1
|
da Conceição RRP, Queiroz VAV, Simeone MLF, da Silva Araújo DD, do Carmo PHF, de Menezes CB, Figueiredo JEF, de Resende Stoianoff MA. Does sorghum phenolic extract have antifungal effect? Braz J Microbiol 2024; 55:1829-1839. [PMID: 38722522 PMCID: PMC11153430 DOI: 10.1007/s42770-024-01327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
This study aimed to evaluate the antifungal effect of SC319 sorghum phenolic extract (SPE) on the Aspergillus, Fusarium, Penicillium, Stenocarpella, Colletotrichum, and Macrophomina genera. SPE was extracted by 20% ethanol and used in four assays: (1) against Fusarium verticillioides in solid (PDA) and liquid (PD) potato dextrose media; (2) Minimum Inhibitory Concentration (MIC) assay with 16 fungi isolates; (3) Conidial Germination Rate (CGR) with 14 fungi isolates and (4) Growth Curve (GC) with 11 fungi isolates. There was no reduction in the mycelial growth (colony diameter and dry weight) and in the number of Fusarium verticillioides spores in assay 1 (PDA and PD). The colony's dry weight was almost six times higher in the presence than in the absence of SPE. All SPE samples presented MIC (assay 1) above the maximum concentration tested (5000 µg.mL-1) for the 16 isolates. Also, there was no inhibitory effect of SPE on conidia germination rate (CGR). Oppositely, in GC assay, the control had a higher CFU count than the samples with SPE in 24 h. This result suggests that SPE can delay the fungal growth in the first hours of incubation, which is an important finding that may help reduce the severity of fungal diseases in plants. However, further studies are needed to confirm these results, including sorghum genotypes with different profiles of phenolic compounds. Although the SC319 SPE was not effective as an antifungal agent, it may have potential as a growth promoter of beneficial fungi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Renata Regina Pereira da Conceição
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | - Paulo Henrique Fonseca do Carmo
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | - Maria Aparecida de Resende Stoianoff
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, no 6.627, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
Zhang L, Wang C, Yu M, Cong L, Zhu Z, Chen B, Lu X. Identification and analysis of novel recessive alleles for Tan1 and Tan2 in sorghum. PeerJ 2024; 12:e17438. [PMID: 38818455 PMCID: PMC11138519 DOI: 10.7717/peerj.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Background The identification and analysis of allelic variation are important bases for crop diversity research, trait domestication and molecular marker development. Grain tannin content is a very important quality trait in sorghum. Higher tannin levels in sorghum grains are usually required when breeding varieties resistant to bird damage or those used for brewing liquor. Non-tannin-producing or low-tannin-producing sorghum accessions are commonly used for food and forage. Tan1 and Tan2, two important cloned genes, regulate tannin biosynthesis in sorghum, and mutations in one or two genes will result in low or no tannin content in sorghum grains. Even if sorghum accessions contain dominant Tan1 and Tan2, the tannin contents are distributed from low to high, and there must be other new alleles of the known regulatory genes or new unknown genes contributing to tannin production. Methods The two parents 8R306 and 8R191 did not have any known recessive alleles for Tan1 and Tan2, and it was speculated that they probably both had dominant Tan1 and Tan2 genotypes. However, the phenotypes of two parents were different; 8R306 had tannins and 8R191 had non-tannins in the grains, so these two parents were constructed as a RIL population. Bulked segregant analysis (BSA) was used to determine other new alleles of Tan1 and Tan2 or new Tannin locus. Tan1 and Tan2 full-length sequences and tannin contents were detected in wild sorghum resources, landraces and cultivars. Results We identified two novel recessive tan1-d and tan1-e alleles and four recessive Tan2 alleles, named as tan2-d, tan2-e, tan2-f, and tan2-g. These recessive alleles led to loss of function of Tan1 and Tan2, and low or no tannin content in sorghum grains. The loss-of-function alleles of tan1-e and tan2-e were only found in Chinese landraces, and other alleles were found in landraces and cultivars grown all around the world. tan1-a and tan1-b were detected in foreign landraces, Chinese cultivars and foreign cultivars, but not in Chinese landraces. Conclusion These results implied that Tan1 and Tan2 recessive alleles had different geographically distribution in the worldwide, but not all recessive alleles had been used in breeding. The discovery of these new alleles provided new germplasm resources for breeding sorghum cultivars for food and feed, and for developing molecular markers for low-tannin or non-tannin cultivar-assisted breeding in sorghum.
Collapse
Affiliation(s)
- Lixia Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Shenhe, China
| | - Chunyu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Shenhe, China
| | - Miao Yu
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling, Kemaoxi Street, China
| | - Ling Cong
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Shenhe, China
| | - Zhenxing Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Shenhe, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling, Kemaoxi Street, China
| | - Xiaochun Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Shenhe, China
| |
Collapse
|
3
|
de Oliveira LDL, de Alencar Figueiredo LF. Sorghum phytonutrients and their health benefits: A systematic review from cell to clinical trials. J Food Sci 2024. [PMID: 38517029 DOI: 10.1111/1750-3841.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Sorghum is key for global food security due to its genetic variability, resilience, and rich phytonutrient content, which are linked to numerous health benefits. A systematic review assessed the health effects of sorghum by analyzing cell (n = 22), animal (n = 20), and human (n = 7) studies across antioxidant, anti-inflammatory, obesity, cancer, cardiovascular, and diabetes outcomes. This review, involving 42 papers and 177 researchers from 12 countries, collected data from sorghum accessions (acc) and significant effects. Studies used 68 identified and 8 unidentified sorghums, 57% red (n = 20), brown (n = 5), and black (n = 17) pericarp colors, and evaluated whole (n = 31), brans (n = 11), and decorticated grains (n = 2). Colored sorghum, richer in phenolic compounds, especially 3-deoxyanthocyanins and tannins, inhibited cancer cell activities, including proliferation, tumor growth, and ROS activity, and promoted cell cycle arrest and apoptosis. Sorghum elevated HO1 and eNOS expression for cardiovascular, health-reduced platelet aggregation, and modulated platelet microparticles. They also suppressed inflammation markers and decreased lipid accumulation. Animal studies indicated sorghum's potential across antioxidant capacity, cancer and inflammation mitigation, and lipid and glucose metabolism. Translating these findings to human scenarios requires caution, especially considering cell studies do not fully represent polyphenol metabolism. Human studies provided mixed results, indicating antioxidant and potential anti-inflammatory benefits and nuanced effects on glucose and lipid metabolism. The main risks of bias highlighted challenges in quantifying phytonutrients, identifying sorghum acc features, and lack of assessors blinding. Nonetheless, sorghum emerges as a promising functional food for countering chronic diseases in Western diets.
Collapse
Affiliation(s)
- Lívia de Lacerda de Oliveira
- Department of Nutrition, Faculty of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília, Federal District, Brazil
| | | |
Collapse
|
4
|
Santos PCS, Teixeira BA, Queiroz VAV, Vidigal MCTR, Stringheta PC, de Barros FAR. Optimization of ultrasound-assisted extraction of sorghum phenolics and effect on the stability of 3-deoxyanthocyanins. J Food Sci 2023; 88:5078-5092. [PMID: 37942949 DOI: 10.1111/1750-3841.16826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Sorghum 3-deoxyanthocyanins (3-DXAs) have greater stability when compared to other anthocyanins. However, the efficiency in extracting these phenolic compounds from cereals, using conventional methods, is low, because most of them are bound to the cell wall. Thus, the aim of this study was to optimize the ultrasound-assisted extraction (UAE) of anthocyanins and total phenolics from sorghum flour, and evaluate the stability of the 3-DXAs. Two frequencies (25 and 45 kHz) were applied in a Central Composite Rotational design to investigate the effect of the variables time (5-75 min) and temperature (30-65°C) using the UAE, with amplitude of the ultrasonic power set at 400 W. In addition, the stability of the 3-DXAs present in the extracts was evaluated. It was possible to successfully optimize the extraction of total anthocyanins (both frequencies) and phenolics (at 45 kHz), and then to obtain equations, to predict their concentrations, with high R2 . The efficiency of UAE was observed, increasing the yield of total anthocyanins, phenolics, and antioxidant capacity at the frequencies of 25 and 45 kHz by 30% and 27%, 10% and 5%, and 30% and 15%, respectively. The apigeninidin was the major 3-DXA found in the extracts, and the luteolinidin was the most stable over storage time. Overall, there was no difference in the 3-DXAs stability obtained by the UAE compared to the conventional method. Thus, ultrasound is an alternative to obtaining sorghum extracts rich in 3-DXAs and other phenolic compounds. PRACTICAL APPLICATION: The health benefits of sorghum 3-deoxyanthocyanins coupled with the growing interest of the food industry in producing healthier food products have motivated this study, because it is important to find ways to optimize 3-deoxyanthocyanins extraction. We have demonstrated that ultrasound-assisted extraction was efficient in extracting high amounts of 3-deoxyanthocyanins and other phenolics from sorghum flour. Moreover, some 3-deoxyanthocyanins have shown to be more stable than others after extraction. Thus, the ultrasound has great potential to produce sorghum phenolic extracts rich in 3-deoxyanthocyanins, which can be used as natural colorants and functional ingredients in foods.
Collapse
|
5
|
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int 2023; 173:113390. [PMID: 37803729 DOI: 10.1016/j.foodres.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea.
| |
Collapse
|
6
|
Yarabbi H, Roshanak S, Milani E. Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Sci Nutr 2023; 11:5596-5608. [PMID: 37701216 PMCID: PMC10494662 DOI: 10.1002/fsn3.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
One of the challenges of the food industry is detecting the potential of novel non-dairy food matrices to deliver probiotic bacteria to humans as cholesterol-free products, suitable for people with lactose intolerance and sensitivity to dairy proteins. In this study, the possibility of adding sprouted quinoa milk (SQM) at 0%, 50%, and 100% levels in probiotic non-dairy dessert containing native Lactobacillus plantarum isolated from camel milk was investigated. Physicochemical, functional, microbiological, color, texture, and organoleptic characteristics of probiotic dessert samples were evaluated during 1, 7, and 14 days of storage at 4°C. According to the results, fat, protein, carbohydrates, and ash increased significantly during germination (p < .05). With boosting the SQM levels in the probiotic desserts, the number of soluble solids increased, and the syneresis decreased significantly (p < .05). The simultaneous increase in SQM levels and time caused an increase in acidity and decreased the moisture content of the samples. As the storage time increased, the intensity of the syneresis also decreased. The brightness index in all samples containing SQM was lower than in the control sample. During storage, the viable cell number of Lactobacillus plantarum in all samples decreased significantly. However, they were above the minimum required for FDA recommendation (6 log CFU g-1), varying from 4.6 × 108 CFU/mL to 4.3 × 107 CFU/mL for 50% SQM treatment. It was concluded that probiotic desserts containing SQM up to 50% could be properly presented in the market as gluten-free and functional food products.
Collapse
Affiliation(s)
- Hanieh Yarabbi
- Department of Food Science and Technology, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Elnaz Milani
- Department of Food processing Iranian Academic Center for Education Culture and Research (ACECR) Mashhad Iran
| |
Collapse
|
7
|
Sruthi NU, Rao PS, Bennett SJ, Bhattarai RR. Formulation of a Synergistic Enzyme Cocktail for Controlled Degradation of Sorghum Grain Pericarp. Foods 2023; 12:foods12020306. [PMID: 36673398 PMCID: PMC9857962 DOI: 10.3390/foods12020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Sorghum is one of the major grains produced worldwide for food and fodder, owing to its nutritional profile advantages. However, the utilisation of whole grain sorghum as an ingredient in conventional food formulations is limited due to its poor digestibility, which requires the removal of the outer fibrous layers. Grain breakage and loss of essential nutrients also disadvantage traditional milling practices. Using carbohydrate degrading enzymes to hydrolyse the grain pericarp is a novel approach to biopolishing, where selective degradation of the pericarp layers occurs without adversely affecting the nutrient profile. A collective synergism of enzymes has been proven to cause effective hydrolysis compared to individual enzymes due to the complex presence of non-starch polysaccharides in the grain's outer layers, which comprise a variety of sugars that show specific degradation with respect to each enzyme. The present study aimed to formulate such an enzyme cocktail with xylanase, cellulase, and pectinase in different proportions for hydrolysing sorghum grain pericarp by determining the yield of specific sugars in the pericarp extract after a certain period of incubation. The results showed that the xylanase enzyme has a major effect on the grain bran composition compared to cellulase and pectinase; however, a synergistic mixture yielded more hydrolysed sugars and anti-nutrients in the extract compared to each of the enzymes individually. The results were confirmed by morphological and crystallinity studies of the soaked grain. Compared to conventional water-soaked samples, grains soaked in a cocktail with 66.7% xylanase, 16.7% cellulase, and 16.7% pectinase had visibly thinner and more degraded fibre layers.
Collapse
Affiliation(s)
- N. U. Sruthi
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley 6102, Australia
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavuluri Srinivasa Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sarita Jane Bennett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley 6102, Australia
| | - Rewati Raman Bhattarai
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley 6102, Australia
- Correspondence:
| |
Collapse
|
8
|
Espitia-Hernández P, Ruelas-Chacón X, Chávez-González ML, Ascacio-Valdés JA, Flores-Naveda A, Sepúlveda-Torre L. Solid-State Fermentation of Sorghum by Aspergillus oryzae and Aspergillus niger: Effects on Tannin Content, Phenolic Profile, and Antioxidant Activity. Foods 2022; 11:3121. [PMID: 36230197 PMCID: PMC9562625 DOI: 10.3390/foods11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sorghum contains antioxidants such as tannins. However, these are considered antinutritional factors since they are responsible for the low digestibility of proteins and carbohydrates. Nevertheless, these can be extracted by solid-state fermentation (SSF). Therefore, this study aimed to evaluate the effects of SSF from Aspergillus oryzae and Aspergillus niger Aa210 on the tannin contents, phenolic profiles determined by HPLC-MS, and antioxidant activities (ABTS, DPPH, and FRAP) of two genotypes of sorghum. The results showed that with SSF by A. niger Aa210, a higher tannin content was obtained, with yields of 70-84% in hydrolyzable tannins (HT) and 33-49% in condensed tannins (CT), while with SSF by A. oryzae the content of HT decreased by 2-3% and that of CT decreased by 6-23%. The extracts fermented by A. niger at 72 and 84 h exhibited a higher antioxidant activity. In the extracts, 21 polyphenols were identified, such as procyanidins, (+)-catechin, (-)-epicatechin, scutellarein, arbutin, and eriodictyol, among others. Therefore, SSF by A. niger was an efficient process for the release of phenolic compounds that can be used as antioxidants in different food products. It is also possible to improve the bioavailability of nutrients in sorghum through SSF. However, more studies are required.
Collapse
Affiliation(s)
- Pilar Espitia-Hernández
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Xóchitl Ruelas-Chacón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico
| | - Mónica L. Chávez-González
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Juan A. Ascacio-Valdés
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Antonio Flores-Naveda
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico
| | - Leonardo Sepúlveda-Torre
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
9
|
Fuentes-Cardenas IS, Cuba-Puma R, Marcilla-Truyenque S, Begazo-Gutiérrez H, Zolla G, Fuentealba C, Shetty K, Ranilla LG. Diversity of the Peruvian Andean maize ( Zea mays L.) race Cabanita: Polyphenols, carotenoids, in vitro antioxidant capacity, and physical characteristics. Front Nutr 2022; 9:983208. [PMID: 36225880 PMCID: PMC9549777 DOI: 10.3389/fnut.2022.983208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The high diversity of the Peruvian Andean maize (Zea mays L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race Cabanita with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and in vitro antioxidant properties. Maize landraces with variable kernel pigmentation were collected from two provinces (Caylloma and Castilla) within the Arequipa region (among ten Andean sites) and the phytochemical profile was evaluated by Ultra High-Performance Liquid Chromatography with diode array detector (UHPLC-DAD). All maize samples were important sources of phenolic compounds mainly soluble p-coumaric and ferulic acid derivatives whereas anthocyanins were only detected in maize with partially red pigmented kernels. Major phenolic compounds in the bound phenolic fractions were ferulic acid and its derivatives along with p-coumaric acid. Carotenoid compounds including xanthophylls such as lutein, lutein isomers, and zeaxanthin were only detected in orange and white-yellow pigmented maize and are reported for the first time in Peruvian landraces. The multivariate analysis using Principal Components Analysis (PCA) revealed low variability of all data which may indicate a level of similarity among maize samples based on evaluated variables. However, maize grown in Caylloma province showed more homogeneous physical characteristics and higher yield, whereas higher phenolic contents and antioxidant capacity were observed in maize from Castilla. Samples CAY (yellow-pigmented kernel, Castilla) and COM (orange-pigmented kernel, Caylloma) had the highest total phenolic (246.7 mg/100 g dried weight basis, DW) and carotenoid (1.95 μg/g DW) contents among all samples. The variable Andean environmental conditions along with differences in farming practices may play a role and should be confirmed with further studies. Current results provide the metabolomic basis for future research using integrated omics platforms targeted toward the complete characterization of the ethnic-relevant maize race Cabanita.
Collapse
Affiliation(s)
| | - Rody Cuba-Puma
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | | | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiologia Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Claudia Fuentealba
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| |
Collapse
|
10
|
Santos AC, Otsuka FAM, Santos RB, Trindade DDJ, Matos HR. Antiglycation potential and antioxidant activity of genipap ( Genipa americana L.) in oxidative stress mediated by hydrogen peroxide on cell culture. Nat Prod Res 2022; 37:2065-2069. [DOI: 10.1080/14786419.2022.2116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aline Costa Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas – LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, UFS - Sergipe, Brazil
| | - Felipe Akihiro Melo Otsuka
- Laboratório de Estresse Oxidativo e Patologias Relacionadas – LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, UFS - Sergipe, Brazil
| | - Rodrigo Brito Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas – LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, UFS - Sergipe, Brazil
| | - Danielle de Jesus Trindade
- Laboratório de Estresse Oxidativo e Patologias Relacionadas – LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, UFS - Sergipe, Brazil
| | - Humberto Reis Matos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas – LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, UFS - Sergipe, Brazil
| |
Collapse
|
11
|
Characterisation of Polishing Frequency for Three Varieties of Sorghum Grain in Java, Indonesia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:2949665. [PMID: 35795091 PMCID: PMC9252707 DOI: 10.1155/2022/2949665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
To determine the suitability of different sorghum cultivars (grown in Indonesia) for the manufacturing of acceptable food products, their properties must first be characterised. During sorghum processing, polishing may affect the final nutritional value and quality of the product. This study is aimed at determining the effects of sorghum variety and polishing frequency on nutritional value. This was achieved by using a factorial randomised block design with two factors: sorghum variety (Bioguma, Numbu, and Super) and polishing frequency (once, twice, or thrice). Tannin content, antioxidant capacity, levels of dietary fibre and resistant starch, and fat, ash, and carbohydrate content varied according to sorghum cultivar. Compared to other sorghum varieties, the Super cultivar contained the highest levels of antioxidants, dietary fibre, fat content, protein, resistant starch, and tannins (although high tannin content could be lowered by polishing grains up to three times). The frequency of polishing affected tannin and ash levels in all three sorghum varieties. Polishing frequency also affected the antioxidant capacity of polished sorghum grains. The findings from this study should be considered when determining appropriate applications for various sorghum-based food products.
Collapse
|
12
|
Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
de Oliveira LDL, de Oliveira GT, de Alencar ER, Queiroz VAV, de Alencar Figueiredo LF. Physical, chemical, and antioxidant analysis of sorghum grain and flour from five hybrids to determine the drivers of liking of gluten-free sorghum breads. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
CÉLIA JA, RESENDE O, LIMA MSD, CORREIA JS, OLIVEIRA KBD, TAKEUCHI KP. Technological properties of gluten-free biscuits from sorghum flour granifero (Sorghum bicolor (L.) Moench). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.29222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
D'Almeida CTDS, Mameri H, Menezes NDS, de Carvalho CWP, Queiroz VAV, Cameron LC, Morel MH, Takeiti CY, Ferreira MSL. Effect of extrusion and turmeric addition on phenolic compounds and kafirin properties in tannin and tannin-free sorghum. Food Res Int 2021; 149:110663. [PMID: 34600665 DOI: 10.1016/j.foodres.2021.110663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.
Collapse
Affiliation(s)
- Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Hamza Mameri
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | | | | | - L C Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Marie-Hélène Morel
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil.
| |
Collapse
|
17
|
Li Y, Li M, Liu J, Zheng W, Zhang Y, Xu T, Gao B, Yu L. Chemical Composition Profiling and Biological Activities of Phenolic Compounds in Eleven Red Sorghums. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9407-9418. [PMID: 34369753 DOI: 10.1021/acs.jafc.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The profiles of soluble and insoluble phenolic compounds in 11 commercial red sorghums (B11, B12, B13, B14, J124, J127, J138, J140, J142, J152, and J158) were investigated using ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. A total of 48 phenolic compounds including 35 phenolic acids and their derivatives, 12 flavonoids, and 1 proanthocyanidin were identified, and 8 phenolic compounds were reported for the first time in sorghums. Four major 3-deoxyanthocyanidins were also quantified, with their soluble forms accounting for 99.75-99.87% of the total contents. Pearson's correlation analyses indicated that 3-deoxyanthocyanidins significantly contributed to the antioxidant capacities of the red sorghums and that 5-methoxy-luteolinidin showed the strongest correlation. Besides, the soluble phenolic fraction of B13 dose-dependently inhibited the proliferation of Caco-2 cells and the secretion of IL-1β and NO in RAW264.7 macrophages, which might be attributed to its relatively high total phenolic (TPC), flavonoid (TFC), and proanthocyanidin content (TPAC) values and radical scavenging capacities.
Collapse
Affiliation(s)
- Yanfang Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaping Liu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Provincial Key Laboratory of Agricultural Products Deep Processing, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Yukun G, Jianghui C, Genzeng R, Shilin W, Puyuan Y, Congpei Y, Hongkai L, Jinhua C. Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development. ENVIRONMENTAL MICROBIOME 2021; 16:14. [PMID: 34380546 PMCID: PMC8356455 DOI: 10.1186/s40793-021-00383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sorghum is an important food staple in the developing world, with the capacity to grow under severe conditions such as salinity, drought, and a limited nutrient supply. As a serious environmental stress, soil salinization can change the composition of rhizosphere soil bacterial communities and induce a series of harm to crops. And the change of rhizospheric microbes play an important role in the response of plants to salt stress. However, the effect of salt stress on the root bacteria of sorghum and interactions between bacteria and sorghum remains poorly understood. RESULTS The purpose of this study was to assess the effect of salt stress on sorghum growth performance and rhizosphere bacterial community structure. Statistical analysis confirmed that low high concentration stress depressed sorghum growth. Further taxonomic analysis revealed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Bacteroidetes and Firmicutes in sorghum rhizosphere soil. Low salt stress suppressed the development of bacterial diversity less than high salt stress in both bulk soil and planted sorghum soil. Different sorghum development stages in soils with different salt concentrations enriched distinctly different members of the root bacteria. No obviously different effect on bacterial diversity were tested by PERMANOVA analysis between different varieties, but interactions between salt and growth and between salt and variety were detected. The roots of sorghum exuded phenolic compounds that differed among the different varieties and had a significant relationship with rhizospheric bacterial diversity. These results demonstrated that salt and sorghum planting play important roles in restructuring the bacteria in rhizospheric soil. Salinity and sorghum variety interacted to affect bacterial diversity. CONCLUSIONS In this paper, we found that salt variability and planting are key factors in shifting bacterial diversity and community. In comparison to bulk soils, soils under planting sorghum with different salt stress levels had a characteristic bacterial environment. Salinity and sorghum variety interacted to affect bacterial diversity. Different sorghum variety with different salt tolerance levels had different responses to salt stress by regulating root exudation. Soil bacterial community responses to salinity and exotic plants could potentially impact the microenvironment to help plants overcome external stressors and promote sorghum growth. While this study observed bacterial responses to combined effects of salt and sorghum development, future studies are needed to understand the interaction among bacteria communities, salinity, and sorghum growth.
Collapse
Affiliation(s)
- Gao Yukun
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Cui Jianghui
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Ren Genzeng
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Wei Shilin
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yang Puyuan
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yin Congpei
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Liang Hongkai
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Chang Jinhua
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| |
Collapse
|
19
|
Sousa R, Carvalho F, Guimarães I, Café M, Stringhini J, Ulhôa C, Oliveira H, Leandro N. The effect of hydrothermal processing on the performance of broiler chicks fed corn or sorghum-based diets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Exploring anthocyanins, antioxidant capacity and α-glucosidase inhibition in bran and flour extracts of selected sorghum genotypes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wang J, Xie B, Sun Z. Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Effect of Storage Conditions and Time on the Polyphenol Content of Wheat Flours. Processes (Basel) 2021. [DOI: 10.3390/pr9020248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whole wheat flour possesses many nutritional properties because of its abundant bioactive components which are affected by cultivar, but little attention is paid to its relationship with storage conditions. In this study, phenolic extracts of whole wheat flour from four cultivars stored under different conditions (aerated and under vacuum) and different times (0, 2, 4, 8 weeks) were obtained. The total polyphenol (TPC) and flavonoid (TFC) contents, composition of phenolic acids, and antioxidant activities (AA) of phenolic extracts were evaluated. The results showed that Verna exhibited the highest levels of TPC, TFC, and AA for both storage conditions among the four cultivars. Moisture content, TFC, and AA fluctuated during storage. After 8 weeks, the TPC, TFC, and AA decreased with respect to Week 0 in all the cultivars. The TPC losses ranged between 16.39% and 20.88% and TFC losses from 14.08% to 31.18%. The AA losses were approximately 30% from the DPPH assay, but no significant losses were shown in the FRAP assay. However, these parameters were not distinctive between the two storage conditions. The wheat phenolic acid profiles were influenced more by storage time than storage conditions in all cultivars. Overall, the results validate the effect of the storage time on wheat polyphenol.
Collapse
|
23
|
Espitia-Hernández P, Chávez González ML, Ascacio-Valdés JA, Dávila-Medina D, Flores-Naveda A, Silva T, Ruelas Chacón X, Sepúlveda L. Sorghum ( Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci Nutr 2020; 62:2269-2280. [PMID: 33280412 DOI: 10.1080/10408398.2020.1852389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sorghum is the fifth cereal most produced in the world after wheat, rice, maize, and barley. In some regions, this crop is replacing maize, due to its high yield, resistance to drought and heat. There are several varieties of sorghum, whose coloration varies from cream, lemon-yellow, red, and even black. Pigmented sorghum grain is a rich source of antioxidants like polyphenols, mainly tannins, which have multiple benefits on human health such as, antiproliferative properties associated with the prevention of certain cancers, antioxidant activities related to the prevention of associated diseases to oxidative stress, antimicrobial and anti-inflammatory effects, it also improves glucose metabolism. Despite having these types of compounds, it is not possible to assimilate them, their use in the food industry has been limited, since sorghum is considered a food of low nutritional value, due to the presence of anti-nutritional factors such as strong tannins which form complexes with proteins and iron, thus reducing their digestibility. Based on these restrictions that this product has had as food for humans, the analysis of this review emphasizes the valorization of sorghum as a source of bioactive substances and the importance they confer on human health because of the biological potential it has.
Collapse
Affiliation(s)
- Pilar Espitia-Hernández
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Mónica L Chávez González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Juan A Ascacio-Valdés
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Desiree Dávila-Medina
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Antonio Flores-Naveda
- Center for Training and Development in Seed Technology, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Teresinha Silva
- Antibiotics Department, Bioscience Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Xóchitl Ruelas Chacón
- Food Science and Technology Department, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Leonardo Sepúlveda
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| |
Collapse
|
24
|
Li M, Xu T, Zheng W, Gao B, Zhu H, Xu R, Deng H, Wang B, Wu Y, Sun X, Zhang Y, Yu LL. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem 2020; 340:128123. [PMID: 33010645 DOI: 10.1016/j.foodchem.2020.128123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023]
Abstract
Six commercial red sorghum varieties (Tong Za 117, 141, 142 and 143, Chi Za 109 and 101) were investigated for their triacylglycerol (TAG) profiles, soluble and bound phenolics, and radical scavenging and anti-inflammatory activities. A total of 21 TAGs were identified in red sorghum oils for the first time. Total phenolic (TPC) and flavonoid contents (TFC) in the soluble or bound phenolic fractions differed among red sorghums. Significant correlation among TPC, TFC and DPPH radical scavenging activities was observed in both fractions. Except for caffeic acid, most of phenolic acids in red sorghums are in the bound form. Soluble 3-deoxyanthocyanidins contents (2.12-57.14 μg/g) were significantly higher than those of bound forms (0.01-0.18 μg/g) regardless of sorghum varieties and types of 3-deoxyanthocyanidins. Moreover, the stronger anti-inflammatory capacity of soluble phenolic fraction in Tong Za 117 correlated with its higher TPC, TFC and radical scavenging activity than those of its bound counterpart.
Collapse
Affiliation(s)
- Ming Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Provincial Key Laboratory of Agricultural Products Deep Processing, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyan Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruofei Xu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanyu Deng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Wang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbei Wu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
25
|
Silva TL, Lacerda UV, da Matta SLP, Queiroz VAV, Stringheta PC, Martino HSD, de Barros FAR. Evaluation of the efficacy of toasted white and tannin sorghum flours to improve oxidative stress and lipid profile in vivo. J Food Sci 2020; 85:2236-2244. [PMID: 32609891 DOI: 10.1111/1750-3841.15301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
The objective of the present work was to evaluate and compare the effect of toasted white and tannin sorghum flours on lipid metabolism and antioxidant potential in vivo. Male spontaneously hypertensive rats (SHR) were induced to oxidative stress with paracetamol and fed a normal diet (AIN-93M) and diets containing toasted tannin sorghum flour and toasted white sorghum flour (without tannins), replacing 100% cellulose, during 29 days. Hepatotoxicity was assessed by biochemical tests and by quantifying oxidative stress markers. Groups that received toasted sorghum flour with and without tannins showed reduction of alanine aminotransferase (ALT) concentration and improvement of lipid profile, with increase of high-density lipoprotein (HDL) compared to paracetamol control, and did not differ statistically from the AIN-93M control. Moreover, toasted white sorghum flour presented similar efficacy in reducing oxidative stress in liver tissue compared to toasted tannin sorghum flour, although the former had lower total phenolic content and antioxidant capacity, suggesting a greater effect of small phenolic compounds, such as phenolic acids, in the prevention of oxidative stress. Therefore, toasted white and tannin sorghum flours had similar efficacy to improve the lipid profile and oxidative stress in rats treated with paracetamol, constituting potential sources of antioxidants, which can be used as promising ready-to-eat foods and as ingredients for the development of sorghum-based products. PRACTICAL APPLICATION: The health benefits of sorghum coupled with the growing interest of the food industry in producing healthier food products have motivated the development of toasted sorghum flours as potential sources of antioxidants and dietary fiber. We have demonstrated that consumption of toasted white and tannin sorghum flours by rats treated with paracetamol had similar efficacy to improve oxidative stress and lipid profile. Thus, these toasted sorghum flours have great potential to be used by the food industry as ready-to-eat foods or as ingredients in the development of various food products.
Collapse
Affiliation(s)
- Thaís Lessa Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Udielle Vermelho Lacerda
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Paulo César Stringheta
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
26
|
Brito T, Pereira A, Pastore G, Moreira R, Ferreira M, Fai A. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Pan L, Ma X, Hu J, Liu L, Yuan M, Liu L, Li D, Piao X. Low-tannin white sorghum contains more digestible and metabolisable energy than high-tannin red sorghum if fed to growing pigs. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was conducted to determine and compare the digestible (DE) and metabolisable energy (ME) and the apparent total tract digestibility (ATTD) of gross energy (GE) in yellow-dent corn, three low-tannin white sorghum cultivars and three high-tannin red sorghum cultivars when fed to growing pigs. Forty-two barrows (34.8 ± 3.1 kg bodyweight) were housed in metabolic crates and allotted to one of seven diets with six pigs per diet in a completely randomised design. The seven diets were formulated to contain 969 g/kg of corn or one of the six sorghum cultivars as well as 31 g/kg vitamin and minerals. Faeces and urine were collected for 5 days following a 7-day adaptation period. The DE and ME were lower (P < 0.05) for red sorghum than for corn while the values for corn were lower (P < 0.05) than those obtained for white sorghum. The ATTD of GE for pigs fed corn was higher (P < 0.05) than for pigs fed red sorghum but was lower (P < 0.05) than the ATTD of GE for pigs fed white sorghum. Tannin had a high negative correlation with DE and ME (both, r = –0.99; P < 0.01) and the ATTD of GE (r = –0.92; P < 0.01). The DE, ME and ATTD of GE were positively correlated with CP (P < 0.05), and negatively with kafirin/CP and phenols (P < 0.05). However, tannin was negatively correlated with CP (r = –0.85; P < 0.05), or positively with kafirin/CP (r = 0.88; P < 0.01) and phenols (r = 0.77; P < 0.05). Therefore, tannin content in sorghum may be the main anti-nutritional factor. The overall results of this study indicate that low-tannin white sorghum varieties are superior to high-tannin red sorghum varieties for use as an energy source in diets fed to growing pigs, and high-tannin red sorghum varieties should be incorporated into pig diets to ease the demand pressure on corn only if favourably priced in terms of their DE and ME values.
Collapse
|
28
|
Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
|
30
|
Almeida D, Pinto D, Santos J, Vinha AF, Palmeira J, Ferreira HN, Rodrigues F, Oliveira MBPP. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem 2018; 259:113-121. [PMID: 29680033 DOI: 10.1016/j.foodchem.2018.03.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 12/22/2022]
Abstract
The present study reports for the first time the identification and quantification of phenolic compounds, the antioxidant and antimicrobial activities as well as the in vitro radical scavenging activity and intestinal cell effects of A. arguta leaves extracts. Extractions were carried out under water, water:ethanol (50:50) and ethanol. The highest antioxidant activity were obtained in alcoholic extract (IC50 = 53.95 ± 3.09 μg/mL for DPPH; 6628.42 ± 382.49 µmol/mg dry weight basis for FRAP) while the phenolic profile confirmed by HPLC analysis revealed highest amounts of phenolic acids (hydroxycinnamic acid derivatives) and flavonoids (flavan-3-ol and flavonols derivatives). An excellent scavenging activity against reactive oxygen and nitrogen species were determined for all extracts as well as no adverse effects on Caco-2 and HT29-MTX cells in concentrations below 100 μg/mL and 1000 μg/mL, respectively. These results highlight the potentialities of hardy kiwi leaves valorization.
Collapse
Affiliation(s)
- Diana Almeida
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Diana Pinto
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana Santos
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana F Vinha
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FCS/UFP, Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Josman Palmeira
- REQUIMTE, Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Helena N Ferreira
- REQUIMTE, Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - M Beatriz P P Oliveira
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
31
|
Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules 2018; 23:E484. [PMID: 29473847 PMCID: PMC6017861 DOI: 10.3390/molecules23020484] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022] Open
Abstract
The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
Collapse
Affiliation(s)
- Ameena Ali
- School of Engineering, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, Subang Jaya, Selangor 47500, Malaysia.
| | - Chien Hwa Chong
- School of Engineering and Physical Sciences, Heriot-Watt University, Malaysia Campus, No 1 Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia.
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, Subang Jaya, Selangor 47500, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, University Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, University Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Bee Lin Chua
- School of Engineering, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
32
|
Li C, Oh SG, Lee DH, Baik HW, Chung HJ. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet. Int J Biol Macromol 2017; 105:931-939. [DOI: 10.1016/j.ijbiomac.2017.07.123] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
33
|
Ziegler V, Ferreira CD, Hoffmann JF, Chaves FC, Vanier NL, de Oliveira M, Elias MC. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chem 2017; 242:427-434. [PMID: 29037710 DOI: 10.1016/j.foodchem.2017.09.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022]
Abstract
The changes in cooking quality and phenolic composition of whole black and red rice grains stored during six months at different temperatures were evaluated. Brown rice with known cooking quality properties and low phenolic levels was used for purposes comparison. All rice genotypes were stored at 13% moisture content at temperatures of 16, 24, 32, and 40°C. Cooking time, hardness, free and bound phenolics, anthocyanins, proanthocyanidins, and free radical scavenging capacity were analysed. The traditional rice with brown pericarp exhibited an increase in cooking time and free phenolics content, while rice with black pericarp exhibited a reduction in cooking time after six months of storage at the highest studied temperature of 40°C. There as increases in ferulic acid levels occurred as a function of storage temperature. Red pericarp rice grains showed decreased antioxidant capacity against ABTS radical for the soluble phenolic fraction with increased time and storage temperature.
Collapse
Affiliation(s)
- Valmor Ziegler
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Cristiano Dietrich Ferreira
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Jessica Fernanda Hoffmann
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Fábio Clasen Chaves
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Nathan Levien Vanier
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Maurício de Oliveira
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Moacir Cardoso Elias
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|