1
|
Zhang S, Wu Y, Ren Y, Xu Y, An H, Zhao Q, Wang Y, Li H. Widely metabolomic combined with transcriptome analysis to build a bioactive compound regulatory network for the fruit growth cycle in Pseudocydonia sinensis. Food Chem 2024; 456:139933. [PMID: 38852462 DOI: 10.1016/j.foodchem.2024.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Neglected and underutilised plants such as Pseudocydonia sinensis (Chinese quince) have garnered global interest as invaluable sources of natural bioactive compounds. Herein, a wide-targeted metabolomics-based approach revealed 1199 concurrent metabolites, with further analysis of their fluctuations across with the five stages of fruit growth. The bioactive compounds in Chinese quince primarily comprised sugars and organic acids, flavonoids, and terpenoids. Moreover, 395 metabolites were identified as having medicinal properties and rutin was the most content of them. Transcriptome analysis further provided a molecular basis for the metabolic changes observed during fruit development. By thoroughly analysing metabolite and transcriptome data, we revealed changes in bioactive compounds and related genes throughout fruit development. This study has yielded valuable insights into the ripening process of Chinese quince fruit, presenting substantial implications for industrial applications, particularly in quality control.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yang Wu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yaping Xu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Hong An
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yu Wang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Houhua Li
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Turkiewicz IP, Tkacz K, Nowicka P, Wojdyło A. Investigating in vitro anticholinergic potential (anti-AChE and anti-BuChE) of Chaenomeles leaves extracts and its phytochemicals including chlorophylls, carotenoids and minerals. Sci Rep 2024; 14:23132. [PMID: 39367071 PMCID: PMC11452384 DOI: 10.1038/s41598-024-73595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The goal of this work was to evaluate the chemical constitution and health-promoting potential of 12 varieties of Chaenomeles × superba, speciosa and japonica leaves. Carotenoids, chlorophylls, triterpenes, sugars, polyols and acids were analyzed quantitatively and qualitatively using high pressure liquid chromatography (LC) coupled with mass spectrometry (MS), while the mineral profile was determined using atomic absorption spectroscopy (AAS). Moreover, the in vitro anticholinergic potential (inhibition of acetyl-cholinesterase (AChE) and butyryl-cholinesterase (BuChE)) and antioxidant (ABTS, FRAP, ORAC) capacity were evaluated. For the first time in Chaenomeles genotypes 26 carotenoid derivatives and 22 chlorophyll derivatives were identified. Some varieties contained high amounts of carotenoids and chlorophylls (Ch. × superba 'Colour Trail', 'Nicoline', 'Pink Lady', 'Texas Scarlet'), and triterpenes (Ch. speciosa 'Simonii', 'Rubra', and Ch. × superba 'Colour Trail', 'Nicoline') and showed high ORAC antioxidant (Ch. × superba 'Pink Lady' and Ch. speciosa 'Simonii') and anticholinergic (Ch. speciosa species) activity. The studied leaves also contained sugars (3.1 to 16.5 mg/100 g), organic acids (3.9-8.1 g/100 g), and minerals (Ca, Cu, Fe, K, Mg, Mn, Na, and Zn). In conclusion, Chaenomeles leaves show potential as a new source for the production of nutraceuticals, as well as for medical and/or cosmetic purposes.
Collapse
Affiliation(s)
- Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland.
| |
Collapse
|
3
|
Li Z, Zhang XY, Ma YL, Wu QL, Guo X, Wu ZF, Shang YF, Yang SH, Niu XL, Wei ZJ. In vitro digestion and antioxidant activity of Xuan-Mugua ( Chaenomeles fruit) peel and pulp phenolics. Heliyon 2024; 10:e37549. [PMID: 39309929 PMCID: PMC11416296 DOI: 10.1016/j.heliyon.2024.e37549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Since time immortal, people have used the well-known Chinese Chaenomeles fruit Xuan-Mugua for both traditional medicine and nourishment. With an aim to explore the digestive and antioxidant properties of the phenolics, Xuan-Mugua peel and pulp were extracted, digested and analyzed in vitro. Our results indicated that the total phenolics content (TPC), total flavonoids content (TFC) and the antioxidant activity of the peel were 3.24-8.89 times higher than that of pulp. The contents and activity of the peel and pulp consistently dropped in the sequence of oral, gastric, and small intestine digestions, from 22.78 % to 52.16 %. With a level of 1.590 ± 0.060 and 0.395 ± 0.015 mg g-1 dried weight in the peel and pulp, respectively, chlorogenic acid was the primary phenolic ingredient in Xuan-Mugua, with a promising recovery (81.39-82.23 %) during the digestion. According to these results, Xuan-Mugua exhibited an appreciable level of phenolic content and antioxidant activity during digestion, making it a suitable ingredient for use in functional foods.
Collapse
Affiliation(s)
- Zhi Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xu-Yang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| | - Qian-Lan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng-Fang Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| | - Shao-Hua Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiang-Li Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| |
Collapse
|
4
|
Yu A, Hu W, Bi H, Fu L, Wang Z, Wang M, Kuang H. Recent Advances in Polysaccharides from Chaenomeles speciosa (Sweet) Nakai.: Extraction, Purification, Structural Characteristics, Health Benefits, and Applications. Molecules 2024; 29:2984. [PMID: 38998935 PMCID: PMC11242938 DOI: 10.3390/molecules29132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024] Open
Abstract
This article systematically reviews the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150400, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150400, China
| |
Collapse
|
5
|
Hou M, Lin C, Ma Y, Shi J, Liu J, Zhu L, Bian Z. One-step enrichment of phenolics from Chaenomeles speciosa (Sweet) Nakai fruit using macroporous resin: Adsorption/desorption characteristics, process optimization and UPLC-QqQ-MS/MS-based quantification. Food Chem 2024; 439:138085. [PMID: 38039612 DOI: 10.1016/j.foodchem.2023.138085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Chaenomeles speciosa (Sweet) Nakai fruit is a good source of phenolics with many health benefits. In this work, the enrichment of C. speciosa fruit total phenolics (CSFTP) using macroporous resins was studied. NKA-Ⅱ resin was selected for enriching CSFTP due to its highest adsorption/desorption quantity. Adsorption characteristics of CSFTP on NKA-Ⅱ resin exhibited a good fit with the Langmuir isotherm model and pseudo-second order kinetics model. This adsorption was spontaneous, exothermic, and entropy-decreasing through a physisorption mechanism. The breakthrough-elution curves were studied to optimize CSFTP enrichment conditions. One-step enrichment increased CSFTP content in the extracts from 26.51 % to 78.63 %, with a recovery of 81.03 %. A UPLC-QqQ-MS/MS method in multiple reaction monitoring (MRM) mode was established and validated for the simultaneous quantification of seven phenolic compounds. This study demonstrates the feasibility of industrial enrichment of CSFTP using NKA-Ⅱ resin and proposes a reliable method for quality control of CSFTP-rich products.
Collapse
Affiliation(s)
- Mengyang Hou
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yanhua Ma
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jingchun Shi
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jie Liu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
6
|
Xu R, Deng P, Ma Y, Li K, Ren F, Li N. Anti-Hyperuricemic Effects of Extracts from Chaenomeles speciosa (Sweet) Nakai Fruits on Hyperuricemic Rats. Metabolites 2024; 14:117. [PMID: 38393010 PMCID: PMC10890149 DOI: 10.3390/metabo14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) fruit has medicinal and food applications and exhibits beneficial pharmacological properties. This study aimed to explore the hypouricemic effect of C. speciosa fruit extracts on hyperuricemic rats and uncover potential protective mechanisms. The rats were given hypoxanthine (HX, 100 mg/kg) and potassium oxonate (PO, 300 mg/kg) for 14 days to induce hyperuricemia. Subsequently, the rats were orally administered C. speciosa fruits total extract (CSFTE, 250, 500, and 1000 mg/kg) and allopurinol (AP, 10 mg/kg) one hour after exposure to HX and PO. The results showed that CSFTE had significant xanthine oxidase (XOD) inhibitory activity in vitro (IC50 value of 334.2 μg/mL) and exhibited hypouricemic effects in vivo, reducing uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) levels in serum. CSFTE increased UA excretion through the regulation of URAT1, GLUT9, OAT1, and OAT3 protein expression in the kidneys of hyperuricemic rats. Additionally, CSFTE (500 and 1000 mg/kg) was more effective than AP in improving renal injury and protecting kidney function in hyperuricemic rats. Our study demonstrated that CSFTE effectively reduced UA levels and protected the kidneys by inhibiting XOD expression in vitro and regulating UA, CRE, BUN, URAT1, GLUT9, OAT1, and OAT3 proteins in vivo.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Peng Deng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yiren Ma
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kui Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Kostecka-Gugała A. Quinces ( Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants (Basel) 2024; 13:71. [PMID: 38247495 PMCID: PMC10812678 DOI: 10.3390/antiox13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the evaluation of many plant-derived compounds as potential new drugs or functional foods has become an active research topic. The morphological characteristics of quinces of the genera Cydonia sp., Chaenomeles sp., and Pseuocydonia sp. are largely similar, which is why these fruits are often confused. Although they have been appreciated in Asia for centuries as a valuable component of local ethnomedicine, they are less known in Western countries, and scientific knowledge about their health benefits remains fragmentary. This literature review summarizes studies on the content of chemical compounds responsible for the health-promoting and functional properties of the quince fruit. It focuses on the content of carotenoids, vitamins, minerals, and carboxylic acids, although the main emphasis is on the content and diversity of bioactive polyphenols, which are extremely abundant in these fruits. The quince fruits are rich in antioxidants and compounds with proven anti-inflammatory, anticancer, antiallergic, and immunomodulatory effects. Their phytochemicals effectively regulate glycemia and improve the blood lipid profile, suggesting potential antidiabetic and cardioprotective benefits. Analysis of chemical characteristics showed that the Chaenomeles fruits. are underestimated as functional food ingredients. Studies on the molecular effects of their bioactive compounds and species-specific genomic analyses are sorely lacking in the scientific literature.
Collapse
Affiliation(s)
- Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
8
|
Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res 2023; 46:825-854. [PMID: 38062238 DOI: 10.1007/s12272-023-01475-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Chaenomeles plants belong to the Rosaceae family and include five species, Chaenomeles speciosa (Sweet) Nakai, Chaenomeles sinensis (Thouin) Koehne, Chaenomeles japonica (Thunb.) Lindl, Chaenomeles cathayensis (Hemsl.) Schneid and Chaenomeles thibetica Yu. Chaenomeles plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the Chaenomeles genus, and all Chaenomeles species except for C. japonica are indigenous to China. Chaenomeles spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus Chaenomeles exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus Chaenomeles to serve as a valuable reference for further investigations.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Chen J, Zhong K, Jing Y, Liu S, Qin S, Peng F, Li D, Peng C. Procyanidin B2: A promising multi-functional food-derived pigment for human diseases. Food Chem 2023; 420:136101. [PMID: 37059021 DOI: 10.1016/j.foodchem.2023.136101] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Natural edible pigments play a paramount part in the food industry. Procyanidin B2 (PB2), one of the most representative naturally occurring edible pigments, is usually isolated from the seeds, fruits, and leaves of lots of common plants, such as grapes, Hawthorn, black soybean, as well as blueberry, and functions as a food additive in daily life. Notably, PB2 has numerous bioactivities and possesses the potential to treat/prevent a wide range of human diseases, such as diabetes mellitus, diabetic complications, atherosclerosis, and non-alcoholic fatty liver disease, and the underlying mechanisms were partially elucidated, including mediating signaling pathways like NF-κB, MAPK, PI3K/Akt, apoptotic axis, and Nrf-2/HO-1. This paper presents a review of the natural sources, bioactivities, and the therapeutic/preventive potential of PB2 and the possible mechanisms, with the aim of promoting the development of PB2 as a functional food and providing references for its clinical application in the treatment of diseases.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Ben-Othman S, Bleive U, Kaldmäe H, Aluvee A, Rätsep R, Karp K, Maciel LS, Herodes K, Rinken T. Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product. Lebensm Wiss Technol 2023; 178:114632. [PMID: 36969921 PMCID: PMC10028728 DOI: 10.1016/j.lwt.2023.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
The wine industry generates large quantities of by-products each year. Therefore, this work aimed to isolate and evaluate the oil and protein fractions of Japanese quince (Chaenomeles japonica, JQ) press residue, offering a partial utilization of valuable bioactive compounds of wine industry by-products. To study the JQ oil extract yield, composition and oxidation stability, we modified the co-solvent composition during the supercritical CO2 (SC-CO2) extraction of oil by adding different ethanol content. The remaining defatted material was used for the isolation of proteins. The SC-CO2 extraction yielded oil rich in polyunsaturated fatty acids, tocopherols, and phytosterols. The use of ethanol as a co-solvent increased the oil yield but did not enhance its oxidative stability or content of antioxidants. We recovered protein isolate after removing tannins with 70% ethanol extraction in the next step. The JQ protein isolate contained all essential amino acids. In addition to its balanced amino acid composition, the protein isolate exhibited excellent emulsifying properties highlighting its potential as a food additive. In conclusion, JQ wine by-products can be utilized for the extraction of oil and protein fractions which can be used in food or cosmetic product formulation.
Collapse
|
12
|
Nowak D, Gośliński M, Przygoński K, Wojtowicz E. Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties. Foods 2023; 12:foods12040753. [PMID: 36832828 PMCID: PMC9955449 DOI: 10.3390/foods12040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Natural bioactive compounds play an important role in the prevention of various diseases. The exotic fruits Averrhoa carambola L. (star fruit), Cyphomandra betacea (tamarillo) and Myrciaria dubia (camu-camu) can be valuable sources of phytochemicals with antioxidant properties. The aim of this study has been to compare the antioxidant properties of these exotic fruits, the structure of polyphenolic compounds and the content of vitamin C and β-carotene. All the juices were analyzed for their antioxidant capacity (DPPH and ABTS assays) and the composition of phenolic compounds (TP and FBBB assays, total flavonoid content, total anthocyanins). In addition, HPLC assays were performed to analyse the content of phenolic acids, flavonoids, vitamin C and β-carotene. The results demonstrated that juice from the Myrciaria dubia fruit had the highest antioxidant capacity, which was 4.5-fold higher than that of juice from Averrhola carambola L., and nearly 7-fold higher than the antioxidant capacity of Cyphomandra betacea fruit juice. Additionally, juice from the camu-camu fruit had a 3- to 4-fold higher total polyphenol content (8290 ± 254 mg GAE L-1) and a high level of vitamin C (8410.8 ± 16.9 mg AA kg-1). In turn, tamarillo juice had a high content of total anthocyanins (5796 mg CGE L-1) and phenolic acids (mostly chlorogenic acid and caffeic acid). Juice produced from carambola had a high content of total flavonoids (1345 mg CAE L-1), and the composition of these compounds was dominated by flavanols (epicatechin). The research results justify the conclusion that fruits of Myrciaria dubia, Averrhoa carambola L., Cyphomandra betacea are rich sources of bioactive compounds with antioxidant properties, and in the near future may serve as healthful food ingredients.
Collapse
Affiliation(s)
- Dariusz Nowak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence:
| | - Michał Gośliński
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Krzysztof Przygoński
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 61-361 Poznań, Poland
| | - Elżbieta Wojtowicz
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 61-361 Poznań, Poland
| |
Collapse
|
13
|
Tao W, Zhao C, Lin G, Wang Q, Lv Q, Wang S, Chen Y. UPLC-ESI-QTOF-MS/MS Analysis of the Phytochemical Compositions From Chaenomeles speciosa (Sweet) Nakai Fruits. J Chromatogr Sci 2022; 61:15-31. [PMID: 35134870 DOI: 10.1093/chromsci/bmac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/27/2021] [Indexed: 02/05/2023]
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa Nakai) is a popular fruit widely used in China for its health-promoting properties. The presences of phytochemical compositions in the plants play an important role in the health benefits. Nevertheless, the detailed information of these ingredients is still unknown. Therefore, in this work, an untargeted analytical method based on ultra-high-performance liquid chromatography-quadrupole-time of flight coupled to mass spectrometry in two different ionization modes was used to qualitative the phytochemicals in C. speciosa Nakai, meanwhile, the anti-inflammatory activity of these phytochemicals was researched through detecting the inhibition of nitric oxide (NO) that was induced by lipopolysaccharide in RAW 264.7 murine macrophage cells. The results showed that there were totally 175 primary and secondary metabolites were identified in the fruit of C. speciosa Nakai, including phenols, terpenoids, flavonoids and other phyto-constituents. Actually, most compounds were described in C. speciosa Nakai fruits for the first time. Besides, the anti-inflammatory activity was measured by the result of NO inhibition rate, the consequence showed that the value of half-inhibitory concentration (IC50) was 365.208 μg/mL. These results indicate that C. speciosa Nakai is an efficient medicinal fruit, which owns various bioactivities and has the potential to treat various diseases.
Collapse
Affiliation(s)
- Weili Tao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Gengxue Lin
- Guangdong Weian Detection Technology Co., Ltd, Jieyang 515300, Guangdong, China
| | - Qiongjin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qian Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuyun Wang
- Center for Core Facilities, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
14
|
Tian S, Guo H, Zhang M, Yan H, Wang X, Zhao H. Rapid authentication of Chaenomeles species by visual volatile components fingerprints based on headspace gas chromatography-ion mobility spectrometry combined with chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1198-1204. [PMID: 36028334 DOI: 10.1002/pca.3170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Chaenomeles, including Chaenomeles speciosa (ZP), Chaenomeles sinensis (GP), Chaenomeles tibetica (XZ), and Chaenomeles japonica (RB), has been widely used as food in China for thousands of years. However, only ZP, was recorded to be the authentic medicinal Chaenomeles. Therefore, the rapid and accurate method for the authenticity identification of Chaenomeles species is urgently needed. OBJECTIVE To develop a method for rapid differentiation of Chaenomeles species. METHODS The visual volatile components fingerprints based on headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometric analysis, including principal component analysis (PCA), linear discriminant analysis (LDA) and partial least-squares discriminant analysis (PLS-DA), were utilised for the authentication of Chaenomeles species. RESULTS The visual volatile components fingerprints by the GC-IMS intuitively showed the distribution features of the volatile components for different Chaenomeles samples. The LDA and PLS-DA models successfully discriminated Chaenomeles species with original discrimination accuracy of 100%. Fifteen volatile compounds (VOCs) (peaks 9, 12, 13, 19, 23, 24, 35, 48, 57, 65, 67, 76, 79, 80, 83) were selected as the potential species-specific markers of Chaenomeles via variable importance of projection (VIP > 1.2) and one-way analysis of variance (P < 0.05). CONCLUSIONS This study showed that the visual volatile components fingerprints by HS-GC-IMS combined with chemometric analysis is a meaningful method in the Chaenomeles species authentication.
Collapse
Affiliation(s)
- Shanming Tian
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huanying Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Minmin Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huijiao Yan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hengqiang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
15
|
Hu F, Li F, Zheng Z, Sun-Waterhouse D, Wang Z. Surfactant-Mediated Ultrasonic-Assisted Extraction and Purification of Antioxidants from Chaenomeles speciosa (Sweet) Nakai for Chemical- and Cell-Based Antioxidant Capacity Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227970. [PMID: 36432081 PMCID: PMC9698517 DOI: 10.3390/molecules27227970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
In this study, a surfactant-mediated ultrasonic-assisted process was used for the first time to produce an antioxidant-enriched extract from Chaenomeles speciosa (Sweet) Nakai (C. speciosa, a popular fruit grown widely in the temperate regions of China). Ultrasonic treatment at 51 °C and 200 W for 30 min with sodium dodecyl sulfate as the surfactant led to a phenolic yield of 32.42 mg/g from dried C. speciosa powder, based on single-factor experiments, the Plackett-Burman design and the Box-Behnken design. The phenolic content increased from 6.5% (the crude extract) to 57% (the purified extract) after the purification, using LSA-900C macroporous resin. Both the crude and purified extracts exhibited a significant total reducing power and DPPH/ABTS scavenging abilities, with the purified extract being more potent. The purified extract exerted significant antioxidant actions in the tert-butyl hydroperoxide-stimulated HepG2 cells, e.g., increasing the activities of superoxide dismutase and catalase, while decreasing the reactive oxygen species and malondialdehyde levels, through the regulation of the genes and proteins of the Nrf2/Keap1 signaling pathway. Therefore, the extract from C. speciosa is a desirable antioxidant agent for the oxidative damage of the body to meet the rising demand for natural therapeutics.
Collapse
Affiliation(s)
- Fuxia Hu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Correspondence: (D.S.-W.); (Z.W.); Tel.: +86-053-882-460-07 (Z.W.)
| | - Zhaosheng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (D.S.-W.); (Z.W.); Tel.: +86-053-882-460-07 (Z.W.)
| |
Collapse
|
16
|
Marat N, Danowska-Oziewicz M, Narwojsz A. Chaenomeles Species-Characteristics of Plant, Fruit and Processed Products: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3036. [PMID: 36432767 PMCID: PMC9698592 DOI: 10.3390/plants11223036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
This literature review deals with the characteristics of Chaenomeles species and the physicochemical properties of Chaenomeles fruits. These fruits belong to a group with a low content of monosaccharides and a favorable ratio of fructose to glucose. They exhibit a low pH value and sour taste; therefore, they are not eaten in a raw form. They have a high concentration of bioactive compounds, such as polyphenols, vitamin C, organic acids, dietary fiber and pectins. The physicochemical properties of processed Chaenomeles fruits, i.e., freeze-dried, juices, syrups, candied fruit, jam, powder and chips, are presented in the manuscript. Also mentioned are the seeds and their use in the production of oil and seed gum. Of the products described in the paper, seed oil deserves greater attention, as it is characterized by a high content of unsaturated fatty acids, mainly oleic and linoleic, and low susceptibility to oxidation.
Collapse
|
17
|
Balciunaitiene A, Puzeryte V, Radenkovs V, Krasnova I, Memvanga PB, Viskelis P, Streimikyte P, Viskelis J. Sustainable-Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227700. [PMID: 36431804 PMCID: PMC9696917 DOI: 10.3390/molecules27227700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.
Collapse
Affiliation(s)
- Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
- Correspondence: (A.B.); (P.V.); Tel.: +370-682-13568 (P.V.)
| | - Viktorija Puzeryte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| | - Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Inta Krasnova
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Congo
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, B.P. 212, Kisangani 012, Congo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Congo
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
- Correspondence: (A.B.); (P.V.); Tel.: +370-682-13568 (P.V.)
| | - Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| |
Collapse
|
18
|
Babotă M, Frumuzachi O, Mocan A, Tămaș M, Dias MI, Pinela J, Stojković D, Soković M, Bădărău AS, Crișan G, Barros L, Păltinean R. Unravelling Phytochemical and Bioactive Potential of Three Hypericum Species from Romanian Spontaneous Flora: H. alpigenum, H. perforatum and H. rochelii. PLANTS (BASEL, SWITZERLAND) 2022; 11:2773. [PMID: 36297796 PMCID: PMC9608712 DOI: 10.3390/plants11202773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum L., also known as St. John’s Wort, is recognized worldwide as a valuable medicinal herb; however, other Hypericum species were intensively studied for their bioactive potential. To fill the research gap that exists in the scientific literature, a comparative evaluation between H. alpigenum Kit., H. perforatum L. and H. rochelii Griseb. & Schenk was conducted in the present study. Two types of herbal preparations obtained from the aerial parts of these species were analyzed: extracts obtained through maceration and extracts obtained through magnetic-stirring-assisted extraction. LC-DAD-ESI-MSn analysis revealed the presence of phenolic acids, flavan-3-ols and flavonoid derivatives as the main constituents of the above-mentioned species. Moreover, all extracts were tested for their antioxidant, enzyme-inhibitory and antimicrobial potential. Our work emphasizes for the first time a detailed description of H. rochelii phenolic fractions, including their phytochemical and bioactive characterization. In comparison with the other two studied species, H. rochelii was found as a rich source of phenolic acids and myricetin derivatives, showing important antioxidant, anticholinesterase and antibacterial activity. The study offers new perspectives regarding the chemical and bioactive profile of the less-studied species H. alpigenum and H. rochelii.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mircea Tămaș
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Alexandru Sabin Bădărău
- Faculty of Environmental Sciences and Engineering, Babeș-Bolyai University, 30, Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ramona Păltinean
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Ming J, Liu M, Lei M, Huang B, Chen L. Rapid determination of the total content of oleanolic acid and ursolic acid in Chaenomelis Fructus using near-infrared spectroscopy. FRONTIERS IN PLANT SCIENCE 2022; 13:978937. [PMID: 36119610 PMCID: PMC9478200 DOI: 10.3389/fpls.2022.978937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Chaenomelis Fructus is a widely used traditional Chinese medicine with a long history in China. The total content of oleanolic acid (OA) and ursolic acid (UA) is taken as an important quality marker of Chaenomelis Fructus. In this study, quantitative models for the prediction total content of OA and UA in Chaenomelis Fructus were explored based on near-infrared spectroscopy (NIRS). The content of OA and UA in each sample was determined using high-performance liquid chromatography (HPLC), and the data was used as a reference. In the partial least squares (PLS) model, both leave one out cross validation (LOOCV) of the calibration set and external validation of the validation set were used to screen spectrum preprocessing methods, and finally the multiplicative scatter correction (MSC) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLS regression, and the characteristic spectrum range was determined as 7,500-4,250 cm-1, with 14 optimal ranks. In the back propagation artificial neural network (BP-ANN) model, the scoring data of 14 ranks obtained from PLS regression analysis were taken as input variables, and the total content of OA and UA reference values were taken as output values. The number of hidden layer nodes of BP-ANN was screened by full-cross validation (Full-CV) of the calibration set and external validation of the validation set. The result shows that both PLS model and PLS-BP-ANN model have strong prediction ability. In order to evaluate and compare the performance and prediction ability of models, the total content of OA and UA in each sample of the test set were detected under the same HPLC conditions, the NIRS data of the test set were input, respectively, to the optimized PLS model and PLS-BP-ANN model. By comparing the root-mean-square error (RMSEP) and determination coefficient (R 2) of the test set and ratio of performance to deviation (RPD), the PLS-BP-ANN model was found to have better performance with RMSEP of 0.59 mg·g-1, R 2 of 95.10%, RPD of 4.53 and bias of 0.0387 mg·g-1. The results indicated that NIRS can be used for the rapid quality control of Chaenomelis Fructus.
Collapse
Affiliation(s)
- Jing Ming
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingjia Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| | - Mi Lei
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Long Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, China
| |
Collapse
|
20
|
Nowak D, Gośliński M, Kłębukowska L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:427-435. [PMID: 35829820 PMCID: PMC9463271 DOI: 10.1007/s11130-022-00983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 06/01/2023]
Abstract
Fruit and fruit juices are a valuable source of bioactive compounds, which can protect our organisms from oxidative stress. The phenolic compounds and other phytochemicals may affect the antimicrobial properties of juices. The aim of this study has been to evaluate antioxidant and antimicrobial properties of selected berry juices and vitamin C-rich fruit juices. The research material was composed of seven juices, including three from berries (elderberry chokeberry, cranberry), three from vitamin C-rich fruit (sea buckthorn, wild rose, Japanese quince) and one exotic juice from noni fruit. Antioxidant capacity, total polyphenol, total flavonoid and total anthocyanin content were determined. Furthermore, the antimicrobial activity and the minimal inhibitory concentration (MIC) as well as the minimal bactericidal concentration (MBC) were evaluated. The research showed that fruit juices from wild rose, chokeberry and Japanese quince had the highest antioxidant capacity. These juices were characterised by the rich content of polyphenols. Elderberry and chokeberry juices had the highest total anthocyanins. The juices differed in the content of bioactive compounds and specific bactericidal properties against Gram-positive or Gram-negative bacteria. Fruit juices from cranberry, Japanese quince and sea buckthorn had the highest antimicrobial activity. Wild rose, chokeberry and elderberry juices, despite their high antioxidant properties, showed antimicrobial activity only against Gram-positive strains, except Enterococcus faecalis and Clostridium perfringens. Significant differences in the content of bioactive compounds in fruit juices affect the antimicrobial properties juices.
Collapse
Affiliation(s)
- Dariusz Nowak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626, Bydgoszcz, Poland.
| | - Michał Gośliński
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626, Bydgoszcz, Poland
| | - Lucyna Kłębukowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, pl. Cieszyński 1, 10-726, Olsztyn, Poland
| |
Collapse
|
21
|
Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23084360. [PMID: 35457176 PMCID: PMC9025567 DOI: 10.3390/ijms23084360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) causes persistent pain, joint dysfunction, and physical disability. It is the most prevalent type of degenerative arthritis, affecting millions of people worldwide. OA is currently treated with a focus on pain relief, inflammation control, and artificial joint surgery. Hence, a therapeutic agent capable of preventing or delaying the progression of OA is needed. OA is strongly associated with the degeneration of the articular cartilage and changes in the ECM, which are primarily associated with a decrease in proteoglycan and collagen. In the progress of articular cartilage degradation, catabolic enzymes, such as matrix metalloproteinases (MMPs), are activated by IL-1β stimulation. Given the tight relationship between IL-1β and ECM (extra-cellular matrix) degradation, this study examined the effects of Chaenomeles Fructus (CF) on IL-1β-induced OA in rat chondrocytes. The CF treatment reduced IL-1β-induced MMP3/13 and ADAMTS-5 production at the mRNA and protein levels. Similarly, CF enhanced col2a and aggrecan accumulation and chondrocyte proliferation. CF inhibited NF-κB (nuclear factor kappa B) activation, nuclear translocation induced by IL-1β, reactive oxygen species (ROS) production, and ERK phosphorylation. CF demonstrated anti-OA and articular regeneration effects on rat chondrocytes, thus, suggesting that CF is a viable and fundamental therapeutic option for OA.
Collapse
|
22
|
Comparative Metabolomics Study of Chaenomeles speciosa (Sweet) Nakai from Different Geographical Regions. Foods 2022; 11:foods11071019. [PMID: 35407106 PMCID: PMC8997580 DOI: 10.3390/foods11071019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/20/2023] Open
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is not only a Chinese herbal medicine but also a functional food widely planted in China. Its fruits are used to treat many diseases or can be processed into food products. This study aims to find key metabolic components, distinguish the differences between geographical regions and find more medicinal and edible values of C. speciosa fruits. We used ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) and widely targeted metabolomics analysis to reveal key and differential metabolites. We identified 974 metabolites and screened 548 differential metabolites from 8 regions. We selected significantly high-content differential metabolites to visualize a regional biomarker map. Comparative analysis showed Yunnan had the highest content of total flavonoids, the highest amounts of compounds related to disease resistance and drug targets and the most significant difference from the other regions according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, a unique platform for studying the systematic pharmacology of Chinese herbal medicine and capturing the relationship between drugs, targets and diseases. We used oral bioavailability (OB) ≥ 30% and drug likeness (DL) ≥ 0.18 as the selection criteria and found 101 key active metabolites, which suggests that C. speciosa fruits were rich in healthy metabolites. These results provide valuable information for the development of C. speciosa.
Collapse
|
23
|
Shi F, Jiang ZB, Xu J, Bai XP, Liang QY, Fu ZH. Optimized extraction of phenolic antioxidants from red pitaya (Hylocereus polyrhizus) seeds by subcritical water extraction using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01212-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Šola I, Poljuha D, Mikulic-Petkovsek M, Davosir D, Pinterić M, Bilić J, Veberic R, Hudina M, Rusak G. Biopotential of Underutilized Rosaceae Inflorescences: LC-DAD-MS Phytochemical Profiles Associated with Antioxidant, Antidiabetic, Anti-Inflammatory and Antiproliferative Activity In Vitro. PLANTS 2022; 11:plants11030271. [PMID: 35161257 PMCID: PMC8838311 DOI: 10.3390/plants11030271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 01/16/2023]
Abstract
The aim of this work was to assess the biopotential of the young inflorescence tissues of Prunus, Malus and Chaenomeles in order to evaluate the possibility of their application in the food industry, and to provide a polyphenolic fingerprint for their quality control. The contents of different bioactive compounds and their antioxidant capacities were spectrophotometrically measured, the main phenolic compounds were identified and quantified using LC-DAD-MS, the antidiabetic potential was determined using α-amylase and α-glucosidase inhibition assays, the anti-inflammatory potential was determined using a 5-lipoxygenase inhibition assay, and the cytotoxicity was determined by MTT assay. Using one-way ANOVA, principal component analysis, hierarchical clustering and Pearson’s correlation coefficient, the relations between the samples, and between the samples and the measured parameters, were revealed. In total, 77 compounds were identified. The concentration of sugars was low in M. purpurea, at 1.56 ± 0.08 mg/g DW. The most effective sample in the inhibition of antidiabetic enzymes and anti-inflammatory 5-lipoxygenase was C. japonica. The inhibition of α-glucosidase was strongly positively correlated with the total and condensed tannins, procyanidin dimers and procyanidin tetramer, and was very strongly correlated with chlorogenic acid. In α-amylase inhibition, C. japonica and P. serrulata ‘Kiku Shidare Zakura’ were equally efficient to the standard inhibitor, maltose. The most effective in the growth and proliferation inhibition of HepG2, HCT116 and HaCaT cells was P. avium. The results suggest Prunus, Malus and Chaenomeles inflorescences as functional food ingredients.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (D.D.); (G.R.)
- Correspondence: ; Tel.: +385-1-4898094
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia;
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.M.-P.); (R.V.); (M.H.)
| | - Dino Davosir
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (D.D.); (G.R.)
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Riva 6, 52100 Pula, Croatia;
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.M.-P.); (R.V.); (M.H.)
| | - Metka Hudina
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.M.-P.); (R.V.); (M.H.)
| | - Gordana Rusak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (D.D.); (G.R.)
| |
Collapse
|
25
|
Juhnevica‐Radenkova K, Radenkovs V, Krasnova I. The impact of 1‐MCP treatment and controlled atmosphere storage on the postharvest performance of four (
Chaenomeles japonica
(Thunb.) Lindl. ex Spach) fruit cultivars. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
CHEN JP, WANG Y, ZHANG XY, SUN P, WU ZF, SHANG YF, YANG SH, MA YL, WEI ZJ. Effect of air drying temperature on the phenolics and antioxidant activity of Xuan-Mugua fruit. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yue WANG
- Hefei University of Technology, China; North Minzu University, China
| | | | - Ping SUN
- Hefei University of Technology, China; North Minzu University, China
| | - Zheng-Fang WU
- Hefei University of Technology, China; North Minzu University, China
| | - Ya-Fang SHANG
- Hefei University of Technology, China; North Minzu University, China
| | | | - Yi-Long MA
- Hefei University of Technology, China; North Minzu University, China
| | - Zhao-Jun WEI
- Hefei University of Technology, China; North Minzu University, China
| |
Collapse
|
27
|
Wang S, Zhuo W, Dan Y, Qin Z, Zhang C, Xi J, Liu H, Ma Y, Wang X. Inhibitory effects of Chinese quince fruit proanthocyanidins with different polymerisation degrees on the formation of heterocyclic aromatic amines in chemical model systems. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shou‐Tao Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Wen‐Ling Zhuo
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Ya‐Qian Dan
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Zhao Qin
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Chen‐Xia Zhang
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Jun Xi
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Hua‐Min Liu
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Yu‐Xiang Ma
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| | - Xue‐De Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou Henan Province 450001 China
| |
Collapse
|
28
|
Ren Y, Sun-Waterhouse D, Ouyang F, Tan X, Li D, Xu L, Li B, Wang Y, Li F. Apple phenolic extract ameliorates lead-induced cognitive impairment, depression- and anxiety-like behavior in mice through abating oxidative stress, inflammation and apoptosis via miR-22-3p/SIRT1 axis. Food Funct 2022; 13:2647-2661. [DOI: 10.1039/d1fo03750a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead can lead to neurotoxicity and cognitive impairment. In this study, for the first time, the protective effects and working mechanisms of apple phenolic extract (APE) against lead acetate (Pb(Ac)2)-induced...
Collapse
|
29
|
Zhang A, Zeng L, Bo H, Hardie WJ. Sulphite‐corrected, non‐phenolic and phenolic antioxidant capacities of fruit wines profiled by differential Folin‐Ciocalteu assay. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aihua Zhang
- China‐Australia Fruit Wine Research Centre Institute of Urban and Rural Mining Changzhou University 21 Gehu Road, Wujin Changzhou 213164 China
| | - Lingwen Zeng
- China‐Australia Fruit Wine Research Centre Institute of Urban and Rural Mining Changzhou University 21 Gehu Road, Wujin Changzhou 213164 China
| | - Huijie Bo
- China‐Australia Fruit Wine Research Centre Institute of Urban and Rural Mining Changzhou University 21 Gehu Road, Wujin Changzhou 213164 China
| | - William James Hardie
- China‐Australia Fruit Wine Research Centre Institute of Urban and Rural Mining Changzhou University 21 Gehu Road, Wujin Changzhou 213164 China
| |
Collapse
|
30
|
Cho M, Bu Y, Park JW, Rahman H, Ko SJ. Efficacy of complementary medicine for nonsteroidal anti-inflammatory drug-induced small intestinal injuries: A narrative review. Medicine (Baltimore) 2021; 100:e28005. [PMID: 35049210 PMCID: PMC9191556 DOI: 10.1097/md.0000000000028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-induced small bowel injuries (NSIs) have been largely ignored for decades due to the focus on nonsteroidal anti-inflammatory drug gastropathy. With the visualization of the small intestines enabled by video capsule endoscopy, the frequency and severity of NSIs have become more evident. NSIs have a complex pathophysiology, and no effective preventive or treatment options have been proven. Complementary and alternative medicine (CAM) has been used to treat disorders of the small intestine, and more research on its effectiveness for NSIs has been conducted.We reviewed the current evidence and mechanisms of action of CAMs on NSI. Clinical and experimental studies on the effect of CAMs on NSIs were performed using 10 databases.Twenty-two studies (3 clinical and 19 in vivo experimental studies) were included in the final analysis involving 10 kinds of CAMs: bovine colostrum, Orengedokuto (coptis), muscovite, licorice, grape seed, wheat, brown seaweed, Ganoderma lucidum fungus mycelia, Chaenomeles speciosa (sweet) Nakai (muguasantie), and Jinghua Weikang capsule. The mechanisms of CAM include an increase in prostaglandin E2, reparation of the enteric nervous system, inhibition of pro-inflammatory cytokines, reduction of intestinal permeability and enteric bacterial numbers, decrease in oxidative stress, and modulation of small intestinal motility.CAM may be a novel alternative option for treating and preventing NSI, and further studies on human and animal models with relevant comorbidities are warranted.
Collapse
Affiliation(s)
- Minji Cho
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Lykholat YV, Khromykh NO, Didur OO, Drehval OA, Sklyar TV, Anishchenko AO. Chaenomeles speciosa fruit endophytic fungi isolation and characterization of their antimicrobial activity and the secondary metabolites composition. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00171-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Endophytes promote the survival of the host plants affected by unfavorable environment. To confirm the endophytes role in Chaenomeles speciosa pathogenic resistance, fungal isolates were derived from both fruit peel and pulp, and presumptively identified using macroscopic and microscopic techniques. Antifungal potential of the isolates was assayed by dual culture method and agar disc method against Alternaria alternata, Fusarium culmorum, and Fusarium oxysporum strains. Two most active fungal isolates were cultured in Czapek's liquid medium to obtain metabolites. The crude ethyl acetate extracts of metabolites were characterized for antibacterial activity against Basillus subtilis and Erwinia dissolvens, and for component composition by GC–MS technique.
Results
Nine fungal endophytic isolates were derived from the peel and pulp of C. speciosa fruits and tentatively attributed to Penicillium spp. (seven isolates), Aspergillus spp. (one isolate), Mucor spp. (one isolate). Two fungal isolates, one each of the fruit peel and pulp, were designated as Penicillium sp. I and Penicillium sp. II respectively, and selected for further research. Both isolates showed similar activity against A. alternata; however, Penicillium sp. I activity against F. culmorum and F. oxysporum exceeded the activity of Penicillium sp. II. Cultural medium ethyl acetate extracts of both endophytes exhibited higher antibacterial activity against Gram-positive B. subtilis, while mycelium extracts were more active against Gram-negative E. dissolvens. In general, Penicillium sp. I antibacterial activity was higher in cultural medium extracts, while activity of Penicillium sp. II dominated in mycelium extracts. GC–MS analysis of the fungal metabolites component composition revealed the identity of 27 and 17 compounds, respectively in the ethyl acetate extracts of Penicillium sp. I and Penicillium sp. II cultural medium. Basic compounds produced by the first isolate, were represented by 3-Furanacetic acid, 4-hexyl-2,5-dihydro-2,5-dioxo, Diisooctyl phthalate, 11-Hexadecyn-1-ol, and Propanedioic acid, dihydroxy. At the same time, Phthalic acid diisooctyl ester and other phthalates constituted the main part of the second isolate metabolites, followed by Hexadecanoic acid, Eicosyl isopropyl ether, and 4-Butoxy-2-butanone at a lower content.
Conclusions
The findings showed that the antimicrobial potential of Chaenomeles fruits endophytic fungi is promising and deserves further investigation.
Collapse
|
33
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
34
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
35
|
Lykholat YV, Khromykh NO, Didur OO, Sklyar TV, Holubieva TA, Lykholat TY, Lavrentievа KV, Liashenko OV. GC-MS analysis of cuticular waxes and evaluation of antioxidant and antimicrobial activity of Chaenomeles cathayensis and Ch. × californica fruits. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fruit extracts of the Chaenomeles species are a rich source of compounds having health-promoting properties, while their distribution between the species and cultivars varies significantly depending on both genotype and environmental threats. This study aimed at discovering antioxidant and antimicrobial potential of the secondary metabolites of fruit and waxes of fruit cuticular of introduced Ch. cathayensis and Ch. × californica plants. The sum of detected polyphenols in the isopropanolic fruit extracts varied slightly between the species, while significant excesses in indices were seen for both species peel extracts as compared to pulp extracts. Antimicrobial assays carried out by disc diffusion method showed notable activity of the fruit peel and pulp extracts of both species against all tested Gram-negative and Gram-positive bacterial strains, and two Candida strains as well. Pseudomonas aeruginosa strain was the most resistant to the action of both fruit extracts, especially peel extracts of Ch. cathayensis fruits. As identified by gas chromatography-mass spectrometry (GC-MS) assays, chloroformic extracts from the fruits of cuticular waxes of Ch. cathayensis and Ch. × californica contained six prevailing fractions: aldehydes, alkanes, alcohols, esters, fatty acids and various terpenoids. The predominant compounds were tetrapentacontane (21.8% of total amount) and heptacosanal (23.1% of total), respectively in the cuticular waxes of Ch. cathayensis and Ch. × californica. Cinnamaldehyde, cis-9-hexadecenal, hexadecanoic acid, oleic acid, olean-12-ene-3,28-diol (3. beta), lupeol, diisooctyl phthalate, 9-octadecenoic acid, 1,2,3-propanetriyl ester, 1,3,12-nonadecatriene-5,14-diol and some other identified compounds are well-known for their bioactivity, indicating the feasibility of studying the antimicrobial potential of plant fruits.
Collapse
|
36
|
Hu S, Li S, Liu Y, Sun K, Luo L, Zeng L. Aged Ripe Pu-erh Tea Reduced Oxidative Stress-Mediated Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice by Regulating Intestinal Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10592-10605. [PMID: 34460244 DOI: 10.1021/acs.jafc.1c04032] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ripened pu-erh tea has the biological activity of antioxidation and anti-inflammation, which inhibits the related parameters of colitis. However, the role of storage-induced changes in bioactive ingredients of ripened pu-erh tea in colitis remains unclear. In this study, 3.5% dextran sulfate sodium-induced colitis mice were treated with 10 mg/kg bw/day extracts, aged 14 years (P2006) and unaged (P2020) ripened pu-erh tea, respectively, for 1 week. We found that ripened pu-erh tea, especially P2006, inhibited the intestinal oxidative stress-mediated inflammation pathway (TLR4/MyD88/ROS/p38MAPK/NF-κB p65), upregulated the expression of intestinal tight junction proteins (Mucin-2, ZO-1, occludin), promoted M2 polarization of macrophages, and in turn, improved the intestinal immune barrier, which stemmed from the reshaping of intestinal microbiota (e.g., increased Lachnospiraceae_NK4A136_group and Akkermansia levels). Our results speculate that drinking aged ripe pu-erh tea (10 mg/kg bw/day in mice, a human equivalent dose of 7 g/60 kg bw/day) has a practical effect on alleviating and preventing the development of intestinal inflammation.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Shi Li
- Key Laboratory of Tea Science of the Ministry of Education, Hunan Agricultural University, Furong District, Changsha, Hunan 410128, People's Republic of China
| | - Yan Liu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
37
|
Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Lyu M, Liu Y, Qiu Y, Yang S, Yuan H, Wang W. Differentiation between Chaenomelis Fructus and its common adulterant, Guangpi Mugua. J AOAC Int 2021; 104:1652-1660. [PMID: 34410391 DOI: 10.1093/jaoacint/qsab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The dried fruit of Chaenomeles speciosa, known as Chaenomelis Fructus or Zhoupi Mugua is a type of Traditional Chinese Medicine (TCM) that is widely used to treat many diseases. In addition, Guangpi Mugua, the dried fruit of the Chaenomeles sinensis, is its most commonly known adulterant. OBJECTIVE To establish a robust approach for the quality control and identification of Chaenomelis Fructus. METHODS Thin-layer Chromatography (TLC) was optimized and used to discriminate Chaenomelis Fructus from Guangpi Mugua. In addition, High-performance Liquid Chromatography (HPLC) method combined with fingerprint analysis and Partial Least-squares Discrimination Analysis (PLS-DA) was employed to study the chemical differences between Chaenomelis Fructus and Guangpi Mugua. Moreover, the Single Standard to Determine Multi-components (SSDMC) method with credible precision, repeatability, stability and durability was developed for quantitative analysis of the abundant markers. RESULTS The developed TLC and HPLC methods were effective in the authentication of Chaenomelis Fructus. Moreover, oleanolic acid, ursolic acid, pomolic acid, corosolic acid, 3-O-acetylpomolic acid and one unknown compound, were identified to be critical markers for the discrimination of Chaenomelis Fructus from Guangpi Mugua. CONCLUSIONS Adulteration has always been a challenge in the development of TCM. This study therefore presents useful insights that may help solve the problem of adulteration during the preparation of Chaenomelis Fructus. HIGHLIGHTS The present study provided a systematic method for the quality control of Chaenomelis Fructus. This was therefore the first step towards solving the problem of adulteration in an attempt to improve the clinical safety and effectiveness of Chaenomelis Fructus.
Collapse
Affiliation(s)
- Mengying Lyu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuai Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
39
|
Wang ZJ, Jin DN, Zhou Y, Sang XY, Zhu YY, He YJ, Xie TZ, Dai Z, Zhao YL, Luo XD. Bioactivity Ingredients of Chaenomeles speciosa against Microbes: Characterization by LC-MS and Activity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4686-4696. [PMID: 33876942 DOI: 10.1021/acs.jafc.1c00298] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chaenomeles speciosa (Sweet) Nakai is a dual-purpose Chinese herbal medicine and functional food favored by minorities in Southwest China, and its fruits are used for the treatment of dyspepsia, dysentery, enteritis, and rheumatism inflammation. Some diseases may be related to microbial infection; however, it is not known how the fruits possess antimicrobial activity. We evaluated the antimicrobial bioctivity of different evaluation extracts of C. speciosa fruits by in vitro and in vivo with colony-forming unit assays, and the strongest bioactive-guided fraction was selected for column chromatography (CC), UHPLC-QTOF-MS/MS, and NMR spectroscopy to confirm the chemical constituents. The most possible antimicrobial mechanism of C. speciosa fruits was explored by metabolomics approach, fluorescence microscopy imaging, and scanning electron microscopy (SEM). Thirty compounds, which were major characteristic ions of the bioactive fraction, were determined precisely. The bioactive fraction could inhibit 18 pathogenic microorganisms, significantly reduced, especially drug-resistant bacteria, compared to ampicillin sodium salt, fluconazole, and berberine chloride form; and the minimum inhibitory concentration (MIC) or minimum fungicidal concentration (MFC) values were in the range of 0.1-1 mg/mL. The compounds 2'-methoxyaucuparin (1) and oleanolic acid (20) not only have antibacterial activity but also may have synergistic effects. Further, the bioactive fraction might inhibit the biofilm formation, enhance immunity, and restore bacterial infection damage in vitro and in vivo to kill microorganisms. The data indicated that C. speciosa fruits' major bioactive fraction enriched with triterpenes, flavonoids, and phenolics could be developed as a functional supplement for individuals to prevent and treat microbial infection.
Collapse
Affiliation(s)
- Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Dan-Ni Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xu-Yan Sang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
40
|
Siegień J, Buchholz T, Popowski D, Granica S, Osińska E, Melzig MF, Czerwińska ME. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem 2021; 355:129414. [PMID: 33773461 DOI: 10.1016/j.foodchem.2021.129414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
A screening of inhibitory activity of α-amylase, as well as pancreatic lipase (PL), under the influence of aqueous and ethanolic preparations from 12 plant materials was performed. The most active aqueous extracts from the fruits of Chaenomeles japonica (CJ) and Hippophaë rhamnoides (HR) were selected for artificial gastrointestinal digestion (GID). The aim of this study was to evaluate the inhibitory effect of the fractions obtained after GID on PL and α-amylase activities using a fluorescence assay. The changes in the composition of crude extracts in GID aliquots were followed by analysis with HPLC-DAD-MSn method in order to indicate active constituents. The main constituents of CJ and HR extracts were procyanidins and isorhamnetin derivatives, respectively. The most abundant compounds of extracts were found in all compartments of the digestion model correlated with relevant lipase/α-amylase inhibitory activity. What is more, the gastric and intestinal fractions inhibited enzymatic activity by at least 40%.
Collapse
Affiliation(s)
- Justyna Siegień
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Tina Buchholz
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska street, 02-776 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland.
| |
Collapse
|
41
|
Tahir MS, Almezgagi M, Zhang Y, Bashir A, Abdullah HM, Gamah M, Wang X, Zhu Q, Shen X, Ma Q, Ali M, Solangi ZA, Malik WS, Zhang W. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother 2021; 137:111253. [PMID: 33545661 DOI: 10.1016/j.biopha.2021.111253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
With a large and increasing elderly population, neurodegenerative diseases such as Parkinson's disease (PD), Huntington disease (HD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and Multiple sclerosis (MS) have become a major and growing health problem. During the past few decades, the elderly population has grown 2.5 % every year. Unfortunately, there are no specific therapeutic remedies available to slow the onset or development of these diseases. An aging brain causes many pathophysiological changes and is the major risk factor for most of the neurodegenerative disorders. Polyphenolic compounds such as flavonols have shown therapeutic potential and can contribute to the treatment of these diseases. In this review, evidence for the beneficial neuroprotective effect of multiple flavonols is discussed and their multifactorial cellular pathways for the progressions of age-associated brain changes are identified. Moreover, the animal models of these diseases support the neuroprotective effect and target the potential of flavonols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Shoaib Tahir
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Adnan Bashir
- Department of Pharmacology, Fatima Memorial College of Medicine and Dentistry, Punjab Lahore, 54000, Pakistan
| | - Hasnat Mazhar Abdullah
- Department of Emergency Medicine, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, MK6 5BY, United Kingdom
| | - Mohammed Gamah
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Xiaozhou Wang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Qinfang Zhu
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Xiangqun Shen
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Muhammad Ali
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Zeeshan Ahmed Solangi
- Department of Crop Genetics and Breeding, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Waseem Sami Malik
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China.
| |
Collapse
|
42
|
Wang J, Zhang R, Jiang J, Duan W, Fan P, Li S, Wang L. Flavan-3-ols in Vitis seeds: Their extraction and analysis by HPLC-ESI-MS/MS. Food Res Int 2021; 139:109911. [PMID: 33509478 DOI: 10.1016/j.foodres.2020.109911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
An orthogonal L1643 × 22 test design was applied to select the optimum conditions for extracting flavan-3-ols in grape seeds. Highest yield of flavan-3-ols was achieved with 80% methanol, a ratio [1:30 (g/mL)] of sample-to-solvent, sonication for 20 min, and extraction at 25 °C for 12 h in darkness. The optimized analytical method for HPLC separation was a multistep gradient elution using 1% formic acid (A) and acetonitrile containing 1% formic acid (B), at a flow rate of 0.6 mL/min in 36 min. Moreover, fourteen flavan-3-ols were separated and identified using HPLC-ESI-MS/MS, including four monomers ((+)-catechin, (-)-epicatechin, epigallocatechin gallate and epicatechin gallate) and ten oligomers (three dimers, four trimers, two tetramers and one pentamer). The optimized method was used to determine flavan-3-ols content and compositions among ten representative cultivars. The new wine grape - Beihong, had higher flavan-3-ols content and polymerization than classic wine grapes - Cabernet Sauvignon, Merlot, Semillon and Riesling.
Collapse
Affiliation(s)
- Junfang Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; Key Laboratory of Agro-Products Processing Technology of Shandong / Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture / Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Rui Zhang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jinzhu Jiang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
43
|
Zvikas V, Urbanaviciute I, Bernotiene R, Kulakauskiene D, Morkunaite U, Balion Z, Majiene D, Liaudanskas M, Viskelis P, Jekabsone A, Jakstas V. Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves. Foods 2020; 10:foods10010018. [PMID: 33374689 PMCID: PMC7822480 DOI: 10.3390/foods10010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma multiforme is an aggressive and invasive disease with no efficient therapy available, and there is a great need for finding alternative treatment strategies. This study aimed to investigate anticancer activity of the extracts of the Japanese quince (JQ) cultivars ‘Darius’, ‘Rondo’, and ‘Rasa’ leaf extracts on glioblastoma C6 and HROG36 cells. As identified by ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry, the extracts contained three prevailing groups of phenols: hydroxycinnamic acid derivatives; flavan-3-ols; and flavonols. Sixteen phenols were detected; the predominant compound was chlorogenic acid. The sum of detected phenols varied significantly between the cultivars ranging from 9322 µg/g (‘Rondo’) to 17,048 µg/g DW (‘Darius’). Incubation with the extracts decreased the viability of glioblastoma HROG36 cells with an efficiency similar to temozolomide, a drug used for glioblastoma treatment. In the case of C6 glioblastoma cells, the extracts were even more efficient than temozolomide. Interestingly, primary cerebellar neuronal-glial cells were significantly less sensitive to the extracts compared to the cancer cell lines. The results showed that JQ leaf ethanol extracts are rich in phenolic compounds, can efficiently reduce glioblastoma cell viability while preserving non-cancerous cells, and are worth further investigations as potential anticancer drugs.
Collapse
Affiliation(s)
- Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Ieva Urbanaviciute
- Laboratory of Biochemistry and Technology, Institute for Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Lithuania;
| | - Rasa Bernotiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Deimante Kulakauskiene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Urte Morkunaite
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Zbigniev Balion
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Daiva Majiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Laboratory of Biochemistry and Technology, Institute for Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Lithuania;
| | - Aiste Jekabsone
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių av. 17, LT-50009 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-672-00844
| |
Collapse
|
44
|
Bermúdez-Oria A, Bouchal Y, Fernández-Prior Á, Vioque B, Fernández-Bolaños J. Strawberry Puree Functionalized with Natural Hydroxytyrosol: Effects on Vitamin C and Antioxidant Activity. Molecules 2020; 25:molecules25245829. [PMID: 33321861 PMCID: PMC7764297 DOI: 10.3390/molecules25245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/21/2023] Open
Abstract
The natural antioxidant hydroxytyrosol (HT) was used to functionalize a strawberry puree. The effect of the antioxidant on the stability of the two bioactive forms of vitamin C (ascorbic acid-AA and dehydroascorbic acid-DHAA) in strawberry puree stored at 4 °C, compared with the effect on a model system of AA in water, was investigated. In the absence of HT, the concentration of vitamin C in strawberry puree decreased but not in the model system. Low concentrations of HT in strawberry puree (0.05 and 0.1 mg HT/g puree) stabilized vitamin C and improved its antioxidant activity. However, at high concentrations of HT (from 0.5 mg HT/g puree), although the antioxidant activity improved, degradation of vitamin C occurred. Therefore, the concentration of HT used to obtain a functionalized strawberry puree it is very important. An adequate concentration increases the antioxidant activity and protects vitamin C from degradation, developing a functional food. However, an inadequate concentration of HT affects the vitamin C content, which is essential for the human diet because it cannot be biosynthetized by the organism.
Collapse
|
45
|
Gao R, Xiong S, Zhang T, Deng X, Li J, Liao M. Two new quinic acid derivatives from the fruits of Chaenomeles speciosa. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Kowalska H, Marzec A, Domian E, Masiarz E, Ciurzyńska A, Galus S, Małkiewicz A, Lenart A, Kowalska J. Physical and Sensory Properties of Japanese Quince Chips Obtained by Osmotic Dehydration in Fruit Juice Concentrates and Hybrid Drying. Molecules 2020; 25:molecules25235504. [PMID: 33255419 PMCID: PMC7727861 DOI: 10.3390/molecules25235504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Japanese quince has high health value, but due to its taste and texture, it is difficult to eat raw. The use of innovative drying methods to produce dried snack foods from these fruits may be of interest to producers and consumers. The physicochemical and sensory properties of 3 mm slices of Japanese quince fruit (with skin, without seeds) obtained by osmotic pre-treatment in chokeberry and apple juice concentrates, and with the use of convection (convective drying, C-D), freeze-drying (F-D), and convection-microwave-vacuum drying (hybrid) are assessed. The methods of drying osmo-dehydrated slices do not affect the dry matter content. In most dried quince, the water activity is 0.40 or lower. Pre-osmotic dehydration and drying have a significant impact on the mechanical and acoustic properties of quince chips. Sensory attractive chips emit loud acoustic emission (AE) during the breaking test. Chips that are osmo-dehydrated in a mixture of chokeberry juice concentrate and sucrose and dried by a hybrid method are attractive. They have a dark red color given by chokeberry concentrate and a slight sweet (with a slight sour-bitter) taste. The sensory evaluation was useful for determining the quality of the chips in terms of their texture (crispness) tested by mechanical methods. Their sensory ratings (overall desirability as weight of color, taste, crispness, and flavor) are high and similar (from 3.8 to 4.1). The use of innovative drying methods with pre-osmotic treatment allows obtaining dried material with properties comparable to those obtained by the F-D method, but in a much shorter time, i.e., with lower energy and using a simple method.
Collapse
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
- Correspondence: ; Tel.: +48-22-5937-565
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Ewelina Masiarz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Aleksandra Małkiewicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Andrzej Lenart
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (E.M.); (A.C.); (S.G.); (A.M.); (A.L.)
| | - Jolanta Kowalska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| |
Collapse
|
47
|
Analysis of Flavonoid Metabolites in Chaenomeles Petals Using UPLC-ESI-MS/MS. Molecules 2020; 25:molecules25173994. [PMID: 32887276 PMCID: PMC7504807 DOI: 10.3390/molecules25173994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/26/2023] Open
Abstract
Chaenomeles species are used for both ornamental decoration and medicinal purposes. In order to have a better understanding of the flavonoid profile of Chaenomeles, the petals of four Chaenomeles species, including Chaenomeles japonica (RB), Chaenomeles speciose (ZP), Chaenomeles sinensis (GP), and Chaenomeles cathayensis (MY), were selected as experimental material. The total flavonoid content of GP was found to be the highest, followed by MY, ZP, and RB. In total, 179 flavonoid metabolites (including 49 flavonols, 46 flavonoids, 19 flavone C-glycosides, 17 procyanidins, 15 anthocyanins, 10 flavanols, 10 dihydroflavonoids, 6 isoflavones, 5 dihydroflavonols, and 2 chalcones) were identified by Ultra-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Screening of differential flavonoid metabolites showed that GP had higher levels of metabolites when compared with the other three Chaenomeles species. Annotation and enrichment analysis of flavonoid metabolites revealed that cyanidin 3,5-diglucoside and pelargonidin-3,5-diglucoside anthocyanins are likely responsible for the color differences of the four Chaenomeles petals. Additionally, a large number of flavonoids, flavonols, and isoflavones were enriched in the petals of GP. This study provides new insights into the development and utilization of Chaenomeles petals and provides a basis for future investigations into their utilization.
Collapse
|
48
|
Urbanavičiūtė I, Liaudanskas M, Bobinas Č, Šarkinas A, Rezgienė A, Viskelis P. Japanese Quince ( Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities. Foods 2020; 9:E1132. [PMID: 32824623 PMCID: PMC7466336 DOI: 10.3390/foods9081132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
The value of fruits is determined by the quantity and variety of biologically active compounds they contain, and their benefits on human health. This work presents the first study of the biochemical composition and antibacterial activity of the new Japanese quince (JQ) cultivars 'Darius', 'Rondo', and 'Rasa' fruits. The total phenolic content (TPC) was determined using the Folin-Ciocalteu method and each compound was identified by HPLC High Performance Liquid Chromatography. The antimicrobial activity against three Gram-positive and three Gram-negative bacteria, and one yeast strain, was evaluated by the agar well diffusion method using three different concentrations. The free radical scavenging activity was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) methods and ranged from 99.1 to 115.9 μmolTE/100 g, and from 372 to 682 μmolTE/100 g, respectively. TPC ranged from 3906 to 4550 mgGAE/100 g, and five compounds, isoquercitrin, rutin, (+)-catechin, (-)-epicatechin, and chlorogenic acid were identified. All JQ extracts possessed antimicrobial activity against Gram-positive and Gram-negative bacteria, and Enterococcus faecalis (ATCC 29212) was the most sensitive strain. These results indicate that JQ fruits are a significant source of bio-compounds, which can enrich the diet with strong antioxidants, and they are very promising as a substitute for chemical preservatives in the food and cosmetic industry.
Collapse
Affiliation(s)
- Ieva Urbanavičiūtė
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno st.30, Babtai, LT-54333 Kaunas distr., Lithuania
| | - Mindaugas Liaudanskas
- Laboratory of Pharmaceutical Science, Institute of Pharmaceutical Technologies of the Faculty of Pharmacy of Lithuanian University of Health Sciences, Sukilėlių st.13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių st.13, LT-50162 Kaunas, Lithuania
| | - Česlovas Bobinas
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno st.30, Babtai, LT-54333 Kaunas distr., Lithuania
| | - Antanas Šarkinas
- Microbiological Research Laboratory, Food Institute of Kaunas University of Technology, Radvilėnų pl. 19, 50292 Kaunas, Lithuania
- Department of Food Science and Technology of Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Aistė Rezgienė
- Microbiological Research Laboratory, Food Institute of Kaunas University of Technology, Radvilėnų pl. 19, 50292 Kaunas, Lithuania
| | - Pranas Viskelis
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno st.30, Babtai, LT-54333 Kaunas distr., Lithuania
| |
Collapse
|
49
|
Shang YF, Chen SX, Miao JH, Zhang YG, Cai HZ, Bu XY, Xie Y, Ma YL, Wang CX, Xu JL, Wei ZJ. Autoclaving hyphenated with reflux extraction for gaining bioactive components from Chaenomeles fruits. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1774608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ya-Fang Shang
- Postdoctoral Workstation of Chuzhou University, Chuzhou University, Chuzhou, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Sheng-Xiong Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun-Hao Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi-Ge Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hua-Zhen Cai
- Postdoctoral Workstation of Chuzhou University, Chuzhou University, Chuzhou, China
| | - Xian-Yong Bu
- Department of Research and Development, Anhui PanPan Food CO., LTD, Chuzhou, China
| | - Yan Xie
- Department of Research and Development, Anhui PanPan Food CO., LTD, Chuzhou, China
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chun-Xian Wang
- Xuancheng Research Institute, Hefei University of Technology, XuanCheng, China
| | - Jiu-Liang Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
50
|
Jiao S, Li Y, Wang Z, Sun‐Waterhouse D, Waterhouse GIN, Liu C, Wang X. Optimization of enzyme‐assisted extraction of bioactive‐rich juice from
Chaenomeles sinensis
(Thouin) Koehne by response surface methodology. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shenglong Jiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province College of Food Science and Engineering Shandong Agricultural University Taian P.R. China
| | - You Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province College of Food Science and Engineering Shandong Agricultural University Taian P.R. China
| | - Zhaosheng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province College of Food Science and Engineering Shandong Agricultural University Taian P.R. China
| | | | | | - Chuanfu Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province College of Food Science and Engineering Shandong Agricultural University Taian P.R. China
| | - Xiaoli Wang
- College of Food Science and Engineering Shandong Agriculture and Engineering University Jinan P.R. China
| |
Collapse
|