1
|
Majou D. Effects of carbon dioxide on germination of Clostridium botulinum spores. Int J Food Microbiol 2025; 427:110958. [PMID: 39500211 DOI: 10.1016/j.ijfoodmicro.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Clostridium botulinum is a Gram -positive, strict anaerobic, rod -shaped, spore -forming, SOD -positive and catalase -negative bacterium. Its antioxidant defenses are not suited to chronic oxidative stress. H₂O₂ and reactive oxygen species have deleterious effects on C. botulinum. Spore germination is one of the key steps in its development. However, the mechanisms that trigger this germination have yet to be described. To manage C. botulinum growth, it is essential to understand the mechanisms that underlie the germination process. In this article, a series of complementary cascade reactions with water -dissolved CO₂ as an initiating germinant, and bicarbonate is suggested. It seems clear that ATP production is achieved through the use of various anaplerotic reactions with dissolved CO₂ as the carbon source. In addition to the production of oxaloacetate, an intermediate metabolite pyruvate would also be synthesized. Pyruvate would initiate the second phase of germination by producing hydrogen, which is a powerful reducing agent, via two enzymes (pyruvate -ferredoxin oxidoreductase and ferredoxin hydrogenase). These conditions would activate proteolytic enzymes and would reduce and would break the disulfide bridges of the proteins that make up the spore coats, thereby opening them. Thus, the phosphoenolpyruvate -pyruvate -acetyl -CoA pathway, in the presence of CO₂, would play a major role in the germination of spores of C. botulinum.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
2
|
Rasetti-Escargueil C, Popoff MR, Kampa B, Worbs S, Marechal M, Guerin D, Paillares E, Luginbühl W, Lemichez E. International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices. Toxins (Basel) 2024; 16:485. [PMID: 39591240 PMCID: PMC11598462 DOI: 10.3390/toxins16110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Detection of botulinum neurotoxins (BoNTs) involves a combination of technical challenges that call for the execution of inter-laboratory proficiency tests (PTs) to define the performance and ease of implementation of existing diagnostic methods regarding representative BoNT toxin-types spiked in clinical, food, or environmental matrices. In the framework of the EU project EuroBioTox, we organized an international proficiency test for the detection and quantification of the clinically relevant BoNT/A, B, E, and F sero- and subtypes including concentrations as low as 0.5 ng/mL. BoNTs were spiked in serum, milk, and soil matrices. Here, we evaluate the results of 18 laboratories participating in this PT. Participants have implemented a wide array of detection methods based on functional, immunological, and mass spectrometric principles. Methods implemented in this proficiency test notably included endopeptidase assays either coupled to mass spectrometry (Endopep-MS) or enzyme-linked immunosorbent assays (Endopep-ELISA). This interlaboratory exercise pinpoints the most effective and complementary methods shared by the greatest number of participants, also highlighting the importance of combining the training of selected methods and of distributing toxin reference material to reduce the variability of quantitative data.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Michel Robert Popoff
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany (S.W.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany (S.W.)
| | - Maud Marechal
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Daniel Guerin
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Eléa Paillares
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | | | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Université Paris-Cité, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
3
|
Majou D. Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium. Res Microbiol 2024; 175:104216. [PMID: 38897423 DOI: 10.1016/j.resmic.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
By-products like CO₂ and organic acids, produced during Clostridium botulinum growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates BoNT expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting SNARE proteins. The specific amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by histidine kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, Rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
4
|
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel) 2024; 16:261. [PMID: 38922155 PMCID: PMC11209287 DOI: 10.3390/toxins16060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used for almost half a century in the treatment of excessive muscle contractility. BoNTs are routinely used to treat movement disorders such as cervical dystonia, spastic conditions, blepharospasm, and hyperhidrosis, as well as for cosmetic purposes. In addition to the conventional indications, the use of BoNTs to reduce pain has gained increased recognition, giving rise to an increasing number of indications in disorders associated with chronic pain. Furthermore, BoNT-derived formulations are benefiting a much wider range of patients suffering from overactive bladder, erectile dysfunction, arthropathy, neuropathic pain, and cancer. BoNTs are categorised into seven toxinotypes, two of which are in clinical use, and each toxinotype is divided into multiple subtypes. With the development of bioinformatic tools, new BoNT-like toxins have been identified in non-Clostridial organisms. In addition to the expanding indications of existing formulations, the rich variety of toxinotypes or subtypes in the wild-type BoNTs associated with new BoNT-like toxins expand the BoNT superfamily, forming the basis on which to develop new BoNT-based therapeutics as well as research tools. An overview of the diversity of the BoNT family along with their conventional therapeutic uses is presented in this review followed by the engineering and formulation opportunities opening avenues in therapy.
Collapse
Affiliation(s)
| | - Stefano Palea
- Humana Biosciences-Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670 Labège, France;
| |
Collapse
|
5
|
Parente E, Ricciardi A. A Comprehensive View of Food Microbiota: Introducing FoodMicrobionet v5. Foods 2024; 13:1689. [PMID: 38890917 PMCID: PMC11171936 DOI: 10.3390/foods13111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Amplicon-targeted metagenomics is now the standard approach for the study of the composition and dynamics of food microbial communities. Hundreds of papers on this subject have been published in scientific journals and the information is dispersed in a variety of sources, while raw sequences and their metadata are available in public repositories for some, but not all, of the published studies. A limited number of web resources and databases allow scientists to access this wealth of information but their level of annotation on studies and samples varies. Here, we report on the release of FoodMicrobionet v5, a comprehensive database of metataxonomic studies on bacterial and fungal communities of foods. The current version of the database includes 251 published studies (11 focusing on fungal microbiota, 230 on bacterial microbiota, and 10 providing data for both bacterial and fungal microbiota) and 14,035 samples with data on bacteria and 1114 samples with data on fungi. The new structure of the database is compatible with interactive apps and scripts developed for previous versions and allows scientists, R&D personnel in industries and regulators to access a wealth of information on food microbial communities.
Collapse
Affiliation(s)
- Eugenio Parente
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | | |
Collapse
|
6
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Sundaresan A, Cheong I. Elucidating Bacterial Spore Dynamics through Lanthanide-Enhanced Live Imaging. ACS Sens 2024; 9:789-798. [PMID: 38221734 DOI: 10.1021/acssensors.3c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Identifying and distinguishing dormant and active bacterial spores are vital for biosecurity, food safety, and space exploration. Yet, there is a lack of simple, quick, and nondestructive methods to achieve this. The common Schaeffer-Fulton method is both sample-destructive and requires significant operator involvement. In this study, we employed lanthanide-beta-diketonate complexes to directly observe both dormant and germinated single spores. Staining is instantaneous and requires minimal sample processing. The complex stains areas outside the core of dormant spores, leaving the core hollow and nonfluorescent. However, upon germination, the complex enters the core, making it brightly fluorescent. This difference was noted in five bacterial species including Bacillus, Clostridium, and Clostridioides. Various lanthanides and beta-diketonates can be mixed to form a range of spore-visualizing complexes. Due to their low toxicity, these complexes allow for live imaging of single germinating spores. We demonstrate low-cost imaging using a USB microscope as well as imaging of spores in milk matrices. This method provides a valuable tool for studying bacterial spores.
Collapse
Affiliation(s)
- Ajitha Sundaresan
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Ian Cheong
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| |
Collapse
|
8
|
Benítez-Cabello A, Delgado AM, Quintas C. Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods 2023; 12:3712. [PMID: 37835365 PMCID: PMC10572816 DOI: 10.3390/foods12193712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Climate change is a global emergency that is affecting agriculture in Mediterranean countries, notably the production and the characteristics of the final products. This is the case of olive cultivars, a source of olive oil and table olives. Table olives are the most important fermented vegetables in the Mediterranean area, whose world production exceeds 3 million tons/year. Lactic acid bacteria and yeast are the main microorganisms responsible for the fermentation of this product. The microbial diversity and population dynamics during the fermentation process are influenced by several factors, such as the content of sugars and phenols, all of which together influence the quality and safety of the table olives. The composition of fruits is in turn influenced by environmental conditions, such as rainfall, temperature, radiation, and the concentration of minerals in the soil, among others. In this review, we discuss the effect of climate change on the microbial diversity of table olives, with special emphasis on Spanish and Portuguese cultivars. The alterations expected to occur in climate change scenario(s) include changes in the microbial populations, their succession, diversity, and growth kinetics, which may impact the safety and quality of the table olives. Mitigation and adaptation measures are proposed to safeguard the authenticity and sensorial features of this valuable fermented food while ensuring food safety requirements.
Collapse
Affiliation(s)
- Antonio Benítez-Cabello
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra, Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Célia Quintas
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Harris RA, Tchao C, Prystajecky N, Weedmark K, Tcholakov Y, Lefebvre M, Austin JW. Foodborne Botulism, Canada, 2006-2021 1. Emerg Infect Dis 2023; 29. [PMID: 37610295 PMCID: PMC10461667 DOI: 10.3201/eid2909.230409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
During 2006-2021, Canada had 55 laboratory-confirmed outbreaks of foodborne botulism, involving 67 cases. The mean annual incidence was 0.01 case/100,000 population. Foodborne botulism in Indigenous communities accounted for 46% of all cases, which is down from 85% of all cases during 1990-2005. Among all cases, 52% were caused by botulinum neurotoxin type E, but types A (24%), B (16%), F (3%), and AB (1%) also occurred; 3% were caused by undetermined serotypes. Four outbreaks resulted from commercial products, including a 2006 international outbreak caused by carrot juice. Hospital data indicated that 78% of patients were transferred to special care units and 70% required mechanical ventilation; 7 deaths were reported. Botulinum neurotoxin type A was associated with much longer hospital stays and more time spent in special care than types B or E. Foodborne botulism often is misdiagnosed. Increased clinician awareness can improve diagnosis, which can aid epidemiologic investigations and patient treatment.
Collapse
|
10
|
Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem. DIVERSITY 2023. [DOI: 10.3390/d15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The diversity of BoNT-producing Clostridia is still a worrying problem for specialists who explore the evolutionary and taxonomic diversity of C. botulinum. It is also a problem for epidemiologists and laboratory staff conducting investigations into foodborne botulism in humans and animals, because their genetic and phenotypic heterogeneity cause complications in choosing the proper analytical tools and in reliably interpreting results. Botulinum neurotoxins (BoNTs) are produced by several bacterial groups that meet all the criteria of distinct species. Despite this, the historical designation of C. botulinum as the one species that produces botulinum toxins is still exploited. New genetic tools such as whole-genome sequencing (WGS) indicate horizontal gene transfer and the occurrence of botulinum gene clusters that are not limited only to Clostridium spp., but also to Gram-negative aerobic species. The literature data regarding the mentioned heterogeneity of BoNT-producing Clostridia indicate the requirement to reclassify C. botulinum species and other microorganisms able to produce BoNTs or possessing botulinum-like gene clusters. The aim of this study was to present the problem of the diversity of BoNT-producing Clostridia over time and new trends toward obtaining a reliable classification of these microorganisms, based on a complex review of the literature.
Collapse
|
11
|
Van der Veken D, Poortmans M, Dewulf L, Fraeye I, Michiels C, Leroy F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci 2023; 200:109158. [PMID: 36905786 DOI: 10.1016/j.meatsci.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Nitrate and nitrite salts perform a versatile role in fermented meats, including the inhibition of food pathogens (in particular proteolytic group I Clostridium botulinum). Despite the increasing interest in clean-label products, little is known about the behaviour of this pathogen in response to the removal of chemical preservatives from fermented meat formulations. Therefore, challenge tests with a cocktail of nontoxigenic group I C. botulinum strains were performed to produce nitrate/nitrite-free fermented sausages under different acidification conditions and starter culture formulations, including the use of an anticlostridial Mammaliicoccus sciuri strain. Results showed limited outgrowth of C. botulinum, even in the absence of acidification. The anticlostridial starter culture did not lead to an additional inhibitory effect. The selective plating procedure adopted within this study proofed robust to follow germination and growth of C. botulinum, inhibiting common fermentative meat microbiota. The challenge tests constitute a suitable tool to assess the behaviour of this food pathogen within fermented meats upon nitrate- and nitrite omission.
Collapse
Affiliation(s)
- David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke Poortmans
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Lore Dewulf
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Ilse Fraeye
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
Idowu M, Taiwo G, Sidney T, Morenikeji OB, Pech Cervantes A, Estrada-Reyes ZM, Wilson M, Ogunade IM. The differential plasma and ruminal metabolic pathways and ruminal bacterial taxa associated with divergent residual body weight gain phenotype in crossbred beef steers. Transl Anim Sci 2023; 7:txad054. [PMID: 37435477 PMCID: PMC10332501 DOI: 10.1093/tas/txad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 07/13/2023] Open
Abstract
We applied ruminal and plasma metabolomics and ruminal 16S rRNA gene sequencing to determine the metabolic pathways and ruminal bacterial taxa associated with divergent residual body weight gain phenotype in crossbred beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg) were fed a forage-based diet for a period of 56 d in a confinement dry lot equipped with GrowSafe intake nodes to determine their residual body weight gain (RADG) phenotype. After RADG identification, blood and rumen fluid samples were collected from beef steers with the highest RADG (most efficient; n = 16; 0.76 kg/d) and lowest RADG (least efficient; n = 16; -0.65 kg/d). Quantitative untargeted metabolome analysis of the plasma and rumen fluid samples were conducted using chemical isotope labelling/liquid chromatography-mass spectrometry. Differentially abundant metabolites in each of the plasma and rumen fluid samples between the two groups of beef steers were determined using a false discovery rate (FDR)-adjusted P-values ≤ 0.05 and area under the curve (AUC) > 0.80. Rumen and plasma metabolic pathways that were differentially enriched or depleted (P ≤ 0.05) in beef steers with positive RADG compared to those with negative RADG were determined by the quantitative pathway enrichment analysis. A total of 1,629 metabolites were detected and identified in the plasma of the beef steers; eight metabolites including alanyl-phenylalanine, 8-hydroxyguanosine, and slaframine were differentially abundant (FDR ≤ 0.05; AUC > 0.80) in beef steers with divergent RADG; five metabolic pathways including steroid hormone biosynthesis, thiamine metabolism, propanoate metabolism, pentose phosphate pathway, and butanoate metabolism were enriched (P ≤ 0.05) in beef steers with positive RADG, relative to negative RADG steers. A total of 1,908 metabolites were detected and identified in the rumen of the beef steers; results of the pathway enrichment analysis of all the metabolites revealed no metabolic pathways in the rumen were altered (P > 0.05). The rumen fluid samples were also analyzed using 16S rRNA gene sequencing to assess the bacterial community composition. We compared the rumen bacterial community composition at the genus level using a linear discriminant analysis effect size (LEfSe) to identify the differentially abundant taxa between the two groups of beef steers. The LEfSe results showed greater relative abundance of Bacteroidetes_vadinHA17 and Anaerovibrio in steers with positive RADG compared to the negative RADG group, while steers in the negative RADG group had greater relative abundance of Candidatus_Amoebophilus, Clostridium_sensu_stricto_1, Pseudomonas, Empedobacter, Enterobacter, and Klebsiella compared to the positive RADG group. Our results demonstrate that beef steers with positive or negative RADG exhibit differences in plasma metabolic profiles and some ruminal bacterial taxa which probably explain their divergent feed efficiency phenotypes.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Godstime Taiwo
- Division of Animal Science and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Taylor Sidney
- Division of Animal Science and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| | | | - Zaira M Estrada-Reyes
- North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Matthew Wilson
- Division of Animal Science and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | | |
Collapse
|
13
|
Ma X, Li K, Li F, Su J, Meng W, Sun Y, Sun H, Sun J, Yuan Y, Lin Y, Hu S, Xu X, He Z. Tracing Foodborne Botulism Events Caused by Clostridium botulinum in Xinjiang Province, China, Using a Core Genome Sequence Typing Scheme. Microbiol Spectr 2022; 10:e0116422. [PMID: 36377961 PMCID: PMC9769928 DOI: 10.1128/spectrum.01164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne botulism is a rare but life-threatening illness resulting from the action of a potent toxin mainly produced by Clostridium botulinum. It grows in an oxygen-deficient environment and is extremely viable in meat and soy products, making it one of the most virulent bacteria. How to track foodborne botulism events quickly and accurately has become a key issue. Here, we investigated two foodborne botulism events that occurred in Xinjiang in 2019 based on whole-genome sequencing and also successfully traced the relationship between clinical and food C. botulinum isolates using whole-genome core gene markers. All 59 isolates were classified as group I strains. Of the strains isolated in this study, 44 were found to be botulinum toxin A(B), and 15 isolates contained only the toxin B locus. Both the toxin A and B gene segments were located on the chromosome and organized in an ha cluster. Antibiotic resistance and virulence factors were also investigated. A set of 329 universal core gene markers were established using C. botulinum strains from a public database. These core gene markers were applied to the published C. botulinum genomes, and three outbreaks were identified. This work demonstrates that universal core gene markers can be used to trace foodborne botulism events, and we hope that our work will facilitate this effort in future. IMPORTANCE In this study, we analyzed 59 foodborne botulism (FB)-related strains isolated in Xinjiang Province, China. Our findings not only reveal the group classification, neurotoxin locus organization, antibiotic resistance and virulence factors of these strains but also establish a set of core gene markers for tracing foodborne botulism events, which was verified using published genomes. These findings indicate that these gene markers might be used as a potential tracing tool for FB events caused by C. botulinum group I strains, which have relatively stable genomic components.
Collapse
Affiliation(s)
- Xin Ma
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Fang Li
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Su
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Weiwei Meng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yanming Sun
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiazheng Sun
- Criminal Investigation School, People's Public Security University of China, Beijing, China
| | - Yonghe Yuan
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yujia Lin
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Bowe BK, Wentz TG, Gregg BM, Tepp WH, Schill KM, Sharma S, Pellett S. Genomic Diversity, Competition, and Toxin Production by Group I and II Clostridium botulinum Strains Used in Food Challenge Studies. Microorganisms 2022; 10:1895. [PMID: 36296172 PMCID: PMC9611418 DOI: 10.3390/microorganisms10101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by the bacteria Clostridium botulinum are the causative agent of human and animal botulism, a rare but serious and potentially deadly intoxication. Foodborne botulism is caused by the consumption of foods containing BoNTs, which results from contamination of foods with C. botulinum spores and toxin production by the bacteria during growth within the food. Validation of the safety of food products is essential in preventing foodborne botulism, however, limited guidance and standards exist for the selection of strains used in C. botulinum food challenge studies. Sequencing and genomics studies have revealed that C. botulinum is a large, diverse, and polyphyletic species, with physiologic and growth characteristics studied only in a few representatives. Little is known about potential growth competition or effects on toxin production between C. botulinum strains. In this study, we investigated an applied cocktail of ten C. botulinum strains, seven Group I and three Group II. Whole genome SNP alignments revealed that this strain cocktail encompasses the major clades of the Group I and II C. botulinum species. While growth competition appears to exist between several of the strains, the cocktail as a whole resulted in high levels of BoNT production.
Collapse
Affiliation(s)
- Brooke Kathryn Bowe
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Travis Gwynn Wentz
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Brieana Marie Gregg
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - William Howard Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Kristin Marie Schill
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Shashi Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
15
|
Balik V, Šulla I. Autonomic Dysreflexia following Spinal Cord Injury. Asian J Neurosurg 2022; 17:165-172. [PMID: 36120615 PMCID: PMC9473833 DOI: 10.1055/s-0042-1751080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
AbstractAutonomic dysreflexia (AD) is a potentially life-threatening condition of the autonomic nervous system following spinal cord injury at or above T6. One of the most common symptoms is a sudden increase in blood pressure induced by afferent sensory stimulation owing to unmodulated reflex sympathetic hyperactivity. Such episodes of high blood pressure might be associated with a high risk of cerebral or retinal hemorrhage, seizures, heart failure, or pulmonary edema. In-depth knowledge is, therefore, crucial for the proper management of the AD, especially for spine surgeons, who encounter these patients quite often in their clinical practice. Systematical review of the literature dealing with strategies to prevent and manage this challenging condition was done by two independent reviewers. Studies that failed to assess primary (prevention, treatment strategies and management) and secondary outcomes (clinical symptomatology, presentation) were excluded. A bibliographical search revealed 85 eligible studies that provide a variety of preventive and treatment measures for the subjects affected by AD. As these measures are predominantly based on noncontrolled trials, long-term prospectively controlled multicenter studies are warranted to validate these preventive and therapeutic proposals.
Collapse
Affiliation(s)
- Vladimír Balik
- Department of Neurosurgery, Svet Zdravia Hospital, Michalovce, Slovakia
| | - Igor Šulla
- Department of Anatomy, University of Veterinary Medicine and Pharmacy, Histology and Physiology, Košice, Slovakia
| |
Collapse
|
16
|
Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium tetani. Toxins (Basel) 2022; 14:toxins14060364. [PMID: 35737025 PMCID: PMC9229411 DOI: 10.3390/toxins14060364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.
Collapse
|
17
|
Nowakowska MB, Selby K, Przykopanski A, Krüger M, Krez N, Dorner BG, Dorner MB, Jin R, Minton NP, Rummel A, Lindström M. Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid. Sci Rep 2022; 12:1790. [PMID: 35110559 PMCID: PMC8810926 DOI: 10.1038/s41598-022-05008-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 01/05/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by the spore-forming bacterium Clostridium botulinum, cause botulism, a rare but fatal illness affecting humans and animals. Despite causing a life-threatening disease, BoNT is a multipurpose therapeutic. Nevertheless, as the most potent natural toxin, BoNT is classified as a Select Agent in the US, placing C. botulinum research under stringent governmental regulations. The extreme toxicity of BoNT, its impact on public safety, and its diverse therapeutic applications urge to devise safe solutions to expand C. botulinum research. Accordingly, we exploited CRISPR/Cas9-mediated genome editing to introduce inactivating point mutations into chromosomal bont/e gene of C. botulinum Beluga E. The resulting Beluga Ei strain displays unchanged physiology and produces inactive BoNT (BoNT/Ei) recognized in serological assays, but lacking biological activity detectable ex- and in vivo. Neither native single-chain, nor trypsinized di-chain form of BoNT/Ei show in vivo toxicity, even if isolated from Beluga Ei sub-cultured for 25 generations. Beluga Ei strain constitutes a safe alternative for the BoNT research necessary for public health risk management, the development of food preservation strategies, understanding toxinogenesis, and for structural BoNT studies. The example of Beluga Ei generation serves as template for future development of C. botulinum producing different inactive BoNT serotypes.
Collapse
Affiliation(s)
- Maria B Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adina Przykopanski
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nadja Krez
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
High pressure destruction kinetics of Clostridium botulinum (Group I, strain PA9508B) spores in milk at elevated temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021; 9:microorganisms9112347. [PMID: 34835472 PMCID: PMC8624178 DOI: 10.3390/microorganisms9112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In animals, botulism is commonly sustained by botulinum neurotoxin C, D or their mosaic variants, which are produced by anaerobic bacteria included in Clostridium botulinum group III. In this study, a WGS has been applied to a large collection of C. botulinum group III field strains in order to expand the knowledge on these BoNT-producing Clostridia and to evaluate the potentiality of this method for epidemiological investigations. Sixty field strains were submitted to WGS, and the results were analyzed with respect to epidemiological information and compared to published sequences. The strains were isolated from biological or environmental samples collected in animal botulism outbreaks which occurred in Italy from 2007 to 2016. The new sequenced strains belonged to subspecific groups, some of which were already defined, while others were newly characterized, peculiar to Italian strains and contained genomic features not yet observed. This included, in particular, two new flicC types (VI and VII) and new plasmids which widen the known plasmidome of the species. The extensive genome exploration shown in this study improves the C. botulinum and related species classification scheme, enriching it with new strains of rare genotypes and permitting the highest grade of discrimination among strains for forensic and epidemiological applications.
Collapse
|
20
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
21
|
Xu J, Janahar JJ, Park HW, Balasubramaniam V, Yousef AE. Influence of water activity and acidity on Bacillus cereus spore inactivation during combined high pressure-thermal treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhang Z, Lahti M, Douillard FP, Korkeala H, Lindström M. Phage lysin that specifically eliminates Clostridium botulinum Group I cells. Sci Rep 2020; 10:21571. [PMID: 33299101 PMCID: PMC7725837 DOI: 10.1038/s41598-020-78622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum poses a serious threat to food safety and public health by producing potent neurotoxin during its vegetative growth and causing life-threatening neuroparalysis, botulism. While high temperature can be utilized to eliminate C. botulinum spores and the neurotoxin, non-thermal elimination of newly germinated C. botulinum cells before onset of toxin production could provide an alternative or additional factor controlling the risk of botulism in some applications. Here we introduce a putative phage lysin that specifically lyses vegetative C. botulinum Group I cells. This lysin, called CBO1751, efficiently kills cells of C. botulinum Group I strains at the concentration of 5 µM, but shows little or no lytic activity against C. botulinum Group II or III or other Firmicutes strains. CBO1751 is active at pH from 6.5 to 10.5. The lytic activity of CBO1751 is tolerant to NaCl (200 mM), but highly susceptible to divalent cations Ca2+ and Mg2+ (50 mM). CBO1751 readily and effectively eliminates C. botulinum during spore germination, an early stage preceding vegetative growth and neurotoxin production. This is the first report of an antimicrobial lysin against C. botulinum, presenting high potential for developing a novel antibotulinal agent for non-thermal applications in food and agricultural industries.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Meeri Lahti
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland.
| |
Collapse
|
23
|
Toxemia in Human Naturally Acquired Botulism. Toxins (Basel) 2020; 12:toxins12110716. [PMID: 33202855 PMCID: PMC7697460 DOI: 10.3390/toxins12110716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient's sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient's sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.
Collapse
|
24
|
Contribution of Foods and Poor Food-Handling Practices to the Burden of Foodborne Infectious Diseases in France. Foods 2020; 9:foods9111644. [PMID: 33187291 PMCID: PMC7697675 DOI: 10.3390/foods9111644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/25/2023] Open
Abstract
The foodborne disease burden (FBDB) related to 26 major biological hazards in France was attributed to foods and poor food-handling practices at the final food preparation step, in order to develop effective intervention strategies, especially food safety campaigns. Campylobacter spp. and non-typhoidal Salmonella accounted for more than 60% of the FBDB. Approximately 30% of the FBDB were attributed to 11 other hazards including bacteria, viruses and parasites. Meats were estimated as the main contributing food category causing (50-69%) (CI90) of the FBDB with (33-44%), (9-21%), (4-20%) (CI90) of the FBDB for poultry, pork and beef, respectively. Dairy products, eggs, raw produce and complex foods caused each approximately (5-20%) (CI90) of the FBDB. When foods are contaminated before the final preparation step, we estimated that inadequate cooking, cross-contamination and inadequate storage contribute for (19-49%), (7-34%) and (9-23%) (CI90) of the FBDB, respectively; (15-33%) (CI90) of the FBDB were attributed to the initial contamination of ready-to-eat foods-without any contribution from final food handlers. The thorough implementation of good hygienic practices (GHPs) at the final food preparation step could potentially reduce the FBDB by (67-85%) (CI90) (mainly with the prevention of cross-contamination and adequate cooking and storage).
Collapse
|
25
|
Gallo M, Ferrara L, Calogero A, Montesano D, Naviglio D. Relationships between food and diseases: What to know to ensure food safety. Food Res Int 2020; 137:109414. [DOI: 10.1016/j.foodres.2020.109414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
26
|
Brunt J, van Vliet AHM, Carter AT, Stringer SC, Amar C, Grant KA, Godbole G, Peck MW. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins (Basel) 2020; 12:toxins12090586. [PMID: 32932818 PMCID: PMC7551954 DOI: 10.3390/toxins12090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Corinne Amar
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Kathie A. Grant
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Gauri Godbole
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| |
Collapse
|
27
|
Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. mSphere 2020; 5:5/4/e00424-20. [PMID: 32611700 PMCID: PMC7333573 DOI: 10.1128/msphere.00424-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly. Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures. IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.
Collapse
|
28
|
Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins (Basel) 2020; 12:E306. [PMID: 32397147 PMCID: PMC7291236 DOI: 10.3390/toxins12050306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages-one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| |
Collapse
|
29
|
Krzowska-Firych J, Mikłaszewska A, Tomasiewicz K. Foodborne botulism in eastern Poland: a hospital-based retrospective study and epidemiological data review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1749065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Anna Mikłaszewska
- Department of Infectious Diseases, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
30
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
31
|
Poulain B, Popoff MR. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins (Basel) 2019; 11:toxins11010034. [PMID: 30641949 PMCID: PMC6357194 DOI: 10.3390/toxins11010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria that accidentally interact with their host engineered so diverse and so specific toxins targeting one of the most specialized physiological processes, the neuroexocytosis of higher organisms? The extreme potency of BoNT does not result from only one hyperactive step, but in contrast to other potent lethal toxins, from multi-step activity. The cumulative effects of the different steps, each having a limited effect, make BoNTs the most potent lethal toxins. This is a unique mode of evolution of a toxic compound, the high potency of which results from multiple steps driven by unknown selection pressure, targeting one of the most critical physiological process of higher organisms.
Collapse
Affiliation(s)
- Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France.
| | | |
Collapse
|
32
|
The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II. Sci Rep 2018; 8:7060. [PMID: 29728678 PMCID: PMC5935672 DOI: 10.1038/s41598-018-25411-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
Clostridium botulinum is an anaerobic spore forming bacterium that produces the potent botulinum neurotoxin that causes a severe and fatal neuro-paralytic disease of humans and animals (botulism). C. botulinum Group II is a psychrotrophic saccharolytic bacterium that forms spores of moderate heat resistance and is a particular hazard in minimally heated chilled foods. Spore germination is a fundamental process that allows the spore to transition to a vegetative cell and typically involves a germinant receptor (GR) that responds to environmental signals. Analysis of C. botulinum Group II genomes shows they contain a single GR cluster (gerX3b), and an additional single gerA subunit (gerXAO). Spores of C. botulinum Group II strain Eklund 17B germinated in response to the addition of L-alanine, but did not germinate following the addition of exogenous Ca2+-DPA. Insertional inactivation experiments in this strain unexpectedly revealed that the orphan GR GerXAO is essential for L-alanine stimulated germination. GerX3bA and GerX3bC affected the germination rate but were unable to induce germination in the absence of GerXAO. No role could be identified for GerX3bB. This is the first study to identify the functional germination receptor of C. botulinum Group II.
Collapse
|
33
|
Lebeda FJ, Adler M, Dembek ZF. Yesterday and Today: The Impact of Research Conducted at Camp Detrick on Botulinum Toxin. Mil Med 2018; 183:85-95. [PMID: 29420800 DOI: 10.1093/milmed/usx047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022] Open
Abstract
Introduction This review summarizes the research conducted on botulinum toxin (BoTx) from 1943 to 1956 by a small group of Camp Detrick investigators and their staff. A systematic, cross-disciplinary approach was used to develop effective vaccines against this biological warfare threat agent. In response to the potential need for medical countermeasures against BoTx during World War II, the refinement of isolation and purification techniques for BoTx successfully led to the large-scale production of botulinum toxoid vaccines. In addition, the work at Camp Detrick provided the foundation for the subsequent use of BoTx as a tool for studying the trophic regulation of skeletal muscle within motor neuron terminals and, more recently, for elucidation of the intricate details of neurotransmitter release at the molecular level. Indirectly, Camp Detrick investigators also played a significant role in studies that culminated in the use of BoTx as a pharmaceutical product that has been approved by the U.S. Food and Drug Administration for treating movement disorders, autonomic dysfunctions, and other conditions. Methods Online literature searches were performed with Google, Google Scholar, PubMed, the bibliography from the Camp Detrick technical library, and at the Defense Technical Information Center. Reference lists in some of the primary research publications and reviews also provided source material. Search terms included botulinum, botulinus, and Camp Detrick. References related to the subsequent impacts of the Camp Detrick results were selected and cited from reviews and primary references in the more recent literature. Notes on toxin nomenclature and potential sources of error in this study are presented. Results The literature searches returned 27 citations of Camp Detrick authors, 24 of which were articles in peer-reviewed journals. The publications by these investigators included several disciplines such as biochemistry, immunology, pharmacology, physiology, and toxicology. A fundamental finding was the identification of critical nutritional components for improved growth of Clostridium botulinum and the increased production of BoTx serotype A. The purification processes that were developed at Camp Detrick allowed for the production of crystalline material to be scaled up for the manufacture of toxoid vaccine. Based on the research by Camp Detrick scientists, a toxoid supply of over 1 million units was available to vaccinate ~300,000 troops before the large-scale operations of D-Day. Conclusions BoTx research during the period 1943 to 1956 resulted in refinements in the techniques for isolating and purifying the crystalline BoTx type A. These results led to the development and manufacture of a toxoid vaccine that was available in a sufficient quantity to protect ~300,000 warfighters in a large-scale military operation. One of the most important long-term consequences derived from the knowledge gained by the efforts at Camp Detrick was the development in the 1980s of safe and effective therapeutic uses for BoTx type A, the most lethal biological substance known.
Collapse
Affiliation(s)
- Frank J Lebeda
- Systems Biology Collaboration Center, US Army Center for Environmental Health Research, 568 Doughten Drive, US Army Medical Research and Materiel Command (USAMRMC), Fort Detrick, MD 21702
| | - Michael Adler
- US Army Medical Research Institute of Chemical Defense, Medical Toxicology Division, Neuroscience Branch, 2900 Ricketts Point Road, Aberdeen Proving Ground, Edgewood Area, MD 21010
| | - Zygmunt F Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 3154 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
34
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
35
|
Mad'arová L, Dorner BG, Schaade L, Donáth V, Avdičová M, Fatkulinová M, Strhársky J, Sedliačiková I, Klement C, Dorner MB. Reoccurrence of botulinum neurotoxin subtype A3 inducing food-borne botulism, Slovakia, 2015. ACTA ACUST UNITED AC 2017; 22:30591. [PMID: 28816652 PMCID: PMC6373608 DOI: 10.2807/1560-7917.es.2017.22.32.30591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
A case of food-borne botulism occurred in Slovakia in 2015. Clostridium botulinum type A was isolated from three nearly empty commercial hummus tubes. The product, which was sold in Slovakia and the Czech Republic, was withdrawn from the market and a warning was issued immediately through the European Commission's Rapid Alert System for Food and Feed (RASFF). Further investigation revealed the presence of botulinum neurotoxin (BoNT) subtype BoNT/A3, a very rare subtype implicated in only one previous outbreak (Loch Maree in Scotland, 1922). It is the most divergent subtype of BoNT/A with 15.4% difference at the amino acid level compared with the prototype BoNT/A1. This makes it more prone to evading immunological and PCR-based detection. It is recommended that testing laboratories are advised that this subtype has been associated with food-borne botulism for the second time since the first outbreak almost 100 years ago, and to validate their immunological or PCR-based methods against this divergent subtype.
Collapse
Affiliation(s)
- Lucia Mad'arová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Brigitte G Dorner
- Robert Koch Institute, Consultant laboratory for neurotoxin-producing clostridia (botulism, tetanus), Berlin, Germany.,Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Lars Schaade
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Vladimír Donáth
- F. D. Roosevelt Teaching Hospital, Department of Neurology, Slovak Medical University, Banská Bystrica, Slovakia
| | - Mária Avdičová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Milota Fatkulinová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Jozef Strhársky
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Ivana Sedliačiková
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Cyril Klement
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia.,Slovak Medical University, Faculty of Public Health, Bratislava, Slovakia
| | - Martin B Dorner
- Robert Koch Institute, Consultant laboratory for neurotoxin-producing clostridia (botulism, tetanus), Berlin, Germany.,Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| |
Collapse
|
36
|
Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. INFECTION GENETICS AND EVOLUTION 2017; 54:355-373. [DOI: 10.1016/j.meegid.2017.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
|
37
|
Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation, molecular docking and molecular simulation dynamics on 1-Methyl-3-Phenylpiperazine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Muñoz N, Bhunia K, Zhang H, Barbosa-Cánovas GV, Tang J, Sablani S. Headspace oxygen as a hurdle to improve the safety of in-pack pasteurized chilled food during storage at different temperatures. Int J Food Microbiol 2017; 253:29-35. [DOI: 10.1016/j.ijfoodmicro.2017.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 11/28/2022]
|
39
|
Udaondo Z, Duque E, Ramos JL. The pangenome of the genus Clostridium. Environ Microbiol 2017; 19:2588-2603. [PMID: 28321969 DOI: 10.1111/1462-2920.13732] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Juan-Luis Ramos
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
40
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
41
|
Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 2017; 9:toxins9010038. [PMID: 28106761 PMCID: PMC5308270 DOI: 10.3390/toxins9010038] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Collapse
Affiliation(s)
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Istituto Superiore di Sanita, Rome 299-00161, Italy.
| | - John W Austin
- Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso 31020, Italy.
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Paula Cuervo
- Área de Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza 450001, Argentina.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | | | - Audrey Fisher
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen K Hill
- Los Alamos National Laboratories, Los Alamos, NM 87545, USA.
| | - Suzanne R Kalb
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome 00184, Italy.
| | - Carolina Lúquez
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Marco Pirazzini
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Michel R Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Ornella Rossetto
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover 30623, Germany.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control, a Centre of Medicines and Healthcare Products Regulatory Agency, Hertfordshire EN6 3QG, UK.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | | |
Collapse
|
42
|
Stein R, Chirilã M. Routes of Transmission in the Food Chain. FOODBORNE DISEASES 2017. [PMCID: PMC7148622 DOI: 10.1016/b978-0-12-385007-2.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
More than 250 different foodborne diseases have been described to date, annually affecting about one-third of the world's population. The incidence of foodborne diseases has been underreported and underestimated, and the asymptomatic presentation of some of the illnesses, worldwide heterogeneities in reporting, and the alternative transmission routes of certain pathogens are among the factors that contribute to this. Globalization, centralization of the food supply, transportation of food products progressively farther from their places of origin, and the multitude of steps where contamination may occur have made it increasingly challenging to investigate foodborne and waterborne outbreaks. Certain foodborne pathogens may be transmitted directly from animals to humans, while others are transmitted through vectors, such as insects, or through food handlers, contaminated food products or food-processing surfaces, or transfer from sponges, cloths, or utensils. Additionally, the airborne route may contribute to the transmission of certain foodborne pathogens. Complicating epidemiological investigations, multiple transmission routes have been described for some foodborne pathogens. Two types of transmission barriers, primary and secondary, have been described for foodborne pathogens, each of them providing opportunities for preventing and controlling outbreaks. Primary barriers, the most effective sites of prophylactic intervention, prevent pathogen entry into the environment, while secondary barriers prevent the multiplication and dissemination of pathogens that have already entered the environment. Understanding pathogen dynamics, monitoring transmission, and implementing preventive measures are complicated by the phenomenon of superspreading, which refers to the concept that, at the level of populations, a minority of hosts is responsible for the majority of transmission events.
Collapse
|
43
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
44
|
Ihekwaba AEC, Mura I, Walshaw J, Peck MW, Barker GC. An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production. PLoS Comput Biol 2016; 12:e1005205. [PMID: 27855161 PMCID: PMC5113860 DOI: 10.1371/journal.pcbi.1005205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information beyond group level but integrate many component processes, such as signalling, membrane permeability and metabolic activity. In this paper we present a scheme for modelling neurotoxin production in C. botulinum Group I type A1, based on the integration of diverse information coming from experimental results available in the literature. Experiments show that production of BoNTs depends on the growth-phase and is under the control of positive and negative regulatory elements at the intracellular level. Toxins are released as large protein complexes and are associated with non-toxic components. Here, we systematically review and integrate those regulatory elements previously described in the literature for C. botulinum Group I type A1 into a population dynamics model, to build the very first computational model of toxin production at the molecular level. We conduct a validation of our model against several items of published experimental data for different wild type and mutant strains of C. botulinum Group I type A1. The result of this process underscores the potential of mathematical modelling at the cellular level, as a means of creating opportunities in developing new strategies that could be used to prevent botulism; and potentially contribute to improved methods for the production of toxin that is used for therapeutics. Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information. In this paper we present modelling based on the integration of diverse information from experimental results available in the literature. Experiments show that production of BoNTs depends on the growth-phase and is under the control of positive and negative regulatory elements at the intracellular level. Here, we integrate these regulatory elements into a combined model of population dynamics and gene regulation to build the first computational model of toxin production at the molecular level. We conduct a validation of our model against several items of published experimental data for different wild type and mutant strains of C. botulinum Group I type A1. The result of this process underscores the potential of mathematical modelling at the cellular level, as a means of creating opportunities that could be used to prevent botulism, and potentially contribute to improved methods for the production of toxin used for therapeutics.
Collapse
Affiliation(s)
- Adaoha E. C. Ihekwaba
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
- * E-mail: (AECI); (IM)
| | - Ivan Mura
- Department of Industrial Engineering, Universidad de los Andes, Bogotá, Colombia
- * E-mail: (AECI); (IM)
| | - John Walshaw
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Gary C. Barker
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
45
|
Brunt J, van Vliet AHM, van den Bos F, Carter AT, Peck MW. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Front Microbiol 2016; 7:1702. [PMID: 27840626 PMCID: PMC5083711 DOI: 10.3389/fmicb.2016.01702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favorable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified [encoded by various combinations of gerA, gerB, and gerC genes (gerX)]. There are three gene clusters with an ABC-like configuration; ABC [gerX1], ABABCB [gerX2] and ACxBBB [gerX4], and a single CA-B [gerX3] gene cluster. Subtypes have been identified for most germinant receptor types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2, and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in dipicolinic acid release. The cortex-lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.
Collapse
Affiliation(s)
- Jason Brunt
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Arnoud H. M. van Vliet
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
| | | | - Andrew T. Carter
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| |
Collapse
|
46
|
Anniballi F, Fillo S, Giordani F, Auricchio B, Tehran DA, di Stefano E, Mandarino G, De Medici D, Lista F. Multiple-locus variable number of tandem repeat analysis as a tool for molecular epidemiology of botulism: The Italian experience. INFECTION GENETICS AND EVOLUTION 2016; 46:28-32. [PMID: 27771520 DOI: 10.1016/j.meegid.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Abstract
Clostridium botulinum is the bacterial agent of botulism, a rare but severe neuro-paralytic disease. Because of its high impact, in Italy botulism is monitored by an ad hoc surveillance system. The National Reference Centre for Botulism, as part of this system, collects and analyzes all demographic, epidemiologic, microbiological, and molecular data recovered during cases and/or outbreaks occurred in Italy. A panel of 312 C. botulinum strains belonging to group I were submitted to MLVA sub-typing. Strains, isolated from clinical specimens, food and environmental samples collected during the surveillance activities, were representative of all forms of botulism from all Italian regions. Through clustering analysis isolates were grouped into 12 main clusters. No regional or temporal clustering was detected, demonstrating the high heterogeneity of strains circulating in Italy. This study confirmed that MLVA is capable of sub-typing C. botulinum strains. Moreover, MLVA is effective at tracing and tracking the source of contamination and is helpful for the surveillance system in terms of planning and upgrading of procedures, activities and data collection forms.
Collapse
Affiliation(s)
- Fabrizio Anniballi
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Silvia Fillo
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Francesco Giordani
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Bruna Auricchio
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Domenico Azarnia Tehran
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Enrica di Stefano
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Giuseppina Mandarino
- PENTA - The Joint Laboratory on Models and Methodology to Predict and Manage Large Scale Threats to Public Health - International Affair Unit. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Dario De Medici
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| |
Collapse
|
47
|
Wachnicka E, Stringer SC, Barker GC, Peck MW. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Appl Environ Microbiol 2016; 82:6019-29. [PMID: 27474721 PMCID: PMC5038052 DOI: 10.1128/aem.01737-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 10(6) is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 10(6), providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the method of D value determination used.
Collapse
Affiliation(s)
- Ewelina Wachnicka
- Institute of Food Research, Norwich Research Park, Colney, United Kingdom
| | - Sandra C Stringer
- Institute of Food Research, Norwich Research Park, Colney, United Kingdom
| | - Gary C Barker
- Institute of Food Research, Norwich Research Park, Colney, United Kingdom
| | - Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, United Kingdom
| |
Collapse
|
48
|
Abstract
C. botulinum Groups I and II form botulinum neurotoxin and cause foodborne botulism. Increased knowledge of C. botulinum Group I and II genomes and neurotoxin diversity. Impact on food safety via improved surveillance and tracing/tracking during outbreaks. New insights into C. botulinum biology, food chain transmission, evolution.
The deadly botulinum neurotoxin formed by Clostridium botulinum is the causative agent of foodborne botulism. The increasing availability of C. botulinum genome sequences is starting to allow the genomic diversity of C. botulinum Groups I and II and their neurotoxins to be characterised. This information will impact on microbiological food safety through improved surveillance and tracing/tracking during outbreaks, and a better characterisation of C. botulinum Groups I and II, including the risk presented, and new insights into their biology, food chain transmission, and evolution.
Collapse
|
49
|
Mazuet C, Legeay C, Sautereau J, Ma L, Bouchier C, Bouvet P, Popoff MR. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol Evol 2016; 8:1643-60. [PMID: 27189984 PMCID: PMC4943176 DOI: 10.1093/gbe/evw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/31/2023] Open
Abstract
In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947-1961], 43 from France [1986-2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2') A5(B3'), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements.
Collapse
Affiliation(s)
| | - Christine Legeay
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jean Sautereau
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Laurence Ma
- Plateforme Genomique-Pôle Biomics, Institut Pasteur, Paris, France
| | | | - Philippe Bouvet
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiol 2016; 59:205-12. [PMID: 27375261 PMCID: PMC4942563 DOI: 10.1016/j.fm.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.
Collapse
|