1
|
Rehman SU, Xu S, Li Z, Tao T, Zhang J, Xia H, Xu H, Ma K, Wang J. Hierarchical-Bioinspired MOFs Enhanced Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306466. [PMID: 37775327 DOI: 10.1002/smll.202306466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Proteins exhibit complex and diverse multi-dimensional structures, along with a wide range of functional groups capable of binding metal ions. By harnessing the unique characteristics of proteins, it is possible to enhance the synthesis of metal-organic frameworks (MOFs) and modify their morphology. Here, the utilization of biomineralized bovine serum albumin (BSA) protein as a template for synthesizing Mil-100 with superior microwave absorption (MA) properties is investigated. The multi-dimensional structure and abundant functional groups of biomineralized BSA protein make it an ideal candidate for guiding the synthesis of Mil-100 with intricate network structures. The BSA@Mil-100 synthesized using this method exhibits exceptional uniformity and monodispersity of nanocrystals. The findings suggest that the BSA protein template significantly influences the regulation of nanocrystal and microstructure formation of Mil-100, resulting in a highly uniform and monodisperse structure. Notably, the synthesized 2-BSA@Mil-100 demonstrates a high reflection loss value of -58 dB at 8.85 GHz, along with a maximum effective absorption bandwidth value of 6.79 GHz, spanning from 6.01 to 12.8 GHz. Overall, this study highlights the potential of utilizing BSA protein as a template for MOF synthesis, offering an effective strategy for the design and development of high-performance MA materials.
Collapse
Affiliation(s)
- Sajid Ur Rehman
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuai Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Zehua Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Science Island Branch, Graduate School of USTC, Hefei, Anhui, 230026, P. R. China
| | - Tongxiang Tao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Science Island Branch, Graduate School of USTC, Hefei, Anhui, 230026, P. R. China
| | - Jing Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Science Island Branch, Graduate School of USTC, Hefei, Anhui, 230026, P. R. China
| | - Haining Xia
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Science Island Branch, Graduate School of USTC, Hefei, Anhui, 230026, P. R. China
| | - Hunagtao Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Kun Ma
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Science Island Branch, Graduate School of USTC, Hefei, Anhui, 230026, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
2
|
Liu J, Peng W, Yu F, Shen Y, Yu W, Lu Y, Lin W, Zhou M, Huang Z, Luo X, You W, Ke C. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evol Appl 2022; 15:992-1001. [PMID: 35782008 PMCID: PMC9234619 DOI: 10.1111/eva.13388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/02/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is one of the world's fastest-growing and most traded food industries, but it is under the threat of climate-related risks represented by global warming, marine heatwave (MHW) events, ocean acidification, and deoxygenation. For the sustainable development of aquaculture, selective breeding may be a viable method to obtain aquatic economic species with greater tolerance to environmental stressors. In this study, we estimated the heritability of heat tolerance trait of Pacific abalone Haliotis discus hannai, performed genome-wide association studies (GWAS) analysis for heat tolerance to detect single nucleotide polymorphisms (SNPs) and candidate genes, and assessed the potential of genomic selection (GS) in the breeding of abalone industry. A total of 1120 individuals were phenotyped for their heat tolerance and genotyped with 64,788 quality-controlled SNPs. The heritability of heat tolerance was moderate (0.35-0.42) and the predictive accuracy estimated using BayesB (0.55 ± 0.05) was higher than that using GBLUP (0.40 ± 0.01). A total of 11 genome-wide significant SNPs and 2 suggestive SNPs were associated with heat tolerance of abalone, and 13 candidate genes were identified, including got2,znfx1,l(2)efl, and lrp5. Based on GWAS results, the prediction accuracy using the top 5K SNPs was higher than that using randomly selected SNPs and higher than that using all SNPs. These results suggest that GS is an efficient approach for improving the heat tolerance of abalone and pave the way for abalone selecting breeding programs in rapidly changing oceans.
Collapse
Affiliation(s)
- Junyu Liu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Feng Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yawei Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yisha Lu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weihong Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Muzhi Zhou
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Zekun Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Xuan Luo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weiwei You
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| |
Collapse
|
3
|
Wang CY, Zhao Q, Song SY, Zhang MQ, Li X, Liu Y. High-performance liquid chromatography fingerprint of marine traditional chinese medicine haliotidis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_71_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Anti-Allergic Effect of Low Molecular Weight Digest from Abalone Viscera on Atopic Dermatitis-Induced NC/Nga. Mar Drugs 2021; 19:md19110634. [PMID: 34822505 PMCID: PMC8618959 DOI: 10.3390/md19110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Abalone viscera (AV) is one of the byproducts of the seafood processing industry. The low molecular weight (<5 kDa) peptides (LMW-AV) obtained from gastrointestinal digestion of AV could suppress allergenic responses on activated HMC-1 human mast cells in our previous study. Regarding the allergenic response of LMW-AV, in the present study, we further investigated the potential of oral administration of LMW-AV against atopic dermatitis (AD) in a dermatitis-induced model stimulated with Dermatophagoides farinae. The results demonstrated that the LMW-AV reduced a number of clinical symptoms, such as the severity of the dermatitis and serum immunoglobulin E levels. Moreover, LMW-AV could inhibit the expression of chemokines and cytokines. The histological analysis indicated that the LMW-AV has suppressed the eosinophil count and the mast cell infiltration into the upper dermis. The results suggest that LMW-AV can be considered as a promising candidate for AD treatment.
Collapse
|
5
|
Zhai L, Xu X, Liu J, Jing C, Yang X, Zhao D, Jiang R, Sun LW. A Novel Biochemical Study of Anti-Dermal Fibroblast Replicative Senescence Potential of Panax Notoginseng Oligosaccharides. Front Pharmacol 2021; 12:690538. [PMID: 34276377 PMCID: PMC8277921 DOI: 10.3389/fphar.2021.690538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dermal fibroblast replicative senescence that often occurs in aging skin is characterized by loss of cell proliferative capacity, cell cycle arrest, decreased cell elongation, and decreased synthesis of dermal extracellular matrix (ECM) components. Although Panax notoginseng is known for its effectiveness in alleviating many age-related degenerative diseases, few studies have evaluated P. notoginseng components for efficacy or mechanisms of action in delaying cell replicative senescence. In this study, P. notoginseng oligosaccharides (PNO) were isolated using a stepwise purification procedure involving water extraction and alcohol precipitation followed by DEAE Sepharose Fast Flow column chromatography, preparative high performance liquid chromatography, and size-exclusion chromatography. Monosaccharides detected in PNO constituents included mannose, galactose, and sorbitose in relative molar proportions of 14.2:12.3:1, respectively, aligning with PNO absorption spectrum results resembling typical known spectra for sugars. In vitro, PNO treatment of replicative senescent NIH-3T3 fibroblasts significantly promoted cell vitality, inhibited SA-β-galactosidase (SA-β-Gal) activity, and reduced p16 and p21 protein-level expression. Moreover, PNO treatment of senescent fibroblasts led to a lower proportion of G1 phase cells and higher proportion of S phase cells, while also inducing aging NIH-3T3 cells to migrate and synthesize collagen-I (CoL-I). Mechanistically, PNO treatment up-regulated expression of proliferating cell nuclear antigen (PCNA), cyclin E, cyclin D1, and cyclin-dependent kinase 4 (CDK4) proteins and promoted phosphorylation of MEK, p38, and ERK1/2 to trigger cell cycle progression. Additionally, PNO treatment also up-regulated protein-level expression of TGF-β1 and levels of p-Smad2/3, p-FAK, and p-Pax to trigger CoL-I synthesis and cell migration. Taken together, these findings demonstrate that oligosaccharides purified from P. notoginseng could reverse fibroblast replicative senescence by promoting fibroblast cell proliferation, migration, and CoL-I production.
Collapse
Affiliation(s)
- Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jiangzeng Liu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xinzhao Yang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Li-Wei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
7
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
8
|
Chen J, Liang P, Xiao Z, Chen MF, Gong F, Li C, Zhou C, Hong P, Jung WK, Qian ZJ. Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells. Food Nutr Res 2019; 63:3508. [PMID: 31762729 PMCID: PMC6852330 DOI: 10.29219/fnr.v63.3508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 01/29/2023] Open
Abstract
Introduction A previous study has shown that Ala-Thr-Pro-Gly-Asp-Glu-Gly (ATPGDEG) peptide identified from boiled abalone by-products has high antioxidant activities and antihypertensive effect. Objective In this study, we further investigated its antiphotoaging activities by ultraviolet B (UVB)-induced HaCaT cells. Result UVB irradiation significantly increased the content of intercellular reactive oxygen species (ROS) and the production of matrix metalloproteinases (MMPs) in HaCaT cells and decreased its content of collagen. First, the generation of intercellular ROS was reduced by abalone peptide in UVB-induced HaCaT cells. And activities of MMP-1 and MMP-9 were reduced by abalone peptide in a dose-dependent manner. Furthermore, western blot analysis demonstrated that abalone peptide downregulated the expression of p38, c-Jun N-terminal kinases, and extracellular signal-regulated kinases via mitogen-activated protein kinases (MAPKs) and NF-κB signaling to protect type I pro collagen and DNA damage. Molecular docking simulation confirms that abalone peptide inhibited activities of MMP-1 and MMP-9 by docking their active site, among them N-terminal Ala, C-terminal Gly, and Pro at the third position of N-terminal made a great contribution. Conclusion and recommendation Abalone peptide could protect type I procollagen synthesis in UVB-irradiated HaCaT cells, and it is a potential peptide for the treatment of skin photoaging in the future.
Collapse
Affiliation(s)
- Jiali Chen
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Peng Liang
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Zhenbang Xiao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Mei-Fang Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Fang Gong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Chengyong Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China.,Shenzhen Institute, Guangdong Ocean University, Shenzhen, P. R. China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Zhong-Ji Qian
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, P. R. China.,Shenzhen Institute, Guangdong Ocean University, Shenzhen, P. R. China
| |
Collapse
|
9
|
Kim TH, Heo SJ, Ko SC, Park WS, Choi IW, Yi M, Jung WK. Indole‑6‑carboxaldehyde isolated from Sargassum thunbergii inhibits the expression and secretion of matrix metalloproteinase‑9. Int J Mol Med 2019; 44:1979-1987. [PMID: 31432146 DOI: 10.3892/ijmm.2019.4319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Sargassum thunbergii is a brown alga from which various bioactive compounds can be extracted. Among these, the activities of indole derivatives, particularly as potential inhibitors of matrix metalloproteinases (MMPs), and their underlying mechanisms have been rarely investigated. Therefore, we evaluated the inhibitory effects of indole‑6‑carboxaldehyde (I6CA) on MMP‑9 by gelatin zymography and western blot anlaysis. We used phorbol 12‑myristate 13‑acetate (PMA), which is known to induce MMP‑9 expression and secretion, to stimulate HT1080 cells. Our results revealed that I6CA significantly inhibited MMP‑9 expression and secretion, without significantly affecting the viability of PMA‑stimulated HT1080 cells. Our mechanistic studies indicated that I6CA suppressed the phosphorylation and activation of two mitogen‑activated protein kinases (MAPKs), c‑Jun N‑terminal kinase (JNK) and extracellular signal‑regulated kinase 1/2 (ERK). Furthermore, I6CA inhibited the phosphorylation of inhibitor of κBα (IκBα) in response to PMA stimulation, which suppressed nuclear factor‑κB (NF‑κB) p65 subunit nuclear translocation. Collectively, I6CA was determined to suppress MMP‑9 expression and secretion, and effects were proposed to be mediated via the inhibition of the MAPK and NF‑κB p65 pathways. Therefore, we suggested I6CA to be a potential therapeutic agent for MMP‑9‑related processes, including tumor invasion and metastasis; however, further investigation is required.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering, and Center for Marine‑Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology, Jeju 63349, Republic of Korea
| | - Seok-Chun Ko
- National Marine Bio‑Resources and Information Center, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam 33662, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, and Center for Marine‑Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine‑Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Lyu Y, Xiao Q, Yin L, Yang L, He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduct Target Ther 2019; 4:26. [PMID: 31637006 PMCID: PMC6799847 DOI: 10.1038/s41392-019-0054-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022] Open
Abstract
Metastasis is a major cause of chemotherapeutic failure and death. Degradation of a specific component of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) affects the physical barrier of the tumor microenvironment (TME) and induces metastasis. Here, lysolipid-containing thermosensitive liposomes (LTSLs) were prepared to deliver an MMP inhibitor, marimastat (MATT), to the TME to inhibit MMP activity and expression. LTSLs rapidly released their payloads at 42 °C. Compared with the saline control, MATT-LTSLs exhibited enhanced accumulation in the tumor and a 20-fold decrease in tumor growth in 4T1 tumor-bearing mice; moreover, MATT-LTSLs reduced MMP-2 and MMP-9 activity by 50% and 43%, respectively, and downregulated MMP-2 and MMP-9 expression in vivo by 30% and 43%, respectively. Most importantly, MATT-LTSL treatment caused a 7-fold decrease in metastatic lung nodules and a 6-fold reduction in microvessels inside the tumor. We believe this study provides an effective approach for the suppression of metastasis, and the use of a cytotoxic agent in combination with MATT is a potential strategy for metastatic cancer treatment.
Collapse
Affiliation(s)
- Yaqi Lyu
- School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Lifang Yin
- School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Lei Yang
- School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, China
- Shanghai Dermatology Hospital, 200443 Shanghai, China
| |
Collapse
|
11
|
Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicilliumpolonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02358-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Effects of rambutan (Nephelium lappaceum) peel phenolics and Leu-Ser-Gly-Tyr-Gly-Pro on hairless mice skin photoaging induced by ultraviolet irradiation. Food Chem Toxicol 2019; 129:30-37. [PMID: 31009737 DOI: 10.1016/j.fct.2019.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Rambutan peel phenolics (RPP) have high antioxidant and anti-inflammatory activities. Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) possesses good radical scavenging activity and matrix metalloproteinase (MMPs) inhibitory ability. These underlying mechanisms indicated that RPP and LSGYGP may be used for antiphotoaging. Few data on the effects of RPP and LSGYGP on in vivo photoaging are available. We evaluated the effects of RPP and/or LSGYGP on ultraviolet (UV)-induced hairless mice skin photoaging. In particular, we analyzed the additive effect of RPP and LSGYGP. The biochemical indices of mice skin, including composition (collagen and hyaluronic acid [HA] contents), oxidant stress (antioxidant enzyme activities and glutathione and malondialdehyde contents), MMPs (MMP-1, MMP-3, and MMP-9 levels), inflammatory cytokines (interleukin (IL)-1α, tumor nuclear factor-α, and IL-6 levels) and the phosphorylation of the mitogen-activated protein kinase pathway, were determined. Results showed a protective effect of RPP and/or LSGYGP on photoaging skin. LSGYGP showed considerable effects on skin collagen and HA contents. RPP showed improved effects on the regulation of the oxidant stress and inflammatory cytokine levels. RPP and LSGYGP exerted an additive effect on the amelioration of the biochemical indices of UV-induced photoaging skin. The histological changes showed that RPP and LSGYGP recovered the changes in skin tissue and endogenous collagen.
Collapse
|
13
|
Xiao Q, Zhu X, Yuan Y, Yin L, He W. A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2678-2688. [PMID: 30003972 DOI: 10.1016/j.nano.2018.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Treatment of metastatic cancer continues to be a huge challenge worldwide. Notably, drug nanocrystals (Ns) in nanosuspensions clearly belong to a type of nanoparticle. Therefore, a question arose as to whether these drug particles can also be applied as carriers for drug delivery. Here, we design a novel paclitaxel (PTX) nanocrystal stabilized with complexes of matrix metalloproteinase (MMP)-sensitive β-casein/marimastat (MATT) for co-delivering MATT and PTX and combined therapy of metastatic breast cancer. The prepared Ns (200 nm) with a drug-loading of >50% were potent in treatment of metastatic cancer, which markedly inhibited MMP expression and activity and greatly blocked the lung metastasis and angiogenesis. In conclusion, employing protein-drug complexes as stabilizers, Ns with dual payloads are developed and are a promising strategy for co-delivery. Furthermore, the developed Ns can target the tumor microenvironment and cancer cells and, as a result, enable efficient treatment for breast metastatic cancer.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Xiao Zhu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yuting Yuan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
14
|
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity. Nutrients 2018; 10:nu10040420. [PMID: 29597313 PMCID: PMC5946205 DOI: 10.3390/nu10040420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Qiuming Liu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
15
|
Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, Zhang L, Qin C, Han X, Yang L, He W, Yin L. Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells. ACS NANO 2018; 12:1519-1536. [PMID: 29350904 DOI: 10.1021/acsnano.7b08051] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity via inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-β1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA-hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy.
Collapse
Affiliation(s)
- Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Chaoran Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Xiangmei Zhao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Chenshi Lin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Xin Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Xiaofei Xin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Li Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Lei Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P.R. China
| |
Collapse
|
16
|
Liping S, Qiuming L, Jian F, Xiao L, Yongliang Z. Purification and Characterization of Peptides Inhibiting MMP-1 Activity with C Terminate of Gly-Leu from Simulated Gastrointestinal Digestion Hydrolysates of Tilapia (Oreochromis niloticus) Skin Gelatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:593-601. [PMID: 29272917 DOI: 10.1021/acs.jafc.7b04196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tilapia skin gelatin hydrolysates (TSGHs) were prepared by simulated gastrointestinal digestion and separated by gel filtration and semi-preparative reversed-phase high-performance liquid chromatography. The anti-photoaging effects were evaluated using an ultraviolet radiation B (UVB)-induced mouse embryonic fibroblast (MEF) photoaging model in vitro. Three fractions from TSGHs with high inhibitory intercellular matrix metalloproteinase-1 (MMP-1) activities and reactive oxygen species (ROS) production were obtained. Three key peptides, GYTGL, LGATGL, and VLGL, were identified, and their C terminate was Gly-Leu. Three peptides were synthesized and exhibited a significant inhibition of intercellular MMP-1 activity and ROS production. Furthermore, three peptides inhibiting MMP-1 activities were evaluated through their docking of S1' and S3' active pockets of MMP-1. Hydrogen bonds and C terminate Gly-Leu played important roles. Finally, the protective effects of three peptides on intercellular collagen in UVB-induced MEFs were compared. Our results indicated that tilapia gelatin peptides exhibited potential activities to prevent and regulate photoaging.
Collapse
Affiliation(s)
- Sun Liping
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Liu Qiuming
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Fan Jian
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Li Xiao
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuang Yongliang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
17
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
18
|
Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017; 22:E1037. [PMID: 28644406 PMCID: PMC6152364 DOI: 10.3390/molecules22071037] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Jose Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Galiano
- Physics and Computer Architecture Department, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain (CB12/03/30038).
| |
Collapse
|
19
|
Heo SY, Ko SC, Kim CS, Oh GW, Ryu B, Qian ZJ, Kim G, Park WS, Choi IW, Phan TTV, Heo SJ, Kang DH, Yi M, Jung WK. A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme- and angiotensin II-induced vascular dysfunction in human endothelial cells. Int J Mol Med 2017; 39:1072-1082. [PMID: 28393188 PMCID: PMC5403476 DOI: 10.3892/ijmm.2017.2941] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
In this study, a marine microalga Spirulina sp.-derived protein was hydrolyzed using gastrointestinal enzymes to produce an angiotensin I (Ang I)-converting enzyme (ACE) inhibitory peptide. Following consecutive purification, the potent ACE inhibitory peptide was composed of 7 amino acids, Thr-Met-Glu-Pro-Gly-Lys-Pro (molecular weight, 759 Da). Analysis using the Lineweaver-Burk plot and molecular modeling suggested that the purified peptide acted as a mixed non-competitive inhibitor of ACE. The inhibitory effects of the peptide against the cellular production of vascular dysfunction-related factors induced by Ang II were also investigated. In human endothelial cells, the Ang II-induced production of nitric oxide and reactive oxygen species was inhibited, and the expression of inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) was downregulated when the cells were cultured with the purified peptide. Moreover, the peptide blocked the activation of p38 mitogen-activated protein kinase. These results indicated that this Spirulina sp.-derived peptide warrants further investigation as a potential pharmacological inhibitor of ACE and vascular dysfunction.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Seok-Chun Ko
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Republic of Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Bomi Ryu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhong-Ji Qian
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Geunhyung Kim
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Thi Tuong Vy Phan
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Do-Hyung Kang
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
20
|
Gentile E, Liuzzi GM. Marine pharmacology: therapeutic targeting of matrix metalloproteinases in neuroinflammation. Drug Discov Today 2016; 22:299-313. [PMID: 27697495 DOI: 10.1016/j.drudis.2016.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/18/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
Abstract
Alterations in matrix metalloproteinase (MMP) expression and activity are recognized as key pathogenetic events in several neurological disorders. This evidence makes MMPs possible therapeutic targets. The search for substances that can inhibit MMPs is moving progressively toward the screening of natural products. In particular, marine bioprospecting could be promising for the discovery of marine natural products with anti-MMP activities. Despite recent advances in this field, the possibility of using marine MMP inhibitors (MMPIs) for the treatment of neuroinflammation is still under-investigated. Here, we review the latest findings in this promising research field and the potential that marine MMPIs can have in the management and treatment of various neurological diseases.
Collapse
Affiliation(s)
- Eugenia Gentile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Grazia M Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
21
|
Ko SC, Lee DS, Park WS, Yoo JS, Yim MJ, Qian ZJ, Lee CM, Oh J, Jung WK, Choi IW. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells. Int J Mol Med 2015; 37:243-50. [PMID: 26718326 DOI: 10.3892/ijmm.2015.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Dae-Sung Lee
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Jong Su Yoo
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Mi-Jin Yim
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Zhong-Ji Qian
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine Box G-L, Providence, RI, USA
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Il-Whan Choi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
22
|
Min EY, Cha YJ, Kang JC. Effects of waterborne nickel on the physiological and immunological parameters of the Pacific abalone Haliotis discus hannai during thermal stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13546-55. [PMID: 25943513 PMCID: PMC4550641 DOI: 10.1007/s11356-015-4597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/23/2015] [Indexed: 05/30/2023]
Abstract
In this study, the 96-h LC50 at 22 and 26 °C values was 28.591 and 11.761 mg/L, respectively, for NiCl2 exposure in the abalone. The alteration of physiological and immune-toxicological parameters such as the total hemocyte count (THC), lysozyme, phenoloxidase (PO), and phagocytosis activity was measured in the abalone exposed to nickel (200 and 400 μg/L) under thermal stress for 96 h. In this study, Mg and THC decreased, while Ca, lysozyme, PO, and phagocytosis activity increased in the hemolymph of Pacific abalone exposed to NiCl2 when compared to a control at both 22 and 26 °C. However, these parameters were not affected by a rise in temperature from 22 to 26 °C in non-exposed groups. Our results showed that NiCl2 below 400 μg/L was able to stimulate immune responses in abalone. However, complex stressors, thermal changes, or NiCl2 can modify the immunological response and lead to changes in the physiology of host-pollutant interactions in the abalone.
Collapse
Affiliation(s)
- Eun Young Min
- />Institute of Fisheries Science, Pukyong National University, Busan, 619-911 Korea
| | - Yong-Joo Cha
- />Departments of Aquatic Life Medicine, Pukyong National University, Busan, 608-737 Korea
| | - Ju-Chan Kang
- />Departments of Aquatic Life Medicine, Pukyong National University, Busan, 608-737 Korea
| |
Collapse
|
23
|
Park K, Lee JS, Kang JC, Kim JW, Kwak IS. Cascading effects from survival to physiological activities, and gene expression of heat shock protein 90 on the abalone Haliotis discus hannai responding to continuous thermal stress. FISH & SHELLFISH IMMUNOLOGY 2015; 42:233-240. [PMID: 25449369 DOI: 10.1016/j.fsi.2014.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Increasing temperatures can be a significant stressor for aquatic organisms. Abalones, a type of large marine gastropods, are the most commercially important species in aquaculture for Asia. To evaluate the potential ecological risk posed by temperature stress, we measured biological responses such as survival rate, adhesion ability (falling rate), and foot abnormalities in the abalone Haliotis discus hannai. Additionally, biochemical and molecular responses were evaluated in H. discus hannai exposed to various temperature gradients. The survival rate was reduced in abalones exposed to relative high temperatures (more than 26 °C). Increased temperature stress induced a higher falling rate and abnormal foot structure. Furthermore, increased antioxidant enzyme activities were observed in abalones exposed to relative high temperatures (26 and 28 °C). The activities of superoxide dismutase were induced in a time-dependent manner after high temperature stress. Generally, heat shock protein 90 also increased significantly in H. discus hannai exposed to temperature gradients (more than 24 °C) for 12 h. These results provide valuable information regarding stress responses to increased temperatures, in H. discus hannai: adverse biological and molecular outcomes could be utilized as risk assessments and stress monitoring of marine ecosystems under increased water temperatures.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jae Won Kim
- Department of Marine Life Science and Aquaculture, Gangwon Provincial College, Gangneung 210-804, Republic of Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, Republic of Korea.
| |
Collapse
|
24
|
Stonik VA, Fedorov SN. Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 2014; 12:636-71. [PMID: 24473167 PMCID: PMC3944507 DOI: 10.3390/md12020636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Due to taxonomic positions and special living environments, marine organisms produce secondary metabolites that possess unique structures and biological activities. This review is devoted to recently isolated and/or earlier described marine compounds with potential or established cancer preventive activities, their biological sources, molecular mechanisms of their action, and their associations with human health and nutrition. The review covers literature published in 2003–2013 years and focuses on findings of the last 2 years.
Collapse
Affiliation(s)
- Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| | - Sergey N Fedorov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| |
Collapse
|