1
|
Derardja AE, Pretzler M, Barkat M, Dassamiour S, Rompel A. Enzymatic browning in fresh extra virgin olive oil (EVOO): Detection of polyphenol oxidase, assessing moisture impact, and revealing the anti-browning capacity of EVOO. Food Chem 2025; 472:142582. [PMID: 39855134 DOI: 10.1016/j.foodchem.2024.142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
This study investigates the presence of active olive polyphenol oxidase (OePPO) in freshly extracted extra virgin olive oil (EVOO) and its role in triggering enzymatic browning during EVOO storage. OePPO's presence in EVOO was validated through its distinct molecular weights observed in SDS-PAGE gels. The generation of quinones in EVOO was tracked spectrophotometrically over a storage period of one month, revealing browning reactions, particularly in the early days of storage, followed by a decline concurrent with water sedimentation. Introducing various water percentages into EVOO revealed the critical and proportional impact of moisture content on enzymatic browning. Microscopic examination showed the formation of colloidal matter around water microdroplets suspected to accommodate browning reactions. The reduction of EVOO moisture content to < 0.15 % coincided with a progressive decrease in browning across all samples, hinting at a potential anti-browning capacity of EVOO. A novel analytical method is proposed to evaluate EVOO's anti-browning capacity, utilizing chemically oxidized 4-tert-butylcatechol (TBC) quinones. After one month of storage, a significant decrease in total phenols and antioxidant activity proportional to the moisture content and enzymatic browning was noted in EVOO samples. To prevent such losses, the EVOO extraction process should effectively minimize moisture content to less than 0.15 %.
Collapse
Affiliation(s)
- Ala Eddine Derardja
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria; Laboratoire Bioqual, INATAA, Université Constantine 1, Frères Mentouri, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire Bioqual, INATAA, Université Constantine 1, Frères Mentouri, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Saliha Dassamiour
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, Université Batna 2, 53, Route de Constantine, Fesdis, Batna 05078, Algeria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria.
| |
Collapse
|
2
|
Xiong S, Ding X, Zhou L, Liu Z, Jiang W, Ai F, Cai K. An antibacterial and antioxidant rosmarinic acid hydrogel normalizes macrophage polarization to expedite diabetic wound healing. J Colloid Interface Sci 2025; 683:357-371. [PMID: 39736166 DOI: 10.1016/j.jcis.2024.12.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
The management of diabetic wounds (DW) is a significant challenge within the medical field. Effectively regulating the levels of reactive oxygen species (ROS) at the wound site and orchestrating the inflammatory response are effective strategies for DW treatment. In this study, a novel hydrogel was developed by cross-linking polyboronic acid-modified carboxymethyl chitosan with herbal active ingredient rosmarinic acid (RA), an active herbal ingredient, through dynamic boronic esters formation. In this RA hydrogel (RAgel), RA serves both as an active pharmaceutical ingredient and as a linker for the creation of a dynamic covalent hydrogel, which can decrease the potential toxicity of chemical crosslinking agents and improve the utilization of RA. RAgel demonstrated potential for controlling RA loading and responsiveness to ROS and glucose levels in a diabetic wound environment. Additionally, the intrinsic antioxidant and antibacterial properties of RA were effectively preserved and enhanced upon integration into RAgel. Furthermore, RAgel not only promoted the migration of L929 cells, a key aspect of tissue repair, but also induced M2 polarization in macrophages,while inhibiting the secretion of pro-inflammatory cytokines. In a murine model of diabetic wound healing, RAgel significantly enhanced the proliferation of both the epidermal and granulation tissues. It also exerts a marked anti-inflammatory effect and promotes collagen deposition, thereby expediting the overall wound healing process. The reported RAgel formulation has potential to address the complex challenges associated with diabetic wound management.
Collapse
Affiliation(s)
- Shiyu Xiong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, PR China
| | - Xingwei Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, PR China.
| | - Ling Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, PR China
| | - Ziqian Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, PR China
| | - Wenyan Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330038, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
3
|
Bernardo P, Fernandes MJ, Fernandes MH, Teixeira MP, Alfaia CM, Serrano C, Patarata L, Fraqueza MJ. Salt reduction strategies for dry cured meat products: The use of KCl and microencapsulated spices and aromatic plant extracts. Meat Sci 2025; 221:109719. [PMID: 39637770 DOI: 10.1016/j.meatsci.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The World Health Organization set a goal of reducing salt intake by 30 % by 2025. This study investigates the impact of replacing 33 % NaCl with KCl and microencapsulated spices and aromatic plant extracts (ME) in a dry-cured meat sausage (CMS). Microbial, physico-chemical, and sensory analyses were conducted throughout processing and storage. Three batches of CMS were prepared with four formulations: Control (1.5 % NaCl), F1 (1 % NaCl, 0.5 % KCl), F2 (1 % NaCl, 0.5 % ME, 0.3 % KCl), and F3 (1 % NaCl, 0.5 % ME). The absence of Listeria monocytogenes was confirmed. The formulations did not affect the growth of lactic acid bacteria (7.8 log cfu/g), Enterococci (6.5 log cfu/g), and coagulase-negative staphylococci (5.6 log cfu/g). Biogenic amines increased significantly (P < 0.05) during storage, with cadaverine (from 166 to 456 mg/kg), tyramine (163 to 424 mg/kg) and putrescine (from 31.0 to 90.5 mg/kg), being the most abundant. All low sodium CMS had lower TBARS values (F1 = 0.59 mg MDA/kg, F2 = 0.56 mg MDA/kg and F3 = 0.47 mg MDA/kg) compared to control (0.78 mg MDA/kg). Colour parameters lightness (L*) and yellowness (b*) remained stable (P > 0.05) while sausages with KCl and/or ME were redder. CMS F1 was considered with the ideal saltiness by 54 % consumers, that is usually considered enough to launch the product in the market. The use of ME in CMS has potential but still requires optimization. The study demonstrates that a 33 % NaCl replacement with KCl is feasible without jeopardize the organoleptic characteristics or safety of CMS.
Collapse
Affiliation(s)
- P Bernardo
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M J Fernandes
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M H Fernandes
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M P Teixeira
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - C M Alfaia
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - C Serrano
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, 2784-505 Oeiras, Portugal; LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Associated Laboratory TERRA, University of Lisbon, Lisbon, Portugal
| | - L Patarata
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CECAV-Animal and Veterinary Research Center, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - M J Fraqueza
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal.
| |
Collapse
|
4
|
Boulebd H, Amine Khodja I, Benarous K, Mą Czyński M, Spiegel M. A Comprehensive Experimental and Theoretical Investigation of the Antioxidant Properties of Hispidin and Isohispidin. J Org Chem 2025. [PMID: 39998063 DOI: 10.1021/acs.joc.4c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study provides a comprehensive analysis of the antioxidant activity of hispidin (His) and its tautomer isohispidin (IsoH) using DFT calculations, corroborated by experimental data. Under physiological conditions, both tautomers demonstrated significant scavenging capacity for the HO• radical, with koverall ranging from 4.48 × 109 to 2.06 × 1010 M-1 s-1 in lipid media and 3.24 × 1010 M-1 s-1 in water. Mechanistic analysis revealed that the radical adduct formation (RAF) mechanism is dominant in lipid environments, whereas both RAF and single electron transfer (SET) operate nonselectively in water. Hispidin also exhibited strong scavenging capacity for the HOO• radical in water (koverall = 1.40 × 108 M-1 s-1), but its reactivity in lipid environments was comparatively lower, with koverall of 1.40 × 102 M-1 s-1 for His and 1.94 × 104 M-1 s-1 for IsoH. The f-HAT mechanism was identified as the predominant pathway in lipid media, while both f-HAT and SET contribute to HOO• scavenging in water. Additionally, hispidin demonstrated a strong ability to chelate copper(II) ions, effectively inhibiting HO• radical formation via the Fenton reaction. The theoretical results align well with the experimental data from the DPPH and ABTS assays, indicating that hispidin is a potent antioxidant under physiological conditions.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat 03000, Algeria
- Laboratory of Applied Sciences and Didactics, Higher Normal School of Laghouat, Laghouat 03000, Algeria
| | - Marcin Mą Czyński
- Department of Organic Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| |
Collapse
|
5
|
Özdemir S, Güngördü Solğun D, Giray G, Ağırtaş MS. Synthesis and biological activity, photophysical, photochemical properties of tetra substituted magnesium phthalocyanine. Photochem Photobiol Sci 2025:10.1007/s43630-025-00686-y. [PMID: 39955410 DOI: 10.1007/s43630-025-00686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
The compound 4-(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalonitrile was obtained from the reaction of 2-nitrophenol, 4-nitrophthalonitrile and 2-mercaptobenzimidazole. This compound was reacted with magnesium Chloride (MgCl2) to yield tetrakis-[(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalocyaninato] magnesium II. New compounds were characterized by UV-vis, 1H NMR, 13C NMR, FTIR and Mass spectra. Electronic spectra aggregation study of magnesium phthalocyanine compound in various concentrations and diverse solvents was performed. Photoluminescence spectra of magnesium phthalocyanine in different solvents were investigated. The biological activities of 3 and 4 compounds were investigated. The results showed that 4 had excellent antioxidant and antidiabetic activities as 75.71% and 81.83%, respectively. 3 and 4 had deoxyribonucleic acid (DNA) cleavage ability and 4 caused a double-strand fracture in plasmid DNA at 100 and 200 mg/L. Both compounds showed antimicrobial activity and also 4 was more effective against pathogenic microorganisms than 3. Photodynamic antimicrobial therapy of test compound was also more effective than without irradiation. The highest biofilm inhibition of 3 and 4 was 78.28% and 98.49% for S. aureus and also 73.95% and 91.13% for P. aeruginosa, respectively. Finally, both compounds demonstrated %100 microbial cell viability inhibition at 100 mg/L. Overall, the study suggests that both 3 and 4 have potential for further development as therapeutic agents.
Collapse
Affiliation(s)
- Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkey
| | - Derya Güngördü Solğun
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, 65080, Van, Turkey
| | - Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, 65080, Van, Turkey.
| |
Collapse
|
6
|
Xue C, Zhang J, Zhang C, Hu Z, Liu H, Mo L, Li M, Lou A, Shen Q, Luo J, Wang S, Quan W. Augmenting antioxidative capacity of myosin and cytoprotective potential of myosin digestion products through the integration of crocin and crocetin: A comprehensive analysis via quantum chemical computing and molecular dynamics. Food Chem 2025; 465:142053. [PMID: 39561599 DOI: 10.1016/j.foodchem.2024.142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
This study explores the binding properties of two important constituents from Crocus sativus L (crocin and crocetin) with myosin, examining their influence on antioxidant capacity in myosin and a grilled meat model. And their impact on cytoprotective potential of myosin digestion products was also assessed in Caco-2 cells. Crocin and crocetin exhibited discernible binding affinity to myosin via static quenching, which induced conformational alterations that bolstered the antioxidant capacity of myosin, preventing peroxidation, which also corroborated in a grilled meat model. Crocin resulted in greater enhancement of antioxidant capacity and binding affinity, as confirmed by quantum chemical calculations. Molecular dynamics simulations revealed the stable binding of crocin to GLU:272, GLU:606, GLN:628, and PHE:417 residues of myosin. In addition, crocin substantially enhanced the protective efficacy of myosin digestion products against H2O2-induced damage in Caco-2 cells by upregulating superoxide dismutase and GSH-Px and simultaneously downregulating reactive oxygen species and malondialdehyde levels.
Collapse
Affiliation(s)
- Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenxia Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhonghao Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huixue Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuai Wang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Tran TNT, Tran QM, Le NHT. Optimization of Piper betle L. extraction under ultrasound and its effects on chitosan/polyvinyl alcohol film properties for wound dressing. Int J Biol Macromol 2025; 289:138768. [PMID: 39675616 DOI: 10.1016/j.ijbiomac.2024.138768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study aimed to prepare Piper betle L. extract-load chitosan/polyvinyl alcohol (CS/PVA) film potential for wound dressing and investigate the effects of PLE and PLE-loading methods on physicochemical and biological properties of CS/PVA films. First, Piper betle L. extract (PLE) was optimized using ultrasonication and the response surface methodology employed the Box-Behnken design to maximize total phenolic content (TPC), total flavonoid content (TFC), and natural antioxidant activity. The optimal ultrasonic conditions resulting in an extract yield of 17.466 %, TPC of 261.904 mg GA/g, TFC of 148.726 mg Q/g, and IC50 of 53.100 mg/L were achieved with a sonication time of 3.958 min, power of 30.548 W, and duty cycle of 84.576 % using water as the green solvent. The systematic analysis explored the effects of extraction duration, power, and pulse mode providing valuable insights into novel extraction techniques for potential pharmaceutical applications. Subsequently, PLE was incorporated into a CS/PVA biocomposite film using two loading methods: direct mixing and immersion. The study revealed that the immersion method offers several advantages related to the physicochemical and biological properties of the PLE-treated CS/PVA film. These advantages include improved PLE bioavailability (with PLE releasing 81.42 ± 2.44 % over 24 h, 8.6 times higher than the direct mixing method), removal of excess acetic acid from the manufacturing process of CS/PVA film, which causes cell cytotoxicity (L929 cell viability of 70.47 ± 2.18 %), enhanced tensile strength of 1.19 times greater than the original CS/PVA film, and efficient exudate absorption (allowing appropriate water vapor transmission at a rate of 2477.00 ± 35.39 g/m2·day). The results show the prepared PLE-treated CS/PVA film is a potential candidate for wound dressing, and the immersion method represents an advanced drug-loading method, especially for medicinal herbs on CS/PVA thin film surfaces.
Collapse
Affiliation(s)
- Thi Ngoc Tran Tran
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Quang Minh Tran
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Ha-Thu Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
8
|
Tomassi E, Arouna N, Brasca M, Silvetti T, de Pascale S, Troise AD, Scaloni A, Pucci L. Fermentation of Whole-Wheat Using Different Combinations of Lactic Acid Bacteria and Yeast: Impact on In Vitro and Ex Vivo Antioxidant Activity. Foods 2025; 14:421. [PMID: 39942014 PMCID: PMC11816817 DOI: 10.3390/foods14030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cereals are rich in nutrients and bioactive compounds; however, many of these, such as polyphenols, are bound to the cell wall matrix, limiting their bioavailability. This study investigated the use of fermentation to enhance the bioavailability of functional compounds in whole-wheat flour. Given the impact of microbial species on fermentation outcomes, various combinations of lactic acid bacteria and yeast strains were examined. The polyphenol and flavonoid content of different fermented flours was analyzed. Additionally, the antioxidant capacity was assessed using in vitro assays (DPPH, ORAC, and FRAP) and an ex vivo test with human erythrocytes. Fermentation significantly enhanced the release of bioavailable phenolic compounds and flavonoids, with the most significant increases reaching up to 3.4-fold and 2.64-fold, respectively. In particular, the findings highlight the capacity of flour fermented with a combination of K. humilis, F. sanfranciscensis, E. faecium, P. pentosaceus, and L. mesenteroides to enhance antioxidant activity in vitro and to protect human red blood cells from oxidative stress. Furthermore, fermentation increased the production of short-chain fatty acids, notably lactate and acetate, which are widely recognized for their gut health benefits. Overall, this study highlights the effectiveness of targeted fermentation in improving the bioactivity and antioxidant properties of whole-wheat flour.
Collapse
Affiliation(s)
- Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy;
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, 20133 Milan, Italy; (M.B.); (T.S.)
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, 20133 Milan, Italy; (M.B.); (T.S.)
| | - Sabrina de Pascale
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Antonio Dario Troise
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
9
|
Ferreira FC, Teixeira J, Lidon F, Cagide F, Borges F, Pereira RMLN. Assisted Reproduction Technologies (ART): Impact of Mitochondrial (Dys)function and Antioxidant Therapy. Animals (Basel) 2025; 15:289. [PMID: 39943058 PMCID: PMC11815877 DOI: 10.3390/ani15030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
In the last decades, major changes in ecosystems related to industrial development and environmental modifications have had a direct impact on mammalian fertility, as well as on biodiversity. It is widely demonstrated that all these changes impair reproductive function. Several studies have connected the increase of reactive oxygen species (ROS) generated in mitochondria to the recently identified decline of fertility due to various factors, including heat stress. The study of antioxidants, and especially of mitochondria targeted antioxidants, has been focused on identifying more efficient and less toxic therapies that could circumvent fertility problems. These antioxidants can be derived from natural compounds in the diet and delivered to the mitochondria in more effective forms, providing a much more natural therapy. The use of mitochondriotropic diet-based antioxidants in assisted reproductive technologies (ART) may be an important way to overcome low fertility, allowing the conservation of animal biodiversity and productivity. This paper provides a concise review of the current state of the art on this topic, with a particular focus on the antioxidants mitoquinone, AntiOxBEN2, AntiOxCIN4, urolithin A and piperine, and their effects on bovine and other animal species.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal;
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - José Teixeira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernando Lidon
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Fernando Cagide
- CIQ-Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Campo Alegre, 4169-007 Porto, Portugal; (F.C.); (F.B.)
| | - Fernanda Borges
- CIQ-Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Campo Alegre, 4169-007 Porto, Portugal; (F.C.); (F.B.)
| | - Rosa M. L. N. Pereira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal;
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, and Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Meng TT, Ding MJ, Yu WY, Song XM, Ni S, Zhang K, Xu FX, Bai FY, Pan XM, Zhao Z. Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178352. [PMID: 39754958 DOI: 10.1016/j.scitotenv.2024.178352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH3, ∙OOH, and 1O2 in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed. The results show that RAF and HAT are the main reaction mechanisms for the neutral kaempferol/quercetin, and SET mechanism is important for the anionic kaempferol/quercetin. The overall rate coefficient of kaempferol and quercetin with ∙OH were calculated at 273-323 K, and the aqueous rate coefficients are calculated by considering the rates of neutral and monoanionic forms multiplied with the molar fractions of each form. The values are 2.81 × 1010 and 8.63 × 1010 M-1 s-1 in the aqueous environment, and 2.31 × 10-10 and 1.18 × 10-10 cm3 molecule-1 s-1 in the gaseous environment at 298 K. Fluorescence probe and flow cytometry results show that kaempferol and quercetin can be efficiently degraded by free radicals, and quercetin has a better effect, which is consistent with the theoretical results in the aqueous environment. The transformation mechanism of Q-OH-P7a with ∙OH, O2 and NO was studied, and the stable product is Q-P1. Toxicology results show that most of the subsequent products of quercetin do not bioaccumulate and can be biodegraded, but most products still have toxic properties or harmful properties and show positive mutagenicity. This study provides new guidance for flavonoid degradation behavior and environmental risks.
Collapse
Affiliation(s)
- Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Meng-Jiao Ding
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wan-Ying Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Xiao-Ming Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ke Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Fan-Xing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
11
|
Zhang L, Zhang M, Chen H. Antioxidant packaging films based upon starch-montmorillonite with forsythia flower extract: characterization and application. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1679-1691. [PMID: 39331759 DOI: 10.1080/19440049.2024.2408739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Plastic pollution is one of the most acute environmental problems in the world, so active packaging materials made from biodegradable natural polymers have received widespread attention in recent years. In this paper, forsythia flower extract, serving as an active ingredient, was integrated into the starch-sodium alginate-montmorillonite composite film. The physicochemical properties and functional packaging applications of the composite films were investigated. The results demonstrate the formation of a tightly-knit network structure through molecular interactions among forsythia flowers, starch, sodium alginate, and montmorillonite. Notably, the addition of forsythia flower extracts conferred better UV resistance (from 200 nm to 400 nm) and outstanding antioxidant properties to the composite films. After 18 days of storage, in comparison with the control group, the decay rate of fresh cherry tomatoes packaged with the composite film containing forsythia flower extract showed a significant reduction of 40%, the hardness increased by 25%, and the content of vitamin C was enhanced by 33%. Hence, the forsythia flower extract composite film offers a novel perspective for the design and development of bio-based packaging films for preserving fresh fruits. The results serve as a foundation for the subsequent advancement and application of forsythia flower in the field of packaging.
Collapse
Affiliation(s)
- Lilin Zhang
- School of Science, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Minghui Zhang
- School of Science, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Hongyan Chen
- School of Science, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Karakuş N. Revealing the antioxidant properties of alkyl gallates: a novel approach through quantum chemical calculations and molecular docking. J Mol Model 2024; 30:401. [PMID: 39542935 DOI: 10.1007/s00894-024-06196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
CONTEXT This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure-activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential. METHODS Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.
Collapse
Affiliation(s)
- Nihat Karakuş
- Department of Chemistry, Faculty of Science Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
13
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Roy M, Shourove JH, Singha R, Tonmoy TA, Chandra Biswas G, Meem FC, John PH, Samadder M, Al Faik MA. Assessment of antioxidant and antibacterial efficacy of some indigenous vegetables consumed by the Manipuri community in Sylhet, Bangladesh. Heliyon 2024; 10:e37750. [PMID: 39315213 PMCID: PMC11417267 DOI: 10.1016/j.heliyon.2024.e37750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The rapid dietary changes experienced by indigenous people worldwide threaten the use of traditional foods, which are often undervalued. This study focused on evaluating the antioxidant and antibacterial efficacy of five vegetables typically consumed by the Manipuri ethnic groups in the Sylhet region of Bangladesh: Yongchak seed (Parkia speciosa), Telikadam seed (Leucaena leucocephala), Phakphai leaf (Persicaria odorata), Sheuli leaf (Nyctanthes arbor-tristis), and bamboo shoot (Bambusa spp.). The samples were dried and powdered to assess the antioxidant activity through total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Antibacterial efficacy was determined by measuring the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Leafy vegetables exhibited higher TPC, TFC, and TTC than seeds and shoots, with N. arbor-tristis leaf showing the highest TPC (99.16 ± 2.07 mg GAE/g DW) and P. odorata leaf exhibiting the highest TFC (9.19 ± 0.7 mg QE/g) and TTC (3.59 ± 0.26 mg TAE/g). However, Bambusa spp. shoot extract showed the highest antioxidant potential (IC50: 1.66 ± 0.05 mg/mL). All samples exhibited higher ZOI against gram-positive bacteria (Bacillus spp. and Staphylococcus spp.), ranging from 10 ± 2.65 to 19.33 ± 2.08 mm. L. leucocephala seed extract showed the highest antibacterial activity against both the tested gram-positive bacteria with a MIC of 15.6 mg/mL. Conversely, the P. odorata leaf extract exerted the strongest antibacterial effect against gram-negative bacteria, with the lowest MIC values for Klebsiella spp. (31.25 mg/mL) and Escheria coli (62.5 mg/mL). The findings of this investigation suggest that the selected indigenous vegetables could be valuable sources of phytochemicals with potential antioxidant and antibacterial activities. Incorporating and promoting these traditional foods into the diet may improve food security, dietary diversity, and public health in Bangladesh.
Collapse
Affiliation(s)
- Mukta Roy
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rhythm Singha
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tawkir Ahmed Tonmoy
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Gokul Chandra Biswas
- Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Parvej Hasan John
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mitu Samadder
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Azmain Al Faik
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
15
|
Lu XQ, Li J, Wang B, Qin S. Computational Insights into the Radical Scavenging Activity and Xanthine Oxidase Inhibition of the Five Anthocyanins Derived from Grape Skin. Antioxidants (Basel) 2024; 13:1117. [PMID: 39334776 PMCID: PMC11428504 DOI: 10.3390/antiox13091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, typical polyphenol compounds in grape skin, have attracted increasing interest due to their health-promoting properties. In this body of work, five representative anthocyanins (Cy-3-O-glc, Dp-3-O-glc, Pn-3-O-glc, Mv-3-O-glc, and Pt-3-O-glc) were studied using the density functional theory (DFT) to elucidate structure-radical scavenging activity in the relationship and the reaction path underlying the radical-trapping process. Based on thermodynamic parameters involved in HAT, SET-PT, and SPLET mechanisms, along with the structural attributes, it was found that the C4' hydroxyl group mainly contributes to the radical scavenging activities of the investigated compounds. Pt-3-O-glc exhibits a good antioxidant capacity among the five compounds. The preferred radical scavenging mechanisms vary in different phases. For the Pt-3-O-glc compound, the calculations indicate the thermodynamically favoured product is benzodioxole, rather than o-quinone, displaying considerably reduced energy in double HAT mechanisms. Additionally, the thermodynamic and kinetic calculations indicate that the reaction of •OH into the 4'-OH site of Pt-3-O-glc has a lower energy barrier (7.6 kcal/mol), a higher rate constant (5.72 × 109 M-1 s-1), and exhibits potent •OH radical scavenging properties. Molecular docking results have shown the strong affinity of the studied anthocyanins with the pro-oxidant enzyme xanthine oxidase, displaying their significant role in inhibiting ROS formation.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
16
|
Kaya Y, Erçağ A, Kaya S, Berisha A, Akkaya B, Zorlu Y. New solvated Mo(VI) complexes of isatin based asymmetric bisthiocarbohydrazones as potent bioactive agent: synthesis, DFT-molecular docking studies, biological activity evaluation and crystal structures. Biometals 2024:10.1007/s10534-024-00633-x. [PMID: 39240269 DOI: 10.1007/s10534-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
New solvated Mo(VI) complexes were isolated from the reaction of [MoO2(acac)2] with asymmetric isatin bisthiocarbohydrazone ligands. The ligands were obtained from the reaction of isatin monothiocarbohydrazone with 3,5-dibromo salicylaldehyde (L1), 3,5-dichloro salicylaldehyde (L2) and 3-chloro-5-bromo salicylaldehyde (L3), respectively. In the complexes, the ligands serve as ONS donors and coordinate to the [MoO2]2+ nucleus. The bonding sites are azomethine nitrogen atom, phenolic oxygen atom and thiol sulfur atom. The sixth coordination site is completed by an oxygen atom from an ethanol solvent. The ethanol-coordinated Mo(VI) complexes, C1-C3, [MoO2L(EtOH)] (L: L1-L3), were characterized using elemental analysis, IR and 1H NMR spectroscopies, and conductivity measurements. By crystallizing ethanol-solvated solid complexes from an EtOH/DMSO mixture, DMSO-solvated complexes (C4-C6) suitable for X-ray crystallography were obtained. Crystal structure analysis supports the proposed complex structures and geometries, but the ethanol in the sixth coordination site has been replaced by DMSO. When the anticarcinogenic effects of the ligands and complexes (C1-C3) on the C6 cell line were examined, it was found that the complexes showed higher activity than the ligands. The C3 complex appears to have the best anti-cancer activity compared to doxorubicin. Additionally, all compounds were determined to have high total antioxidant capacity. Data obtained from theoretical studies (DFT and docking) support experimental studies.
Collapse
Affiliation(s)
- Yeliz Kaya
- Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Savaş Kaya
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000, Prishtina, Republic of Kosovo
| | - Birnur Akkaya
- Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
17
|
Tang X, Wang L, Zhang Y, Sun C, Huang Z. Enhancing the antioxidant potential of ESIPT-based naringenin flavonoids based on excited state hydrogen bond dynamics: A theoretical study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112996. [PMID: 39094239 DOI: 10.1016/j.jphotobiol.2024.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto⁎ forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto⁎ form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto⁎ form are O3 and O5' respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
18
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
19
|
Bakheit AH, Wani TA, Al-Majed AA, Alkahtani HM, Alanazi MM, Alqahtani FR, Zargar S. Theoretical study of the antioxidant mechanism and structure-activity relationships of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives: a computational approach. Front Chem 2024; 12:1443718. [PMID: 39139921 PMCID: PMC11319267 DOI: 10.3389/fchem.2024.1443718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
A theoretical thermodynamic study was conducted to investigate the antioxidant activity and mechanism of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives (OTP) using a Density Functional Theory (DFT) approach. The study assessed how solvent environments influence the antioxidant properties of these derivatives. With the increasing prevalence of diseases linked to oxidative stress, such as cancer and cardiovascular diseases, antioxidants are crucial in mitigating the damage caused by free radicals. Previous research has demonstrated the remarkable scavenging abilities of 1,3,4-oxadiazole derivatives, prompting this investigation into their potential using computational methods. DFT calculations were employed to analyze key parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE), to delineate the antioxidant mechanisms of these compounds. Our findings indicate that specific electron-donating groups such as amine on the phenyl rings significantly enhance the antioxidant activities of these derivatives. The study also integrates global and local reactivity descriptors, such as Fukui functions and HOMO-LUMO energies, to predict the stability and reactivity of these molecules, providing insights into their potential as effective synthetic antioxidants in pharmaceutical applications.
Collapse
Affiliation(s)
- Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Rubayyi Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Tegin İ, Yabalak E, Hallaç B, Sabancı N, Fidan M, Sadık B. Unlocking the potential of Allium dictyoprasum C.A. Meyer ex Kunth: quantum chemical insights into radical scavenging, chemical composition, phenolic content, and antimicrobial activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-18. [PMID: 39037127 DOI: 10.1080/09603123.2024.2382304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Allium dictyoprasum C.A. Meyer ex Kunth (A. dictyoprasum) underwent comprehensive analysis, encompassing quantum chemical computations to assess its radical scavenging potential, chemical and elemental composition, total phenolic content, and antimicrobial activity. Experimental and theoretical investigations focused on elucidating the radical scavenging properties of polyhydroxy phenolic compounds present in the plant. Quantum chemical calculations were employed to evaluate the antioxidants employed to evaluate selected polyhydroxy phenolic molecules including flavonoids, hydrocinnamic acid derivatives, and hydroxybenzoic acid derivatives from natural sources. Thermochemical parameters of these compounds were calculated by the B3LYP/6-311 G++(d,p) level in both gas and solvent phases to elucidate the radical scavenging mechanism including hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Analysis of A. dictyoprasum extracts obtained via various extraction methods revealed the presence of several major compounds, including dimethyl trisulfide, 3,5-Dihydroxy-6-methyl-2,3-dihydro-4 H-pyran-4-one, 2-Methoxy-4-vinylphenol, Dimethyl phthalate, Methyl palmitate, Methyl oleate, Methyl stearate, (9Z)-9-Octadecenamide. Notably, Malic acid and Quinic acid were identified as major compounds, with concentrations of 43.31 and 17.47 mg kg-1 extract, respectively, based on LC-MS/MS analysis. The total phenolic content of the extract was measured as 17.83 mg gallic acid/mL, while its free radical scavenging activity was 80.89% per mg/mL. Elemental analysis revealed significant levels of Mg, K, Na, Fe, and P, with minor concentrations of elements such as Ti, Tl, B, and Be. Furthermore, A. dictyoprasum exhibited notable antibacterial activity against various bacteria strains, surpassing the efficacy of some commercial antibiotics.
Collapse
Affiliation(s)
- İbrahim Tegin
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Türkiye
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Türkiye
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin, Türkiye
| | - Bülent Hallaç
- Faculty of Engineering, Department of Food Engineering, Siirt University, Siirt, Türkiye
| | - Nazmiye Sabancı
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Türkiye
| | - Mehmet Fidan
- Faculty of Arts and Science, Department of Biology, Siirt University, Siirt, Türkiye
| | - Betül Sadık
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Türkiye
| |
Collapse
|
21
|
Torić J, Karković Marković A, Mustać S, Pulitika A, Jakobušić Brala C, Pilepić V. Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions. Int J Mol Sci 2024; 25:6341. [PMID: 38928048 PMCID: PMC11203655 DOI: 10.3390/ijms25126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.
Collapse
Affiliation(s)
- Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Stipe Mustać
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Anamarija Pulitika
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| | - Viktor Pilepić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.T.); (A.K.M.); (S.M.)
| |
Collapse
|
22
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
23
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
24
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
25
|
Sari GM, Kusumawati I, Arifandi YA, Swannjo JB. Effects of cosmos caudatus (Kenikir) antioxidant properties on bone metabolism marker in rat. Curr Res Physiol 2024; 7:100128. [PMID: 38841653 PMCID: PMC11150957 DOI: 10.1016/j.crphys.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Cosmos caudatus leaves are one of around 7500 types of plants that are known to have herbal or medicinal plant properties in Indonesia. This research determines the effectiveness of Cosmos caudatus as an antioxidant agent against cells, biomolecules, and bone density. Forty-three male rat aged 3-4 months were divided into four groups.Group P0 was only given distilled water. Group P1 was given kenikir leaf extract at a dose of 0.91 mg/kg. Group P2 was given kenikir leaf extract at a dose of 1.82 mg/kg. And group P3 was given kenikir leaf extract at 3.64 mg/kg ad libitum once a day for 28 days. The highest average SOD level was in the 1.82 mg/bb P2 conversion dose group (1.09 ± 1.76). The lowest mean CTX level was in the P2 group (8.30 ± 1.10). There was a significant increase in mean trabecular bone in the P2 group (43.33 ± 5.32). The number of osteoblast cells increased significantly at P2 (103.94 (SD 38.14)). The number of osteoclasts decreased from the control group (P0) to 0.60 (SD 0.43) at P2. Indicate that the Cosmos caudatus extract may have advantages as an antioxidant support agent for bone metabolism.
Collapse
Affiliation(s)
- Gadis Meinar Sari
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Idha Kusumawati
- Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yoga Akbar Arifandi
- Medical Profession Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
26
|
Abboud S, Ouni A, Ben Abdallah RA, Bchir A, Ben Abdelwaheb S, Tlili D, Dbara S. Unraveling the effect of phenolic extract derived from olive mill solid wastes on agro-physiological and biochemical traits of pomegranate and its associated rhizospheric soil properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134234. [PMID: 38608584 DOI: 10.1016/j.jhazmat.2024.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.
Collapse
Affiliation(s)
- Samia Abboud
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia; LR16IO02 Laboratory of sustainability of olive and fruit growing in semi-arid and arid environments, Olive Tree Institute, University of Sfax, Tunisia.
| | - Azhar Ouni
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Rania Aydi Ben Abdallah
- LR21AGR03-Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | | | - Sahar Ben Abdelwaheb
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Darine Tlili
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Soumaya Dbara
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia; LR16IO02 Laboratory of sustainability of olive and fruit growing in semi-arid and arid environments, Olive Tree Institute, University of Sfax, Tunisia
| |
Collapse
|
27
|
Miličević A. Flavonoid Oxidation Potentials and Antioxidant Activities-Theoretical Models Based on Oxidation Mechanisms and Related Changes in Electronic Structure. Int J Mol Sci 2024; 25:5011. [PMID: 38732228 PMCID: PMC11084570 DOI: 10.3390/ijms25095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA for a flavonoid of interest, help us explain the relationship between Ep1, AA and electronic structure. The model development went forward with enlarging the set of flavonoids and, that way, we had to learn how to deal with the structural peculiarities of some of the 35 flavonoids from the final calibration set, for which the Ep1 measurements were all made in our laboratory. The developed models were simple quadratic models based either on atomic spin densities or differences in the atomic charges of the species involved in any of the three main oxidation mechanisms. The best model takes into account all three mechanisms of oxidation, single electron transfer-proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), yielding excellent statistics (R2 = 0.970, S.E. = 0.043).
Collapse
Affiliation(s)
- Ante Miličević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
28
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
30
|
Tegin İ, Hallaç B, Sabancı N, Sadik B, Fidan M, Yabalak E. A broad assessment of Eremurus spectabilis M. Bieb: chemical and elemental composition, total phenolic and antimicrobial activity analysis, and quantum chemical calculations of radical scavenging potential. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2124-2139. [PMID: 37199334 DOI: 10.1080/09603123.2023.2214100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Eremurus spectabilis M. Bieb was extensively investigated experimentally and theoretically, including the antioxidant properties of compounds such as flavonoids, hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, and organic acids. Antioxidant activity was investigated using the Density Functional Theory (DFT) method based on three known mechanisms: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Subcritical water extraction (SWE), soxhlet extraction (SE), and solvent extraction (SOE) techniques were applied in the extraction process. Malic acid was the major compound with an extract concentration of 38,532.84 ± 1849.58 µg analyte/kg, total phenolics, and free radical scavenging activity were 10.67 mg gallic acid/mL extract and 73.89% per mg/mL extract, respectively. P, Fe, Na, Mg, K, and Ca were the main elements. The antibacterial activity of E. spectabilis against seven bacteria was evaluated, and it was found to be higher than the commercial antibiotics P10 and AMC30.
Collapse
Affiliation(s)
- İbrahim Tegin
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Turkey
| | - Bülent Hallaç
- Faculty of Engineering, Department of Food Engineering, Siirt University, Siirt, Turkey
| | - Nazmiye Sabancı
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Turkey
| | - Betül Sadik
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Turkey
| | - Mehmet Fidan
- Faculty of Arts and Science, Department of Biology, Siirt University, Siirt, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
| |
Collapse
|
31
|
Chen Q, Qian Q, Xu H, Zhou H, Chen L, Shao N, Zhang K, Chen T, Tian H, Zhang Z, Jones M, Kwan KYH, Sewell M, Shen S, Wang X, Khan MA, Makvandi P, Jin S, Zhou Y, Wu A. Mitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:8885-8905. [PMID: 38465890 DOI: 10.1021/acsnano.3c12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.
Collapse
Affiliation(s)
- Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Hongbo Xu
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Nannan Shao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Kai Zhang
- Ninth People's Hospital, Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijun Tian
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, U.K
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mathew Sewell
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, U.K
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Centre of Research Impact and Outcome, Chitkara University, Rajpura-140401, Punjab, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai-600077, India
| | - Shengwei Jin
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
32
|
Mendes RA, da Mata VAS, Brown A, de Souza GLC. A density functional theory benchmark on antioxidant-related properties of polyphenols. Phys Chem Chem Phys 2024; 26:8613-8622. [PMID: 38275280 DOI: 10.1039/d3cp04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this work, we present a density functional theory benchmark on antioxidant-related properties for a series of six polyphenols that are well-known antioxidants: caffeic acid, cyanidin, ellagic acid, gallic acid, myricetin, and phloretin. Computations on the 24 O-H bond dissociation enthalpies (BDEs) and 6 ionization potentials (IPs) were performed using twenty-three exchange-correlation functionals combined with four different basis sets in the gas-phase, water, and methanol; calibration against the Domain-based Local Pair Natural Orbital CCSD(T) (DLPNO-CCSD(T)) approach was employed. Mean absolute deviation (MAD) as well as linear fitting results suggested the LC-PBE approach as the most suitable for O-H BDEs in the gas-phase. The LC-PBE, M06-2X, and M05-2X results presented the smallest MADs for O-H BDEs when compared to the reference, in water. The LC-PBE results had the smallest MADs for IPs in the gas-phase while M05-2X, M06-2X, LC-PBE, and LC-ωPBE exhibited the best results for MAD in water. We expect the outcomes from the present work will serve as general guidance for researchers working in the field.
Collapse
Affiliation(s)
- Rodrigo A Mendes
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Victor A S da Mata
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Gabriel L C de Souza
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, 18290-000, Brazil.
| |
Collapse
|
33
|
Abraham AB, Panneerselvam M, Ebenezer C, Costa LT, Vijay Solomon R. A theoretical study on radical scavenging activity of phenolic derivatives naturally found within Alternaria alternata extract. Org Biomol Chem 2024; 22:2059-2074. [PMID: 38363153 DOI: 10.1039/d3ob02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The increasing oxidative stress demands potential chemical compounds derived from natural resources with good antioxidant activity to overcome adverse health issues. In this context, we investigated the antioxidant properties of four dibenzopyrone phenolic compounds obtained from the endophytic fungus Alternaria alternata: altenusin, altenusin B, alterlactone, and dehydroaltenusin using DFT calculations. Our investigation focused on understanding the structure-antioxidant property relationship. It delved into probing the activity by modelling the antioxidant mechanisms. The computed transition states and thermochemical parameters, along with the structural attributes, indicate that altenusin B has good antioxidant efficacy among the four compounds, and it follows the HAT mechanism in an aqueous phase. Remarkably, our findings indicate that altenusin B exhibits potent HOO˙ radical scavenging properties, characterized by the computed high rate constant. The molecular docking studies of these compounds with the pro-oxidant enzyme xanthine oxidase (XO) gave insights into the binding modes of the compounds in the protein environment. Furthermore, molecular dynamics (MD) simulations were employed to study the interaction and stability of the compounds inside the XO enzyme. Our exploration sheds light on the radical scavenging potential of the -OH sites and the underlying antioxidant mechanisms that underpin the compounds' effective antioxidant potential.
Collapse
Affiliation(s)
- Alen Binu Abraham
- Department of Chemistry, St Stephen's College, Affiliated to the University of Delhi, Delhi - 110007, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| | - Luciano T Costa
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| |
Collapse
|
34
|
Wang X, Chen Y, McClements DJ, Meng C, Zhang M, Chen H, Deng Q. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Adv Colloid Interface Sci 2024; 325:103117. [PMID: 38394718 DOI: 10.1016/j.cis.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Chen Meng
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Mingkai Zhang
- College of Food and Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
35
|
Bendaas R, Bekkar Y, Messaadia L, Bourougaa L, Messaoudi A, Kiamouche S, Messaoud B. Computational-based investigation of antioxidative potential polyphenolic compounds of Salvia officinalis L.: combined DFT and molecular docking approaches. J Mol Model 2024; 30:87. [PMID: 38416254 DOI: 10.1007/s00894-024-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
CONTEXT The antioxidant properties of the three polyphenolic compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were investigated employing the density functional theory (DFT) calculations at the B3LYP of basis set at 6-311 + + G (d, p) in order to evaluate their antioxidant activity. The enthalpies of reactions associated with the SET-PT, SPLET, and HAT mechanisms were analyzed in gas and in different solvents using the CPCM (conductor-like polarizable continuum) model. For all possible hydrogen donor sites, the corresponding parameters (BDE, AIP, PDE, PA, ETE, HOMOs, and LUMOs) and reactivity indices (IPE, EA, Χ, η, S, and ω) were also evaluated. The calculated results showed that derivatives 12-OH, 11-OH, 4'-OH, and 3'-OH had the lowest antioxidant activity. The results showed as well that carnosol, cirsiliol, and luteolin have higher reactivity compared to ascorbic acid and could be considered better antioxidants. According to research, the catechol group is crucial in influencing the studied compounds antioxidant activity. The theoretically predicted order of antioxidant efficiencies in this work agrees well with the QSAR (quantitative structure-activity relationship) data. The findings show that in the vacuum as well as benzene media. HAT would be the most effective mechanism; in contrast, the thermodynamic equilibrium approach in polar media is the SPLET mechanism. Likewise, the outcomes of the docking modeling confirm that the selected molecules have high inhibitory activity to glutathione-S-transferases (GSTs) receptors. Moreover, they have very important pharmacokinetic, chemical, and biological profiles. Finally, all the results show that the three natural molecules have good pharmacokinetic profiles, particularly the bioavailability and permeability toward biological membranes. METHODS The software packages used in this investigation are Gaussian 16, Discovery studio Visualizer, and AutoDock vina. The three compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were optimized with DFT/B3LYP of basis set at 6-311 + + G (d, p). The optimized structures were established via vibrational analysis (i.e., no imaginary frequencies in the frequency set). All enthalpies were zero-point (ZPE) corrected. Vibrational frequency calculations were performed at 298.15 K and 1 atmosphere pressure to determine the thermodynamic characteristics of the investigated reactions. The descriptors were associated with the antioxidant mechanisms for investigated molecules in vacuum and in various solvents. The molecular docking was used by AutoDock vina to estimate and evaluate the title compounds compatibility as potential antioxidant drugs utilizing appropriate receptor proteins. The solvation effect in the medium of benzene (ɛ = 2.27) and water (ɛ = 78.39) was taken into account. Furthermore, a methanol solvent (ɛ = 32.61) was also taken into consideration to compare with the empirical data.
Collapse
Affiliation(s)
- Ridha Bendaas
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria
| | - Yahia Bekkar
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), University of El Oued, B.P.789, 39000, El Oued, Algeria
| | - Lyamine Messaadia
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria.
| | - Lotfi Bourougaa
- Laboratory of Molecular Chemistry and Environment (LMCE), University of Biskra, BP 145, 707000, Biskra, Algeria
| | - Abdelatif Messaoudi
- Laboratoire de Chimie Des Matériaux Et Des Vivants: Activité & Réactivité (LCMVAR), Département Chimie, Faculté Des Sciences de La Matière, Université de Batna 1, Batna, Algeria
| | - Samir Kiamouche
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria
- Department of Environmental Engineering, Faculty of Engineering Process, University Constantine 3, 25000, Constantine, Algeria
| | - Benamira Messaoud
- Laboratory of Materials Interaction and Environment (LIME), Faculty of Exact Sciences and Computer Science, University of Jijel, 18000, Jijel, Algeria
| |
Collapse
|
36
|
Nuamah E, Poaty Ditengou JIC, Hirwa F, Cheon I, Chae B, Choi NJ. Dietary Supplementation of Tannins: Effect on Growth Performance, Serum Antioxidant Capacity, and Immunoglobins of Weaned Piglets-A Systematic Review with Meta-Analysis. Antioxidants (Basel) 2024; 13:236. [PMID: 38397834 PMCID: PMC10886058 DOI: 10.3390/antiox13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the swine industry has witnessed the withdrawal of antibiotics and continuous regulation of zinc and copper oxides in the early-life nutrition of piglets. Due to this development, alternative additives from plant sources have been extensively explored. Therefore, this study's objective was to evaluate the effect of dietary supplementation with tannins on weaned piglets' growth performance, serum antioxidant capacity, and serum immune status using a systematic review and meta-analysis approach. A total of 16 studies with parameters of interest were deemed eligible after a two-step screening process following a comprehensive literature search in the scientific databases of Web of Science, Scopus, ScienceDirect, PubMed, and Google Scholar. The inclusion criteria were mainly (1) studies involving basal diet supplemented with tannins and (2) studies with the quantification of tannin doses, while the exclusion criteria were (1) studies with pre- and post-weaning pigs and (2) challenged studies. Applying the random-effects models, Hedges' g effect size of supplementation with tannins was calculated using R software to determine the standardized mean difference (SMD) at a 95% confidence interval. Sub-group analysis and meta-regression further explored heterogeneity (PSMD < 0.05, I2 > 50%, n ≥ 10). Supplementation with tannins reduced the feed conversion ratio (p < 0.01) but increased the final body weight (p < 0.01) of weaned piglets. Chestnut and grape seed proanthocyanidin tannin sources yielded higher effects on growth performance. In addition, meta-regression models indicated that tannin dosage and supplementation duration were directly associated with tannins' effectiveness on productive performance. In the serum, the concentration of glutathione peroxidase, superoxide dismutase, and total antioxidant capacity were elevated (p < 0.01) in response to tannin supplementation, whereas malondialdehydes was reduced (p < 0.01). Likewise, increased immunoglobin M and G levels (p < 0.01) were detected. In conclusion, dietary supplementation with tannins, particularly with chestnut and grape seed proanthocyanidins, increases the productivity of weaned piglets. At the same time, it is a possible nutritional strategy to mitigate oxidative stress and stimulate gut health. Thus, supplementing chestnut and grape seed proanthocyanidin tannins in the early phase of swine production could be used to alleviate the incidence of diarrhea.
Collapse
Affiliation(s)
- Emmanuel Nuamah
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| | | | | | | | | | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| |
Collapse
|
37
|
Du Y, Chai Y, Zheng X, Zheng Y. Theoretical Study on the Multiple Free Radical Scavenging Reactions of Pyranoanthocyanins. Antioxidants (Basel) 2023; 13:33. [PMID: 38247458 PMCID: PMC10812497 DOI: 10.3390/antiox13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The free radical trapping capacities of multiple pyranoanthocyanins in wine storage and ageing were theoretically explored by density functional theory (DFT) methods. Intramolecular hydrogen bonds were detected in all pyranoanthocyanins, and the planarity of the compounds worsened with an increasing dielectric constant in the environment. Solvents significantly influenced the reaction enthalpies; thus, the preferred thermodynamic mechanisms of the free radical scavenging reactions were modified in different phases. This study incorporates hydrogen atom transfer (HAT), proton loss (PL), electron transfer (ET) reactions, and demethylation (De) of methoxy group mechanisms. The three pyranoanthocyanins have the capacity to capture n1+1 free radicals, where n1 represents the number of methoxy groups. In the gas phase, they prefer employing the n1-De-HAT mechanism on the guaiacyl moiety of the B ring, resulting in the formation of a stable quinone or a quinone radical to scavenge free radicals. In the benzene phase, pyranoanthocyanins trap free radicals via a PL-n1-De-HAT mechanism. In the water phase, the targeted pyranoanthocyanins may dissociate in the form of carboxylate and tend to utilize the n2-PL-n1-De-ET mechanism, where n2 and n1 represent the number of phenolic groups and methoxy groups, respectively, facilitating multiple H+/e- reactions.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.D.); (Y.C.); (X.Z.)
| |
Collapse
|
38
|
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023; 28:8139. [PMID: 38138627 PMCID: PMC10745977 DOI: 10.3390/molecules28248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.
Collapse
Affiliation(s)
- Lihua Zhao
- Tianjin Renai College, Tianjin 301636, China;
| | - Lin Zheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
39
|
Ghasemi S, Evazalipour M, Peyghanbari N, Zamani E, Bellstedt P, Molaee M, Koohi DE, Yousefbeyk F. Isolation and structure elucidation of the compounds from Teucrium hyrcanicum L. and the investigation of cytotoxicity, antioxidant activity, and protective effect on hydrogen peroxide-induced oxidative stress. BMC Complement Med Ther 2023; 23:447. [PMID: 38087220 PMCID: PMC10714485 DOI: 10.1186/s12906-023-04262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Teucrium hyrcanicum L. (family Lamiaceae) is widely distributed in the North and Northwest of Iran. It has been used in the form of tea, tonic, and tincture for the treatment of various diseases such as cough, rheumatism, and fever. METHODS In this study, the total phenolic and flavonoid contents, antioxidant and cytotoxic activities of methanol extract and different fractions of T. hyrcanicum were measured. Furthermore, the potential ability of T. hyrcanicum to protect against H2O2-induced oxidative stress was tested on the NIH3T3 cell line. Then, the isolation and structure elucidation of the compounds were performed on the most potent fractions. Finally, the quantification of isolated compounds in methanol extract (ME) was done by the HPLC method. Isolated phytochemicals were assessed for the cytotoxic and antioxidant activities. RESULTS The results indicated that the methanol fraction (MF) had the highest amount of phenolic and flavonoid contents (69.36 mg GAE/g extract and 68.95 mg QE/g extract). The highest radical scavenging activities were observed from MF and ME (IC50 44.32 and 61.12 μg.ml-1, respectively). The best cytotoxicity was obtained by ethyl acetate fraction (EF) against A431 and MCF7 cell lines (IC50 values of 235.4and 326.6 μg.ml-1, respectively). The pretreatment with MF exerts the highest reduction in malondialdehyde (MDA) formation (IC50 2.51 μM, p < 0.001) compared to the H2O2 group (5.77 μM). Also, MF significantly inhibited H2O2-induced Glutathione (GSH) oxidation (p < 0.001). Furthermore, two phenolic compounds, acteoside and quercetin, were isolated and identified in MF and EF, respectively. The IC50 values of acteoside and quercetin in the DPPH assay were 7.19 and 5.56 µg.ml-1, respectively. Both quercetin and acteoside significantly reduced the MDA formation and inhibited GSH oxidation, which was comparable with BHA (as a standard antioxidant) (p < 0.05). Acteoside demonstrated significant cytotoxicity against all tested cell lines (IC50 = 32 to 145 μg.ml-1). The HPLC quantification of isolated compounds revealed that the quantity of acteoside and quercetin in ME were 93.31 and 16.87 μg.mg-1, respectively. CONCLUSION The isolated compounds (quercetin and acteoside) had significant antioxidant activities and revealed a protective effect on H2O2-induced oxidative stress which was comparable with BHA.
Collapse
Affiliation(s)
- Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Nastaran Peyghanbari
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Peter Bellstedt
- Institute of Clinical Chemistry, University of Zurich & University Hospital Zurich, Zurich, Switzerland
| | - Mahan Molaee
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
40
|
Marchese E, Gallo Cantafio ME, Ambrosio FA, Torcasio R, Valentino I, Trapasso F, Viglietto G, Alcaro S, Costa G, Amodio N. New Insights for Polyphenolic Compounds as Naturally Inspired Proteasome Inhibitors. Pharmaceuticals (Basel) 2023; 16:1712. [PMID: 38139838 PMCID: PMC10747119 DOI: 10.3390/ph16121712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Polyphenols, an important class of natural products, are widely distributed in plant-based foods. These compounds are endowed with several biological activities and exert protective effects in various physiopathological contexts, including cancer. We herein investigated novel potential mechanisms of action of polyphenols, focusing on the proteasome, which has emerged as an attractive therapeutic target in cancers such as multiple myeloma. We carried out a structure-based virtual screening study using the DrugBank database as a repository of FDA-approved polyphenolic molecules. Starting from 86 polyphenolic compounds, based on the theoretical binding affinity and the interactions established with key residues of the chymotrypsin binding site, we selected 2 promising candidates, namely Hesperidin and Diosmin. The further assessment of the biologic activity highlighted, for the first time, the capability of these two molecules to inhibit the β5-proteasome activity and to exert anti-tumor activity against proteasome inhibitor-sensitive or resistant multiple myeloma cell lines.
Collapse
Affiliation(s)
- Emanuela Marchese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
| | - Maria Eugenia Gallo Cantafio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Roberta Torcasio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Ilenia Valentino
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| |
Collapse
|
41
|
Reis RD, da Rosa R, Pessa LR, Ruch Werneck Guimarães C. Nonclinical evaluation of a Vitis vinifera extract towards a novel antiaging cosmetic ingredient. J Cosmet Dermatol 2023; 22:3445-3458. [PMID: 37464908 DOI: 10.1111/jocd.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Skin aging is regulated by multiple physiological processes, such as oxidative stress. Natural products have been considered as a promising source of antioxidant compounds. As a result, few innovative products on the market based on natural products tackle additional underlying mechanisms of skin aging. AIMS The present work reports the nonclinical evaluation of a novel extract from the skin of V. vinifera fruits (codified as ACH37 extract), with the aim of supporting its use as an antiaging cosmetic ingredient candidate in clinical trials. METHODS We employed enzymatic, phenotypic, and gene expression assays, both in vitro and ex vivo, to investigate the action of the ACH37 extract in different biological processes that could be related to skin aging mechanisms. RESULTS The ACH37 extract was able to scavenge reactive oxygen species (DPPH, O2 - ), prevent inflammation (LPS- and UV-induced COX-2, IL-1β, and IL-8 expression), modulate extracellular matrix remodeling (inhibiting elastase, MMP-1, MMP-3, and MMP-12, as well as associated expression), increase telomere length, telomerase activity, and reverse the UV-induced suppression of genes involved in skin protection. In addition, the ACH37 extract permeated human skin explants and presented antioxidant efficacy ex vivo. CONCLUSION The results indicated that the ACH37 extract acts on multiple targets commonly related to skin aging, being a promising antiaging active ingredient candidate to be further investigated in clinical trials.
Collapse
|
42
|
Zheng Z, Wu L, Deng W, Yi K, Li Y. Polyphenol Composition, Antioxidant Capacity and Xanthine Oxidase Inhibition Mechanism of Furong Plum Fruits at Different Maturity Stages. Foods 2023; 12:4253. [PMID: 38231765 PMCID: PMC10705914 DOI: 10.3390/foods12234253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
An experiment was conducted on the polyphenol content, flavonoid content, anthocyanin content, and antioxidant capacity of Furong plum (Prunus salicina Lindl. cv. "furong") at different maturity stages to determine the most suitable maturity stage. The inhibition of plum polyphenols on xanthine oxidase (XOD) was measured, and its kinetics were studied to reveal the inhibitory mechanism. The experimental results showed that the polyphenol, flavonoid and anthocyanin contents of plums at the ripe stage were the highest, reaching 320.46 mg GAE/100 g FW, 204.21 mg/100 g FW, and 66.24 mg/100 g FW, respectively, in comparison those of the plums at the immature and mid-ripe stages. The antioxidant capacity of the ripe plums was stronger than it was during the other stages of the plums growth. Among them, the total polyphenols of the ripe plums exhibited the strongest antioxidant capacity (IC50 values against DPPH and hydroxyl radicals were 28.19 ± 0.67 μg/mL and 198.16 ± 7.55 μg/mL, respectively), which was between the antioxidant capacity of the free polyphenols and bound polyphenols. The major phenolic monomer compounds of plum polyphenols were flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B2), flavonols (myricetin), and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally, plum polyphenols exhibited a strong inhibitory effect on XOD, with an IC50 value of 77.64 μg/mL. The inhibition kinetics showed that plum polyphenols are mixed-type inhibitors that inhibit XOD activity and that the inhibition process is reversible. The calculated values of Ki and α were 16.53 mmol/L and 0.26, respectively.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Wei Deng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kexin Yi
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
43
|
Álvarez-Armenta A, Huerta-Ocampo JA, López-Zavala AA, Pacheco-Aguilar R, Sotelo-Mundo RR, Corona-Martínez DO, Ramírez-Suárez JC. Review of the Greening Reaction by Thermal Treatment: New Insights Exploring the Structural Implications of Myoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17485-17493. [PMID: 37943570 DOI: 10.1021/acs.jafc.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.
Collapse
Affiliation(s)
- Andrés Álvarez-Armenta
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Jose A Huerta-Ocampo
- Laboratorio de Bioquímica de Proteínas y Glicanos, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Alonso A López-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Pacheco-Aguilar
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - David O Corona-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Juan Carlos Ramírez-Suárez
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
44
|
Zheng X, Du Y, Chai Y, Zheng Y. A DFT-Based Mechanism Analysis of the Cyclodextrin Inclusion on the Radical Scavenging Activity of Apigenin. Antioxidants (Basel) 2023; 12:2018. [PMID: 38001871 PMCID: PMC10669311 DOI: 10.3390/antiox12112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Natural flavonoids are renowned for their exceptional antioxidant properties, but their limited water solubility hampers their bioavailability. One approach to enhancing their water solubility and antioxidant activity involves the use of cyclodextrin (CD) inclusion. This study investigated the impact of CD inclusion on the three primary radical scavenging mechanisms associated with flavonoid antioxidant activity, utilizing apigenin as a representative flavonoid and employing density functional theory (DFT) calculations. Initially, the optimized geometries of CD-apigenin inclusion complexes were analyzed, revealing the formation of hydrogen bonds between CD and apigenin. In less polar environments, the inclusion complex strengthened the bond dissociation enthalpies of hydroxyl groups, thereby reducing antioxidant activity. Conversely, in polar environments, the inclusion complex had the opposite effect by lowering proton affinity. These findings align with experimental results demonstrating that CD inclusion complexation enhances flavonoid antioxidant activity in aqueous ethanol solutions.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.D.); (Y.C.)
| |
Collapse
|
45
|
Tang W, Chen Y, Guo F. Effects of topping on rhizome, and analysis of chemical composition, antioxidant activity and α-amylase and α-glucosidase inhibition of the aerial parts in Polygonatum cyrtonema. PLoS One 2023; 18:e0287894. [PMID: 37917721 PMCID: PMC10621978 DOI: 10.1371/journal.pone.0287894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Polygonatum cyrtonema is a perennial plant, and it has long been used in traditional Chinese medicine for food and medicine. The medicinal part of P.cyrtonema is the rhizome; however, the aerial part has not been studied. To understand the effect of the topping of aerial parts on the yield and chemical components of rhizomes, as well as the chemical constituents, antioxidant, and in vitro hypoglycemic activities of the aerial stem, leave, and flower parts of P.cyrtonema, the present study was conducted. The results showed that compared to the control (CK) treatment, the topping of the aerial part increased rhizome weight gain coefficient (3.43) and the total saponin content (37.60 mg/g) significantly (P<0.01) than the CK treatment. The contents of total phenols and total flavonoids in PCL and PCF were significantly (P<0.01) higher than those in rhizomes; however, the polysaccharide content (10.47%) in PCR (whole rhizome) was higher than that in PCS (3.65%), PCL (5.99%), and PCF (4.76%) content. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. PCS, PCL, and PCF showed strong antioxidant activity (DPPH, ·OH, ABTS, and FRAP), which were better than traditional medicinal parts (the rhizome).In vitro hypoglycemic results showed that PCS, PCL, and PCF had certain inhibitory activities on α-amylase and α-glucosidase (66.25% and 52.81%), which were close to the hypoglycemic activity of rhizomes (67.96% and 52.22%). The leaf extracts also showed better inhibitory activity. To sum up, the topping measures can improve yield and total saponin content of the rhizomes from P.cyrtonema, which can be applied to improve production. The stems, leaves, and flowers had a much stronger antioxidant and hypoglycemic activities and higher the total polyphenols, flavonoids, proteins, and amino acid content. Therefore, stems, leaves, and flowers of Polygonatum can be fully developed according to different needs. they are typically used in animal feed, food storage and cosmetics.
Collapse
Affiliation(s)
- Wenwen Tang
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Tongren Polytechnic College, Tongren, China
| | - Yuan Chen
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
46
|
Savko AI, Ilyich TV, Veiko AG, Kovalenia TA, Lapshina EA, Zavodnik IB. The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes. BIOMEDITSINSKAIA KHIMIIA 2023; 69:281-289. [PMID: 37937430 DOI: 10.18097/pbmc20236905281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Flavonoids, secondary plant metabolites, represent the most abundant heterogeneous group of phytochemicals. The aim of this study to compare antioxidant activity and regulatory properties of several representatives of different classes of flavonoids, fisetin, apigenin, kaempferol, naringenin, naringin, using liver mitochondria and erythrocytes as research objects. In the concentration range of 2.5-25 μM fisetin, apigenin, kaempferol, naringenin, and naringin dose-dependently prevented oxidative damage of erythrocytes induced by 700 μM tert-butyl hydroperoxide: accumulation of lipid peroxidation (LPO) products and oxidation of glutathione GSH. The IC50 values corresponding to the flavonoid concentration inhibiting the LPO process in erythrocyte membranes by 50%, were 3.9±0.8 μM in the case of fisetin, 6.5±1.6 μM in the case of kaempferol, 8.1±2.1 μM in the case of apigenin, 37.8±4.4 μM in the case of naringenin, and 64.7±8.6 μM in the case of naringin. The antioxidant effect of flavonoids was significantly higher in the membrane structures compared to the cytoplasm of cells. All flavonoids studied (10-50 μM) effectively inhibited the respiratory activity of isolated rat liver mitochondria and, with the exception of kaempferol, stimulated Ca²⁺-induced dissipation of the mitochondrial membrane potential. Cyclosporine A and ruthenium red inhibited flavonoid-stimulated Ca²⁺-dependent membrane depolarization, thus indicating that the mitochondrial calcium uniporter and the mitochondrial permeability transition pore opening were involved in the flavonoid effects. Flavonoids, as the redox-active compounds with antioxidant properties, are able to regulate mitochondrial potential and respiratory activity, and prevent mitochondrial oxidative stress. They can be considered as effective pharmacological agents or nutraceuticals.
Collapse
Affiliation(s)
- A I Savko
- Yanka Kupala State University of Grodno, Grodno, Belarus
| | - T V Ilyich
- Yanka Kupala State University of Grodno, Grodno, Belarus
| | - A G Veiko
- Yanka Kupala State University of Grodno, Grodno, Belarus
| | - T A Kovalenia
- Yanka Kupala State University of Grodno, Grodno, Belarus
| | - E A Lapshina
- Yanka Kupala State University of Grodno, Grodno, Belarus
| | - I B Zavodnik
- Yanka Kupala State University of Grodno, Grodno, Belarus
| |
Collapse
|
47
|
Yang Y, Zhang Y, Gu D, Liu C, Wang Y, Tang S, Yin Y, Tian J. Fermentation of Robinia pseudoacacia flower for improving the antioxidation: optimized conditions, active composition, mechanism, and biotransformation process. Prep Biochem Biotechnol 2023; 53:1224-1236. [PMID: 36880129 DOI: 10.1080/10826068.2023.2185637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Robinia pseudoacacia flower is a natural product with many biological activities, including antioxidation. To further develop its antioxidation, the extract was fermented by Aspergillus niger FFCC 3112 in the medium with carbon to nitrogen ratio of 1.4:1 and initial pH of 4.2 for 3.5 days to form the best antioxidant activity of the fermentation product by strain screening, single factor optimization, and response surface methodology. Further analysis, isolation and activity determination showed that a main chemical component, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranosyl-7-O-α-L-rhamnopyranoside, in the extract was completely hydrolyzed to kaempferol-7-O-α-L-rhamnopyranoside and kaempferol with better antioxidant activity through biotransformation, which was the basis for improving the antioxidant activity of fermentation products. Moreover, the mechanism of antioxidant and the contribution of phenolic hydroxyl groups were investigated by density functional theory. The result indicated that the antioxidant capacity of kaempferol-7-O-α-L-rhamnopyranoside and kaempferol increased with the increase of solvent polarity. In high-polarity solvents, they mainly scavenge free radicals through single electron transfer followed by proton transfer.
Collapse
Affiliation(s)
- Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yunci Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Yuxin Yin
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
48
|
Zhang W, Sun J, Li Q, Liu C, Niu F, Yue R, Zhang Y, Zhu H, Ma C, Deng S. Free Radical-Mediated Grafting of Natural Polysaccharides Such as Chitosan, Starch, Inulin, and Pectin with Some Polyphenols: Synthesis, Structural Characterization, Bioactivities, and Applications-A Review. Foods 2023; 12:3688. [PMID: 37835341 PMCID: PMC10572827 DOI: 10.3390/foods12193688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols and polysaccharides are very important natural products with special physicochemical properties and extensive biological activities. Recently, polyphenol-polysaccharide conjugates have been synthesized to overcome the limitations of polysaccharides and broaden their application range. Grafted copolymers are produced through chemical coupling, enzyme-mediated, and free radical-mediated methods, among which the free radical-induced grafting reaction is the most cost-effective, ecofriendly, safe, and plausible approach. Here, we review the grafting reactions of polysaccharides mediated by free radicals with various bioactive polyphenols, such as gallic acid (GA), ferulic acid (FA), and catechins. A detailed introduction of the methods and their mechanisms for free radical-mediated grafting is given. Structural characterization methods of the graft products, including thin-layer chromatography (TLC), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) analysis, and X-ray diffraction (XRD) are introduced. Furthermore, the biological properties of polyphenol-polysaccharide conjugates are also presented, including antioxidant, antibacterial, antidiabetic, and neuroprotection activities, etc. Moreover, the potential applications of polyphenol-polysaccharide conjugates are described. Finally, the challenges and research prospects of graft products are summarized.
Collapse
Affiliation(s)
- Wenting Zhang
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Chanmin Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Yi Zhang
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Chen Ma
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Shaoying Deng
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| |
Collapse
|
49
|
Boulebd H, Spiegel M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Adv 2023; 13:29463-29476. [PMID: 37818267 PMCID: PMC10561184 DOI: 10.1039/d3ra05967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Alkylresorcinols are a group of natural phenolic compounds found in various foods such as whole grain cereals, bread, and certain fruits. They are known for their beneficial health effects, such as anti-inflammatory and anti-cancer properties. This study aimed to evaluate the antioxidant activity of two typical alkylresorcinols namely olivetol and olivetolic acid (Oli and OliA) under physiological conditions. The free radical scavenging capacity of Oli and OliA toward oxygenated free radicals (HO˙ and HOO˙ radicals) was investigated using thermodynamic and kinetic calculations. The results revealed that Oli and OliA are potent scavengers of HO˙ radical in both polar and lipid media, acting exclusively via the FHT (formal hydrogen transfer) mechanism. Moreover, they demonstrated excellent scavenging activity toward HOO˙ radical in water via the SET (single electron transfer) mechanism, outperforming the common antioxidant BHT. In lipid media, Oli and OliA showed moderate scavenging activity toward HOO˙ radical via the FHT mechanism. Significant prooxidant potential of OliA- was also demonstrated through the formation of complexes with copper ions. Additionally, docking studies indicate that the compounds exhibited a good affinity for ROS-producing enzymes, including myeloperoxidase (MP), cytochrome P450 (CP450), lipoxygenase (LOX), and xanthine oxidase (XO), highlighting their potential as natural antioxidants with promising therapeutic applications.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1 Constantine 25000 Algeria
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| |
Collapse
|
50
|
Mazumdar P, Jalaluddin NSM, Nair I, Tian Tian T, Rejab NAB, Harikrishna JA. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2503-2516. [PMID: 37599849 PMCID: PMC10439074 DOI: 10.1007/s13197-022-05516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 08/22/2023]
Abstract
Hydrocotyle bonariensis is an edible herb, that is also used for traditional medical purposes. It is high in antioxidants, phenols, and flavonoids. However, there is limited information on the nutritional composition and the mechanisms by which nutritional and functional constituents of H. bonariensis affect human metabolism. With an aim to identify gaps in evidence to support the mainstream use of H. bonariensis for health and as a functional food, this review summarises current knowledge of the taxonomy, habitat characteristics, nutritional value and health-related benefits of H. bonariensis and its extracts. Ethno-medical practices for the plant are supported by pharmacological studies, yet animal model studies, clinical trials and food safety assessments are needed to support the promotion of H. bonariensis and its derivatives as superfoods and for use in the modern pharmaceutical industry.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Indiran Nair
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Tian Tian
- Green World Genetics Sdn. Bhd, 52200 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Binti Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|