1
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
2
|
Wang Y, Wang J, Zhu X, Wang W. Genome and transcriptome sequencing of Trichoderma harzianum T4, an important biocontrol fungus of Rhizoctonia solani, reveals genes related to mycoparasitism. Can J Microbiol 2024; 70:86-101. [PMID: 38314685 DOI: 10.1139/cjm-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Trichoderma harzianum is a well-known biological control strain and a mycoparasite of Rhizoctonia solani. To explore the mechanisms of mycoparasitism, the genome and transcriptome of T. harzianum T4 were both assembled and analyzed in this study. The genome of T. harzianum T4 was assembled into 106 scaffolds, sized 41.25 Mb, and annotated with a total of 8118 predicted genes. We analyzed the transcriptome of T. harzianum T4 against R. solani in a dual culture in three culture periods: before contact (BC), during contact (C), and after contact (AC). Transcriptome sequencing identified 1092, 1222, and 2046 differentially expressed genes (DEGs), respectively. These DEGs, which are involved in pathogen recognition and signal transduction, hydrolase, transporters, antibiosis, and defense-related functional genes, are significantly upregulated in the mycoparasitism process. The results of genome and transcriptome analysis indicated that the mycoparasitism process of T. harzianum T4 was very complex. T. harzianum successfully recognizes and invades host cells and kills plant pathogens by regulating various DEGs at different culture periods. The relative expression levels of the 26 upregulated DEGs were confirmed by RT-qPCR to validate the reliability of the transcriptome data. The results provide insight into the molecular mechanisms underlying T. harzianum T4's mycoparasitic processes, and they provide a potential molecular target for the biological control mechanism of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Atanasova L, Marchetti-Deschmann M, Nemes A, Bruckner B, Rehulka P, Stralis-Pavese N, Łabaj PP, Kreil DP, Zeilinger S. Mycoparasitism related targets of Tmk1 indicate stimulating regulatory functions of this MAP kinase in Trichoderma atroviride. Sci Rep 2023; 13:19976. [PMID: 37968441 PMCID: PMC10651915 DOI: 10.1038/s41598-023-47027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.
Collapse
Affiliation(s)
- Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Albert Nemes
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Bianca Bruckner
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Pavel Rehulka
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
- Department of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Nancy Stralis-Pavese
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Paweł P Łabaj
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - David P Kreil
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
| | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Sefer Ö, Özsoy E, Yörük E, Özkale E. Determining the biocontrol capacities of Trichoderma spp. originating from Turkey on Fusarium culmorum by transcriptional and antagonistic analyses. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1278525. [PMID: 38025898 PMCID: PMC10679392 DOI: 10.3389/ffunb.2023.1278525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
In this study aiming to investigate potential fungal biocontrol agents for Fusarium culmorum, several isolates of Trichoderma spp. were evaluated for their antagonistic effects by means of transcriptional analyses. At first, 21 monosporic Trichoderma spp. isolates were obtained from natural wood debris and wood area soils in Manisa, Turkey. Trichoderma spp. Isolates were identified as belonging to four different species (T. atroviride, T. harzianum, T. koningii, and T. brevicompactum) by tef1-α sequencing. Then, the linear growth rate (LGR) of each species was calculated and determined to be in a range between 13.22 ± 0.71 mm/day (T. atroviride TR2) and 25.06 ± 1.45 mm/day (T. harzianum K30). Inter-simple sequence repeat (ISSR) genotyping validated the tef1-α sequencing results by presenting two sub-clusters in the dendrogram. We determined the genetically most similar (TR1 & TR2; 97.77%) and dissimilar (K9 & K17; 40.40%) individuals belonging to the same and different species, respectively. Dual sandwich culture tests (which are useful for antagonism studies) revealed that T. harzianum K21 (the least suppressive) and T. brevicompactum K26 (the most suppressive) isolates suppressed F. culmorum with growth rates of 3% and 46%, respectively. Expressions of genes previously associated with mycoparasitism-plant protection-secondary metabolism (nag1, tgf-1, and tmk-1) were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in both those isolates. While there were no significant differences (p>0.05) in expression that were present in the K21 isolate, those three genes were upregulated with fold change values of 2.69 ± 0.26 (p<0.001), 2.23 ± 0.16 (p<0.001), and 5.38 ± 2.01 (p<0.05) in K26, meaning that the presence of significant alteration in the physiological processes of the fungus. Also, its mycoparasitism potential was tested on Triticum aestivum L. cv Basribey in planta, which was infected with the F. culmorum FcUK99 strain. Results of the trials, including specific plant growth parameters (weight or length of plantlets), confirmed the mycoparasitic potential of the isolate. It can be concluded that (i) nag1, tgf-1, and tmk-1 genes could be approved as reliable markers for evaluation of BCA capacities of Trichoderma spp. and (ii) the T. brevicompactum K26 strain can be suggested as a promising candidate for combating in F. culmorum diseases following the necessary procedures to ensure it is non-hazardous and safe.
Collapse
Affiliation(s)
- Özlem Sefer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Graduate School of Science and Engineering, Programme of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Türkiye
| | - Esma Özsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Institute of Graduate Studies in Sciences, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Türkiye
| | - Emre Yörük
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Evrim Özkale
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
5
|
Pereira-Dias L, Oliveira-Pinto PR, Fernandes JO, Regalado L, Mendes R, Teixeira C, Mariz-Ponte N, Gomes P, Santos C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol Adv 2023; 68:108223. [PMID: 37536466 DOI: 10.1016/j.biotechadv.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Paulo R Oliveira-Pinto
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Juliana O Fernandes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rafael Mendes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Missbach K, Flatschacher D, Bueschl C, Samson JM, Leibetseder S, Marchetti-Deschmann M, Zeilinger S, Schuhmacher R. Light-Induced Changes in Secondary Metabolite Production of Trichoderma atroviride. J Fungi (Basel) 2023; 9:785. [PMID: 37623556 PMCID: PMC10456024 DOI: 10.3390/jof9080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.
Collapse
Affiliation(s)
- Kristina Missbach
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | | | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Jonathan Matthew Samson
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Stefan Leibetseder
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria; (S.L.)
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| |
Collapse
|
7
|
Imran M, Abo-Elyousr KAM, Mousa MAA, Saad MM. Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. FRONTIERS IN PLANT SCIENCE 2023; 14:1192818. [PMID: 37528983 PMCID: PMC10388550 DOI: 10.3389/fpls.2023.1192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 08/03/2023]
Abstract
Introduction Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut, Egypt
| | - Magdi A. A. Mousa
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Maged M. Saad
- DARWIN21, Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Schalamun M, Beier S, Hinterdobler W, Wanko N, Schinnerl J, Brecker L, Engl DE, Schmoll M. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Sci Rep 2023; 13:1912. [PMID: 36732590 PMCID: PMC9894936 DOI: 10.1038/s41598-023-28938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Nicole Wanko
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Dorothea Elisa Engl
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
9
|
ATP-Binding Cassette (ABC) Transporters in Fusarium Specific Mycoparasite Sphaerodes mycoparasitica during Biotrophic Mycoparasitism. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent transcriptomic profiling has revealed importance membrane transporters such as ATP-binding cassette (ABC) transporters in fungal necrotrophic mycoparasites. In this study, RNA-Seq allowed rapid detection of ABC transcripts involved in biotrophic mycoparasitism of Sphaerodes mycoparasitica against the phytopathogenic and mycotoxigenic Fusarium graminearum host, the causal agent of Fusarium head blight (FHB). Transcriptomic analyses of highly expressed S. mycoparasitica genes, and their phylogenetic relationships with other eukaryotic fungi, portrayed the ABC transporters’ evolutionary paths towards biotrophic mycoparasitism. Prior to the in silico phylogenetic analyses, transmission electron microscopy (TEM) was used to confirm the formation of appressorium/haustorium infection structures in S. mycoparasitica during early (1.5 d and 3.5 d) stages of mycoparasitism. Transcripts encoding biotrophy-associated secreted proteins did uncover the enrolment of ABC transporter genes in this specific biocontrol mode of action, while tandem ABC and BUB2 (non-ABC) transcripts seemed to be proper for appressorium development. The next-generation HiSeq transcriptomic profiling of the mycoparasitic hypha samples, revealed 81 transcripts annotated to ABC transporters consisting of a variety of ABC-B (14%), ABC-C (22%), and ABC-G (23%), and to ABC-A, ABC-F, aliphatic sulfonates importer (TC 3.A.1.17.2), BtuF, ribose importer (TC 3.A.1.2.1), and unknown families. The most abundant transcripts belonged to the multidrug resistance exporter (TC 3.A.1.201) subfamily of the ABC-B family, the conjugate transporter (TC 3.A.1.208) subfamily of the ABC-C family, and the pleiotropic drug resistance (PDR) (TC 3.A.1.205) subfamily of the ABC-G family. These findings highlight the significance of ABC transporter genes that control cellular detoxification against toxic substances (e.g., chemical pesticides and mycotoxins) in sustaining a virulence of S. mycoparasitica for effective biotrophic mycoparasitism on the F. graminearum host. The findings of this study provide clues to better understand the biotrophic mycoparasitism of S. mycoparasitica interacting with the Fusarium host, which implies that the ABC transporter group of key proteins is involved in the mycoparasite’s virulence and multidrug resistance to toxic substances including cellular detoxification.
Collapse
|
10
|
Abbas A, Mubeen M, Zheng H, Sohail MA, Shakeel Q, Solanki MK, Iftikhar Y, Sharma S, Kashyap BK, Hussain S, del Carmen Zuñiga Romano M, Moya-Elizondo EA, Zhou L. Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani. Front Microbiol 2022; 13:884469. [PMID: 35694310 PMCID: PMC9174946 DOI: 10.3389/fmicb.2022.884469] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qaiser Shakeel
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Yasir Iftikhar,
| | - Sagar Sharma
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Sarfaraz Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lei Zhou,
| |
Collapse
|
11
|
Zhang Y, Zhuang WY. MAPK Cascades Mediating Biocontrol Activity of Trichoderma brevicrassum Strain TC967. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2762-2775. [PMID: 35191703 DOI: 10.1021/acs.jafc.1c05622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trichoderma brevicrassum strain TC967 is a novel biological control agent (BCA) against the plant pathogen Rhizoctonia solani and promotes plant growth. Mitogen-activated protein kinase (MAPK) cascades are involved in a variety of physiological functions of Trichoderma, but functions of each MAPK in regulating biocontrol have not been characterized in a single Trichoderma strain. In this study, we assembled and annotated the genome of strain TC967 and identified its three MAPK gene sequences. Functions of Fus3-, Slt2-, and Hog1-MAPK in strain TC967 were dissected. All three MAPKs were involved in hyphal growth. Hog1-MAPK was essential for conidiation and tolerance to saline/osmotic stress. Both Fus3- and Slt2-MAPK deletion mutants reduced cell-wall integrity (CWI) and increased the activities of chitinase and protease. The growth of Rhizoctoniasolani was further inhibited by volatile organic compounds (VOCs) and secondary metabolites produced by Fus3- and Slt2-MAPK deletion mutants, respectively. Biocontrol assays demonstrated that Fus3- and Slt2-MAPK deletion mutants were considerably more effective in disease control than the wild-type strain. RNA-seq analysis revealed that MAPK collectively played a major role in regulating biocontrol-related gene expressions, including the genes in charge of secondary metabolism, fungal cell wall-degrading enzymes (FCWDEs), and small secreted cysteine-rich proteins (SSCPs).
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
|
13
|
Ren J, Zhang Y, Wang Y, Li C, Bian Z, Zhang X, Liu H, Xu JR, Jiang C. Deletion of all three MAP kinase genes results in severe defects in stress responses and pathogenesis in Fusarium graminearum. STRESS BIOLOGY 2022; 2:6. [PMID: 37676362 PMCID: PMC10441923 DOI: 10.1007/s44154-021-00025-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 09/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are activated by external stimuli and convert signals to cellular changes. Individual MAPKs have been characterized in a number of plant pathogenic fungi for their roles in pathogenesis and responses to biotic or abiotic stresses. However, mutants deleted of all the MAPK genes have not been reported in filamentous fungi. To determine the MAPK-less effects in a fungal pathogen, in this study we generated and characterized mutants deleted of all three MAPK genes in the wheat scab fungus Fusarium graminearum. The Gpmk1 mgv1 Fghog1 triple mutants had severe growth defects and was non-pathogenic. It was defective in infection cushion formation and DON production. Conidiation was reduced in the triple mutant, which often produced elongated conidia with more septa than the wild-type conidia. The triple mutant was blocked in sexual reproduction due to the loss of female fertility. Lack of any MAPKs resulted in an increased sensitivity to various abiotic stress including cell wall, osmotic, oxidative stresses, and phytoalexins, which are likely related to the defects of the triple mutant in environmental adaptation and plant infection. The triple mutant also had increased sensitivity to the biocontrol bacterium Bacillus velezensis and fungus Clonostachys rosea. In co-incubation assays with B. velezensis, the Gpmk1 mgv1 Fghog1 mutant had more severe growth limitation than the wild type and was defective in conidium germination and germ tube growth. In confrontation assays, the triple mutant was defective in defending against mycoparasitic activities of C. rosea and the latter could grow over the mutant but not wild-type F. graminearum. RNA-seq and metabolomics analyses showed that the MAPK triple mutant was altered in the expression of many ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes and the accumulation of metabolites related to arachidonic acid, linoleic acid, and alpha-linolenic acid metabolisms. Overall, as the first study on mutants deleted of all three MAPKs in fungal pathogens, our results showed that although MAPKs are not essential for growth and asexual reproduction, the Gpmk1 mgv1 Fghog1 triple mutant was blocked in plant infection and sexual reproductions. It also had severe defects in responses to various abiotic stresses and bacterial- or fungal-fungal interactions.
Collapse
Affiliation(s)
- Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Kim SH, Vujanovic V. Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight. BIORESOUR BIOPROCESS 2022; 8:127. [PMID: 34993050 PMCID: PMC8683091 DOI: 10.1186/s40643-021-00479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB.
Collapse
Affiliation(s)
- Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
15
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Dou K, Pang G, Cai F, Chenthamara K, Zhang J, Liu H, Druzhinina IS, Chen J. Functional Genetics of Trichoderma Mycoparasitism. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sarrocco S, Vicente I, Staropoli A, Vinale F. Genes Involved in the Secondary Metabolism of Trichoderma and the Biochemistry of These Compounds. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
What is the role of the nitrate reductase (euknr) gene in fungi that live in nitrate-free environments? A targeted gene knock-out study in Ampelomyces mycoparasites. Fungal Biol 2021; 125:905-913. [PMID: 34649677 DOI: 10.1016/j.funbio.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
Mycoparasitic fungi can be utilized as biocontrol agents (BCAs) of many plant pathogens. Deciphering the molecular mechanisms of mycoparasitism may improve biocontrol efficiency. This work reports the first functional genetic studies in Ampelomyces, widespread mycoparasites and BCAs of powdery mildew fungi, and a molecular genetic toolbox for future works. The nitrate reductase (euknr) gene was targeted to reveal the biological function of nitrate assimilation in Ampelomyces. These mycoparasites live in an apparently nitrate-free environment, i.e. inside the hyphae of powdery mildew fungi that lack any nitrate uptake and assimilation system. Homologous recombination-based gene knock-out (KO) was applied to eliminate the euknr gene using Agrobacterium tumefaciens-mediated transformation. Efficient KO of euknr was confirmed by PCR, and visible phenotype caused by loss of euknr was detected on media with different nitrogen sources. Mycoparasitic ability was not affected by knocking out euknr as a tested transformant readily parasitized Blumeria graminis and Podosphaera xanthii colonies on barley and cucumber, respectively, and the rate of mycoparasitism did not differ from the wild type. These results indicate that euknr is not involved in mycoparasitism. Dissimilatory processes, involvement in nitric oxide metabolism, or other, yet undiscovered processes may explain why a functional euknr is maintained in Ampelomyces.
Collapse
|
19
|
Víglaš J, Dobiasová S, Viktorová J, Ruml T, Repiská V, Olejníková P, Gbelcová H. Peptaibol-Containing Extracts of Trichoderma atroviride and the Fight against Resistant Microorganisms and Cancer Cells. Molecules 2021; 26:molecules26196025. [PMID: 34641569 PMCID: PMC8512731 DOI: 10.3390/molecules26196025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
- Correspondence:
| | - Simona Dobiasová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (V.R.); (H.G.)
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (V.R.); (H.G.)
| |
Collapse
|
20
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Moreno-Ruiz D, Salzmann L, Fricker MD, Zeilinger S, Lichius A. Stress-Activated Protein Kinase Signalling Regulates Mycoparasitic Hyphal-Hyphal Interactions in Trichoderma atroviride. J Fungi (Basel) 2021; 7:jof7050365. [PMID: 34066643 PMCID: PMC8148604 DOI: 10.3390/jof7050365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Trichoderma atroviride is a mycoparasitic fungus used as biological control agent against fungal plant pathogens. The recognition and appropriate morphogenetic responses to prey-derived signals are essential for successful mycoparasitism. We established microcolony confrontation assays using T. atroviride strains expressing cell division cycle 42 (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1) interactive binding (CRIB) reporters to analyse morphogenetic changes and the dynamic displacement of localized GTPase activity during polarized tip growth. Microscopic analyses showed that Trichoderma experiences significant polarity stress when approaching its fungal preys. The perception of prey-derived signals is integrated via the guanosine triphosphatase (GTPase) and mitogen-activated protein kinase (MAPK) signalling network, and deletion of the MAP kinases Trichoderma MAPK 1 (Tmk1) and Tmk3 affected T. atroviride tip polarization, chemotropic growth, and contact-induced morphogenesis so severely that the establishment of mycoparasitism was highly inefficient to impossible. The responses varied depending on the prey species and the interaction stage, reflecting the high selectivity of the signalling process. Our data suggest that Tmk3 affects the polarity-stress adaptation process especially during the pre-contact phase, whereas Tmk1 regulates contact-induced morphogenesis at the early-contact phase. Neither Tmk1 nor Tmk3 loss-of-function could be fully compensated within the GTPase/MAPK signalling network underscoring the crucial importance of a sensitive polarized tip growth apparatus for successful mycoparasitism.
Collapse
Affiliation(s)
- Dubraska Moreno-Ruiz
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (L.S.); (S.Z.)
| | - Linda Salzmann
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (L.S.); (S.Z.)
| | - Mark D. Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK;
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (L.S.); (S.Z.)
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (L.S.); (S.Z.)
- Correspondence:
| |
Collapse
|
22
|
Atanasova L, Moreno-Ruiz D, Grünwald-Gruber C, Hell V, Zeilinger S. The GPI-Anchored GH76 Protein Dfg5 Affects Hyphal Morphology and Osmoregulation in the Mycoparasite Trichoderma atroviride and Is Interconnected With MAPK Signaling. Front Microbiol 2021; 12:601113. [PMID: 33643233 PMCID: PMC7902864 DOI: 10.3389/fmicb.2021.601113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal cell wall is composed of a cross-linked matrix of chitin, glucans, mannans, galactomannans, and cell wall proteins with mannan chains. Cell wall mannans are directly attached to the cell wall core, while the majority of mannoproteins is produced with a glycosylphosphatidylinositol (GPI) anchor and then transferred to β-1,6-glucan in the cell wall. In this study, we functionally characterized the transmembrane protein Dfg5 of the glycoside hydrolase family 76 (GH76) in the fungal mycoparasite Trichoderma atroviride, whose ortholog has recently been proposed to cross-link glycoproteins into the cell wall of yeast and fungi. We show that the T. atroviride Dfg5 candidate is a GPI-anchored, transmembrane, 6-hairpin member of the GH76 Dfg5 subfamily that plays an important role in hyphal morphology in this mycoparasite. Alterations in the release of proteins associated with cell wall remodeling as well as a higher amount of non-covalently bonded cell surface proteins were detected in the mutants compared to the wild-type. Gene expression analysis suggests that transcript levels of genes involved in glucan synthesis, of proteases involved in mycoparasitism, and of the Tmk1 mitogen-activated protein kinase (MAPK)-encoding gene are influenced by Dfg5, whereas Tmk3 governs Dfg5 transcription. We show that Dfg5 controls important physiological properties of T. atroviride, such as osmotic stress resistance, hyphal morphology, and cell wall stability.
Collapse
Affiliation(s)
- Lea Atanasova
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria.,Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Clemens Grünwald-Gruber
- Division of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria.,Core Facility Mass Spectrometry BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Viktoria Hell
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Damodaran T, Rajan S, Muthukumar M, Ram Gopal, Yadav K, Kumar S, Ahmad I, Kumari N, Mishra VK, Jha SK. Biological Management of Banana Fusarium Wilt Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Antagonistic Fungal Isolate CSR-T-3 ( Trichoderma reesei). Front Microbiol 2021; 11:595845. [PMID: 33391212 PMCID: PMC7772460 DOI: 10.3389/fmicb.2020.595845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium wilt in bananas is one of the most devastating diseases that poses a serious threat to the banana industry globally. With no effective control measures available to date, biological control has been explored to restrict the spread and manage the outbreak. We studied the effective biological control potential of different Trichoderma spp. in the management of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Expression of the defense related genes and metabolites in banana plants inoculated with Foc TR4 and treated with effective Trichoderma sp interactions were also studied. The in vitro growth inhibition of Foc TR4 by Trichoderma reesei isolate CSR-T-3 was 85.19% indicating a higher antagonistic potential than other Trichoderma isolates used in the study. Further, in in vivo assays, the banana plants treated with the isolate CSR-T-3 T. reesei had a significant reduction in the disease severity index (0.75) and also had increased phenological indices with respect to Foc TR4 treated plants. Enhanced activity of defense enzymes, such as β-1, 3-glucanase, peroxidase, chitinase, polyphenol oxidase, and phenylalanine ammonia lyase with higher phenol contents were found in the Trichoderma isolate CSR-T-3 treated banana plants challenge-inoculated with Foc TR4. Fusarium toxins, such as fusaristatin A, fusarin C, chlamydosporal, and beauveric acid were identified by LC-MS in Foc TR4-infected banana plants while high intensity production of antifungal compounds, such as ß-caryophyllene, catechin-o-gallate, soyasapogenol rhamnosyl glucoronide, peptaibols, fenigycin, iturin C19, anthocyanin, and gallocatechin-o-gallate were detected in T. reesei isolate CSR-T-3 treated plants previously inoculated with Foc TR4. Gene expression analysis indicated the upregulation of TrCBH1/TrCBH2, TrXYL1, TrEGL1, TrTMK1, TrTGA1, and TrVEL1 genes in CSR-T-3 treatment. LC-MS and gene expression analysis could ascertain the upregulation of genes involved in mycoparasitism and the signal transduction pathway leading to secondary metabolite production under CSR-T-3 treatment. The plants in the field study showed a reduced disease severity index (1.14) with high phenological growth and yield indices when treated with T. reesei isolate CSR-T-3 formulation. We report here an effective biocontrol-based management technological transformation from lab to the field for successful control of Fusarium wilt disease caused by Foc TR4 in bananas.
Collapse
Affiliation(s)
- Thukkaram Damodaran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Shailendra Rajan
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Manoharan Muthukumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Ram Gopal
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Kavita Yadav
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sandeep Kumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Israr Ahmad
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Nidhi Kumari
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Vinay K Mishra
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sunil K Jha
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| |
Collapse
|
24
|
Role of Volatiles from the Endophytic Fungus Trichoderma asperelloides PSU-P1 in Biocontrol Potential and in Promoting the Plant Growth of Arabidopsis thaliana. J Fungi (Basel) 2020; 6:jof6040341. [PMID: 33291279 PMCID: PMC7762097 DOI: 10.3390/jof6040341] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/03/2022] Open
Abstract
Fungal volatile organic compounds (VOCs) emitted by Trichoderma species interact with a plant host and display multifaceted mechanisms. In this study, we investigated the antifungal activity of VOCs emitted by Trichoderma asperelloides PSU-P1 against fungal pathogens, as well as the ability of VOCs to activate defense responses and to promote plant growth in Arabidopsis thaliana. The strain’s VOCs had remarkable antifungal activity against fungal pathogens, with an inhibition range of 15.92–84.95% in a volatile antifungal bioassay. The VOCs of T. asperelloides PSU-P1 promoted the plant growth of A. thaliana, thereby increasing the fresh weight, root length, and chlorophyll content in the VOC-treated A. thaliana relative to those of the control. High expression levels of the chitinase (CHI) and β-1,3-glucanase (GLU) genes were found in the VOC-treated A. thaliana by quantitative reverse transcription polymerase chain reaction (RT-PCR). The VOC-treated A. thaliana had higher defense-related enzyme (peroxidase (POD)) and cell wall-degrading enzyme (chitinase and β-1,3-glucanase) activity than in the control. The headspace VOCs produced by PSU-P1, trapped with solid phase microextraction, and tentatively identified by gas chromatography–mass spectrometry, included 2-methyl-1-butanol, 2-pentylfuran, acetic acid, and 6-pentyl-2H-pyran-2-one (6-PP). The results suggest that T. asperelloides PSU-P1 emits VOCs responsible for antifungal activity, for promoting plant growth, and for inducing defense responses in A. thaliana.
Collapse
|
25
|
Stracquadanio C, Quiles JM, Meca G, Cacciola SO. Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. J Fungi (Basel) 2020; 6:jof6040263. [PMID: 33139651 PMCID: PMC7712451 DOI: 10.3390/jof6040263] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Trichoderma spp. are known as biocontrol agents of fungal plant pathogens and have been recognized as a potential source of bioactive metabolites. The production of antimicrobial substances from strains T. atroviride (TS) and T. asperellum (IMI 393899) was investigated. The bioactivity of 10- and 30-day culture filtrate extracted with ethyl acetate was assessed against a set of pathogenic fungi and oomycetes. The 30-day extracts of both strains had significant cytotoxic effects against the tested pathogens, with values of minimum fungicidal concentration (MFC) ranging between 0.19 and 6.25 mg/mL. Dual culture assay (direct contact and nondirect contact) and the percentage inhibition of radial growth (PIRG) was calculated. The highest PIRG values were 76% and 81% (direct contact) with IMI 393899 and TS, respectively. Nondirect contact does not show inhibition on any of pathogens tested, indicating that the inhibition is not due to the secretion of volatile substances. Culture filtrates were analyzed by GC-MS and HPLC-Q-TOF-MS for the identification of volatile organic compounds (VOCs) and nonvolatile organic compounds (nVOCs), respectively. Seven classes of VOCs and 12 molecules of nVOCs were identified. These results indicate that these strains of Trichoderma had antimicrobial activities and they are potential natural sources of compounds with biological activity.
Collapse
Affiliation(s)
- Claudia Stracquadanio
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, Localitá Feo di Vito, 89122 Reggio Calabria, Italy;
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Juan Manuel Quiles
- Department of Preventive Medicine, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (J.M.Q.); (G.M.)
| | - Giuseppe Meca
- Department of Preventive Medicine, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (J.M.Q.); (G.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-7147371
| |
Collapse
|
26
|
Speckbacher V, Ruzsanyi V, Martinez-Medina A, Hinterdobler W, Doppler M, Schreiner U, Böhmdorfer S, Beccaccioli M, Schuhmacher R, Reverberi M, Schmoll M, Zeilinger S. The Lipoxygenase Lox1 Is Involved in Light- and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Front Microbiol 2020; 11:2004. [PMID: 32973724 PMCID: PMC7482316 DOI: 10.3389/fmicb.2020.02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The necrotrophic mycoparasite Trichoderma atroviride is a biological pest control agent frequently applied in agriculture for the protection of plants against fungal phytopathogens. One of the main secondary metabolites produced by this fungus is 6-pentyl-α-pyrone (6-PP). 6-PP is an organic compound with antifungal and plant growth-promoting activities, whose biosynthesis was previously proposed to involve a lipoxygenase (Lox). In this study, we investigated the role of the single lipoxygenase-encoding gene lox1 encoded in the T. atroviride genome by targeted gene deletion. We found that light inhibits 6-PP biosynthesis but lox1 is dispensable for 6-PP production as well as for the ability of T. atroviride to parasitize and antagonize host fungi. However, we found Lox1 to be involved in T. atroviride conidiation in darkness, in injury-response, in the production of several metabolites, including oxylipins and volatile organic compounds, as well as in the induction of systemic resistance against the plant-pathogenic fungus Botrytis cinerea in Arabidopsis thaliana plants. Our findings give novel insights into the roles of a fungal Ile-group lipoxygenase and expand the understanding of a light-dependent role of these enzymes.
Collapse
Affiliation(s)
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Inhibitory Mechanism of Trichoderma virens ZT05 on Rhizoctonia solani. PLANTS 2020; 9:plants9070912. [PMID: 32707691 PMCID: PMC7412022 DOI: 10.3390/plants9070912] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
Trichoderma is a filamentous fungus that is widely distributed in nature. As a biological control agent of agricultural pests, Trichoderma species have been widely studied in recent years. This study aimed to understand the inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani through the side-by-side culture of T. virens ZT05 and R. solani. To this end, we investigated the effect of volatile and nonvolatile metabolites of T. virens ZT05 on the mycelium growth and enzyme activity of R. solani and analyzed transcriptome data collected from side-by-side culture. T. virens ZT05 has a significant antagonistic effect against R. solani. The mycelium of T. virens ZT05 spirally wraps around and penetrates the mycelium of R. solani and inhibits the growth of R. solani. The volatile and nonvolatile metabolites of T. virens ZT05 have significant inhibitory effects on the growth of R. solani. The nonvolatile metabolites of T. virens ZT05 significantly affect the mycelium proteins of R. solani, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), selenium-dependent glutathione peroxidase (GSH-Px), soluble proteins, and malondialdehyde (MDA). Twenty genes associated with hyperparasitism, including extracellular proteases, oligopeptide transporters, G-protein coupled receptors (GPCRs), chitinases, glucanases, and proteases were found to be upregulated during the antagonistic process between T. virens ZT05 and R. solani. Thirty genes related to antibiosis function, including tetracycline resistance proteins, reductases, the heat shock response, the oxidative stress response, ATP-binding cassette (ABC) efflux transporters, and multidrug resistance transporters, were found to be upregulated during the side-by-side culture of T. virens ZT05 and R. solani. T. virens ZT05 has a significant inhibitory effect on R. solani, and its mechanism of action is associated with hyperparasitism and antibiosis.
Collapse
|
28
|
Sun ZB, Wang Q, Sun MH, Li SD. The Mitogen-Activated Protein Kinase Gene Crmapk Is Involved in Clonostachys chloroleuca Mycoparasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:902-910. [PMID: 32282260 DOI: 10.1094/mpmi-03-20-0062-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clonostachys chloroleuca is a mycoparasite used for biocontrol of numerous fungal plant pathogens. Sequencing of the transcriptome of C. chloroleuca following mycoparasitization of the sclerotia of Sclerotinia sclerotiorum revealed significant upregulation of a mitogen-activated protein kinase (MAPK)-encoding gene, crmapk. Although MAPKs are known to regulate fungal growth and development, the function of crmapk in C. chloroleuca mycoparasitism is unclear. In this study, we investigated the role of crmapk in C. chloroleuca mycoparasitism through gene knockout and complementation. Deletion of crmapk had no influence on the C. chloroleuca morphological characteristics but could significantly reduce the mycoparasitic ability to sclerotia and biocontrol capacity to soybean Sclerotinia stem rot; crmapk complementation restored these abilities. Transcriptome analysis between Δcrmapk and the wild-type strain revealed numerous genes were significantly down-regulated after crmapk deletion, including cytochrome P450, transporters, and cell wall-degrading enzymes (CWDEs). Our findings indicate that crmapk influences C. chloroleuca mycoparasitism by regulation of genes controlling the activity of CWDEs or antibiotic production. This study provides a basis for further studies of the molecular mechanism of C. chloroleuca mycoparasitism.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
29
|
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent. PLANTS 2020; 9:plants9060762. [PMID: 32570799 PMCID: PMC7355703 DOI: 10.3390/plants9060762] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. This symbiotic association in plants leads to the acquisition of plant resistance to pathogens, improves developmental processes and yields and promotes absorption of nutrient and fertilizer use efficiency. Among other biocontrol mechanisms, antibiosis, competition and mycoparasitism are among the main features through which microorganisms, including Thrichoderma, react to the presence of other competitive pathogenic organisms, thereby preventing or obstructing their development. Stimulation of every process involves the biosynthesis of targeted metabolites like plant growth regulators, enzymes, siderophores, antibiotics, etc. This review summarizes the biological control activity exerted by Trichoderma spp. and sheds light on the recent progress in pinpointing the ecological significance of Trichoderma at the biochemical and molecular level in the rhizosphere as well as the benefits of symbiosis to the plant host in terms of physiological and biochemical mechanisms. From an applicative point of view, the evidence provided herein strongly supports the possibility to use Trichoderma as a safe, ecofriendly and effective biocontrol agent for different crop species.
Collapse
Affiliation(s)
- Monika Sood
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Dhriti Kapoor
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Vipul Kumar
- School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India;
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Marco Landi
- Department of Agriculture, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Correspondence: (M.L.); (A.S.)
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy;
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Correspondence: (M.L.); (A.S.)
| |
Collapse
|
30
|
Commercial Biocontrol Agents Reveal Contrasting Comportments Against Two Mycotoxigenic Fungi in Cereals: Fusarium Graminearum and Fusarium Verticillioides. Toxins (Basel) 2020; 12:toxins12030152. [PMID: 32121314 PMCID: PMC7150872 DOI: 10.3390/toxins12030152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the impact of commercialized biological control agents (BCAs) against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides, which are trichothecene and fumonisin producers, respectively. With these objectives in mind, three commercial BCAs were selected with contrasting uses and microorganism types (T. asperellum, S. griseoviridis, P. oligandrum) and a culture medium was identified to develop an optimized dual culture bioassay method. Their comportment was examined in dual culture bioassay in vitro with both fusaria to determine growth and mycotoxin production kinetics. Antagonist activity and variable levels or patterns of mycotoxinogenesis inhibition were observed depending on the microorganism type of BCA or on the culture conditions (e.g., different nutritional sources), suggesting that contrasting biocontrol mechanisms are involved. S. griseoviridis leads to a growth inhibition zone where the pathogen mycelium structure is altered, suggesting the diffusion of antimicrobial compounds. In contrast, T. asperellum and P. oligandrum are able to grow faster than the pathogen. T. asperellum showed the capacity to degrade pathogenic mycelia, involving chitinolytic activities. In dual culture bioassay with F. graminearum, this BCA reduced the growth and mycotoxin concentration by 48% and 72%, respectively, and by 78% and 72% in dual culture bioassay against F. verticillioides. P. oligandrum progressed over the pathogen colony, suggesting a close type of interaction such as mycoparasitism, as confirmed by microscopic observation. In dual culture bioassay with F. graminearum, P. oligandrum reduced the growth and mycotoxin concentration by 79% and 93%, respectively. In the dual culture bioassay with F. verticillioides, P. oligandrum reduced the growth and mycotoxin concentration by 49% and 56%, respectively. In vitro dual culture bioassay with different culture media as well as the nutritional phenotyping of different microorganisms made it possible to explore the path of nutritional competition in order to explain part of the observed inhibition by BCAs.
Collapse
|
31
|
Sasidharan S, Tuladhar P, Raj S, Saudagar P. Understanding Its Role Bioengineered Trichoderma in Managing Soil-Borne Plant Diseases and Its Other Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Rashad YM, Abdel-Azeem AM. Recent Progress on Trichoderma Secondary Metabolites. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
|
34
|
Lichius A, Ruiz DM, Zeilinger S. Genetic Transformation of Filamentous Fungi: Achievements and Challenges. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Zhou YR, Song XY, Li Y, Shi JC, Shi WL, Chen XL, Liu WF, Liu XM, Zhang WX, Zhang YZ. Enhancing peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2 by elimination of a putative glucose sensor. Biotechnol Bioeng 2019; 116:3030-3040. [PMID: 31403179 DOI: 10.1002/bit.27138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
Abstract
Trichoderma spp. are main producers of peptide antibiotics known as peptaibols. While peptaibols have been shown to possess a range of biological activities, molecular understanding of the regulation of their production is largely unclear, which hampers the production improvement through genetic engineering. Here, we demonstrated that the orthologue of glucose sensors in the outstanding biocontrol fungus Trichoderma longibrachiatum SMF2, TlSTP1, participates in the regulation of peptaibols production. Deletion of Tlstp1 markedly impaired hyphal growth and conidiation, but significantly increased peptaibols yield by 5-fold for Trichokonins A and 2.6-fold for Trichokonins B. Quantitative real-time polymerase chain reaction analyses showed that the increased peptaibols production occurs at the transcriptional levels of the two nonribosomal peptide synthetase encoding genes, tlx1 and tlx2. Transcriptome analyses of the wild type and the Tlstp1 mutant strains indicated that TlSTP1 exerts a regulatory effect on a set of genes that are involved in a number of metabolic and cellular processes, including synthesis of several other secondary metabolites. These results suggest an important role of TlSTP1 in the regulation of vegetative growth and peptaibols production in T. longibrachiatum SMF2 and provide insights into construction of peptaibol-hyperproducing strains through genetic engineering.
Collapse
Affiliation(s)
- Yan-Rong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yue Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jin-Chao Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
36
|
Mat'at'a M, Galádová H, Varečka L, Šimkovič M. The study of intracellular and secreted high-molecular-mass protease(s) of Trichoderma spp., and their responses to conidiation stimuli. Can J Microbiol 2019; 65:653-667. [PMID: 31059650 DOI: 10.1139/cjm-2018-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs' physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.
Collapse
Affiliation(s)
- Matej Mat'at'a
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - L'udovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
37
|
Trichoderma atroviride from Predator to Prey: Role of the Mitogen-Activated Protein Kinase Tmk3 in Fungal Chemical Defense against Fungivory by Drosophila melanogaster Larvae. Appl Environ Microbiol 2019; 85:AEM.01825-18. [PMID: 30389761 PMCID: PMC6328759 DOI: 10.1128/aem.01825-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Fungi, like other organisms, have natural predators, including fungivorous nematodes and arthropods that use them as an important food source. Thus, they require mechanisms to detect and respond to injury. Trichoderma atroviride responds to mycelial injury by rapidly regenerating its hyphae and developing asexual reproduction structures. Whether this injury response is associated with attack by fungivorous insects is unknown. Therefore, determining the possible conservation of a defense mechanism to predation in T. atroviride and plants and elucidating the mechanisms involved in the establishment of this response is of major interest. Here, we describe the chemical response of T. atroviride to mechanical injury and fungivory and the role of a MAPK pathway in the regulation of this response. The response to injury represents an important strategy for animals and plants to survive mechanical damage and predation. Plants respond to injury by activating a defense response that includes the production of an important variety of compounds that help them withstand predator attack and recover from mechanical injury (MI). Similarly, the filamentous fungus Trichoderma atroviride responds to MI by strongly modifying its transcriptional profile and producing asexual reproduction structures (conidia). Here, we analyzed whether the response to MI in T. atroviride is related to a possible predator defense mechanism from a metabolic perspective. We found that the production of specific groups of secondary metabolites increases in response to MI but is reduced after fungivory by Drosophila melanogaster larvae. We further show that fungivory results in repression of the expression of genes putatively involved in the regulation of secondary metabolite production in T. atroviride. Activation of secondary metabolite production appears to depend on the mitogen-activated protein kinase (MAPK) Tmk3. Interestingly, D. melanogaster larvae preferred to feed on a tmk3 gene replacement mutant rather than on the wild-type strain. Consumption of the mutant strain, however, resulted in increased larval mortality. IMPORTANCE Fungi, like other organisms, have natural predators, including fungivorous nematodes and arthropods that use them as an important food source. Thus, they require mechanisms to detect and respond to injury. Trichoderma atroviride responds to mycelial injury by rapidly regenerating its hyphae and developing asexual reproduction structures. Whether this injury response is associated with attack by fungivorous insects is unknown. Therefore, determining the possible conservation of a defense mechanism to predation in T. atroviride and plants and elucidating the mechanisms involved in the establishment of this response is of major interest. Here, we describe the chemical response of T. atroviride to mechanical injury and fungivory and the role of a MAPK pathway in the regulation of this response.
Collapse
|
38
|
Muñoz IV, Sarrocco S, Malfatti L, Baroncelli R, Vannacci G. CRISPR-Cas for Fungal Genome Editing: A New Tool for the Management of Plant Diseases. FRONTIERS IN PLANT SCIENCE 2019; 10:135. [PMID: 30828340 PMCID: PMC6384228 DOI: 10.3389/fpls.2019.00135] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/28/2019] [Indexed: 05/02/2023]
Affiliation(s)
- Isabel Vicente Muñoz
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Sabrina Sarrocco
| | - Luca Malfatti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Riccardo Baroncelli
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Spain
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K. Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Medina-Castellanos E, Villalobos-Escobedo JM, Riquelme M, Read ND, Abreu-Goodger C, Herrera-Estrella A. Danger signals activate a putative innate immune system during regeneration in a filamentous fungus. PLoS Genet 2018; 14:e1007390. [PMID: 30500812 PMCID: PMC6291166 DOI: 10.1371/journal.pgen.1007390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/12/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023] Open
Abstract
The ability to respond to injury is a biological process shared by organisms of different kingdoms that can even result in complete regeneration of a part or structure that was lost. Due to their immobility, multicellular fungi are prey to various predators and are therefore constantly exposed to mechanical damage. Nevertheless, our current knowledge of how fungi respond to injury is scarce. Here we show that activation of injury responses and hyphal regeneration in the filamentous fungus Trichoderma atroviride relies on the detection of two danger or alarm signals. As an early response to injury, we detected a transient increase in cytosolic free calcium ([Ca2+]c) that was promoted by extracellular ATP, and which is likely regulated by a mechanism of calcium-induced calcium-release. In addition, we demonstrate that the mitogen activated protein kinase Tmk1 plays a key role in hyphal regeneration. Calcium- and Tmk1-mediated signaling cascades activated major transcriptional changes early following injury, including induction of a set of regeneration associated genes related to cell signaling, stress responses, transcription regulation, ribosome biogenesis/translation, replication and DNA repair. Interestingly, we uncovered the activation of a putative fungal innate immune response, including the involvement of HET domain genes, known to participate in programmed cell death. Our work shows that fungi and animals share danger-signals, signaling cascades, and the activation of the expression of genes related to immunity after injury, which are likely the result of convergent evolution.
Collapse
Affiliation(s)
- Elizabeth Medina-Castellanos
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California, Mexico
| | - Nick D. Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| |
Collapse
|
41
|
Abstract
Mycoparasitism is a lifestyle where one fungus establishes parasitic interactions with other fungi. Species of the genus Trichoderma together with Clonostachys rosea are among the most studied fungal mycoparasites. They have wide host ranges comprising several plant pathogens and are used for biological control of plant diseases. Trichoderma as well as C. rosea mycoparasites efficiently overgrow and kill their fungal prey by using infection structures and by applying lytic enzymes and toxic metabolites. Most of our knowledge on the putative signals and signaling pathways involved in prey recognition and activation of the mycoparasitic response is derived from studies with Trichoderma. These fungi rely on G-protein signaling, the cAMP pathway, and mitogen-activated protein kinase cascades during growth and development as well as during mycoparasitism. The signals being recognized by the mycoparasite may include surface molecules and surface properties as well as secondary metabolites and other small molecules released from the prey. Their exact nature, however, remains elusive so far. Recent genomics-based studies of mycoparasitic fungi of the order Hypocreales, i.e., Trichoderma species, C. rosea, Tolypocladium ophioglossoides, and Escovopsis weberi, revealed not only several gene families with a mycoparasitism-related expansion of gene paralogue numbers, but also distinct differences between the different mycoparasites. We use this information to illustrate the biological principles and molecular basis of necrotrophic mycoparasitism and compare the mycoparasitic strategies of Trichoderma as a "model" mycoparasite with the behavior and special features of C. rosea, T. ophioglossoides, and E. weberi.
Collapse
|
42
|
Abstract
Covering: up to January 2017This review gives a comprehensive overview of the production of fungal volatiles, including the history of the discovery of the first compounds and their distribution in the various investigated strains, species and genera, as unravelled by modern analytical methods. Biosynthetic aspects and the accumulated knowledge about the bioactivity and biological functions of fungal volatiles are also covered. A total number of 325 compounds is presented in this review, with 247 cited references.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
43
|
Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:99. [PMID: 28435444 PMCID: PMC5397809 DOI: 10.1186/s13068-017-0789-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Despite being the most important cellulase producer, the cellulase-regulating carbon source signal transduction processes in Trichoderma reesei are largely unknown. Elucidating these processes is the key for unveiling how external carbon sources regulate cellulase formation, and ultimately for the improvement of cellulase production and biofuel production from lignocellulose. RESULTS In this work, the role of the mitogen-activated protein kinase (MAPK) signal transduction pathways on cellulase formation was investigated. The deletion of yeast FUS3-like tmk1 in T. reesei leads to improved growth and significantly improved cellulase formation. However, tmk1 deletion has no effect on the transcription of cellulase-coding genes. The involvement of the cell wall integrity maintenance governing yeast Slt2-like Tmk2 in cellulase formation was investigated by overexpressing tmk3 in T. reesei Δtmk2 to restore cell wall integrity. Transcriptional analysis found little changes in cellulase-coding genes between T. reesei parent, Δtmk2, and Δtmk2::OEtmk3 strains. Cell wall integrity decreased in T. reesei Δtmk2 over the parent strain and restored in Δtmk2::OEtmk3. Meanwhile, cellulase formation is increased in T. reesei Δtmk2 and then decreased in T. reesei Δtmk2::OEtmk3. CONCLUSIONS These investigations elucidate the role of Tmk1 and Tmk2 on cellulase formation: they repress cellulase formation, respectively, by repressing growth and maintaining cell wall integrity, while neither MAPK regulates the transcription of cellulase-coding genes. This work, together with the previous investigations, suggests that all MAPKs are involved in cellulase formation, while Tmk3 is the only MAPK involved in signal transduction for the regulation of cellulase expression on the transcriptional level.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Meiling Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
44
|
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. Secondary metabolism in Trichoderma – Chemistry meets genomics. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
|
46
|
Physiological and Molecular Signalling Involved in Disease Management Through Trichoderma: An Effective Biocontrol Paradigm. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum. Sci Rep 2015; 5:18169. [PMID: 26657839 PMCID: PMC4677357 DOI: 10.1038/srep18169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/13/2015] [Indexed: 01/11/2023] Open
Abstract
Clonostachys rosea is a mycoparasite that has shown great potential in controlling various plant fungal pathogens. In order to find mycoparasitism-related genes in C. rosea, the transcriptome of the efficient isolate 67-1 in association with sclerotia of Sclerotinia sclerotiorum was sequenced and analysed. The results identified 26,351 unigenes with a mean length of 1,102 nucleotides, among which 18,525 were annotated in one or more databases of NR, KEGG, Swiss-Prot, GO and COG. Differentially expressed genes at 8 h, 24 h and 48 h after sclerotial induction were analysed, and 6,890 unigenes were upregulated compared with the control without sclerotia. 713, 1,008 and 1,929 genes were specifically upregulated expressed, while 1,646, 283 and 529 genes were specifically downregulated, respectively. Gene ontology terms analysis indicated that these genes were mainly involved in metabolism of biological process, catalysis of molecular function and cellular component. The expression levels of 12 genes that were upregulated after encountering with S. sclerotiorum were monitored using real-time PCR. The results indicated that the quantitative detection was consistent with the transcriptome analysis. The study provides transcriptional gene expression information on C. rosea parasitizing S. sclerotiorum and forms the basis for further investigation of mycoparasitism-related genes of C. rosea.
Collapse
|
48
|
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil. MICROBIOLOGY-SGM 2015; 161:2110-26. [PMID: 26341342 DOI: 10.1099/mic.0.000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.
Collapse
Affiliation(s)
- Artemio Mendoza-Mendoza
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Johanna Steyaert
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | | | - Andrew Holyoake
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Mark Braithwaite
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Alison Stewart
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand 2 Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, USA
| |
Collapse
|
49
|
Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 2015; 31:1517-27. [PMID: 26160009 DOI: 10.1007/s11274-015-1896-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants.
Collapse
|
50
|
|