1
|
Borsoi FT, Arruda HS, Reguengo LM, Neri Numa IA, Pastore GM. Understanding the gastrointestinal behavior of phytochemicals and antioxidants from araçá-boi (Eugenia stipitata- McVaugh) extract: An in vitro and in silico approach. Food Chem 2025; 483:144254. [PMID: 40220439 DOI: 10.1016/j.foodchem.2025.144254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/22/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
This study aimed to evaluate the influence of gastrointestinal digestion on the phytochemical profile, phenolic compounds, antioxidant capacity, and sugar content in the araçá-boi extract. Additionally, molecular docking of target proteins and ADMET analysis were performed using the major compound of araçá-boi extract after gastrointestinal digestion. UHPLC-Q-Orbitrap-MS/MS analyses revealed 100 compounds identified, and after gastrointestinal digestion, only 59 compounds were identified. Gastrointestinal digestion had a significant impact on phenolic compounds and sugar content. The extract showed an increase in antioxidant capacity in the ABTS•+ assay, while it decreased in the DPPH, FRAP, and ORAC assays after gastrointestinal digestion. The in silico study showed that trans-cinnamic acid interacts with target proteins such as NF-κB, IL-1β, and PI3K and that it has a promising pharmacokinetic profile. These findings emphasize the importance of further investigating the effects of the extract in different physiological contexts and its potential applications.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil; Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Lívia Mateus Reguengo
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Iramaia Angélica Neri Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Juliato RA, Brito IPC, Silva EK. Ultrasound-driven chemical and biochemical changes in jabuticaba juice: Phenolic compounds, volatile profile and inactivation of polyphenol oxidase, peroxidase and pectin methylesterase. Food Chem 2025; 481:144037. [PMID: 40163987 DOI: 10.1016/j.foodchem.2025.144037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Fruit juices are widely recognized as excellent vehicles for bioactive compounds, offering both nutritional and health-promoting benefits. Among these, jabuticaba (Myrciaria jaboticaba) stands out as a fruit exceptionally rich in phenolic compounds, particularly anthocyanins. This study evaluated the effects of thermal (90 °C/1 min and 120 °C/1 min) and high-intensity ultrasound (HIUS) treatments (6.3, 15.9, 25.5, and 36 W/cm2) on the physicochemical properties, polyphenol oxidase (PPO), peroxidase (POD), and pectin methylesterase (PME) inactivation, phenolic and volatile compound profiles, antimicrobial potential, and kinetic stability of jabuticaba juice. Compared to thermal processing, HIUS demonstrated superior anthocyanin retention and phenolic stability while effectively inactivating enzymes. HIUS at 25.5 and 36 W/cm2 increased cyanidin-3-O-glucoside content (up to a 40 % increase), whereas the 120 °C/1 min thermal treatment reduced it by 58 %, highlighting the susceptibility of anthocyanins to intense heat. Regarding phenolic acids, HIUS maintained ellagic acid levels and increased gallic acid content at higher intensities (up to a 55 % increase), whereas 120 °C/1 min significantly increased gallic acid and ellagic acid, likely due to thermal degradation and release of bound phenolics. The antimicrobial properties of jabuticaba juice were assessed through microbial growth analysis and challenge testing with Lacticaseibacillus paracasei, revealing its potential to contribute to microbial stability in juice formulations. HIUS at 25.5 W/cm2 was identified as the optimal processing condition, balancing enzymatic inactivation, bioactive compound retention, and physical stability, while avoiding the anthocyanin degradation observed in intense thermal treatments. These findings underscore the potential of HIUS as a nonthermal alternative for producing high-quality, functional jabuticaba juice and provide valuable insights into optimizing processing parameters to maximize bioactive compound retention and kinetic stability in fruit-based beverages.
Collapse
Affiliation(s)
- Rafael Augusto Juliato
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Iuri Procopio Castro Brito
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil..
| |
Collapse
|
3
|
de Paulo Farias D, de Araújo FF, Villasante J, Fogliano V, Pastore GM. In vitro gastrointestinal digestion and gut microbiota fermentation of phenolic compounds from uvaia. Food Chem 2025; 477:143462. [PMID: 40043608 DOI: 10.1016/j.foodchem.2025.143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/27/2025]
Abstract
Gastrointestinal digestion and gut microbiota fermentation can alter the bioaccessibility and bioactivity of phenolic compounds. This study assessed the effects of gastrointestinal digestion and gut microbiota fermentation on the bioaccessibility, bioactivity, and catabolism of phenolic compounds from uvaia (Eugenia pyriformis) seed and edible fraction (pulp + peel). The bioaccessibility of epigallocatechin, epicatechin, myricetin, and ferulic acid increased after the gastrointestinal digestion of the edible fraction, while seed digestion reduced epigallocatechin, procyanidin B2, and salicyl aldehyde levels. Acetate and butyrate production was higher from uvaia seed after 24-h fermentation (212.93 and 192.09 mg/L, respectively), while propionate production was higher from the edible fraction (63.37 mg/L). These findings suggest that gastrointestinal digestion influences the bioaccessibility and bioactivity of phenolic compounds in uvaia fractions. Additionally, the increased production of short-chain fatty acids points to a potential prebiotic effect, highlighting the potential of uvaia for developing intestinal health-promoting food products or supplements.
Collapse
Affiliation(s)
- David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| | - Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil
| | - Juliana Villasante
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| |
Collapse
|
4
|
Lemos IL, Macedo MJ, Santos FR, Montico F, Kido LA, Cagnon VHA, Maróstica Junior MR. Araticum (Annona crassiflora Mart.) by-products suppress cell proliferation and induce apoptosis particularly in androgen-dependent prostate cancer cell lines. Food Res Int 2025; 208:116124. [PMID: 40263819 DOI: 10.1016/j.foodres.2025.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
Prostate cancer is the second most diagnosed type of cancer in men. The araticum (Annona crassiflora Mart.) is a fruit found in natural areas of the Brazilian cerrado, and its by-products contain a variety of compounds that have already demonstrated positive effects on cancer. To this end, we evaluated the in vitro antioxidant capacity of the extract of the peel and seed of the A. crassiflora. In addition, we investigated its antiproliferative effects and the possible mechanisms involved in inducing apoptosis in androgen-dependent and androgen-independent prostate cancer cells. The extract of A. crassiflora peel showed a high content of total phenolic compounds, reaching 222.44 mg GAE/g fdw, while the seed recorded a considerably lower value of 26.49 mg GAE/g fdw. These results indicate that the peel has a higher antioxidant capacity compared to the seed, probably due to its high content of phenolic compounds. Both extracts reduced the viability of prostate cancer cells, with the seed proving more effective. The IC50 of the seed extract was significantly lower in the PC-3 cells, presenting an IC50 of 33.24 μg/mL, 30.70 μg/mL and 24.86 μg/mL, for 24, 48 and 72 h respectively, compared to that of the peel. The peel extract showed IC50 of 277 μg/mL, 225 μg/mL and 67.30 μg/mL for the same periods. In 22Rv1 cells, the IC50 of the seed extract showed lower values, presenting IC50 of 12.64 μg/mL, 6.07 μg/mL and 5.12 μg/mL for 24, 48 and 72 h, respectively. However, the peel extract showed IC50 of 77.36 μg/mL, 42.92 μg/mL and 48.16 μg/mL for 24, 48 and 72 h. Both extracts showed a more pronounced effect on LNCaP cells. At 24 h, the IC50 of the seed extract was lower (IC50 of 22.87 μg/mL) than that of the peel extract (IC50 of 47.51 μg/mL) for LNCaP cells. However, after 48 h of treatment, the peel extract showed a decrease in IC50 of 17.64 μg/mL and the seed extract 21.13 μg/mL. However, after 72 h the seed extract was more effective in reducing cell viability with an IC50 of 6.51 μg/mL in contrast the peel showed IC50 of 11.50 μg/mL. The seed extract had a significant effect on apoptosis induction in LNCaP, increasing the protein levels of Bax, procaspase-3, caspase-9 and caspase-8, while reducing Bcl-2 and Bcl-xL expression. The seed extract also decreased the androgen receptor and PCNA levels in 22Rv1 and LNCaP cells, suggesting a possible antiproliferative mechanism mediated by the modulation of these proteins.
Collapse
Affiliation(s)
- Iara Lopes Lemos
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil.
| | - Maria Josiane Macedo
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil.
| | - Felipe Rabelo Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas 13083-862, São Paulo, Brazil..
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas 13083-862, São Paulo, Brazil..
| | - Larissa Akemi Kido
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil.
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas 13083-862, São Paulo, Brazil..
| | - Mario Roberto Maróstica Junior
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil.
| |
Collapse
|
5
|
Šola I, Gmižić D. Structural Variations of Broccoli Polyphenolics and Their Antioxidant Capacity as a Function of Growing Temperature. PLANTS (BASEL, SWITZERLAND) 2025; 14:1186. [PMID: 40284074 PMCID: PMC12030137 DOI: 10.3390/plants14081186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Polyphenolics in plants exist in free, soluble-bound, and insoluble-bound structural forms. The concentration of these structural forms depends on the plant's developmental stage, tissue type, soil water availability, and food preparation methods. In this study, for the first time, the effects of growth temperature (RT-room temperature-23 °C day/18 °C night, HT-high temperature-38 °C day/33 °C night, LT-low temperature-12 °C day/7 °C night) on variations of polyphenolic structural forms-free, soluble-bound (esterified and glycosylated), and insoluble-bound-in broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens were investigated. Using spectrophotometric, RP-HPLC, and statistical analyses, it was found that the highest amount of total phenolics (TP) in broccoli microgreens was present in the esterified form, regardless of the temperature at which they were grown (63.21 ± 3.49 mg GAE/g dw in RT, 65.55 ± 8.33 mg GAE/g dw in HT, 77.44 ± 7.82 mg GAE/g dw in LT). LT significantly increased the amount of free (from 13.30 ± 2.22 mg GAE/g dw in RT to 18.33 ± 3.85 mg GAE/g dw) and esterified soluble TP (from 63.21 ± 3.49 mg GAE/g dw in RT to 77.44 ± 7.82 mg GAE/g dw), while HT significantly increased the amount of TP glycosylated forms (from 14.85 ± 1.45 mg GAE/g dw in RT to 17.84 ± 1.20 mg GAE/g dw). LT also enhanced free and esterified forms of total flavonoids, tannins, hydroxycinnamic acids, and flavonols. HT, on the other hand, increased glycosylated forms of TP, flavonoids, tannins, hydroxycinnamic acids, flavonols, and phenolic acids, and decreased insoluble-bound tannins. According to the ABTS method, HT induced antioxidant potential of free and glycosylated forms, while LT increased antioxidant capacity of free forms only. According to the FRAP method, LT increased antioxidant potential of free and esterified polyphenolic forms. Also, based on ABTS and FRAP assays, esterified polyphenolics showed significantly higher antioxidant capacity than any other form. Principal component analysis showed that structural form had a greater impact than temperature. Hierarchical clustering showed that RT-, HT- and LT-broccoli microgreens were most similar in their glycosylated polyphenolics, but differed the most in esterified forms, which were also the most distinct overall. In conclusion, HT and LT induced specific shifts in the structural forms of broccoli polyphenolics and their antioxidant capacity. Based on the results, we recommend applying LT to increase the amount of free and esterified polyphenolics in broccoli microgreens, while HT may be used to enhance glycosylated forms.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | |
Collapse
|
6
|
Silva LYS, Cavalcante DN, Oliveira ESC, Salvador AM, Pereira ZC, Consentini JCC, Furlaneto G, Campelo PH, Sanches EA, Azevedo L, Bezerra JDA. Theobroma mariae: Bioactive Compound-Rich Flowers. PLANTS (BASEL, SWITZERLAND) 2025; 14:377. [PMID: 39942940 PMCID: PMC11820393 DOI: 10.3390/plants14030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Edible flowers have gained attention as unconventional food sources due to their nutritional and functional properties. This study provides novel information on the chemical composition, cytotoxicity and antiproliferative effects of Theobroma mariae flowers. The objective of this paper was to identify bioactive compounds in its flowers using one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). The phenolic fraction of the flowers revealed bioactive compounds such as hyperoside, guaijaverin, astragalin, juglalin, and kaempferol. The results confirmed the potential of T. mariae flowers as a source of phenolic compounds, emphasizing their feasibility for possible applications in the development of functional foods. Moreover, the antiproliferative assay demonstrated that the phenolic fraction inhibits cell proliferation (GI50) while presenting low cytotoxicity in both cancer and normal cells.
Collapse
Affiliation(s)
- Laila Y. S. Silva
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| | - Débora N. Cavalcante
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| | - Edinilze S. C. Oliveira
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| | - Andreia M. Salvador
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| | - Zilanir C. Pereira
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| | - Julia C. C. Consentini
- In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Federal University of Alfenas, Alfenas 37130-000, Brazil; (J.C.C.C.); (G.F.); (L.A.)
| | - Gabriela Furlaneto
- In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Federal University of Alfenas, Alfenas 37130-000, Brazil; (J.C.C.C.); (G.F.); (L.A.)
| | - Pedro H. Campelo
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-000, Brazil;
| | - Edgar A. Sanches
- Laboratory of Nanostructured Polymers, Materials Physics Department, Federal University of Amazonas, Manaus 69067-005, Brazil;
| | - Luciana Azevedo
- In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Federal University of Alfenas, Alfenas 37130-000, Brazil; (J.C.C.C.); (G.F.); (L.A.)
| | - Jaqueline de A. Bezerra
- Amazon Science and Technology Studies Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil; (L.Y.S.S.); (D.N.C.); (E.S.C.O.); (A.M.S.); (Z.C.P.)
| |
Collapse
|
7
|
Divya Priya A, Martin A. UHPLC-MS/MS based comprehensive phenolic profiling, antimicrobial and antioxidant activities of Indian Rhodomyrtus tomentosa fruits. Sci Rep 2025; 15:945. [PMID: 39762407 PMCID: PMC11704065 DOI: 10.1038/s41598-024-84800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Rhodomyrtus tomentosa fruits, endemic to the Western Ghats were analyzed for its free, bound and esterified phenolics by Ultra High Performance Liquid Chromatography-Mass Spectrometry. Overall, twenty-nine phenolic compounds were identified, amongst them 18 were detected in this fruit for the first time. Gallic acid (80.44 ± 8.74 mg/100 g) and ellagic acid (107.47 ± 7.28 mg/100 g) were the most prominent ones found in the bound phenolic fraction and gallic acid (103.76 ± 6.34 mg/100 g) in the esterified phenolic fraction of the fruit, respectively. Total Phenolic content was found to be highest in bound phenolics (7.09 ± 0.17 mg Gallic acid equivalent/g). The antioxidant and antimicrobial activities of the three extracts namely free, bound and esterified phenolic fruit fractions have been analyzed. Bound phenolics exhibited the highest antioxidant potential (DPPH-15.63 ± 0.86; ABTS-34.73 ± 0.07; FRAP-17.89 ± 0.27 mg/g Ascorbic acid equivalent). The bound phenolics showed good antimicrobial activity against Bacillus cereus, Staphylococcus aureus and Escherichia coli with a MIC of 0.156, 0.625 and 1.25 mg/mL respectively. The exploration of phenolic compounds in Indian variety of Rhodomyrtus tomentosa fruits may provide useful insights on its utilization as a functional food ingredient.
Collapse
Affiliation(s)
- A Divya Priya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asha Martin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Zhang H, Yu Y, Zhang H, Zhao X, Wang J. A comprehensive profiling of phenolic compounds and antioxidant activities of 24 varieties of red raspberry cultivated in Northeast China. J Food Sci 2025; 90:e17623. [PMID: 39731726 DOI: 10.1111/1750-3841.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024]
Abstract
Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities. The results showed that 'DNS1' had the highest total phenolic content (TPC), 'Willamette' had the highest total flavonoid content (TFC), and 'Boyne' had the highest total anthocyanin content (TAC). Phenolic compounds in red raspberries were predominantly found in esterified form, while glycosylated phenolics should not be overlooked. Chlorogenic acid, cryptochlorogenic acid, ellagic acid, and arbutin were the main phenolic compounds, and the distribution of their contents varied between varieties. The antioxidant activity in the red raspberry had a close association with the content of phenolic compounds. Principal component analysis (PCA) showed that phenolic compounds and antioxidant activities were higher in samples from 'DNS1', 'Boyne', 'Beijing10', 'DNS5', and 'Willamette' varieties. These varieties should be given priority in breeding programs that aim to boost the utility and bioactive profile of red raspberries. PRACTICAL APPLICATION: Red raspberry is becoming a desirable commercially grown fruit species and is viewed as a new functional food. In this context, this research offers strong support for confirming the quality of 24 varieties of red raspberry and plays a critical role in the food industry. It also indicates the potential sources of superior varieties of red raspberry, which are advantageous for growers and consumers in search of high-quality red raspberry varieties.
Collapse
Affiliation(s)
- Haonan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yiping Yu
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Hegu Zhang
- Faulty of Arts and Sciences, University of Toronto, Toronto, Canada
| | - Xin Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
9
|
Toledo-Merma PR, Arias-Santé MF, Rincón-Cervera MÁ, Porras O, Bridi R, Rhein S, Sánchez-Contreras M, Hernandez-Pino P, Tobar N, Puente-Díaz L, de Camargo AC. Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:3473. [PMID: 39771171 PMCID: PMC11728787 DOI: 10.3390/plants13243473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Walnut milk residues (WMR) were investigated for the first time through their phenolic characterization including soluble (free, esterified, and etherified) phenolics and those released from their insoluble-bound form (insoluble-bound phenolic hydrolysates, IBPHs) and their antioxidant properties. Free phenolics were recovered and alkaline or acid hydrolysis were used to recover the remaining phenolic fractions. Total phenolic compounds (TPCs) and their antioxidant activity were analyzed by Folin-Ciocalteu, FRAP, and ORAC methods, respectively. Soluble phenolics (free + esterified + etherified fractions) showed a higher TPC (275.3 mg GAE 100 g-1 dw) and antioxidant activity (FRAP: 138.13 µmol TE g-1 dw; ORAC: 45.41 µmol TE g-1 dw) with respect to the IBPH. There was a significant correlation between TPC and FRAP and ORAC values regardless of the fraction and tested sample. Phenolic acids and flavonoids were identified and quantified by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS). Gallic acid, mainly in the free form (3061.0 µg 100 g-1), was the most representative, followed by biochanin A, identified for the first time in a walnut product and mostly present in the fraction released from the esterified form (593.75 µg 100 g-1). No detrimental cytotoxic impact on Caco-2 cells was observed. Hence, WMR could be considered a potential source for the development of nutraceutical and/or antioxidant food additives.
Collapse
Affiliation(s)
- Pamela Ruth Toledo-Merma
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380494, Chile; (P.R.T.-M.); (L.P.-D.)
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - María Fernanda Arias-Santé
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
- Department of Agronomy, Food Technology Division, University of Almería, 04120 Almería, Spain
| | - Omar Porras
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Raquel Bridi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380000, Chile;
| | - Samantha Rhein
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Martina Sánchez-Contreras
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380000, Chile;
| | - Paulina Hernandez-Pino
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Nicolás Tobar
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Luis Puente-Díaz
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380494, Chile; (P.R.T.-M.); (L.P.-D.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Adriano Costa de Camargo
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| |
Collapse
|
10
|
Jin C, Chu C, Zhu X, Lu Y, Yu N, Ye Q, Jin Y, Meng X. Fractional extraction phenolics from C. oleifera seed kernels exhibited anti-inflammatory effect via PI3K/Akt/NF-κB signaling pathway under Caco-2/RAW264.7 co-culture cell model. Food Res Int 2024; 197:115268. [PMID: 39577932 DOI: 10.1016/j.foodres.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Camellia oleifera Abel (C. oleifera) is a multifunctional oilseed, which is rich in many biological active substances with health-promoting properties, especially polyphenols. Previous research revealed that camellia oil phenolics exhibited anti-inflammatory effect, which originated from seed. Thus, we aimed to explore the components of camellia seed phenolics and its potential mechanism of anti-inflammation. Initially, fractional extraction was processed to prepare the phenolics from camellia seed kernels, and we compare four different fractions of phenolics under the LPS-induced Caco-2/RAW264.7 coculturing model. Results showed that free phenolics (FP) had best effect on alleviating pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) compared to esterified-bound phenolics (EP), glycosylated-bound phenolics (GP) and insoluble-bound phenolics (IP). Furthermore, FP reduced inflammation by suppressing the PI3K/Akt/NF-κB signaling pathway and effectively inhibited LPS-induced intestinal permeability increase, tight junction related proteins loss (ZO-1, claudin-1). Same results obtained, as the transepithelial electrical resistance (TEER) and alkaline phosphatase (AKP) activity of high-dose FP treated group was high than model group. Finally, molecular docking was used for evaluating the anti-inflammatory effect for phenolic monomer. KGRG (kaempferol -3-O-(2-O-glucopyranosyl-6-O-rhamnopyranosyl)-glucopyranoside), KXR (kaempferol 3-O-(2''-xylopyranosyl)-rutinoside) and leucoside (kaempferol 3-O-sambubioside) show lower binding energy docking with NF-κB, PI3K and Akt protein, indicating better interactions, which might be effective constituents against inflammation. Subsequently, five major polyphenols were obtained to validate the docking results, especially, indicating the best anti-inflammatory activities of KGRG. Overall, this research sheds insights on the therapy of phenolics from C. oleifera seed towards LPS-induced intestinal inflammation model in vitro and its related mechanism.
Collapse
Affiliation(s)
- Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
11
|
Francielli de Oliveira P, Felix Ávila P, de Melo Carolo Dos Santos M, Misuraca Meirelles L, Fernando Ramos L, Pereira Todescato A, do Vale-Oliveira M, Beatriz Custódio F, Martins Dala-Paula B. Antioxidant, antimutagenic, and hypoglycemic properties of flours by different parts of marolo (Annona crassiflora Mart.) seeds: Film and almond. Food Res Int 2024; 196:115055. [PMID: 39614560 DOI: 10.1016/j.foodres.2024.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
The biological effects of marolo (Annona crassiflora Mart.) seed byproducts, a native fruit of Brazilian Cerrado, have not been extensively studied. We evaluated the chemopreventive potential of marolo seed almond flour (MSAF) and marolo seed film flour (MSFF) and correlated the results obtained with the antioxidant capacity presented by the seed. Total phenolic content (TPC) and total flavonoid content (TFC) were determined by spectrophotometric analysis and phenolics profile composition by Ultra-Performance Liquid Chromatography (UPLC). In addition, the in vitro antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) expressed in trolox equivalent (TE) of MSFF (165 and 325 µmol TE/g) and MSAF (7.21 and 4.34 µmol TE/g), respectively. MSFF displayed of antioxidant activity values by DPPH (165.98 µmol TE/g) and ABTS•+ (323.13 µmol TE/g) and TPC, expressed in gallic acid equivalent (GAE), of 54.28 mg GAE/g with predominance of myricetin (368.17 µg/g), and TFC, expressed in catechin equivalent (CE), of 50.86 mg CE/g, representing ∼ 93 % of the TPC. MSAF presented TPC of 1.52 mg GAE/g, with TFC of 0.76 mg CE/g (∼50 % of TPC), with predominance of quercetin (29.08 µg/g). The chemopreventive activity against DNA damage induced by doxorubicin (DXR) [20 mg/kg body weight (bw)]) was evaluated in Swiss mice peripheral blood by micronucleus test. Toxicological parameters, such as food and water consumption and animal weight, as well as blood glucose levels, were monitored during 14 days of treatment. The results showed that MSFF and MSAF presented no significant cytotoxic and mutagenic effects. The MSFF at doses of 3.5, and 7.0 mg/day showed a chemopreventive effect, while in the doses of 14.0 and 28.0 mg/day, no effect was observed. On the other hand, in the MSAF, a chemopreventive effect was observed only in the dose of 28 mg/day. The interference of one or more of the bioactive compounds with antioxidant activity presents in the MSFF may explain the best protective effect against DNA damage. Therefore, both marolo seed flours (MSFF and MSAF) can be considered potential food ingredients products that could be applied in food or pharmaceutical preparations with antioxidant and chemopreventive properties.
Collapse
Affiliation(s)
- Pollyanna Francielli de Oliveira
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil; Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil.
| | - Patrícia Felix Ávila
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Mylena de Melo Carolo Dos Santos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Letícia Misuraca Meirelles
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Luiz Fernando Ramos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Angélica Pereira Todescato
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Maysa do Vale-Oliveira
- Universidade Federal do Espírito Santo (UFES), Campus São Mateus, BR-101, km 60, Litorâneo, São Mateus, ES 29932-540, Brasil
| | - Flávia Beatriz Custódio
- BioTox, Laboratório de Bioquímica e Toxicologia de Alimentos, Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brasil
| | - Bruno Martins Dala-Paula
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil; Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil.
| |
Collapse
|
12
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Andrade AC, Borsoi FT, Saliba ASMC, de Alencar SM, Pastore GM, Arruda HS. Optimization of Ultrasonic-Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Araticum Peel Using Response Surface Methodology. PLANTS (BASEL, SWITZERLAND) 2024; 13:2560. [PMID: 39339535 PMCID: PMC11434794 DOI: 10.3390/plants13182560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering these compounds. Therefore, response surface methodology, using a central composite rotatable design, was employed to optimize the extraction process to maximize the total phenolic compounds (TPCs) and enhance the Trolox equivalent antioxidant capacity (TEAC) from araticum peel. The variables optimized were ethanol concentration (EC; 20-80%, v/v), extraction time (ET; 5-45 min), and solid-solvent ratio (SSR; 10-100 mg/mL). Additionally, condensed tannins, antioxidant capacity against synthetic free radicals (TEAC and FRAP) and reactive oxygen species (ROS), and the phenolic compounds profile, were evaluated. Optimum extraction conditions were 50% (v/v) ethanol concentration, 5 min of extraction time, and 10 mg/mL solid-solvent ratio. Under these conditions, experimental TPCs and TEAC values were 70.16 mg GAE/g dw and 667.22 µmol TE/g dw, respectively, comparable with predicted models (68.47 mg GAE/g dw for TPCs and 677.04 µmol TE/g dw for TEAC). A high condensed tannins content (76.49 mg CE/g dw) was also observed and 12 phenolic compounds were identified, predominantly flavonoids (97.77%), including procyanidin B2, epicatechin, and catechin as the major compounds. Moreover, a potent antioxidant activity was observed against synthetic free radicals and ROS, especially in scavenging peroxyl and hydroxyl radicals. From this study, we obtained the ideal conditions for recovering phenolic compounds from araticum peel using a simple, fast, sustainable, and effective method, offering a promising opportunity for the management of this plant byproduct.
Collapse
Affiliation(s)
- Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Ana Sofia Martelli Chaib Saliba
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil
| |
Collapse
|
14
|
Suwannachot J, Ogawa Y. Changes in polyphenolic compounds and antioxidant activity of Japanese pickled apricot with salted red perilla leaf during pickling and digestion process. Food Res Int 2024; 192:114752. [PMID: 39147533 DOI: 10.1016/j.foodres.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Japanese pickled apricot, called "umeboshi", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called "shiso-zuke umeboshi", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in μg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.
Collapse
Affiliation(s)
- Jutalak Suwannachot
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo, Chiba 271-8510, Japan.
| |
Collapse
|
15
|
Borsoi FT, da Silva GB, Manica D, Bagatini MD, Pastore GM, Arruda HS. Extract of Araçá-Boi and Its Major Phenolic Compound, Trans-Cinnamic Acid, Reduce Viability and Inhibit Migration of Human Metastatic Melanoma Cells. Nutrients 2024; 16:2929. [PMID: 39275245 PMCID: PMC11396791 DOI: 10.3390/nu16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina (UDESC), Lages 88520-000, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
16
|
Silva JDR, Arruda HS, Andrade AC, Berilli P, Borsoi FT, Monroy YM, Rodrigues MVN, Sampaio KA, Pastore GM, Marostica Junior MR. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2039. [PMID: 39124157 PMCID: PMC11313698 DOI: 10.3390/plants13152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
In this study, Eugenia calycina and Eugenia stigmatosa, native Brazilian berries, were explored regarding their proximal composition, bioactive compounds, and antioxidant activities. The edible parts of both fruits presented a low content of lipids, proteins, and carbohydrates, resulting in a low caloric value (<70 kcal/100 g fw). E. stigmatosa fruit showed a high total fiber content (3.26 g/100 g fw), qualifying it as a source of dietary fiber. The sugar profile was mainly monosaccharides (glucose, fructose, and rhamnose). Significant contents of total phenolics and flavonoids, monomeric anthocyanins and, condensed tannins, were observed in both fruits. E. calycina contains a high level of anthocyanins, primarily cyanidin-3-glucoside (242.97 µg/g). Other phenolic compounds were also found, the main ones being rutin and ellagic acid. In contrast, E. stigmatosa is mainly composed of rutin and gallic acid. Furthermore, these fruits showed expressive antioxidant activity, evidenced by ORAC, FRAP, and ABTS. These Eugenia fruits are promising sources of bioactive compounds and have a low caloric and high dietary fiber content, making them interesting options for inclusion in a balanced diet, contributing to the promotion of health and the valorization and conservation of Brazilian biodiversity.
Collapse
Affiliation(s)
- Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Patrícia Berilli
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Yaneth Machaca Monroy
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Marili Villa Nova Rodrigues
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), University of Campinas (UNICAMP), Paulínia 13148-218, São Paulo, Brazil;
| | - Klicia Araujo Sampaio
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| |
Collapse
|
17
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Fernandes Almeida R, Ferreira Moreno I, Paula Oliveira Machado A, Angela A Meireles M, Karla Figueira da Silva L, Augusto Caldas Batista E. Araticum (Annona crassiflora Mart.): A critical review for the food industry. Food Res Int 2024; 184:114241. [PMID: 38609221 DOI: 10.1016/j.foodres.2024.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
This review aimed to critically and comparatively analyze the physicochemical, proximate, nutritional, phytochemical composition, and bioactivities of araticum (Annona crassiflora Mart.) (AAc), a fruit from the Brazilian Cerrado. Additionally, the potential applications of this fruit in the food industry were reviewed. Data and information were collected from the Scopus, Web of Science, and Google Scholar databases. AAc, a fruit mainly studied in the Brazilian regions of Minas Gerais and Goiás, has well-documented physicochemical, proximate, and nutritional characteristics. It is rich in fiber, sugars, vitamins A and C, minerals, and oil, making it attractive to the food industry. However, there are research gaps, such as the impact of climatic conditions on the AAc chemical composition. Additional studies are needed, especially for the peel and seeds, and investigations of pre-treatments effect on the chemical composition are recommended. The application of AAc in food products is mainly limited to pulp, but there is potential for using peels and seeds. AAc is a rich source of phytochemical compounds with various biological properties, such as antioxidants, hepatoprotective, and antimicrobial activities. Future studies should explore other phytochemicals present in the fruit beyond phenolic compounds. The consumption of AAc can contribute to combating food insecurity malnutrition, and promoting the conservation of the Brazilian Cerrado.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Isabela Ferreira Moreno
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Ana Paula Oliveira Machado
- Departamento de Engenharia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, 47808-006 Barreiras, BA, Brazil
| | - Maria Angela A Meireles
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Lilian Karla Figueira da Silva
- Departamento de Engenharia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, 47808-006 Barreiras, BA, Brazil
| | - Eduardo Augusto Caldas Batista
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
19
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
20
|
Machado PG, Londero DS, Farias CAA, Pudenzi MA, Barcia MT, Ballus CA. Guabijú (Myrcianthes pungens): A comprehensive evaluation of anthocyanins and free, esterified, glycosylated, and insoluble phenolic compounds in its peel, pulp, and seeds. Food Chem 2024; 432:137296. [PMID: 37703671 DOI: 10.1016/j.foodchem.2023.137296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Guabijú (Myrcianthes pungens) is a Brazilian native fruit from the Myrtaceae family, with few studies on the presence of phenolic compounds. Free, esterified, glycosylated, and insoluble phenolic compounds were studied for the first time in guabijú peel, pulp, and seed, by liquid chromatography coupled to mass spectrometry (LC-ESI-QTOF-MS/MS and LC-ESI-QqQ-MS/MS). Eighty-one phenolic compounds were tentatively identified in the three fractions, and eighteen were quantified using authentic standards. Furthermore, six anthocyanins were quantified in guabijú peel. Among the tentatively identified phenolic compounds, most belonged to the flavonols class. Major compounds quantified in the different fractions were ellagic and gallic acids, mainly in the hydrolyzed fractions. The peel presented the highest contents for most phenolic compounds, followed by the seed and pulp. This new data will add value to the fruit and facilitate the development of new products, as well as favoring and stimulating the consumption of the fruit.
Collapse
Affiliation(s)
- Patrícia Gotardo Machado
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Danielle Santos Londero
- Health Sciences Center, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Carla Andressa Almeida Farias
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | | | - Milene Teixeira Barcia
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil.
| |
Collapse
|
21
|
Das S, Sultana KW, Mondal M, Chandra I, Ndhlala AR. Unveiling the Dual Nature of Heavy Metals: Stressors and Promoters of Phenolic Compound Biosynthesis in Basilicum polystachyon (L.) Moench In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 13:98. [PMID: 38202406 PMCID: PMC10780674 DOI: 10.3390/plants13010098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
The global industrial revolution has led to a substantial rise in heavy metal levels in the environment, posing a serious threat to nature. Plants synthesize phenolic compounds under stressful conditions, which serve as protective agents against oxidative stress. Basilicum polystachyon (L.) Moench is an herbaceous plant of the Lamiaceae family. Some species within this family are recognized for their capacity to remediate sites contaminated with heavy metals. In this study, the effects of mercury (II) chloride and lead (II) nitrate on the in vitro propagation of B. polystachyon were investigated. Shoot tips from in vitro plantlets were cultured in Murashige and Skoog's (MS) media with heavy metals ranging from 1 to 200 µM to induce abiotic stress and enhance the accumulation of phenolic compounds. After three weeks, MS medium with 1 µM of lead (II) supported the highest shoot multiplication, and the maximum number of roots per explant was found in 100 µM of lead (II), whereas a higher concentration of heavy metals inhibited shoot multiplication and root development. The plantlets were hardened in a greenhouse with a 96% field survival rate. Flame atomic absorption spectroscopy (FAAS) was used to detect heavy metal contents in plant biomass. At both 200 µM and 50 µM concentrations, the greatest accumulation of mercury (II) was observed in the roots (16.94 ± 0.44 µg/g) and shoots (17.71 ± 0.66 µg/g), respectively. Similarly, lead (II) showed the highest accumulation in roots (17.10 ± 0.54 µg/g) and shoots (7.78 ± 0.26 µg/g) at 200 µM and 50 µM exposures, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) identified and quantified various phenolic compounds in B. polystachyon leaves, including gallic acid, caffeic acid, vanillic acid, p-coumaric acid, ellagic acid, rosmarinic acid, and trans-cinnamic acid. These compounds were found in different forms, such as free, esterified, and glycosylated. Mercury (II)-exposed plants exhibited elevated levels of vanillic acid (1959.1 ± 3.66 µg/g DW), ellagic acid (213.55 ± 2.11 µg/g DW), and rosmarinic acid (187.72 ± 1.22 µg/g DW). Conversely, lead (II)-exposed plants accumulated higher levels of caffeic acid (42.53±0.61 µg/g DW) and p-coumaric acid (8.04 ± 0.31 µg/g DW). Trans-cinnamic acid was the predominant phenolic compound in control plants, with a concentration of 207.74 ± 1.45 µg/g DW. These results suggest that sublethal doses of heavy metals can act as abiotic elicitors, enhancing the production of phenolic compounds in B. polystachyon. The present work has the potential to open up new commercial opportunities in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sumanta Das
- Department of Biotechnology, The University of Burdwan, Burdwan 713104, West Bengal, India; (K.W.S.); (M.M.)
| | - Kaniz Wahida Sultana
- Department of Biotechnology, The University of Burdwan, Burdwan 713104, West Bengal, India; (K.W.S.); (M.M.)
| | - Moupriya Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan 713104, West Bengal, India; (K.W.S.); (M.M.)
| | - Indrani Chandra
- Department of Biotechnology, The University of Burdwan, Burdwan 713104, West Bengal, India; (K.W.S.); (M.M.)
| | - Ashwell R. Ndhlala
- Department of Plant Production, Soil Science and Agricultural Engineering, Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
22
|
Wang Z, Zhong T, Mei X, Chen X, Chen G, Rao S, Zheng X, Yang Z. Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chem 2023; 425:136539. [PMID: 37290238 DOI: 10.1016/j.foodchem.2023.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of freeze drying (FD), heat pump drying (HPD), microwave drying (MD), and far-infrared drying (FID) on the quality of brocade orange peels (BOPs). Although the most attractive appearance, maximum levels of ascorbic acid (0.46 mg/g dry weight (DW)), carotenoids (total 16.34 μg/g DW), synephrine (15.58 mg/g DW), limonoids (total 4.60 mg/g DW), phenols (total 9142.80 μg/g DW), and antioxidant activity were observed in FD-BOPs, many aroma components in FD-BOPs were in the minimum levels. HPD-, and MD-BOPs depicted similar trends to FD-BOPs, but they contained the highest concentrations of limonene and β-myrcene. Phenols and ascorbic acid in MD-BOPs generally featured the highest levels of bioavailability, being to 15.99% and 63.94%, respectively. In comparison, FID was not beneficial for the preservation of bioactive compounds and volatile. Therefore, considering time and energy costs, HPD and particularly MD are more appropriate for the commercial production of dried BOPs.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Tao Zhong
- Sichuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, PR China
| | - Xiaofei Mei
- Chongqing Vocational Institute of Engineering, Jiangjin, Chongqing 402260, PR China
| | - Xuhui Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
23
|
Ferreira VC, Sganzerla WG, Barroso TLCT, Castro LEN, Colpini LMS, Forster-Carneiro T. Sustainable valorization of pitaya (Hylocereus spp.) peel in a semi-continuous high-pressure hydrothermal process to recover value-added products. Food Res Int 2023; 173:113332. [PMID: 37803643 DOI: 10.1016/j.foodres.2023.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
This study evaluated the use of a semi-continuous high-pressure hydrothermal process for the recovery of value-added products from pitaya peel. The process was carried out at 15 MPa, a water flow rate of 2 mL/min, a solvent-to-feed ratio of 60 g water/g pitaya peel, and temperatures ranging from 40 to 210 °C. The results show that extraction temperatures (between 40 and 80 °C) promoted the recovery of betacyanin (1.52 mg/g), malic acid (25.6 mg/g), and citric acid (25.98 mg/g). The major phenolic compounds obtained were p-coumaric acid (144.63 ± 0.42 µg/g), protocatechuic acid (91.43 ± 0.32 µg/g), and piperonylic acid (74.2 ± 0.31 µg/g). The hydrolysis temperatures (between 150 and 210 °C) could produce sugars (18.09 mg/g). However, the hydrolysis process at temperatures above 180 °C generated Maillard reaction products, which increased the total phenolic compounds and antioxidant activity of the hydrolysates. Finally, the use of semi-continuous high-pressure hydrothermal process can be a sustainable and promising approach for the recovery of value-added compounds from pitaya peel, advocating a circular economy approach in the agri-food industry.
Collapse
Affiliation(s)
- Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
24
|
Arruda HS, Angolini CFF, Eberlin MN, Pastore GM, Marostica Junior MR. UHPLC-ESI-QTOF-MS/MS Profiling of Phytochemicals from Araticum Fruit ( Annona crassiflora Mart.) and Its Antioxidant Activity. Foods 2023; 12:3456. [PMID: 37761165 PMCID: PMC10528599 DOI: 10.3390/foods12183456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Araticum is a native species of the Brazilian Cerrado with a high potential for exploitation. Several studies have stated that araticum is a rich source of phytochemicals with multifaceted biological actions. However, little information is available regarding the characterization of phytochemicals found in the pulp of this fruit. In this context, this study aimed to carry out a comprehensive characterization of phytochemicals present in the araticum pulp using ultra-high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UHPLC-ESI-QTOF-MS/MS). The antioxidant potential of araticum pulp was also evaluated. UHPLC-ESI-QTOF-MS/MS profiling of the phytochemicals allowed for the identification and annotation of 139 phytochemicals, including organic acids, jasmonates, iridoids, phenolic compounds, alkaloids, annonaceous acetogenins, fatty acid derivatives, and other compounds. Among them, 116 compounds have been found for the first time in araticum pulp. Phenolic compounds and their derivatives represented about 59% of the phytochemicals identified in the extract. Moreover, araticum pulp showed high total phenolic compound content and antioxidant activity. The majority of identified phytochemicals have been associated with key roles in the plant's defense mechanisms against biotic and abiotic stress factors in the Cerrado environment. Furthermore, many of these phytochemicals found in the araticum pulp are already widely recognized for their beneficial effects on human health. Our findings showed that the araticum fruit contains different classes of phytochemicals that exert various biological activities, both in the plant itself and in humans.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Célio Fernando Figueiredo Angolini
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados 5001, Santo André 09210-580, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| |
Collapse
|
25
|
Machado PG, Londero DS, Barcia MT, Ballus CA. Exploring Anthocyanin and Free and Bound Phenolic Compounds from Two Morphotypes of Araçá ( Psidium cattleianum Sabine) by LC-ESI-QqQ-MS/MS. Foods 2023; 12:3230. [PMID: 37685163 PMCID: PMC10486936 DOI: 10.3390/foods12173230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Araçá is a Brazilian native fruit belonging to the Myrtaceae family. Although some studies already prove its health benefits, it is still necessary to explore the phenolic compounds in all its parts separately. This study aimed to investigate the free, esterified, glycosylated, and insoluble phenolics in two morphotypes of araçá, red and yellow, evaluating peel, pulp, and seed separately, using liquid chromatography coupled to mass spectrometry (LC-ESI-QqQ-MS/MS). Fourteen phenolics and five anthocyanins were quantified in both morphotypes. The peels presented the highest contents, followed by the pulp and seeds. Red araçá stood out over the yellow one only in the phenolic fractions resulting from the peel, with the yellow araçá being superior in the phenolic fractions of the pulp and seed. The highest antioxidant capacities were detected for the pulp-esterified phenolics (498.3 µmol g-1) and peel-free phenolics (446.7 µmol g-1) of yellow araçá. Principal component analysis (PCA) indicated specific markers to differentiate the samples. All parts of the araçá proved to be a rich source of phenolic compounds, in different fractions, mainly in the peel. This information will be beneficial to stimulate the consumption of native fruits and their possible use in the development of new products.
Collapse
Affiliation(s)
- Patrícia Gotardo Machado
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (P.G.M.); (M.T.B.)
| | - Danielle Santos Londero
- Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Milene Teixeira Barcia
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (P.G.M.); (M.T.B.)
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (P.G.M.); (M.T.B.)
| |
Collapse
|
26
|
de Aguiar AC, Pereira GA, Ribeiro CSDC, Eberlin MN, Soares LP, Ruiz ALTG, Pastore GM, Martínez J. Capsicum chinense var. BRS Moema: chemical characterization by HPLC-ESI-MS/MS and antiproliferative screening. Food Funct 2023. [PMID: 37401347 DOI: 10.1039/d3fo01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Capsiate and phenolics present in the free, esterified, glycosylated, and insoluble-bound forms of BRS Moema peppers were characterized and quantified using UHPLC-ESI-MS/MS. Additionally, the in vitro antiproliferative activity of BRS Moema extract was evaluated. The peppers showed considerable quantities of capsiate and phenolic compounds. Esterified phenolics were the main fraction, followed by the insoluble-bound fraction, indicating that relying solely on the extraction of soluble phenolics may underestimate the total phenolic content. Among the fourteen phenolics identified in extract fractions, gallic acid was the major constituent. Phenolic fractions displayed high antioxidant capacity by TEAC and ORAC assays. Nevertheless, the correlation between phenolic compounds and antioxidant activity suggested that other bioactive or phenolic compounds may contribute to the overall phenolic compounds and antioxidant capacity of the obtained fractions. Concerning the antiproliferative activity, the extract did not exhibit any effect on cell proliferation within the evaluated concentration range. These findings indicated that BRS Moema peppers can serve as a rich source of phenolic compounds. Therefore, fully utilizing them could bring advantages to the food and pharmaceutical industries, as well as to consumers and producers.
Collapse
Affiliation(s)
- Ana Carolina de Aguiar
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Rod. Lauri Simões de Barros, km 12 - SP 189, 18290-000, Buri, SP, Brazil.
| | - Gustavo Araujo Pereira
- Federal University of Pará (UFPA), R. Augusto Corrêa, 001, Guamá, 66075110, Belém, PA, Brazil
| | | | - Marcos Nogueira Eberlin
- MackMass Laboratory of Mass Spectrometry, School of Engineering- PPGEMN, Mackenzie Presbyterian University, São Paulo, SP 01302-907, Brazil
| | - Lana Pereira Soares
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| | - Julian Martínez
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
27
|
Arruda HS, Silva EK, Pastore GM, Marostica Junior MR. Non-Thermal Supercritical Carbon Dioxide Processing Retains the Quality Parameters and Improves the Kinetic Stability of an Araticum Beverage Enriched with Inulin-Type Dietary Fibers. Foods 2023; 12:2595. [PMID: 37444333 DOI: 10.3390/foods12132595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Fruit-based beverages have been considered excellent food vehicles for delivering prebiotics. However, the conventional thermal processes currently used to microbiologically and enzymatically stabilize these products may cause significant losses in their sensory, physicochemical, nutritional, and bioactive characteristics. Thus, in this study, we evaluate the effect of different levels of pressure (8, 15, and 21 MPa) and temperature (35 and 55 °C) on the characteristics of an inulin-enriched araticum beverage processed with non-thermal supercritical carbon dioxide (SC-CO2) technology. The temperature showed a significant effect on total soluble solids, pH, particle size distribution, and kinetic stability. In contrast, pressure affected only the particle size distribution. The interaction between pressure and temperature influenced the total soluble solids, pH, and particle size distribution. Color parameters, ζ-potential, and glucose and fructose contents were not modified after all SC-CO2 treatments. Moreover, the SC-CO2 treatments preserved the inulin molecular structure, thus maintaining its prebiotic functionality. Overall, the SC-CO2 treatment did not alter the sensory, nutritional, and functional quality of the beverage, while improving its physical stability during storage. Therefore, non-thermal SC-CO2 treatment can be an alternative to current conventional processes for stabilizing inulin-enriched fruit-based beverages.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Eric Keven Silva
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
28
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
29
|
Nordin NL, Sulaiman R, Bakar J, Noranizan MA. Comparison of Phenolic and Volatile Compounds in MD2 Pineapple Peel and Core. Foods 2023; 12:foods12112233. [PMID: 37297477 DOI: 10.3390/foods12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The peel and core discarded from the processing of MD2 pineapple have the potential to be valorized. This study evaluated the functional and volatile compounds in the extracts of MD pineapple peel and core (MD2-PPC). The total soluble solids, pH, titratable acidity, sweetness index, and astringency index were 9.34 °Brix, 4.00, 0.74%, 12.84, and 0.08, respectively, for the peel and 12.00 °Brix, 3.96, 0.32%, 37.66, and 0.03, respectively, for the core. The fat and protein contents of the peel and core were found to be significantly different (p < 0.05). The total phenolic (TPC) and flavonoid contents (TFC) were significantly higher in the peel. The peel also showed better antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 0.63 mg/mL for DPPH free radical activity compared with the core. The TPC of different phenolic fractions from peel extract was highest in the glycosylated fraction, followed by the esterified, insoluble-bound, and free phenolic fractions. GC-MS analysis identified 38 compounds in the peel and 23 in the core. The primary volatile compounds were 2-furan carboxaldehyde, 5-(hydroxymethyl), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). The identification of phenolics and volatile compounds provides important insights into the valorization of (MD2-PPC) waste.
Collapse
Affiliation(s)
- Nur Liyana Nordin
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
| | - Rabiha Sulaiman
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jamilah Bakar
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Adzahan Noranizan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
30
|
Arruda HS, Borsoi FT, Andrade AC, Pastore GM, Marostica Junior MR. Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit ( Annona crassiflora Mart.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1536. [PMID: 37050162 PMCID: PMC10097317 DOI: 10.3390/plants12071536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Araticum (Annona crassiflora Mart.) is a native and endemic species to Brazilian Cerrado whose fruits have high sensorial, nutritional, bioactive, and economic potential. Its use in local folk medicine, associated with recent scientific findings, has attracted growing interest from different industrial sectors. Therefore, understanding the scientific advances achieved so far and identifying gaps to be filled is essential to direct future studies and transform accumulated knowledge into innovative technologies and products. In this review, we summarize the phytochemical composition, bioactivities, and food products from araticum fruit that have been reported in the scientific literature over the past 10 years. The compiled data showed that araticum fruit parts contain a wide range of bioactive compounds, particularly phenolic compounds, alkaloids, annonaceous acetogenins, carotenoids, phytosterols, and tocols. These phytochemicals contribute to different biological activities verified in araticum fruit extracts/fractions, including antioxidant, anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, anti-obesity, antidyslipidemic, antinociceptive, hepatoprotective, healing of the cutaneous wound, antibacterial, and insecticide effects. Despite the promising findings, further studies-particularly toxicological (especially, with byproducts), pre-clinical, and clinical trials-must be conducted to confirm these biological effects in humans and assure the safety and well-being of consumers.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.T.B.); (A.C.A.)
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Felipe Tecchio Borsoi
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.T.B.); (A.C.A.)
| | - Amanda Cristina Andrade
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.T.B.); (A.C.A.)
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.T.B.); (A.C.A.)
| | - Mario Roberto Marostica Junior
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
31
|
Chen C, Kim RH, Hwang KT, Kim J. Chemical compounds and bioactivities of the extracts from radish (Raphanus sativus) sprouts exposed to red and blue light-emitting diodes during cultivation. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
32
|
Evaluation of the total phenolic content, antioxidative capacity, and chemical fingerprint of Annona crassiflora Mart. Bioaccessible molecules. Food Res Int 2023; 165:112514. [PMID: 36869513 DOI: 10.1016/j.foodres.2023.112514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Annona crassiflora Mart. (araticum) is an exotic fruit native to the Brazilian Cerrado that stands out for its phytochemical profile, especially for the presence of bioactive compounds. The health-related benefits promoted by these metabolites are widely explored. It is known that the biological activity of bioactive compounds is directly dependent on the availability of the molecules, and their bioaccessibility after the digestion process is one of the main limiting factors. The present study aimed to evaluate the bioaccessibility of bioactive compounds in some parts of araticum (peel, pulp and seeds) fruits obtained from different regions through the in vitro digestion process simulating the gastrointestinal tract. The total phenolic content ranged from 480.81 to 1007.62 for pulp; 837.53 to 1926.56 for peel; and 358.28 to 1186.07 for seeds (mg GAE.100 g-1 of sample). The highest antioxidant activity was observed for the seeds by the DPPH method, the peel by the ABTS method, and most of the peel, except for the Cordisburgo sample, by the FRAP method. Through the research of the chemical profile, it was possible to list up to 35 compounds, including the nutrients, in this identification attempt. It was observed that some compounds were listed only in natura samples (epicatechin and procyanidin) and others only for the bioaccessible fraction (quercetin-3-O-dipentoside), which is justified by the different gastrointestinal tract conditions. Thus, the present study elucidates that the food matrix will directly influence the bioaccessibility of bioactive compounds. In addition, it highlights the potential of unconventionally used or consumed parts that can be used as sources of substances with biological activities, increasing the sustainability by reducing waste.
Collapse
|
33
|
Zhang X, Li M, Zhen L, Wang Y, Wang Y, Qin Y, Zhang Z, Zhao T, Cao J, Liu Y, Cheng G. Ultra-High Hydrostatic Pressure Pretreatment on White Que Zui Tea: Chemical Constituents, Antioxidant, Cytoprotective, and Anti-Inflammatory Activities. Foods 2023; 12:628. [PMID: 36766156 PMCID: PMC9914134 DOI: 10.3390/foods12030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengcheng Li
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Li Zhen
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuyue Qin
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Zhang
- The Faculty of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Zhao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
34
|
Shahidi F, Hossain A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants (Basel) 2023; 12:antiox12010203. [PMID: 36671065 PMCID: PMC9854999 DOI: 10.3390/antiox12010203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insoluble-bound phenolics (IBPs) are extensively found in the cell wall and distributed in various tissues/organs of plants, mainly cereals, legumes, and pulses. In particular, IBPs are mainly distributed in the protective tissues, such as seed coat, pericarp, and hull, and are also available in nutritional tissues, including germ, epicotyl, hypocotyl radicle, and endosperm, among others. IBPs account for 20-60% of the total phenolics in food matrices and can exceed 70% in leaves, flowers, peels, pulps, seeds, and other counterparts of fruits and vegetables, and up to 99% in cereal brans. These phenolics are mostly covalently bound to various macromolecules such as hemicellulose, cellulose, structural protein, arabinoxylan, and pectin, which can be extracted by acid, alkali, or enzymatic hydrolysis along with various thermal and non-thermal treatments. IBPs obtained from various sources exhibited a wide range of biological activities, including antioxidant, anti-inflammatory, antihypertensive, anticancer, anti-obesity, and anti-diabetic properties. In this contribution, the chemistry, distribution, biological activities, metabolism, and extraction methods of IBPs, and how they are affected by various treatments, are summarized. In particular, the effect of thermal and non-thermal processing on the release of IBPs and their antioxidant potential is discussed.
Collapse
|
35
|
Wang Z, Mei X, Chen X, Rao S, Ju T, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Arruda HS, Araújo MVL, Marostica Junior MR. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100148. [PMID: 36439937 PMCID: PMC9694390 DOI: 10.1016/j.fochms.2022.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 04/18/2023]
Abstract
The Brazilian Cerrado is home to a large number of native and endemic species of enormous potential, among which we can highlight the cagaita, gabiroba, jatobá-do-cerrado, lobeira, and mangaba. In this review, we report the nutritional and phenolic composition, as well as bioactivities of these five Brazilian Cerrado fruits. The compiled data indicated that these fruits have high nutritional, functional, and economic potential and contribute to the daily intake of macro- and micronutrients, energy, and phenolic compounds by inhabitants of the Cerrado region. Phenolic-rich extracts obtained from these fruits have shown several bioactivities, including antioxidant, anti-inflammatory, antidyslipidemic, antidiabetic, analgesic, anticarcinogenic, hepatoprotective, gastrointestinal protective, and antimicrobial properties. Therefore, these fruits can be explored by the food industry as a raw material to develop food products of high value-added, such as functional foods, and can also be employed as plant sources to obtain bioactive compounds for food, cosmetic, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Maria Vitória Lopes Araújo
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Mario Roberto Marostica Junior
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
37
|
Insights into the effects of extractable phenolic compounds and Maillard reaction products on the antioxidant activity of roasted wheat flours with different maturities. Food Chem X 2022; 17:100548. [PMID: 36845526 PMCID: PMC9943760 DOI: 10.1016/j.fochx.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Experiments were performed to determine the effect of roasting whole wheat flours at 80 °C, 100 °C and 120 °C for 30 min on four forms of phenolics, Maillard reaction products (MRPs), and the DPPH scavenging activity (DSA) at 15, 30 and 45 days after flowering (15-DAF, 30-DAF, and 45-DAF). Roasting increased the phenolic content and antioxidant activity of the wheat flours, which were the dominant contributions to the formation of Maillard reaction products. The highest total phenolic content (TPC) and total phenolic DSA (TDSA) were determined in the DAF-15 flours at 120 °C/30 min. The DAF-15 flours exhibited the highest browning index and fluorescence of free intermediate compounds and advanced MRPs, suggesting that a substantial quantity of MRPs were formed. Four forms of phenolic compounds were detected with significantly different DSAs in the roasted wheat flours. The insoluble-bound phenolic compounds exhibited the highest DSA, followed by the glycosylated phenolic compounds.
Collapse
|
38
|
Zhong J, Wang Y, Li C, Yu Q, Xie J, Dong R, Xie Y, Li B, Tian J, Chen Y. Natural variation on free, esterified, glycosylated and insoluble-bound phenolics of Rubus chingii Hu: Correlation between phenolic constituents and antioxidant activities. Food Res Int 2022; 162:112043. [DOI: 10.1016/j.foodres.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
39
|
Ajiboye AO, Shodehinde SA. Diet supplemented with boiled unripe plantain (Musa paradisiaca) exhibited antidiabetic potentials in streptozotocin-induced Wistar rats. J Food Biochem 2022; 46:e14431. [PMID: 36200727 DOI: 10.1111/jfbc.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023]
Abstract
The ameliorating effect and antidiabetic properties of diets augmented with boiled unripe plantain (20%-40%) in high fat fed/low dose of streptozotocin induced diabetic rats in comparison with the administration of acarbose were evaluated in this study using standard methods. High fat fed/low dose of streptozotocin (25 mg/kg body weight) was given to twenty-five male Wistar rats to induce diabetes leaving out 5 normal rats to serve as control. The animals were separated into five with six rats in each group and the experiment continued for 14 days. Investigations on the blood glucose concentration, enzymes (α-amylase, α-glucosidase, angiotensin I converting enzyme), thiobarbituric reaction substance (TBARS), High-density lipoprotein-cholesterol (HDL-c), and antioxidant status were determined. The findings revealed a rise in blood glucose level and the activities of α-amylase, α-glucosidase, angiotensin I converting enzyme, thiobarbituric reaction substance (TBARS) in untreated diabetic rats in group II while a reverse was observed in diabetic rats (Group IV and V) on exposure to diets augmented with boiled unripe plantain. The obtained overall results in diet treated groups are similar to that of acarbose treated groups. The untreated diabetic rats (Group II) exhibited contrary results of the biochemical assays. This finding showed that boiled unripe plantain can provide the therapeutic measures that needed to be further explored as possible future economic means of managing diabetes in developing nations. PRACTICAL APPLICATIONS: As diabetes has been implicated to disrupt various pathways involved in the metabolism of macromolecules, there are proposed adoptive methods of preventing them among which is the inhibition of starch hydrolyzing enzymes, increasing the enzymatic antioxidant status and prevention of lipid peroxidation, Plantain by-product which is known as an inexpensive food can be prepared to manage the condition of diabetes in patients. Our former in vitro findings have revealed the bioactive contents of unripe plantain product which has been further explored in vivo to experiment is nutritional benefits. The study therefore proposes that unripe plantains, when boiled, can provide the necessary natural therapeutic measures to be considered as a potential economic means of managing diabetes in underdeveloped countries.
Collapse
Affiliation(s)
- Adekunle O Ajiboye
- West Virginia University, Animal and Nutritional Sciences Davis College of Agriculture, Natural Resources & Design, Morgantown, West Virginia, USA.,Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Sidiqat A Shodehinde
- Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| |
Collapse
|
40
|
The water insoluble fraction from red cabbage and black currant pomace reduces the formation of acrylamide, 5-hydroxymethylfurfural and reactive aldehydes in fried potato-based crisps. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
Xia C, Yang K, Zhu Y, Liu T, Chen J, Deng J, Zhu B, Shi Z, Xiang Z. Distribution of free and bound phenolic compounds, β-glucan, and araboxylan in fractions of milled hulless barley. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Wang Z, Yang B, Chen X, Huang P, Chen K, Ma Y, Agarry IE, Kan J. Optimization and comparison of nonconventional extraction techniques for soluble phenolic compounds from brocade orange (
Citrus sinensis
) peels. J Food Sci 2022; 87:4917-4929. [DOI: 10.1111/1750-3841.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Zhirong Wang
- College of Food Science Southwest University Beibei Chongqing PR China
- School of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | - Bing Yang
- College of Food Science and Technology Hebei Agricultural University Baoding Hebei PR China
| | - Xuhui Chen
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Pimiao Huang
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Kewei Chen
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| | - Yuan Ma
- School of Food and Bioengineering Xihua University Chengdu PR China
| | | | - Jianquan Kan
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| |
Collapse
|
43
|
Ramos ALCC, Mazzinghy ACDC, Correia VTDV, Nunes BV, Ribeiro LV, Silva VDM, Weichert RF, de Paula ACCFF, de Sousa IMN, Ferreira RMDSB, Batista-Santos P, de Araújo RLB, Melo JOF. An Integrative Approach to the Flavonoid Profile in Some Plants' Parts of the Annona Genus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212855. [PMID: 36365309 PMCID: PMC9656113 DOI: 10.3390/plants11212855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
The Annonaceae family is widely distributed in subtropical and tropical regions. Several species of this family are known for their pharmacological and beneficial properties to human health, mainly attributed to flavonoids. The objective of this work was to carry out an integrative review in order to identify the main flavonoids found in some plant parts belonging to the Annona genus: araticum tree (Annona crassiflora Mart.), graviola tree (Annona muricata), atemoya tree (Annona cherimolia Mill × Annona squamosa L.), pinha tree (Annona squamosa), bananinha tree (Annona leptopetala), and marolinho tree (Annona coriacea). Only articles published between the years 2016 to 2021 that answered the guiding question were considered, in order to obtain recent data. Then, search strategies were designated for each database used: Science Direct, CAPES Periodicals, and Scielo. Most of the studies retrieved from the databases are related to fruits. The results showed that the number of flavonoids identified varies according to the analytical methodology used to identify and quantify the compounds. Quercetin was the most commonly found compound in all fruits of the Annona genus studied, and epicatechin, rutin, and kaempferol were also found to a lesser extent. The presence of these compounds in Annona makes the fruit promising, with potential applicability in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Ana Luiza Coeli Cruz Ramos
- Departmento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Carolina do Carmo Mazzinghy
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Vinícius Tadeu da Veiga Correia
- Departmento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bruna Vieira Nunes
- Departmento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas Victor Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Reginaldo Ferreira Weichert
- Departamento de Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Bambui 38900-000, MG, Brazil
| | | | | | | | - Paula Batista-Santos
- LEAF-Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Raquel Linhares Bello de Araújo
- Departmento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
- Correspondence:
| |
Collapse
|
44
|
Xiang Z, Xia C, Feng S, Chen T, Zhou L, Liu L, Kong Q, Yang H, Ding C. Assessment of free and bound phenolics in the flowers and floral organs of two Camellia species flower and their antioxidant activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Use of pulp, peel, and seed of Annona crassiflora Mart. in elaborating extracts for fingerprint analysis using paper spray mass spectrometry. Food Res Int 2022; 160:111687. [DOI: 10.1016/j.foodres.2022.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
|
46
|
Zheng X, Pan F, Zhao S, Zhao L, Yi J, Cai S. Phenolic characterization, antioxidant and α-glycosidase inhibitory activities of different fractions from Prinsepia utilis Royle seed shell using in vitro and in silico analyses. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Free, Conjugated, and Bound Phenolics in Peel and Pulp from Four Wampee Varieties: Relationship between Phenolic Composition and Bio-Activities by Multivariate Analysis. Antioxidants (Basel) 2022; 11:antiox11091831. [PMID: 36139905 PMCID: PMC9495965 DOI: 10.3390/antiox11091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Free, conjugated, and bound phenolic fractions of peel and pulp in four wampee varieties from South China were analyzed for their contents, composition, antioxidant capacities, and inhibitory activities against α-glucosidase. We found that there were significant differences in phenolic/flavonoid contents among diverse varieties and different parts (peel and pulp), and the contents were highest in the peel’s bound form. The results of UHPL-Q-Exactive HF-X and HPLC showed that chlorogenic acid, gentisic acid, and rutin were abundantly distributed over the three phenolic fractions in peel and pulp of all wampee samples, while isoquercitrin was the most abundant in the conjugated form of peel/pulp and myricetin had the richest content in the free form of peel/pulp. Wampee peel had stronger antioxidant capacities of ABTS+, DPPH, ·OH, and FRAP than the pulp, and the bound phenolic fraction of the peel/pulp had much higher antioxidant activities than FP and CP fractions. It is interesting that the same phenolic fraction of the wampee peel displayed roughly close IC50 values of α-glucosidase inhibition to those from the pulp samples. The relationship between individual phenolic and TPC/TFC/the bio-activities and the similarity among the free, conjugated, and bound phenolic fractions in peel and pulp samples were explored by using Pearson correlation analysis, principal component analysis, and hierarchical cluster analysis. This work provides a systematic and comprehensive comparison of the three phenolic fractions of diverse wampee varieties and different parts, and a rationale for applying phenolics from wampee fruits.
Collapse
|
48
|
Identification and Antioxidant Capacity of Free and Bound Phenolics in Six Varieties of Mulberry Seeds Using UPLC-ESI-QTOF-MS/MS. Antioxidants (Basel) 2022; 11:antiox11091764. [PMID: 36139838 PMCID: PMC9495565 DOI: 10.3390/antiox11091764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mulberry seeds are a byproduct of juice processing and may be an important resource for its abundant compounds. In this study, we analyzed the qualitative composition of free and bound phenolics from six varieties of mulberry seeds using UPLC-ESI-QTOF-MS/MS. Free phenolics (FPs) and bound phenolics (BPs) were measured using the Folin–Ciocalteu method; antioxidant capacity was determined by measuring 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, using the ferric reducing antioxidant power assay. A total of 28 free and 11 bound phenolics were extracted and identified, wherein five free phenolics were found in mulberry matrices for the first time. The six varieties of mulberry seeds exhibited higher content of FPs than BPs, and there was a correlation between the phenolic content and antioxidant capacity. Consequently, three varieties were selected for their high phenolic content and antioxidant capacity. This study might offer a theoretical basis for the utilization of mulberry seed.
Collapse
|
49
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
50
|
Wang X, He X, Sun C, Peng M, Zhang Q, Brennan CS, Guan W, Wang F, Zhang N. Extraction of bound phenolics from shiitake mushrooms (
Lentinus edodes
) by combined acid and base hydrolysis procedures and analysis of phenolic profiles and antioxidant capacities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqing Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Chaoren Sun
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Mengyun Peng
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Qianqian Zhang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Fengling Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences Tianjin University of Commerce Tianjin 300134 China
| | - Na Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products Tianjin 300384 China
| |
Collapse
|