTICLE HIGHLIGHTS This study examines the impact of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, triggered by an energy deficit, on hypothalamic AgRP neurons and its subsequent influence on whole-body energy homeostasis. Impaired eIF2α phosphorylation diminishes the unfolded protein response and autophagy, both of which are crucial for energy deficit-induced activation of AgRP neurons. This study highlights the significance of eIF2α phosphorylation as a cellular marker indicating the availability of energy in AgRP neurons and as a molecular switch that regulates homeostatic feeding behavior.
Collapse
Affiliation(s)
- Kwang Kon Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Byong Seo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Bora Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Han Rae Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Sungho Jin
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY
| | - Sung Hoon Back
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
8
|
Eo H, Kim SH, Ju IG, Huh E, Kim S, Choi JG, Kim SW, Son M, Oh MS. Longan extract suppresses food intake through regulation of POMC/AgRP neuronal activities and endoplasmic reticulum stress in hypothalamus of db/db mice. Front Nutr 2023; 10:1143613. [PMID: 37415911 PMCID: PMC10322219 DOI: 10.3389/fnut.2023.1143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the biggest public health issues worldwide and closely related to development of other chronic diseases such as cardiovascular diseases, cancer and neurodegenerative diseases. Considerable percentage of T2DM patients undergo have suffered from binge eating disorder which exacerbates insulin resistance and metabolic challenges. Longan (Dimocarpus longan L.) and its constituents are reported for their various health benefits. However, it is still unknown whether longan fruit supplementation can ameliorate glucose homeostasis and binge eating disorder found in T2DM. The current study aimed to investigate whether longan fruit extract (LE) supplementation can improve diabetic hyperglycemia through modulation of feeding center located in hypothalamus of db/db T2DM mice. As a result, LE supplementation ameliorated fasting blood glucose levels and reduced excessive epididymal fat accumulation. In addition, LE administration improved glucose tolerance and insulin sensitivity in db/db mice. Especially, LE supplemented mice showed less food consumption which was in line with increase of pro-opiomelanocortin (POMC) neuronal activities and decrease of agouti-related peptide (AgRP) neuronal activities. Furthermore, LE supplementation reduced hypothalamic endoplasmic reticulum (ER) stress which was stimulated in db/db mice. As ER stress is a crucial factor involving in appetite control and glucose homeostasis, the effect of LE supplementation on circulating glucose levels and feeding behavior might be mediated by suppression of hypothalamic ER stress. Collectively, these findings suggest that LE could be a potential nutraceutical for improvement of T2DM as well as patients with satiety issues.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | - Miwon Son
- MThera Pharma Co., Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Binayi F, Moslemi M, Khodagholi F, Hedayati M, Zardooz H. Long-term high-fat diet disrupts lipid metabolism and causes inflammation in adult male rats: possible intervention of endoplasmic reticulum stress. Arch Physiol Biochem 2023; 129:204-212. [PMID: 32907408 DOI: 10.1080/13813455.2020.1808997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effect of long-term high-fat diet (HFD) on plasma lipid profile and probability of inflammation in adult rats. After weaning, male offspring were divided into six groups based on diet type and medication. After 20 weeks of dietary intake, 4-PBA (endoplasmic reticulum (ER) stress inhibitor) was injected for three days. Then, blood samples were taken to measure plasma concentrations of low-density lipoprotein (LDL), triglyceride (TG), high-density lipoprotein (HDL), cholesterol, leptin and interleukin 1-β (IL 1-β). The HFD increased body weight and food intake and intra-abdominal fat and thymus weights, which were associated with elevated plasma leptin level. Moreover, HFD increased plasma concentrations of TG, LDL, cholesterol and IL 1-β and decreased HDL level. Injection of 4-PBA reversed the plasma parameters changes caused by HFD. It seems that long-term HFD feeding through inducing the ER stress, disrupted the lipid metabolism and resulted in inflammation.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Griffin H, Sullivan SC, Barger SW, Phelan KD, Baldini G. Liraglutide Counteracts Endoplasmic Reticulum Stress in Palmitate-Treated Hypothalamic Neurons without Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010629. [PMID: 36614074 PMCID: PMC9820707 DOI: 10.3390/ijms24010629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.
Collapse
Affiliation(s)
- Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarah C. Sullivan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
12
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
13
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
14
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
15
|
Tang Q, Li Y, He J. MANF: an emerging therapeutic target for metabolic diseases. Trends Endocrinol Metab 2022; 33:236-246. [PMID: 35135706 DOI: 10.1016/j.tem.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum-resident protein and a secretory factor and has beneficial effects in multiple diseases. Recent evidence shows that its circulating levels in humans are dynamically regulated under various metabolic diseases, including diabetes, obesity, fatty liver, and cardiovascular diseases, suggesting that MANF may play a role in these pathological states. Also, its downregulation in mice impairs glucose homeostasis, promotes lipid accumulation in the liver, reduces energy expenditure, and induces inflammation. Conversely, MANF overexpression prevents or mitigates some of these metabolic disturbances. In particular, systemic MANF administration alleviates dietary obesity and related metabolic disorders in obese mice. We therefore propose that MANF might be a promising target for treating chronic metabolic diseases.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
17
|
Gong T, Hashimoto AC, Sasuclark AR, Khadka VS, Gurary A, Pitts MW. Selenoprotein M Promotes Hypothalamic Leptin Signaling and Thioredoxin Antioxidant Activity. Antioxid Redox Signal 2021; 35:775-787. [PMID: 30648404 PMCID: PMC8617589 DOI: 10.1089/ars.2018.7594] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Selenoproteins are an essential class of proteins involved in redox signaling and energy metabolism. However, the functions of many selenoproteins are not clearly established. Selenoprotein M (SELENOM), an endoplasmic reticulum (ER)-resident oxidoreductase bearing structural similarity to thioredoxin (TXN), is among those yet to be fully characterized. This protein is highly expressed in hypothalamic regions involved in leptin signaling and has been previously linked to energy metabolism. Herein, we performed a series of studies using in vivo and in vitro models to probe the specific influence of SELENOM on hypothalamic leptin signaling and assess SELENOM-regulated pathways. Innovation and Results: Our initial experiment in vivo demonstrated that (i) leptin promotes hypothalamic expression of SELENOM and (ii) leptin-induced STAT3 phosphorylation is impeded by SELENOM deficiency. Additional in vitro studies using mHypoE-44 immortalized hypothalamic neurons corroborated these findings, as SELENOM deficiency obstructed downstream STAT3 phosphorylation and cytosolic calcium responses evoked by leptin treatment. Correspondingly, SELENOM overexpression enhanced leptin sensitivity. Microarray analysis conducted in parallel on hypothalamic tissue and mHypoE-44 cells revealed multiple genes significantly affected by SELENOM deficiency, including thioredoxin interacting protein, a negative regulator of the TXN system. Further analysis determined that (i) SELENOM itself possesses intrinsic TXN activity and (ii) SELENOM deficiency leads to a reduction in overall TXN activity. Finally, mHypoE-44 cells lacking SELENOM displayed diminished activation of the nuclear factor kappa-light-chain enhancer of activated B-cells (NF-κB) signaling pathway and increased susceptibility to ER stress-mediated cell death. Conclusion: In sum, these findings establish SELENOM as a positive regulator of leptin signaling and TXN antioxidant activity in the hypothalamus. Antioxid. Redox Signal. 35, 775-787.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii, USA
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Alexandru R Sasuclark
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Vedbar S Khadka
- Bioinformatics Core in the Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Alexandra Gurary
- Department of Tropical Medicine, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
18
|
Perissinotti PP, Martínez-Hernández E, He Y, Koob MD, Piedras-Rentería ES. Genetic Deletion of KLHL1 Leads to Hyperexcitability in Hypothalamic POMC Neurons and Lack of Electrical Responses to Leptin. Front Neurosci 2021; 15:718464. [PMID: 34566565 PMCID: PMC8458657 DOI: 10.3389/fnins.2021.718464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated calcium channels. The KLHL1 knockout (KO) model displays altered calcium channel expression in various brain regions. We analyzed the electrical behavior of hypothalamic POMC (proopiomelanocortin) neurons and their response to leptin. Leptin's effects on POMC neurons include enhanced gene expression, activation of the ERK1/2 pathway and increased electrical excitability. The latter is initiated by activation of the Jak2-PI3K-PLC pathway, which activates TRPC1/5 (Transient Receptor Potential Cation) channels that in turn recruit T-type channel activity resulting in increased excitability. Here we report over-expression of CaV3.1 T-type channels in the hypothalamus of KLHL1 KO mice increased T-type current density and enhanced POMC neuron basal excitability, rendering them electrically unresponsive to leptin. Electrical sensitivity to leptin was restored by partial blockade of T-type channels. The overexpression of hypothalamic T-type channels in POMC neurons may partially contribute to the obese and abnormal feeding phenotypes observed in KLHL1 KO mice.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Elizabeth Martínez-Hernández
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Yungui He
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael D Koob
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
19
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
20
|
Fatty acids role on obesity induced hypothalamus inflammation: From problem to solution – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Microglia-Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death? Int J Mol Sci 2021; 22:ijms22105243. [PMID: 34063496 PMCID: PMC8155827 DOI: 10.3390/ijms22105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.
Collapse
|
22
|
Chen N, Zhang Y, Wang M, Lin X, Li J, Li J, Xiao X. Maternal obesity interrupts the coordination of the unfolded protein response and heat shock response in the postnatal developing hypothalamus of male offspring in mice. Mol Cell Endocrinol 2021; 527:111218. [PMID: 33636254 DOI: 10.1016/j.mce.2021.111218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Maternal obesity malprograms offspring obesity and associated metabolic disorder. As a common phenomenon in obesity, endoplasmic reticulum (ER) stress also presents early prior to the development. Here, we investigate metabolic effect of early activated hypothalamic ER stress in offspring exposed to maternal obesogenic environment and the underlying mechanism in ICR mice model. We found higher body weight, hyperphagia and defective hypothalamic feeding-circuit in the offspring born to obese dams, with hypothalamic ER stress, and even more comprehensive cell proteotoxic stress were induced during the early postnatal period. However, neonatal inhibition of hypothalamic ER stress worsened the metabolic end. We believe that the uncoordinated interaction between the unfolded protein response and the heat shock response, regulated by heat shock protein 70, might be responsible for the malformed hypothalamic feeding circuit of the offspring exposure to maternal obesogenic conditions and were linked with deleterious metabolism in adulthood, especially when exposure to high-energy conditions.
Collapse
Affiliation(s)
- Nan Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunqi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Miaoran Wang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojing Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Angiopoietin-Like Growth Factor Involved in Leptin Signaling in the Hypothalamus. Int J Mol Sci 2021; 22:ijms22073443. [PMID: 33810547 PMCID: PMC8037945 DOI: 10.3390/ijms22073443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The hypothalamic regulation of appetite governs whole-body energy balance. Satiety is regulated by endocrine factors including leptin, and impaired leptin signaling is associated with obesity. Despite the anorectic effect of leptin through the regulation of the hypothalamic feeding circuit, a distinct downstream mediator of leptin signaling in neuron remains unclear. Angiopoietin-like growth factor (AGF) is a peripheral activator of energy expenditure and antagonizes obesity. However, the regulation of AGF expression in brain and localization to mediate anorectic signaling is unknown. Here, we demonstrated that AGF is expressed in proopiomelanocortin (POMC)-expressing neurons located in the arcuate nucleus (ARC) of the hypothalamus. Unlike other brain regions, hypothalamic AGF expression is stimulated by leptin-induced signal transducers and activators of transcription 3 (STAT3) phosphorylation. In addition, leptin treatment to hypothalamic N1 cells significantly enhanced the promoter activity of AGF. This induction was abolished by the pretreatment of ruxolitinib, a leptin signaling inhibitor. These results indicate that hypothalamic AGF expression is induced by leptin and colocalized to POMC neurons.
Collapse
|
24
|
Horie T, Nakao T, Miyasaka Y, Nishino T, Matsumura S, Nakazeki F, Ide Y, Kimura M, Tsuji S, Rodriguez RR, Watanabe T, Yamasaki T, Xu S, Otani C, Miyagawa S, Matsushita K, Sowa N, Omori A, Tanaka J, Nishimura C, Nishiga M, Kuwabara Y, Baba O, Watanabe S, Nishi H, Nakashima Y, Picciotto MR, Inoue H, Watanabe D, Nakamura K, Sasaki T, Kimura T, Ono K. microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nat Commun 2021; 12:843. [PMID: 33594062 PMCID: PMC7886914 DOI: 10.1038/s41467-021-21107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33−/− mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-β-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/fDBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress. Adaptive thermogenesis is regulated by central neuronal circuits. Here, the authors show that microRNA-33 in the brain contributes to the maintenance of brown adipose tissue thermogenesis and whole-body energy balance via enhanced sympathetic nerve tone, and regulating the expression of GABAa receptor subunits.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yui Miyasaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenobu Matsumura
- Laboratory of Physiological Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Randolph Ruiz Rodriguez
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimitsu Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Yamasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sijia Xu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chiharu Otani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Matsushita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Omori
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jin Tanaka
- Laboratory of Physiological Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chika Nishimura
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marina R Picciotto
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Abstract
Obesity, which has long since reached epidemic proportions worldwide, is associated with long-term stress to a variety of organs and results in diseases including type 2 diabetes. In the brain, overnutrition induces hypothalamic stress associated with the activation of several signalling pathways, together with central insulin and leptin resistance. This central action of nutrient overload appears very rapidly, suggesting that nutrition-induced hypothalamic stress is a major upstream initiator of obesity and associated diseases. The cellular response to nutrient overload includes the activation of the stress-activated c-Jun N-terminal kinases (JNKs) JNK1, JNK2 and JNK3, which are widely expressed in the brain. Here, we review recent findings on the regulation and effects of these kinases, with particular focus on the hypothalamus, a key brain region in the control of energy and glucose homeostasis. JNK1 blocks the hypothalamic-pituitary-thyroid axis, reducing energy expenditure and promoting obesity. Recently, opposing roles have been identified for JNK1 and JNK3 in hypothalamic agouti gene-related protein (AgRP) neurons: while JNK1 activation in AgRP neurons induces feeding and weight gain and impairs insulin and leptin signalling, JNK3 (also known as MAPK10) deletion in the same neuronal population produces very similar effects. The opposing roles of these kinases, and the unknown role of hypothalamic JNK2, reflect the complexity of JNK biology. Future studies should address the specific function of each kinase, not only in different neuronal subsets, but also in non-neuronal cells in the central nervous system. Decoding the puzzle of brain stress kinases will help to define the central stimuli and mechanisms implicated in the control of energy balance. Graphical abstract.
Collapse
Affiliation(s)
- Rubén Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Guadalupe Sabio
- Department of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
26
|
Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB 1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 2020; 9:60771. [PMID: 33210603 PMCID: PMC7728447 DOI: 10.7554/elife.60771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP. When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body’s energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Wesley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergő Szanda
- MTA-SE Laboratory of Molecular Physiology, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Gu K, Li X, Xiang W, Jiang X. The Relationship Between Serum Copper and Overweight/Obesity: a Meta-analysis. Biol Trace Elem Res 2020; 194:336-347. [PMID: 31300957 DOI: 10.1007/s12011-019-01803-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
The relationship between serum copper (Cu) level and overweight/obesity remains controversial. The purpose of this meta-analysis is to evaluate the relationship. A comprehensive literature search was performed in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases for relevant articles until March 20, 2019. The random-effect model (REM) was adopted to compute the combined standardized mean difference (SMD) with 95% confidence interval (CI). Publication bias was estimated using the visualization of funnel plots and Egger's test. In the end, twenty-one articles were included in the meta-analysis. Compared with controls, serum Cu level was higher in obese children (SMD (95% CI) 0.74 (0.16, 1.32)) and in obese adults (SMD (95% CI) 0.39 (0.02, 0.76)). There was no significant difference in serum Cu between overweight and control groups in children (SMD (95% CI) 1.52 (- 0.07, 3.12)) and in adults (SMD (95% CI) 0.16 (- 0.06, 0.38)). Moreover, subgroup analysis revealed a higher serum Cu level in obese children (SMD (95% CI) 0.90 (0.36, 1.45)) and obese adults (SMD (95% CI) 0.47 (0.05, 0.88)) compared with healthy weight controls. The SMD differs significantly between obese children diagnosed by weight-for-height and controls (SMD (95% CI) 1.56 (0.57, 2.55)), and there was a significant difference of serum Cu level between obese adults diagnosed by BMI (WHO) and controls (SMD (95% CI) 0.54 (0.08, 1.01)). This meta-analysis indicates that a higher serum Cu level might be associated with the risk of obesity in children and adults, and these findings need to be further confirmed.
Collapse
Affiliation(s)
- Kunfang Gu
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, China
| | - Xuekui Li
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, No. 175 Shandong Road, Qingdao, 266021, China
| | - Wenzhi Xiang
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, China
| | - Xiubo Jiang
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
28
|
Quarta C, Fioramonti X, Cota D. POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease? Neuroscience 2019; 447:3-14. [PMID: 31689486 DOI: 10.1016/j.neuroscience.2019.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
One important lesson from the last decade of studies in the field of systemic energy metabolism is that obesity is first and foremost a brain disease. Hypothalamic neurons dysfunction observed in response to chronic metabolic stress is a key pathogenic node linking consumption of hypercaloric diets with body weight gain and associated metabolic sequelae. A key hypothalamic neuronal population expressing the neuropeptide Pro-opio-melanocortin (POMC) displays altered electrical activity and dysregulated neuropeptides production capacity after long-term feeding with hypercaloric diets. However, whether such neuronal dysfunction represents a consequence or a mechanism of disease, remains a subject of debate. Here, we will review and highlight emerging pathogenic mechanisms that explain why POMC neurons undergo dysfunctional activity in response to caloric overload, and critically address whether these mechanisms may be causally implicated in the physiopathology of obesity and of its associated co-morbidities.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| | - Xavier Fioramonti
- Université de Bordeaux, Institut National de la Recherche Agronomique, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
29
|
Molina-Vega M, Muñoz-Garach A, Damas-Fuentes M, Fernández-García JC, Tinahones FJ. Secondary male hypogonadism: A prevalent but overlooked comorbidity of obesity. Asian J Androl 2019; 20:531-538. [PMID: 29974886 PMCID: PMC6219298 DOI: 10.4103/aja.aja_44_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Male hypogonadism associated with obesity is a very prevalent condition and is increasing in parallel with the epidemic prevalence of obesity. Low testosterone levels promote higher fat mass with reduced lean mass. Male hypogonadism is related to an increase in associated cardiometabolic complications, such as hypertension, type 2 diabetes mellitus, the metabolic syndrome, and cardiovascular disease. Its influence as a comorbidity of obesity is becoming more evident and should be evaluated and treated in at-risk patients. Mechanisms involved in this relationship include body composition changes, the presence of adipokines, insulin resistance, and other factors, some of which are still unknown. Weight loss and treatment to replace testosterone levels improve the metabolic profile and quality of life in patients with obesity and hypogonadism; these beneficial effects depend on treatment modality and duration of therapy. The use of testosterone replacement therapy may be indicated, as it has not been shown to increase cardiovascular risk, and retrospective studies suggest a reduction in events in men with metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- MarIa Molina-Vega
- Department of Endocrinology and Nutrition, Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain.,Institute of Biomedical Research in Málaga (IBIMA), Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain.,Institute of Biomedical Research in Málaga (IBIMA), Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CB06/003), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain.,Institute of Biomedical Research in Málaga (IBIMA), Virgen de la Victoria Universitary Hospital, Malaga 29010, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CB06/003), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|
30
|
He M, Huang XF, Gao G, Zhou T, Li W, Hu J, Chen J, Li J, Sun T. Olanzapine-induced endoplasmic reticulum stress and inflammation in the hypothalamus were inhibited by an ER stress inhibitor 4-phenylbutyrate. Psychoneuroendocrinology 2019; 104:286-299. [PMID: 30927713 DOI: 10.1016/j.psyneuen.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
Antipsychotics are the most important treatment for schizophrenia. However, antipsychotics, particularly olanzapine and clozapine, are associated with severe weight gain/obesity side-effects. Although numerous studies have been carried out to identify the exact mechanisms of antipsychotic-induced weight gain, it is still important to consider other pathways. Endoplasmic reticulum (ER) stress signaling and its associated inflammation pathway is one of the most important pathways involved in regulation of energy balance. In the present study, we examined the role of hypothalamic protein kinase R like endoplasmic reticulum kinase- eukaryotic initiation factor 2α (PERK-eIF2α) signaling and the inflammatory IkappaB kinase β- nuclear factor kappa B (IKKβ-NFκB) signaling pathway in olanzapine-induced weight gain in female rats. In this study, we found that olanzapine significantly activated PERK-eIF2α and IKKβ-NFκB signaling in SH-SY5Y cells in a dose-dependent manner. Olanzapine treatment for 8 days in rats was associated with activated PERK-eIF2α signaling and IKKβ-NFκB signaling in the hypothalamus, accompanied by increased food intake and weight gain. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate (4-PBA), decreased olanzapine-induced food intake and weight gain in a dose- and time-dependent manner. Moreover, 4-PBA dose-dependently inhibited olanzapine-induced activated PERK-eIF2α and IKKβ-NFκB signaling in the hypothalamus. These results suggested that hypothalamic ER stress may play an important role in antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Ting Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jinqi Hu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jia Chen
- Wuhan Seventh Hospital, Wuhan, Hubei, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Mu Y, Yin TL, Huang XX, Hu X, Yin L, Yang J. Sulforaphane ameliorates high-fat diet-induced spermatogenic deficiency in mice†. Biol Reprod 2019; 101:223-234. [PMID: 31004475 DOI: 10.1093/biolre/ioz067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Sulforaphane (SFN), a dietary isothiocyanate that is mainly found in cruciferous vegetables, possesses anti-oxidative and anticancer activity and modulates inflammation. However, little is known about the role of SFN in obesity-related male reproductive defects. The present study aimed to investigate the effects of SFN on high-fat diet (HFD)-induced male spermatogenic impairment and further clarify the possible underlying mechanisms. In this study, 8-week-old mice were randomly divided into four groups. Mice were fed a normal diet or an HFD with or without SFN supplementation. Sulforaphane was subcutaneously injected at a dose of 0.5 mg/kg 5 days/week for 4 weeks beginning 8 weeks after initiation of the HFD. The results demonstrated that SFN could protect against HFD-induced reproductive dysfunction in male mice. Moreover, SFN also improved reproductive ability, as demonstrated by an increased pregnancy rate and decreased embryo resorption rate in comparison to the corresponding HFD group. We also observed a decrease in apoptosis and an attenuation of endoplasmic reticulum (ER) stress after SFN treatment. In vitro studies of mouse and human sperm samples also revealed that SFN protects against the palmitic acid-induced reduction in sperm viability and motility by inhibiting ER stress in an AMP-activated protein kinase (AMPK)-dependent manner. AMPK-dependent ER stress attenuation by SFN was further confirmed using AMPK knockout mice. Taken together, these data show that SFN protects against HFD-induced male reproductive dysfunction by inhibiting ER stress and apoptosis. These findings may be helpful for identifying new therapeutic methods to treat male infertility.
Collapse
Affiliation(s)
| | | | - Xiao-xuan Huang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Xue Hu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Lu Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| |
Collapse
|
32
|
Ng SW, Chan Y, Chellappan DK, Madheswaran T, Zeeshan F, Chan YL, Collet T, Gupta G, Oliver BG, Wark P, Hansbro N, Hsu A, Hansbro PM, Dua K, Panneerselvam J. Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed Pharmacother 2019; 109:1785-1792. [DOI: 10.1016/j.biopha.2018.11.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022] Open
|
33
|
Levi NJ, Wilson CW, Redweik GAJ, Gray NW, Grzybowski CW, Lenkey JA, Moseman AW, Bertsch AD, Dao N, Walsh HE. Obesity-related cellular stressors regulate gonadotropin releasing hormone gene expression via c-Fos/AP-1. Mol Cell Endocrinol 2018; 478:97-105. [PMID: 30063946 DOI: 10.1016/j.mce.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for infertility, but mechanisms underlying this risk are unclear. Fertility is regulated by hypothalamic gonadotropin-releasing hormone, encoded by the Gnrh1 gene. Because obesity promotes endoplasmic reticulum (ER) stress, we sought to determine how tunicamycin-induced ER stress affected Gnrh1 gene expression in the mouse hypothalamic cell line GT1-7. Tunicamycin repressed expression of Gnrh1 in a PKC- and JNK-dependent manner, while upregulating expression of a known Gnrh1 repressor, Fos. Obesity is associated with increased circulating free fatty acids, and exposure to palmitate promoted ER stress and inflammation. Fos expression increased with palmitate dose, but Gnrh1 expression was upregulated with low-dose palmitate and repressed with high-dose palmitate. Using a small molecule inhibitor, we determined that AP-1 was required for Gnrh1 repression by high-dose palmitate or tunicamycin-induced ER stress. These findings suggest that hypogonadism driven by decreased hypothalamic GnRH may be a component of obesity-related infertility.
Collapse
Affiliation(s)
- Noah J Levi
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Christopher W Wilson
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Graham A J Redweik
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nathan W Gray
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Cody W Grzybowski
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Joseph A Lenkey
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Anthony W Moseman
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Alec D Bertsch
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nhien Dao
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Heidi E Walsh
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA.
| |
Collapse
|
34
|
Rodríguez-Rodríguez R, Miralpeix C, Fosch A, Pozo M, Calderón-Domínguez M, Perpinyà X, Vellvehí M, López M, Herrero L, Serra D, Casals N. CPT1C in the ventromedial nucleus of the hypothalamus is necessary for brown fat thermogenesis activation in obesity. Mol Metab 2018; 19:75-85. [PMID: 30448371 PMCID: PMC6323189 DOI: 10.1016/j.molmet.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Carnitine palmitoyltransferase 1C (CPT1C) is implicated in central regulation of energy homeostasis. Our aim was to investigate whether CPT1C in the ventromedial nucleus of the hypothalamus (VMH) is involved in the activation of brown adipose tissue (BAT) thermogenesis in the early stages of diet-induced obesity. METHODS CPT1C KO and wild type (WT) mice were exposed to short-term high-fat (HF) diet feeding or to intracerebroventricular leptin administration and BAT thermogenesis activation was evaluated. Body weight, adiposity, food intake, and leptinemia were also assayed. RESULTS Under 7 days of HF diet, WT mice showed a maximum activation peak of BAT thermogenesis that counteracted obesity development, whereas this activation was impaired in CPT1C KO mice. KO animals evidenced higher body weight, adiposity, hyperleptinemia, ER stress, and disrupted hypothalamic leptin signaling. Leptin-induced BAT thermogenesis was abolished in KO mice. These results indicate an earlier onset leptin resistance in CPT1C KO mice. Since AMPK in the VMH is crucial in the regulation of BAT thermogenesis, we analyzed if CPT1C was a downstream factor of this pathway. Genetic inactivation of AMPK within the VMH was unable to induce BAT thermogenesis and body weight loss in KO mice, indicating that CPT1C is likely downstream AMPK in the central mechanism modulating thermogenesis within the VMH. Quite opposite, the expression of CPT1C in the VMH restored the phenotype. CONCLUSION CPT1C is necessary for the activation of BAT thermogenesis driven by leptin, HF diet exposure, and AMPK inhibition within the VMH. This study underscores the importance of CPT1C in the activation of BAT thermogenesis to counteract diet-induced obesity.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain.
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| | - Macarena Pozo
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| | - María Calderón-Domínguez
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Xavier Perpinyà
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Miquel Vellvehí
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| |
Collapse
|
35
|
Dalby MJ, Aviello G, Ross AW, Walker AW, Barrett P, Morgan PJ. Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 2018; 8:15648. [PMID: 30353127 PMCID: PMC6199263 DOI: 10.1038/s41598-018-33928-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
Hypothalamic inflammation is thought to contribute to obesity. One potential mechanism is via gut microbiota derived bacterial lipopolysaccharide (LPS) entering into the circulation and activation of Toll-like receptor-4. This is called metabolic endotoxemia. Another potential mechanism is systemic inflammation arising from sustained exposure to high-fat diet (HFD) over more than 12 weeks. In this study we show that mice fed HFD over 8 weeks become obese and show elevated plasma LPS binding protein, yet body weight gain and adiposity is not attenuated in mice lacking Tlr4 or its co-receptor Cd14. In addition, caecal microbiota composition remained unchanged by diet. Exposure of mice to HFD over a more prolonged period (20 weeks) to drive systemic inflammation also caused obesity. RNAseq used to assess hypothalamic inflammation in these mice showed increased hypothalamic expression of Serpina3n and Socs3 in response to HFD, with few other genes altered. In situ hybridisation confirmed increased Serpina3n and Socs3 expression in the ARC and DMH at 20-weeks, but also at 8-weeks and increased SerpinA3N protein could be detected as early as 1 week on HFD. Overall these data show lack of hypothalamic inflammation in response to HFD and that metabolic endotoxemia does not link HFD to obesity.
Collapse
Affiliation(s)
- Matthew J Dalby
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Gabriella Aviello
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alexander W Ross
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| |
Collapse
|
36
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
37
|
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018. [PMID: 29514392 DOI: 10.1111/obr.12673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an epidemic disease that is increasing worldwide and is a major risk factor for many metabolic diseases. However, effective agents for the prevention or treatment of obesity remain limited. Therefore, it is urgent to clarify the pathophysiological mechanisms underlying the development and progression of obesity and exploit potential agents to cure and prevent this disease. According to a recent study series, obesity is associated with the development of endoplasmic reticulum stress and the activation of its stress responses (unfolded protein response) in metabolically active tissues, which contribute to the development of obesity-related insulin and leptin resistance, inflammation and energy imbalance. Hypothalamic endoplasmic reticulum stress is the central mechanism underlying the development of obesity-associated leptin resistance and disruption of energy homeostasis; thus, targeting endoplasmic reticulum stress offers a promising therapeutic strategy for improving leptin sensitivity, increasing energy expenditure and ultimately combating obesity. In this review, we highlight the relationship between and mechanism underlying hypothalamic endoplasmic reticulum stress and obesity-associated leptin resistance and energy imbalance and provide new insight regarding strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Z Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - J Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Z Su
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
38
|
Wu Q, Han Y, Tong Q. Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:211-233. [PMID: 30390293 DOI: 10.1007/978-981-13-1286-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current epidemic of obesity and its associated metabolic syndromes imposes unprecedented challenges to our society. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. The obesity development is due to a disturbed homeostatic control of feeding and energy expenditure, both of which are controlled by an intricate neural network in the brain. Given the inherent complexity of brain networks in controlling feeding and energy expenditure, the understanding of brain-based pathophysiology for obesity development is limited. One key limiting factor in dissecting neural pathways for feeding and energy expenditure is unavailability of techniques that can be used to effectively reduce the complexity of the brain network to a tractable paradigm, based on which a strong hypothesis can be tested. Excitingly, emerging techniques have been involved to be able to link specific groups of neurons and neural pathways to behaviors (i.e., feeding and energy expenditure). In this chapter, novel techniques especially those based on animal models and viral vector approaches will be discussed. We hope that this chapter will provide readers with a basis that can help to understand the literatures using these techniques and with a guide to apply these exciting techniques to investigate brain mechanisms underlying feeding and energy expenditure.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Children's Nutrition Research Center, Research Service of Department of Agriculture of USA, Houston, TX, USA.
| | - Yong Han
- Department of Pediatrics, Baylor College of Medicine, USDA-ARS, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
39
|
Cunarro J, Casado S, Lugilde J, Tovar S. Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:283. [PMID: 29904371 PMCID: PMC5990598 DOI: 10.3389/fendo.2018.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis.
Collapse
Affiliation(s)
- Juan Cunarro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Sabela Casado
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Javier Lugilde
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Sulay Tovar
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- *Correspondence: Sulay Tovar,
| |
Collapse
|
40
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
41
|
Cooney KA, Molden BM, Kowalczyk NS, Russell S, Baldini G. Lipid stress inhibits endocytosis of melanocortin-4 receptor from modified clathrin-enriched sites and impairs receptor desensitization. J Biol Chem 2017; 292:17731-17745. [PMID: 28878020 DOI: 10.1074/jbc.m117.785758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/12/2017] [Indexed: 11/06/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the brain's hypothalamus where it regulates energy homeostasis. MC4R agonists function to lower food intake and weight. In this respect, although obesity promotes hyperlipidemia and hypothalamic injury, MC4R agonists are nevertheless more effective to reduce food intake within hours of administration in overweight, rather than lean, mice. MC4R undergoes constitutive internalization and recycling to the plasma membrane with agonist binding inducing receptor retention along the intracellular route and, under prolonged exposure, desensitization. Here, we found that, in neuronal cells, lipid stress by exposure to elevated palmitate leaves unchanged the rate by which MC4R and transferrin receptor are constitutively excluded from the cell surface. However, lipid stress disrupted later steps of MC4R and transferrin receptor internalization to endosomes as well as traffic of agonist-occupied MC4R to lysosomes and MC4R desensitization. In the lipid-stressed cells, MC4R and clathrin were redistributed to the plasma membrane where they colocalized to sites that appeared by super-resolution microscopy to be modified and to have higher clathrin content than those of cells not exposed to elevated palmitate. The data suggest that lipid stress disrupts steps of endocytosis following MC4R localization to clathrin-coated sites and exclusion of the receptor from the extracellular medium. We conclude that increased effectiveness of MC4R agonists in obesity may be an unexpected outcome of neuronal injury with disrupted clathrin-dependent endocytosis and impaired receptor desensitization.
Collapse
Affiliation(s)
- Kimberly A Cooney
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Brent M Molden
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Nicholas S Kowalczyk
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Susan Russell
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Giulia Baldini
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| |
Collapse
|
42
|
Paeger L, Pippow A, Hess S, Paehler M, Klein AC, Husch A, Pouzat C, Brüning JC, Kloppenburg P. Energy imbalance alters Ca 2+ handling and excitability of POMC neurons. eLife 2017; 6. [PMID: 28762947 PMCID: PMC5538824 DOI: 10.7554/elife.25641] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023] Open
Abstract
Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+ concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during obesity development resulting in impaired function of these critical energy homeostasis-regulating neurons. DOI:http://dx.doi.org/10.7554/eLife.25641.001
Collapse
Affiliation(s)
- Lars Paeger
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Andreas Pippow
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Simon Hess
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Moritz Paehler
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Andreas C Klein
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Andreas Husch
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Christophe Pouzat
- MAP5 - Mathématiques Appliquées à Paris 5, CNRS UMR 8145, Paris, France
| | - Jens C Brüning
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Department of Mouse Genetics and Metabolism, Institute for Genetics, Center of Molecular Medicine Cologne, Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3607089. [PMID: 28798799 PMCID: PMC5535735 DOI: 10.1155/2017/3607089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).
Collapse
|
44
|
Belegri E, Rijnsburger M, Eggels L, Unmehopa U, Scheper W, Boelen A, la Fleur SE. Effects of Fat and Sugar, Either Consumed or Infused toward the Brain, on Hypothalamic ER Stress Markers. Front Neurosci 2017; 11:270. [PMID: 28555094 PMCID: PMC5430050 DOI: 10.3389/fnins.2017.00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
Protein-folding stress at the Endoplasmic Reticulum (ER) occurs in the hypothalamus during diet-induced obesity (DIO) and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR), a controlled network of pathways inducing a set of genes that recovers ER function. However, it is unclear whether hypothalamic ER stress during DIO results from obesity related changes or from direct nutrient effects in the brain. We here investigated mRNA expression of UPR markers in the hypothalamus of rats that were exposed to a free choice high-fat high-sugar (fcHFHS) diet for 1 week and then overnight fed ad libitum, or fasted, or fat/sugar deprived (i.e., switched from obesogenic diet to chow). In addition, we determined the direct effects of fat/sugar on mRNA expression of hypothalamus UPR markers by intracarotic infusions of intralipids and/or glucose in chow-fed rats that were fasted overnight. Short term (1 week) exposure to fcHFHS diet increased adiposity compared to chow-feeding. Short term exposure to a fcHFHS diet, followed by mild food restriction overnight, induced hypothalamic ER stress in rats as characterized by an increase in spliced to unspliced X-box binding protein 1 mRNA ratio in hypothalamus of fcHFHS fed rats compared to chow fed rats. Moreover, infused lipids toward the brain of overnight fasted rats, were able to induce a similar response. Non-restricted ad libitum fcHFHS-diet fed or totally fasted rats did not show altered ratios. We also observed a clear increase in hypothalamic activating transcription factor 4 mRNA in rats on the fcHFHS diet while being ad libitum fed or when infused with intralipid via the carotic artery compared to vehicle infusions. However, we did not observe induction of downstream targets implying that this effect is a more general stress response and not related to ER stress. Overall, we conclude that the hypothalamic stress response might be a sensitive sensor of fat and energy status.
Collapse
Affiliation(s)
- Evita Belegri
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Merel Rijnsburger
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Leslie Eggels
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Unga Unmehopa
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Wiep Scheper
- Clincal Genetics, VU Medical CenterAmsterdam, Netherlands
| | - Anita Boelen
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry and Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
45
|
Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017; 12:854-863. [PMID: 28448947 PMCID: PMC5406580 DOI: 10.1016/j.redox.2017.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known as browning. Several peripheral signals relaying information about energy status act in the brain, particularly the hypothalamus, to regulate thermogenesis in BAT and browning of WAT. Different hypothalamic areas have the capacity to regulate the thermogenic process in brown and beige adipocytes through the sympathetic nervous system (SNS). This review discusses important concepts and discoveries about the central control of thermogenesis as a trip that starts in the hypothalamus, and taking the sympathetic roads to reach brown and beige fat to modulate thermogenic functions.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
46
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
47
|
Engin A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:381-397. [PMID: 28585208 DOI: 10.1007/978-3-319-48382-5_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
48
|
Affiliation(s)
- Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Chandrahas VK, Han J, Kaufman RJ. Coordinating Organismal Metabolism During Protein Misfolding in the ER Through the Unfolded Protein Response. Curr Top Microbiol Immunol 2017; 414:103-130. [PMID: 28900680 DOI: 10.1007/82_2017_41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for folding of secretory and membrane proteins. Perturbance in ER homeostasis caused by various intrinsic/extrinsic stimuli challenges the protein-folding capacity of the ER, leading to an ER dysfunction, called ER stress. Cells have developed a defensive response to adapt and/or survive in the face of ER stress that may be detrimental to cell function and survival. When exposed to ER stress, the cell activates a complex and elaborate signaling network that includes translational modulation and transcriptional induction of genes. In addition to these autonomous responses, recent studies suggest that the stressed tissue secretes peptides or unknown factors that transfer the signal to other cells in the same or different organs, leading the organism as a whole to cope with challenges in a non-autonomous manner. In this review, we discuss the mechanisms by which cells adapt to ER stress challenges autonomously and transfer the stress signal to non-stressed cells in different organs.
Collapse
Affiliation(s)
- Vishwanatha K Chandrahas
- Degenerative Diseases Program, Sanford_Burnham_Prebys Medical Discovery Institute, 92037, La Jolla, CA, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Chungcheongnam-do, Republic of Korea.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford_Burnham_Prebys Medical Discovery Institute, 92037, La Jolla, CA, USA.
| |
Collapse
|
50
|
de la Monte SM. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer's Disease. Drugs 2017; 77:47-65. [PMID: 27988872 PMCID: PMC5575843 DOI: 10.1007/s40265-016-0674-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) should be regarded as a degenerative metabolic disease caused by brain insulin resistance and deficiency, and overlapping with the molecular, biochemical, pathophysiological, and metabolic dysfunctions in diabetes mellitus, non-alcoholic fatty liver disease, and metabolic syndrome. Although most of the diagnostic and therapeutic approaches over the past several decades have focused on amyloid-beta (Aβ42) and aberrantly phosphorylated tau, which could be caused by consequences of brain insulin resistance, the broader array of pathologies including white matter atrophy with loss of myelinated fibrils and leukoaraiosis, non-Aβ42 microvascular disease, dysregulated lipid metabolism, mitochondrial dysfunction, astrocytic gliosis, neuro-inflammation, and loss of synapses vis-à-vis growth of dystrophic neurites, is not readily accounted for by Aβ42 accumulations, but could be explained by dysregulated insulin/IGF-1 signaling with attendant impairments in signal transduction and gene expression. This review covers the diverse range of brain abnormalities in AD and discusses how insulins, incretins, and insulin sensitizers could be utilized to treat at different stages of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Neurology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Pierre Galletti Research Building, 55 Claverick Street, Room 419, Providence, RI, 02903, USA.
- Department of Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Neuropathology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|