1
|
Nagao A, Nakamoto Y, Miyauchi S, Sato K. Presence of Modified Peptides with High Bioavailability and Angiotensin-Converting Enzyme Inhibitory Activity in Japanese Fermented Soybean Paste ( Miso). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18942-18956. [PMID: 39145497 DOI: 10.1021/acs.jafc.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Not only free amino acids and normal short-chain peptides but also modified amino acids, such as N-acetyl- and N-formyl amino acids, monoamines, polyamines, and modified peptides, such as isomerized aspartyl peptides, pyroglutamyl peptides, and diketopiperazines, were identified in Japanese fermented soy paste (miso) prepared using different fungal starters, rice, barley, and soybean-koji. One hour after oral administration of water extract of soybean-koji miso to rats, the modified peptides increased significantly in the lumen upon the ingestion, while the normal peptides did not. In the blood from the portal vein and abdominal vena cava, 17 and 15 diketopiperazines, 16 and 12 isomerized aspartyl peptides, and 2 and 1 pyroglutamyl peptides significantly increased to approximately 10-400 nM, respectively. The modified peptides, which increased in rat blood, showed angiotensin-converting enzyme (ACE) inhibitory activity in a dose-dependent manner, indicating multiple ACE inhibitory peptides with high bioavailability in miso. Among them, l-β-Asp-Pro showed the highest ACE inhibitory activity (IC50 4.8 μM).
Collapse
Affiliation(s)
- Atsuya Nagao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoko Nakamoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Miyauchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Qian M, Zhang N, Zhang R, Liu M, Wu Y, Lu Y, Li F, Zheng L. Non-Linear Association of Dietary Polyamines with the Risk of Incident Dementia: Results from Population-Based Cohort of the UK Biobank. Nutrients 2024; 16:2774. [PMID: 39203912 PMCID: PMC11357304 DOI: 10.3390/nu16162774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Natural polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are evolutionarily conserved endogenous molecules crucially involved in central cellular processes. Their physiological importance may extend to the maintenance of cognitive function during aging. However, limited population-based epidemiological studies have explored the link between dietary polyamines and dementia risk. This study was a prospective analysis of 77,092 UK Biobank participants aged ≥ 60 years without dementia at baseline. We used Cox proportional hazard regression models to explore the associations between dietary polyamines and the risk of dementia, and restricted cubic splines to test the non-linear relationships. During a median follow-up of 12 years, 1087 incidents of all-cause dementia cases occurred, including 450 Alzheimer's disease (AD) cases and 206 vascular dementia (VD) cases. The fully adjusted hazard ratios (HRs) for the upper fourth quintile of dietary SPD, in comparison with the lowest quintile of intake, were 0.68 (95% confidence interval [95% CI]: 0.66-0.83) for the risk of all-cause dementia, 0.62 (95% CI: 0.45-0.85) for AD and 0.56 (95% CI: 0.36-0.88) for VD, respectively. A 26% reduction in dementia risk [HR: 0.74, (95% CI: 0.61-0.89)] and a 47% reduction in AD [HR: 0.53, (95%CI: 0.39-0.72)] were observed comparing the third with the lowest quintiles of dietary SPM. Dietary PUT was only associated with a reduced risk of all-cause dementia in the fourth quintile [HR (95% CI): 0.82 (0.68-0.99)]. Reduced risk was not found to be significant across all quintiles. There were 'U'-shaped relationships found between dietary polyamines and all-cause dementia, AD and VD. Stratification by genetic predisposition showed no significant effect modification. Optimal intake of polyamines was linked to a decreased risk of dementia, with no modification by genetic risk. This potentially suggests cognitive benefits of dietary natural polyamines in humans.
Collapse
Affiliation(s)
- Mingxia Qian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Rui Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, No. 279 Zhouzhu Road, Pudong New District, Shanghai 201318, China;
| | - Min Liu
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China;
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Furong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| |
Collapse
|
3
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
4
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
5
|
Mohajeri M, Ayatollahi SA, Kobarfard F, Goli M, Khandan M, Mokhtari S, Khodadoost M. Wheat germ, a byproduct of the wheat milling industry, as a beneficial source of anti-aging polyamines: A quantitative comparison of various forms. Food Sci Nutr 2023; 11:7242-7254. [PMID: 37970387 PMCID: PMC10630827 DOI: 10.1002/fsn3.3650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 11/17/2023] Open
Abstract
Polyamines have received a lot of attention since the 1990s because of their anti-aging, anti-chronic disease, and proliferative effects. Wheat germ was reported as one of the natural sources of high polyamine, especially spermidine. The current study used three types of wheat germ: group A was industrially separated germ from whole grain, group B was the commercially available germinated wheat germ, and group C was manually separated wheat germ from germinated grain. The polyamine content of putrescine, spermidine, and spermine has been determined using a simplified isocratic LC-MS/MS method. An optimized extraction procedure was performed on all seven samples for obtaining a polyamine-enriched extract. The three dominant carbomylated polyamines were identified by analyzing the extracted samples in order to determine their relative abundance. Wheat germ powders contain the highest amount of polyamines (220-337 μg/g) of which spermidine is one of the most important. Germinated wheat grains, on the other hand, contain the least amount of this polyamine. The commercially available separated wheat germs are suggested as a good nutrition source of these polyamines.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Pharmacognosy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Farzad Kobarfard
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Medicinal Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Maryam Khandan
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shaya Mokhtari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Central Research LaboratoriesShahid Beheshti University of Medical SciencesTehranIran
| | - Mahmoud Khodadoost
- Department of Traditional Medicine, School of Traditional MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Ami Y, Kodama N, Umeda M, Nakamura H, Shirasawa H, Koyanagi T, Kurihara S. Levilactobacillus brevis with High Production of Putrescine Isolated from Blue Cheese and Its Application. Int J Mol Sci 2023; 24:ijms24119668. [PMID: 37298617 DOI: 10.3390/ijms24119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.
Collapse
Affiliation(s)
- Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Narumi Kodama
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Masahiro Umeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hanae Nakamura
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hideto Shirasawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
7
|
Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. BIOLOGY 2023; 12:biology12020248. [PMID: 36829524 PMCID: PMC9952912 DOI: 10.3390/biology12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis No. 173; Leuconostoc mesenteroides No. 225; Liquorilactobacillus uvarum No. 245). The antimicrobial properties of the untreated and fermented Spirulina against a variety of pathogenic and opportunistic strains were tested. The highest concentrations of L-Glu (3841 mg/kg) and GABA (2396 mg/kg) were found after 48 h of SSF with No. 173 and No. 244 strains, respectively. The LAB strain used for biotreatment and the process conditions, as well as the interaction of these factors, had statistically significant effects on the GABA concentration in Spirulina (p ≤ 0.001, p = 0.019 and p = 0.011, respectively). In all cases, the SSF of Spirulina had a higher total BA content than SMF. Most of the fermented Spirulina showed exceptional antimicrobial activity against Staphylococcus aureus but not against the other pathogenic bacteria. The ratios of BA/GABA and BA/L-Glu ranged from 0.5 to 62 and from 0.31 to 10.7, respectively. The GABA content was correlated with putrescine, cadaverine, histamine, tyramine, spermidine and spermine contents. The L-glutamic acid concentration showed positive moderate correlations with tryptamine, putrescine, spermidine and spermine. To summarize, while high concentrations of desirable compounds are formed during fermentation, the formation of non-desirable compounds (BAs) must also be considered due to the similar mechanism of their synthesis as well as the possibility of obtaining high concentrations in the end products.
Collapse
|
8
|
Charaya A, Chawla N, Dhatt AS, Sharma M, Sharma S, Kaur I. Evaluation of biochemical composition of hulled and hull-less genotypes of pumpkin seeds grown in subtropical India. Heliyon 2023; 9:e12995. [PMID: 36747941 PMCID: PMC9898665 DOI: 10.1016/j.heliyon.2023.e12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Pumpkin seeds are one of the functional foods with most potential having myriad of uses, and functioning as both edible seeds and oilseeds. Nevertheless, their utilization is restricted to the presence of a thick seed coat (hull) which subjects them to the process of decortication, increasing the farmers' expense as well as limiting their utilization as oilseeds. Therefore, in the present study, characterization of the biochemical composition of the hulled (Punjab Chappan Kadoo-1 abbreviated as PCK-1) and hull-less (PAU Magaz Kadoo-1 abbreviated as PMK-1) genotype of pumpkin seeds was undertaken to assess the nutritional differences and their efficient application; PMK-1 is a new cultivar of pumpkin released by Punjab Agricultural University in 2018. Based on the characterization, the hulled genotype of pumpkin seeds was observed to possess higher content of total soluble proteins (79.62 mg/100 g), total free amino acids (3.48 g/100 g), moisture (6.74%), fibre content (21.1 g/100 g), antioxidant potential (26.15%), polyamines (19.2 mg/100 g), sterols (387.1 mg/100 g), and specific enzymatic activity whereas the hull-less genotype was observed to possess a higher amount of minerals (4.57 g/100 g), tocopherols (15.76 mg/100 g), and oil content (36%) respectively; most of the biochemical parameters do not differ from each other at a greater fold difference except for total free amino acids and fibre, which are nearly four times and three times higher in hulled seeds in comparison to the naked seeds respectively. The two genotypes of seeds do not compete, rather do complement each other in biochemical and nutritional composition.
Collapse
Affiliation(s)
- Ananaya Charaya
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Neena Chawla
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana 141004, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Inderpal Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
9
|
Bartkiene E, Starkute V, Zokaityte E, Klupsaite D, Mockus E, Ruzauskas M, Bartkevics V, Borisova A, Rocha JM, Ozogul F, Liatukas Z, Ruzgas V. Changes in the physicochemical parameters and microbial community of a new cultivar blue wheat cereal wholemeal during sourdough production. Front Microbiol 2022; 13:1031273. [PMID: 36569101 PMCID: PMC9773212 DOI: 10.3389/fmicb.2022.1031273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Changes in the characteristics of a new cultivar (DS8472-5) of blue wheat during wholemeal fermentation with Pediococcus acidilactici (LUHS29), Liquorilactobacillus uvarum (LUHS245), and Lactiplantibacillus plantarum (LUHS122), including acidity, microbiological and chromaticity parameters, free amino acid (FAA), gamma-aminobutyric acid (GABA), and biogenic amine (BA) contents, macro- and micro-element concentrations and fatty acid (FA) and volatile compounds (VC), were evaluated. In addition, a metagenomic analysis was performed. The lactic acid bacteria (LAB) strains used for fermentation was a significant factor in wholemeal fermentation sample pH, redness (a*) and LAB counts (p ≤ 0.05). In most of the samples, fermentation increased the FAA content in wheat wholemeal, and the highest concentration of GABA was found in DS8472-5 LUHS122 samples. Phenylethylamine (PHE) was found in all wheat wholemeal samples; however, spermidine was only detected in fermented samples and cadaverine only in DS8472-5 LUHS122. Fermented samples showed higher omega-3 and omega-6 contents and a higher number and variety of VC. Analysis of the microbial profile showed that LAB as part of the natural microbiota present in cereal grains also actively participates in fermentation processes induced by industrial bacterial cultures. Finally, all the tested LAB were suitable for DS8472-5 wheat wholemeal fermentation, and the DS8472-5 LUHS122 samples showed the lowest pH and the highest LAB viable counts (3.94, 5.80°N, and 8.92 log10 CFU/g, respectively).
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment (BIOR), Riga, Latvia
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment (BIOR), Riga, Latvia
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Zilvinas Liatukas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Vytautas Ruzgas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| |
Collapse
|
10
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
11
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
12
|
Putrescine Production by Latilactobacillus curvatus KP 3-4 Isolated from Fermented Foods. Microorganisms 2022; 10:microorganisms10040697. [PMID: 35456748 PMCID: PMC9026525 DOI: 10.3390/microorganisms10040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamines are aliphatic hydrocarbons with terminal amino groups and are essential for biological activities. It has been reported that polyamines have health-promoting effects in animals, such as the extension of lifespan by polyamine intake. The identification of a high polyamine-producing bacterium from foods could lead to the development of a novel probiotic candidate. We aimed to identify high polyamine-producing bacteria from food, and isolated and collected bacteria from vegetables and fermented foods produced in Japan. We successfully acquired Latilactobacillus curvatus KP 3-4 isolated from Kabura-zushi as a putrescine producing lactic acid bacteria. Comparing the polyamine synthesis capability of L. curvatus KP 3-4 with that of typical probiotic lactic acid bacteria and L. curvatus strains available from the Japan Collection of Microorganisms, it was found that only L. curvatus KP 3-4 was capable of exporting high levels of putrescine into the culture supernatant. The enhancement of putrescine production by the addition of ornithine, and whole-genome analysis of L. curvatus KP 3-4, suggest that putrescine is synthesized via ornithine decarboxylase. The administration of L. curvatus KP 3-4 to germ-free mice increased the concentration of putrescine in the feces.
Collapse
|
13
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
14
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
15
|
|
16
|
Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021; 10:foods10081752. [PMID: 34441529 PMCID: PMC8392025 DOI: 10.3390/foods10081752] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
Collapse
|
17
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
18
|
Fong FLY, El-Nezami H, Sze ETP. Biogenic amines – Precursors of carcinogens in traditional Chinese fermented food. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Makhamrueang N, Sirilun S, Sirithunyalug J, Chaiyana W, Wangcharoen W, Peerajan S, Chaiyasut C. Effect of Pretreatment Processes on Biogenic Amines Content and Some Bioactive Compounds in Hericium erinaceus Extract. Foods 2021; 10:996. [PMID: 34063215 PMCID: PMC8147423 DOI: 10.3390/foods10050996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Hericium erinaceus is reported as a source of several nutritional contents and bioactive compounds, especially β-glucan. However, various uncontrolled processes lead to the formation of byproducts that can affect human health, including biogenic amines. These amines are concerning, because their presence is an important indicator of the process of hygiene and food spoilage or quality. A better understanding of various pretreatment processes can control the content of biogenic amines. In this work, we studied the effect of pretreatment processes, i.e., sample size (whole, ripping, and chopping); heating process (non-heating, blanching, and boiling); and drying method (nondrying, hot air drying, and freeze-drying) on biogenic amine contents in H. erinaceus extract. A method of the post-column high-performance liquid chromatography (HPLC) technique was used for the analysis of putrescine (PUT) and spermidine (SPD) in H. erinaceus extract following the acceptable guidelines. In this study, treatment 20 (chopping/non-heating/hot air drying) was suggested as a good choice for the pretreatment process, because low levels of PUT and SPD were shown in the extract while high levels of the bioactive compounds β-glucan and antioxidant activity were presented. This treatment process can be applied to the industry because of its easy operation and cost-saving.
Collapse
Affiliation(s)
- Netnapa Makhamrueang
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (W.C.)
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (W.C.)
| | - Wiwat Wangcharoen
- Department of Food Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand;
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (W.C.)
| |
Collapse
|
20
|
Soda K, Uemura T, Sanayama H, Igarashi K, Fukui T. Polyamine-Rich Diet Elevates Blood Spermine Levels and Inhibits Pro-Inflammatory Status: An Interventional Study. Med Sci (Basel) 2021; 9:medsci9020022. [PMID: 33805535 PMCID: PMC8103277 DOI: 10.3390/medsci9020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Japanese diet and the Mediterranean diet are rich in polyamines (spermidine and spermine). Increased polyamine intake elevated blood spermine levels, inhibited aging-associated pro-inflammatory status (increases in lymphocyte function-associated antigen-1 (LFA-1) on immune cells), suppressed aberrant gene methylation and extended the lifespan of mice. To test the effects of increased polyamine intake by humans, 30 healthy male volunteers were asked to eat polyamine-rich and ready-to-eat traditional Japanese food (natto) for 12 months. Natto with high polyamine content was used. Another 27 male volunteers were asked not to change their dietary pattern as a control group. The volunteers’ age of intervention and control groups ranged from 40 to 69 years (median 48.9 ± 7.9). Two subjects in the control group subsequently dropped out of the study. The estimated increases in spermidine and spermine intakes were 96.63 ± 47.70 and 22.00 ± 9.56 µmol per day in the intervention group, while no changes were observed in the control group. The mean blood spermine level in the intervention group gradually rose to 1.12 ± 0.29 times the pre-intervention level after 12 months, and were significantly higher (p = 0.019) than those in the control group. Blood spermidine did not increase in either group. LFA-1 on monocytes decreased gradually in the intervention group, and there was an inverse association between changes in spermine concentrations relative to spermidine and changes in LFA-1 levels. Contingency table analysis revealed that the odds ratio to decrease LFA-1 by increased polyamine intake was 3.927 (95% CI 1.116–13.715) (p = 0.032) when the effect of acute inflammation was excluded. The results in the study were similar to those of our animal experiments. Since methylation changes of the entire genome are associated with aging-associated pathologies and our previous studies showed that spermine-induced LFA-1 suppression was associated with the inhibition of aberrant gene methylation, the results suggest that dietary polyamine contributes to human health and longevity.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
- Correspondence: ; Tel.: +81-48-647-2111
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (K.I.)
| | - Hidenori Sanayama
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (K.I.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Taro Fukui
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
| |
Collapse
|
21
|
Health-Promoting Effects of Dietary Polyamines. Med Sci (Basel) 2021; 9:medsci9010008. [PMID: 33562765 PMCID: PMC7930991 DOI: 10.3390/medsci9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this paper is to summarize the latest information on the various aspects of polyamines and their health benefits. In recent years, attempts to treat cancer by reducing elevated polyamines levels in cancer cells have been made, with some advancing to clinical trials. However, it has been reported since 2009 that polyamines extend the healthy life span of animals by inducing autophagy, protecting the kidneys and liver, improving cognitive function, and inhibiting the progression of heart diseases. As such, there is conflicting information regarding the relationship between polyamines and health. However, attempts to treat cancer by decreasing intracellular polyamines levels are a coping strategy to suppress the proliferation-promoting effects of polyamines, and a consensus is being reached that polyamine intake does not induce cancer in healthy individuals. To provide further scientific evidence for the health-promoting effects of polyamines, large-scale clinical studies involving multiple groups are expected in the future. It is also important to promote basic research on polyamine intake in animals, including elucidation of the polyamine balance between food, intestinal bacteria, and biosynthesis.
Collapse
|
22
|
Dietary Polyamines Intake and Risk of Colorectal Cancer: A Case-Control Study. Nutrients 2020; 12:nu12113575. [PMID: 33266410 PMCID: PMC7700244 DOI: 10.3390/nu12113575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Polyamines (including putrescine, spermidine, and spermine) are small, cationic molecules that are necessary for cell proliferation and differentiation. Few studies have examined the association of dietary polyamines intake with colorectal cancer risk. The aim of this study was to evaluate total polyamines, putrescine, spermidine, and spermine intake in relation to colorectal cancer risk in China. In total, 2502 colorectal cancer cases and 2538 age-(5-year interval) and sex-matched controls were recruited from July 2010 to April 2019. Odds ratios (ORs) and 95% confidence intervals (CI) were calculated by multivariable unconditional logistic regression after adjustment for various potential confounding factors. Higher intake of total polyamine, putrescine and spermidine was significantly associated with reduced risk of colorectal cancer. The adjusted ORs for the highest compared with the lowest quartile of intake were 0.60 (95% CI 0.50, 0.72; Ptrend < 0.001) for total polyamines, 0.35 (95% CI 0.29, 0.43; Ptrend < 0.001) for putrescine and 0.79 (95% CI 0.66, 0.95; Ptrend = 0.001) for spermidine, respectively. However, higher intake of spermine was associated with increased risk of colorectal cancer, with an adjusted OR of 1.58 (95% CI 1.29, 1.93; Ptrend < 0.001). This data indicate that higher intake of total polyamines, putrescine and spermidine, as well as lower intake of spermine, is associated with a decreased risk of colorectal cancer.
Collapse
|
23
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
24
|
Jabłońska-Ryś E, Sławińska A, Stachniuk A, Stadnik J. Determination of biogenic amines in processed and unprocessed mushrooms from the Polish market. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Reis GCL, Guidi LR, Fernandes C, Godoy HT, Gloria MBA. UPLC-UV Method for the Quantification of Free Amino Acids, Bioactive Amines, and Ammonia in Fresh, Cooked, and Canned Mushrooms. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
|
27
|
Zou D, Min Y, Liu Y, Wei X, Wang J. Identification of a Spermidine Synthase Gene from Soybean by Recombinant Expression, Transcriptional Verification, and Sequence Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2366-2372. [PMID: 32017555 DOI: 10.1021/acs.jafc.9b07443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermidine possesses multiple healthy functions, and soybeans contain the most abundant spermidine. In this study, spermidine contents of soybeans from different varieties and production regions in China were evaluated, and a spermidine synthase gene (speE) was identified by recombinant expression, transcriptional verification, and sequence analysis. Spermidine contents of soybean samples from 18 varieties ranged 72.38-228.82 mg/kg, and those from 19 production regions ranged 134.64-242.32 mg/kg. The highest-spermidine sample GZ was used to clone four predicted speE genes. Expressing the gene speE5 improved the spermidine titer by 54% in Bacillus amyloliquefaciens, confirming that speE5 was involved in spermidine synthesis. Transcriptional verification was performed through a soybean germination model. Germination for 48 h led to a onefold increase of spermidine in samples SHX and HB, and corresponding speE5 transcriptional levels were improved by 26-fold and 18-fold, respectively, further verifying the function of speE5. Finally, the sequences of the speE5 gene and deduced amino acids were analyzed, and the conserved sites and catalysis mechanisms were presented. This study identified an active spermidine synthase gene from soybean for the first time, which provided an important gene resource for genetic breeding of spermidine-rich soybean or microbial cell factory.
Collapse
Affiliation(s)
- Dian Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yu Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| | - Xuetuan Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
28
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
29
|
Pleva P, Berčíková L, Čechová E, Bartošek P, Buňková L. The monitoring of biogenic amines in the raw food. POTRAVINARSTVO 2019. [DOI: 10.5219/1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to evaluate microbial quality and the presence of biogenic amines in raw bars. This study was focused on microbiological research in order to determine the presence of selected indicator groups of microorganisms depending on the composition of raw food. Identification of microorganisms was carried out by MALDI-TOF MS. In the second part of the experiment, biogenic amines and polyamines were analyzed using high performance liquid chromatography with UV/VIS detection. An increased incidence of mold has been reported in the samples, which is associated with a risk of mycotoxin production. After identifying microorganisms, it was found out that genera Micrococcus, Bacillus and Staphylococcus were the most represented. The highest concentration of biogenic amines (tyramine 42.2 ±4.8 mg.kg-1; putrescine 54.0 ±2.9 mg.kg-1) was found in a sample containing the vegetable component. The average concentration of biogenic amines in the tested raw bars was <30 mg.kg-1 and therefore they do not pose a serious health hazard to a consumer.
Collapse
|
30
|
Hou Y, He W, Hu S, Wu G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019; 51:1153-1165. [PMID: 31197570 DOI: 10.1007/s00726-019-02751-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022]
Abstract
Dietary polyamines and amino acids (AAs) are crucial for human growth, development, reproduction, and health. However, the scientific literature shows large variations in polyamine and AA concentrations among major staple foods of plant origin, and there is a scarcity of information regarding their complete composition of AAs. To provide a much-needed database, we quantified polyamines, agmatine, and AAs in select plant-source foods. On the dry matter basis, total polyamines were most abundant in corn grains, followed by soybeans, sweet potatoes, pistachio nuts, potatoes, peanuts, wheat flour and white rice in descending order. Glutamine was the most abundant AA in pistachio nuts, wheat flour and white rice, arginine in peanuts, leucine in corn grains, glutamate in soybeans, and asparagine in potatoes and sweet potatoes. Glutamine was the second most abundant AA in corn grains, peanuts, potatoes, and soybeans, arginine in pistachio nuts, proline in wheat flour, and glutamate in sweet potatoes and white rice. Free AAs represented ≤ 3.1% of total AAs in corn grains, peanuts, pistachio nuts, soybeans, wheat flour and white rice, but 34.4% and 28.5% in potatoes and sweet potatoes, respectively. Asparagine accounted for 32.3%, 17.5%, and 19.4% of total free AAs in potatoes, sweet potatoes, and white rice, respectively. The content of histidine, glycine, lysine, tryptophan, methionine, cysteine, and threonine was relatively low in corn grains, potatoes, sweet potatoes, and white rice. All of the analyzed plant-source foods lacked taurine, creatine, carnosine and anserine (antioxidants that are abundant in meats and also present in milk), and contained little 4-hydroxyproline. Proper proportions of plant- and animal-source products are likely most desirable for optimizing human nutrition and health.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenliang He
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Shengdi Hu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Park YK, Lee JH, Mah JH. Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chem 2019; 278:1-9. [PMID: 30583348 DOI: 10.1016/j.foodchem.2018.11.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022]
Abstract
Biogenic amines are harmful substances generated during the fermentation process. Regulations on biogenic amine content in fermented foods are currently insufficient in comparison to the popularity of fermented food consumption in Asian countries. The current review evaluated the biogenic amine content of fermented soybean-based Asian foods to determine whether the food products are safe for consumption. Though the reported ranges of biogenic amine content in fermented soybean foods varied widely, most products contained biogenic amine concentrations at potentially hazardous levels. To ensure the safety of fermented soybean food products, further efforts are required in the improvement of the food manufacturing process, as well as the establishment of regulations on managing biogenic amine content.
Collapse
Affiliation(s)
- Young Kyoung Park
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Hoan Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
32
|
Soda K. Spermine and gene methylation: a mechanism of lifespan extension induced by polyamine-rich diet. Amino Acids 2019; 52:213-224. [PMID: 31004229 DOI: 10.1007/s00726-019-02733-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/06/2019] [Indexed: 01/05/2023]
Abstract
The polyamines spermidine and spermine are synthesized in almost all organisms and are also contained in food. Polyamine synthesis decreases with aging, but no significant decrease in polyamine concentrations were found in organs, tissues, and blood of adult animals and humans. We found that healthy dietary patterns were associated with a preference for polyamine-rich foods, and first reported that increased polyamine intake extended the lifespan of mice and decreased the incidence of colon cancer induced by repeated administration of moderate amounts of a carcinogen. Recent investigations have revealed that changes in DNA methylation status play an important role in lifespan and aging-associated pathologies. The methylation of DNA is regulated by DNA methyltransferases in the presence of S-adenosylmethionine. Decarboxylated S-adenosylmethionine, converted from S-adenosylmethionine by S-adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize spermine and spermidine and acts to inhibit DNMT activity. Long-term increased polyamine intake were shown to elevate blood spermine levels in mice and humans. In vitro studies demonstrated that spermine reversed changes induced by the inhibition of ornithine decarboxylase (e.g., increased decarboxylated S-adenosylmethionine, decreased DNA methyltransferase activity, increased aberrant DNA methylation), whose activity decreases with aging. Further, aged mice fed high-polyamine chow demonstrated suppression of aberrant DNA methylation and a consequent increase in protein levels of lymphocyte function-associated antigen 1, which plays a pivotal role on inflammatory process. This review discusses the relation between polyamine metabolism and DNA methylation, as well as the biological mechanism of lifespan extension induced by increased polyamine intake.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-City, Saitama, Japan.
| |
Collapse
|
33
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
34
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
35
|
Feddern V, Mazzuco H, Fonseca FN, de Lima GJMM. A review on biogenic amines in food and feed: toxicological aspects, impact on health and control measures. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18076] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biogenic amines (BAs) represent a considerable toxicological risk in some food and feed products. They are formed under unhygienic conditions during storage and processing; therefore, an increase in the concentrations of those metabolites is related to putrefaction. Because BAs are thermostable, they remain in food and feed that have undergone heat treatment. There are several toxicological effects, especially caused by histamine, when high concentrations of BAs are ingested by humans, depending on the food itself and also on individual susceptibility and individual health status. The present paper reviews the main BAs in meat products, their use as spoilage indicators, the risk on human health and also the contamination of by-product meals. Furthermore, we highlight the state of art regarding impact of BAs on poultry, meat and eggs.
Collapse
|
36
|
Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018; 7:foods7120205. [PMID: 30558197 PMCID: PMC6306728 DOI: 10.3390/foods7120205] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Low-histamine diets are currently used to reduce symptoms of histamine intolerance, a disorder in histamine homeostasis that increases plasma levels, mainly due to reduced diamine-oxidase (DAO) activity. These diets exclude foods, many of them of plant origin, which patients associate with the onset of the symptomatology. This study aimed to review the existing data on histamine and other biogenic amine contents in nonfermented plant-origin foods, as well as on their origin and evolution during the storage or culinary process. The only plant-origin products with significant levels of histamine were eggplant, spinach, tomato, and avocado, each showing a great variability in content. Putrescine has been found in practically all plant-origin foods, probably due to its physiological origin. The high contents of putrescine in certain products could also be related to the triggering of the symptomatology by enzymatic competition with histamine. Additionally, high spermidine contents found in some foods should also be taken into account in these diets, because it can also be metabolized by DAO, albeit with a lower affinity. It is recommended to consume plant-origin foods that are boiled or are of maximum freshness to reduce biogenic amine intake.
Collapse
|
37
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
38
|
Del Rio B, Redruello B, Linares DM, Ladero V, Ruas-Madiedo P, Fernandez M, Martin MC, Alvarez MA. Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods? Food Chem 2018; 269:321-326. [PMID: 30100441 DOI: 10.1016/j.foodchem.2018.06.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 02/03/2023]
Abstract
Spermine and spermidine are polyamines (PA) naturally present in all organisms, in which they have important physiological functions. However, an excess of PA has been associated with health risks. PA accumulates at quite high concentrations in some foods, but a quantitative assessment of the risk they pose has been lacking. In the present work, the cytotoxicity of spermine and spermidine was evaluated using an in vitro human intestinal cell model, and employing real-time cell analysis. Both spermine and spermidine showed a dose-dependent cytotoxic effect towards the cultured cells, with necrosis the mode of action of spermidine and perhaps also that of spermine. Spermine was more cytotoxic than spermidine, but for both PA the concentrations found to be toxic were above the maximum at which they have been found in food. The present results do not, therefore, support the idea that spermine or spermidine in food is harmful to healthy people.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Begoña Redruello
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Daniel M Linares
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Victor Ladero
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Maria Fernandez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - M Cruz Martin
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Miguel A Alvarez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| |
Collapse
|
39
|
Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front Chem 2018; 6:10. [PMID: 29468148 PMCID: PMC5807879 DOI: 10.3389/fchem.2018.00010] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines-polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants-exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources-vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.
Collapse
Affiliation(s)
- Avtar K. Handa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tahira Fatima
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service (ARS-USDA), Beltsville, MD, United States
| |
Collapse
|
40
|
Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination. Food Chem 2018; 239:1100-1109. [DOI: 10.1016/j.foodchem.2017.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
41
|
Plasticizing Effects of Polyamines in Protein-Based Films. Int J Mol Sci 2017; 18:ijms18051026. [PMID: 28489025 PMCID: PMC5454938 DOI: 10.3390/ijms18051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022] Open
Abstract
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components.
Collapse
|
42
|
Determination of Polyamines in Baby Food by Gas Chromatography-Mass Spectrometry: Optimization of Extraction and Microwave-Assisted Derivatization Using Response Surface Methodology. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0918-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Kobayashi K, Horii Y, Watanabe S, Kubo Y, Koguchi K, Hoshi Y, Matsumoto KI, Soda K. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto). Biosci Biotechnol Biochem 2017; 81:587-594. [PMID: 28052719 DOI: 10.1080/09168451.2016.1270738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023]
Abstract
Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Yuichiro Horii
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Satoshi Watanabe
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Yuji Kubo
- b Industrial Technology Institute of Ibaraki Prefecture , Ibarakimachi , Japan
| | - Kumiko Koguchi
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Yoshihiro Hoshi
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Ken-Ichi Matsumoto
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Kuniyasu Soda
- d Department of Cardiovascular Research Institute, Saitama Medical Center , Jichi Medical University , Saitama , Japan
| |
Collapse
|
44
|
Sagara T, Fiechter G, Pachner M, Mayer HK, Vollmann J. Soybean spermidine concentration: Genetic and environmental variation of a potential ‘anti-aging’ constituent. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
|
46
|
Kobayashi K, Shimojo S, Watanabe S. Contribution of a Fermentation Process using Bacillus subtilis (natto) to High Polyamine Contents of Natto, a Traditional Japanese Fermented Soy Food. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Sayaka Shimojo
- Food Research Center, Niigata Agricultural Research Institute
| | | |
Collapse
|
47
|
Gómez-Gallego C, Recio I, Gómez-Gómez V, Ortuño I, Bernal MJ, Ros G, Periago MJ. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas. J Dairy Sci 2015; 99:924-932. [PMID: 26686732 DOI: 10.3168/jds.2015-10030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
Abstract
This study examined the influence of processing on polyamines and peptide release after the digestion of a commercial infant formula designed for children during the first months of life. Polyamine oxidase activity was not suppressed during the manufacturing process, which implicates that polyamine concentrations were reduced over time and during infant formula self-life. In gel electrophoresis, in vitro gastrointestinal digestion of samples with reduced amount of enzymes and time of digestion shows an increase in protein digestibility, reflected in the increase in nonprotein nitrogen after digestion and the disappearance of β-lactoglobulin and α-lactalbumin bands in gel electrophoresis. Depending on the sample, between 22 and 87 peptides were identified after gastrointestinal digestion. A peptide from β-casein f(98-105) with the sequence VKEAMAPK and antioxidant activity appeared in all of the samples. Other peptides with antioxidant, immunomodulatory, and antimicrobial activities were frequently found, which could have an effect on infant health. The present study confirms that the infant formula manufacturing process determines the polyamine content and peptidic profile after digestion of the infant formula. Because compositional dissimilarity between human milk and infant formula in polyamines and proteins could be responsible for some of the differences in health reported between breast-fed and formula-fed children, these changes must be taken into consideration because they may have a great effect on infant nutrition and development.
Collapse
Affiliation(s)
- C Gómez-Gallego
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30071, Espinardo (Murcia), Spain.
| | - I Recio
- Department of Food Analysis and Bioactivity, Institute of Food Science, Spanish National Research Council (CIAL-CSIC), 28049, Madrid, Spain
| | - V Gómez-Gómez
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30071, Espinardo (Murcia), Spain
| | - I Ortuño
- Research and Development Department, Hero Spain S.A., 30820, Alcantarilla, Spain
| | - M J Bernal
- Research and Development Department, Hero Spain S.A., 30820, Alcantarilla, Spain
| | - G Ros
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30071, Espinardo (Murcia), Spain
| | - M J Periago
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30071, Espinardo (Murcia), Spain
| |
Collapse
|
48
|
Pinto E, Ferreira IMPLVO. Changes in the content of free and conjugated polyamines during Lettuce (Lactuca sativa) growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:440-6. [PMID: 25539287 DOI: 10.1021/jf505453s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyamines (PAs) in plant foods are relevant due to the association of these bioactive nutrients with health and disease. The scope of the present study was to monitor the content of free, conjugated, and total (free + conjugated) putrescine (Put), spermidine (Spd), and spermine (Spm) at five stages of lettuce growth in three different greenhouses. The daily intake of PAs from lettuce consumption was estimated since its consumption represents about 7.2% of vegetables intake. Results showed that the content of free Put, Spd, and Spm decreased during plant growth, while the content of conjugated Put, Spd, and Spm increased. Nevertheless, the total PA content remained fairly constant. Significant differences were observed in the PAs content in lettuces grown in different greenhouses. The conjugated fraction of PAs in mature lettuces has an important contribution to the total PAs and will certainly influence the bioavailability and/or bioactivity of dietary polyamines.
Collapse
Affiliation(s)
- Edgar Pinto
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto . R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | |
Collapse
|
49
|
Soda K. Biological Effects of Polyamines on the Prevention of Aging-associated Diseases and on Lifespan Extension. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
50
|
Toro-Funes N, Bosch-Fuste J, Latorre-Moratalla ML, Veciana-Nogués MT, Vidal-Carou MC. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chem 2014; 173:1119-24. [PMID: 25466133 DOI: 10.1016/j.foodchem.2014.10.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/18/2023]
Abstract
Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products.
Collapse
Affiliation(s)
- N Toro-Funes
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - J Bosch-Fuste
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M L Latorre-Moratalla
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M T Veciana-Nogués
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | - M C Vidal-Carou
- Department of Nutrition and Food Science-XaRTA, INSA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain.
| |
Collapse
|