1
|
Unno K, Ikka T, Yamashita H, Kameoka Y, Nakamura Y. Stress-Relieving Effects of Japanese Green Tea: Evaluation Using the Molar Ratio of Caffeine and Epigallocatechin Gallate to Theanine and Arginine as an Indicator. Foods 2025; 14:103. [PMID: 39796392 PMCID: PMC11720457 DOI: 10.3390/foods14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The major components of tea leaves and their infusions were analyzed for various types of green tea available in Japan in 2022. Almost all the green teas used were from the first crop, known for their high amino acid content. The amino acids theanine and arginine in green tea have been shown to reduce stress. On the other hand, epigallocatechin gallate (EGCG) and caffeine, the major components of green tea, counteract the effects of theanine and arginine. We have shown that the CE/TA ratio, which is the ratio of the molar sum of caffeine (C) and EGCG (E) to the molar sum of theanine (T) and arginine (A), can be used to evaluate the stress-relieving effects of each green tea. Green tea with a CE/TA ratio smaller than 3 can be expected to have a stress-reducing effect. The CE/TA ratios of the tea leaves and infusions of Gyokuro, Sencha, and Tamaryokucha were less than 3, indicating that these teas are expected to have stress-relieving effects. In addition, when the same tea leaves were infused repeatedly, it was found that most of the amino acids were eluted by the first and second cups; therefore, no stress-relieving effect could be expected after the third cup.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (Y.N.)
| | - Takashi Ikka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (T.I.); (H.Y.)
- Institute of Tea Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroto Yamashita
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (T.I.); (H.Y.)
- Institute of Tea Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yoko Kameoka
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (Y.N.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (Y.N.)
| |
Collapse
|
2
|
Song R, Shen M, Wang Y, Sun Y, Ma J, Deng Q, Ren X, Li X, Zheng Y, He Y, Zhang F, Li M, Yao J, Sun M, Liu W, She G. Correlation analysis and modeling application from objective indicators to subjective evaluation of scented tea: A case study of rose tea. Food Chem 2025; 462:140963. [PMID: 39208739 DOI: 10.1016/j.foodchem.2024.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Different scented teas provide various choices for consumers from appearance, aroma, flavor and others. Aiming to define advantages and market positions of different scented teas and promote optimization of market structure, characteristics for scented tea favored by consumers and outstanding attributes of different scented teas should be clarified. Rose tea was taken as study object. Sensory evaluation and consumer acceptance were investigated. GC-MS and HPLC fingerprints were established. Physicochemical characteristics were determined. RGB integration analysis was inventively proposed for correlation analysis. The volatile compounds with spicy, green or herbal odor as camphene, β-phenethyl acetate, eugenol, and physicochemical parameters as antioxidant capacity, reducing sugar content, pH showed positive correlation with popular sensory properties. Six models for consumer preference by objective description were built through GA-SVR (accuracy = 1), and APP was developed. The research mode of scented tea has been successfully established to study multiple subjective characteristics with measurable objective parameters.
Collapse
Affiliation(s)
- Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Chen X, Wu Y, Zeng Y, Liu J, Niu X. Single-nanozyme single-readout enabled efficient identification of polyphenols for Chinese tea authentication and brewing evaluation. Food Chem 2024; 467:142328. [PMID: 39644655 DOI: 10.1016/j.foodchem.2024.142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
With the popularity of health-conscious tea drinking, precise sensing of polyphenols as a main class of antioxidants in tea becomes critical for tea authentication and brewing evaluation. Sensor arrays show great potential for the goal, but currently available sensor arrays always need multiple sensing units and/or multi-dimensional signals, resulting in cumbersome sensor construction and operation as well as data processing. Developing easy-to-fabricate and easy-to-use sensor arrays for efficient discrimination is still challenging. Here we propose a new sensor array that only uses a single signal collected dynamically with oxidase-like MnOOH as a sole sensing material. The synthesized MnOOH nanowires exhibit favorable activity to catalyze the chromogenic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB. By taking gallic acid, tannic acid, L-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate as models, the six tea polyphenols show discrepant inhibitory effects on the above catalytic system. As a result, these polyphenols, no matter as a single component at various concentrations or multi-component mixtures with different ratios, can be well distinguished by the single-nanozyme single-readout sensor array. Besides, different Chinese tea species, black tea varieties and impacts of brewing methods are accurately identified. Evidently, our sensor array avoids the requirement for multiple sensing units and multi-dimensional signals, greatly simplifying the fabrication of sensor arrays and their use, which provides an efficient yet facile tool for tea authentication and brewing evaluation.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yangyu Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yani Zeng
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan Ecology and Environment Monitoring Center, Changsha 410019, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
4
|
Yilmaz A, Toraman MN, Mataraci Karakas S, Ozden Z, Pinarbas E, Mercantepe T. Effect of White Tea on Leptin and Asprosin Levels in Rats Feeding a High-Fat Diet. Life (Basel) 2024; 14:1548. [PMID: 39768256 PMCID: PMC11679257 DOI: 10.3390/life14121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Currently, obesity affects over 600 million individuals and is responsible for numerous severe health conditions, particularly diabetes and metabolic syndrome. The objective of our study was to examine the impact of white tea, known for its potent antioxidant properties, on the reduction in body weight as well as the levels of leptin and asprosin. METHODS A total of 72 male Sprague-Dawley rats were randomly assigned to 9 groups, with each group consisting of 8 rats. The groups were partitioned into two in order to examine the preventative and therapeutic effects of white tea on obesity. During this study, the case groups were administered white tea together with a high-fat diet, whereas the positive control group was administered orlistat along with a high-fat diet through oral gavage. After the experiment concluded, the levels of leptin, asprosin, and insulin hormones were evaluated in serum samples collected from rats using the ELISA method. RESULTS The findings demonstrated that the administration of white tea led to a significant decrease in body weight, serum leptin, and asprosin levels, as well as oxidative stress indicators, in rats that were fed a high-fat diet. CONCLUSIONS Utilizing natural chemicals, such as white tea, which possess minimal side effects and have powerful antioxidant activity, can mitigate the detrimental consequences associated with obesity.
Collapse
Affiliation(s)
- Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Merve Nur Toraman
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Sibel Mataraci Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| |
Collapse
|
5
|
Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol 2024; 277:134309. [PMID: 39089544 DOI: 10.1016/j.ijbiomac.2024.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Plant-derived exosome-like nanovesicles (ELNs) are nano-sized vesicles extracted from edible plants. Lycium ruthenicum Murray (LRM) has been gaining increasing attention due to its nutritional and medicinal value, but the ELNs in LRM has not been reported. In this study, LRM-ELNs were obtained, and the proteins, lipids, microRNAs (miRNAs) and active components in LRM tissues and LRM-ELNs was analyzed by LC-MS/MS, LC-MS, high-throughput sequencing techniques, and physical and chemical analysis. LRM-ELNs can be uptaken by PC12 cells through macropinocytosis and caveolin-mediated endocytosis primarily. Transcriptomic and western blot experiments indicate that LRM-ELNs can inhibit Aβ-induced apoptosis in PC12 cells through the MAPK and PI3K/AKT signaling pathways, with miRNAs playing a crucial role. These results indicate that LRM-ELNs have the protection effect on PC12 cells and can be considered as dietary supplements for alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yadan Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Anping Li
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
6
|
Chen YK, Song TY, Chang CY, Sheu SC, Chen CW. Analyzing the Effects of Rapid and Natural Cooling Techniques on the Quality of Hand-Shaken Green Tea Beverages. Foods 2024; 13:2322. [PMID: 39123516 PMCID: PMC11311267 DOI: 10.3390/foods13152322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This study compared the quality of hand-shaken green tea prepared through rapid and natural cooling methods. Cooling is crucial in preserving green tea's flavor, aroma, and nutritional components. In the rapid cooling method, green tea is freshly brewed at an initial temperature of 95 °C for 25 min, and then rapidly cooled to 18 °C for 25 min. Conversely, the natural cooling method involves brewing tea at the same initial temperature and time, but allowing it to cool gradually to 30 °C over approximately 4-5 h at room temperature. This study's findings indicate that the rapid cooling method produced green tea with a more vibrant color and improved clarity versus the natural cooling method. Sensory analysis revealed that the taste and aroma of the hand-shaken green tea prepared using rapid cooling were perceived to be more refreshing and invigorating. However, the natural cooling method preserved a higher level of chemical components, including individual catechin caffeine, total polyphenol, soluble solids, reducing sugar, and total tannins. The essential amino acid content of the rapidly and naturally cooled green tea infusions was 6.85 and 13.55 μg/mL, respectively. The γ-Aminobutyric acid (GABA) content was 439.82 and 457.31 μg/mL, respectively. This study's findings suggest that rapid cooling during the preparation of hand-shaken green tea enhances its overall quality. The vibrant color, improved clarity, refreshing taste, and invigorating aroma make it a preferable choice for tea enthusiasts who seek an enhanced sensory experience and excellent quality.
Collapse
Affiliation(s)
- Yuan-Ke Chen
- Ph.D. Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515006, Taiwan;
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan; (T.-Y.S.); (C.-Y.C.)
| | - Chi-Yu Chang
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan; (T.-Y.S.); (C.-Y.C.)
| | - Shiann-Cherng Sheu
- Bachelor Degree Program in Food Safety/Hygiene and Laboratory Science, Chang Jung Christian University, Tainan 711301, Taiwan;
| | - Chih-Wei Chen
- Bachelor Degree Program in Food Safety/Hygiene and Laboratory Science, Chang Jung Christian University, Tainan 711301, Taiwan;
| |
Collapse
|
7
|
Chen Z, Dai W, Xiong M, Gao J, Zhou H, Chen D, Li Y. Metabolomics investigation of the chemical variations in white teas with different producing areas and storage durations. Food Chem X 2024; 21:101127. [PMID: 38292681 PMCID: PMC10825419 DOI: 10.1016/j.fochx.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
In this study, we employed nontargeted metabolomics and quantitative analysis to explore the variations in metabolites among white teas from different production areas and with varying storage durations. A total of 83 compounds exhibited differential levels between Zhenghe and Fuding white tea, 89 between Zhenghe and Jinggu, and 75 between Fuding and Jinggu white tea. Concerning the storage of white tea, the concentrations of flavanols, dimeric catechins, and amino acids decreased over time, while N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), caffeine, adenosine monophosphate (AMP), and adenosine increased. Galloylated flavanols showed a higher propensity to form EPSFs with theanine compared to nongalloylated flavanols during storage. Theanine and epigallocatechin gallate were more inclined to generate S-configuration EPSFs during storage in Fuding and Jinggu white tea samples, while R-configuration EPSFs were more readily formed in Zhenghe white tea samples. This study offers a comprehensive understanding of the changes in metabolites during the storage of white tea.
Collapse
Affiliation(s)
- Zewen Chen
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Mengfan Xiong
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianjian Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Hongjie Zhou
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Yali Li
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
8
|
Wang C, Peng M, Gao Z, Han Q, Fu F, Li G, Su D, Huang L, Guo J, Shan Y. Untargeted Metabolomic Analyses and Antilipidemic Effects of Citrus Physiological Premature Fruit Drop. Int J Mol Sci 2024; 25:1876. [PMID: 38339154 PMCID: PMC10855584 DOI: 10.3390/ijms25031876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. 'Daidai' physiological premature fruit drop (DDPD) and Citrus aurantium 'Changshan-huyou' physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource.
Collapse
Affiliation(s)
- Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
9
|
Hu W, Li Z, Jia X, Feng X, Zhang D, Chen Y, Li X, Chen X, Zhu Z, Ji J, Luo D, Lu S. Chlorate and perchlorate in tea leaves from major producing regions in China and related human exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8510-8518. [PMID: 38182951 DOI: 10.1007/s11356-023-31742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Chlorate and perchlorate are emerging pollutants that may interfere with thyroid function. Since they are highly water soluble, chlorate and perchlorate in tea leaves cause health concerns but have scarcely been studied. In this study, chlorate and perchlorate concentrations in 216 tea samples from different regions of China were determined. Perchlorate was detected in all the samples with a median concentration of 44.1 μg kg-1, while the chlorate detection frequency was 15.7%. We observed regional differences in perchlorate contents in tea leaves, with the highest quantity found in the central region of China. Except for dark tea, the concentration of perchlorate in tea infusions decreased with the increased number of times the tea leaves were brewed. The hazard quotients (HQs) of chlorate and perchlorate in all the samples were less than 1, suggesting negligible health risks caused by these pollutants from tea consumption. To the best of our knowledge, this is the first study to investigate chlorate and perchlorate contamination in tea infusions by simulating brewing behavior.
Collapse
Affiliation(s)
- Wanting Hu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zihan Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaohong Jia
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoling Feng
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering, Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, 521000, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Duan S, Li H, Wang Z, Li J, Huang W, Fang Z, Li C, Zeng Z, Sun B, Liu Y. Tibetan tea consumption prevents obesity by modulating the cellular composition and metabolic reprogramming of white adipose tissue. Food Funct 2024; 15:208-222. [PMID: 38047533 DOI: 10.1039/d3fo03506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Obesity, a global health concern, is linked with numerous metabolic and inflammatory disorders. Tibetan tea, a traditional Chinese beverage rich in theabrownin, is investigated in this study for its potential anti-obesity effects. Our work demonstrates that Tibetan tea consumption in C57BL/6J mice significantly mitigates obesity-related phenotypic changes without altering energy intake. Computational prediction revealed that Tibetan tea consumption reconstructs gene expression in white adipose tissue (WAT), promoting lipid catabolism and thereby increasing energy expenditure. We also note that Tibetan tea suppresses inflammation in WAT, reducing adipocyte hyperplasia and immune cell infiltration. Furthermore, Tibetan tea induces profound metabolic reprogramming, influencing amino acid metabolic pathways, specifically enhancing glutamine synthesis, which in turn suppresses pro-inflammatory chemokine production. These findings highlight Tibetan tea as a potential candidate in obesity prevention, providing a nuanced understanding of its capacity to modulate the cellular composition and metabolic landscape of WAT.
Collapse
Affiliation(s)
- Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Ziqi Wang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Junqi Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Weimin Huang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Baofa Sun
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| |
Collapse
|
11
|
Wang Z, Li H, Huang W, Duan S, Yan Y, Zeng Z, Fang Z, Li C, Hu B, Wu W, Lan X, Liu Y. Landscapes of the main components, metabolic and microbial signatures, and their correlations during pile-fermentation of Tibetan tea. Food Chem 2024; 430:136932. [PMID: 37572385 DOI: 10.1016/j.foodchem.2023.136932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Microbial fermentation, a key step in Tibetan tea production, plays a pivotal role in forming the tea's unique quality. In our study, we mapped out the landscapes of major components, metabolomic signatures, and microbial features of Tibetan tea using component content determination, untargeted metabolomic analysis, and ITS and 16S rRNA sequencing. The results reveal that theabrownin content demonstrated a consistent growth trend post-fermentation, increasing from 41.96 ± 1.64 mg/g to 68.75 ± 2.58 mg/g. However, the content of epigallocatechin gallate (EGCG) significantly dwindled from 80.02 ± 0.51 mg/g to 8.12 ± 0.07 mg/g. Additionally, 518 metabolites were pinpointed as pivotal to the metabolic variation induced by microbial fermentation. The microbiome analysis exhibited a considerable shift in the microbiota signature, with Aspergillus emerging as the dominant microorganism. To conclude, these findings offer novel perspectives for enhancing the quality of Tibetan tea and abbreviating fermentation time through the regulation of microbiota structure.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Weimin Huang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yue Yan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xiguo Lan
- Sichuan Yingtai Tea Industry Co., Ltd, Yaan 625200, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
12
|
Salazar-Campos J, Salazar-Campos O, Gálvez-Ruiz O, Gavidia-Chávez H, Gavidia-Chávez M, Irigoin-Guevara L, Obregón-Domínguez J. Functional Properties and Acceptability of Potentially Medicinal Tea Infusions Based on Equisetum arvense, Desmodium molliculum, and Mentha piperita. Prev Nutr Food Sci 2023; 28:444-452. [PMID: 38188091 PMCID: PMC10764227 DOI: 10.3746/pnf.2023.28.4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 01/09/2024] Open
Abstract
Natural herbal teas are one of the three most consumed beverages in the world, and despite their frequent use in the cosmetic, food, and pharmaceutical industries, there is still much to about them. This study aimed to determine the functional properties of tea infusions made from dried Equisetum arvense (EA), Desmodium molliculum (DM), and Mentha piperita (M) grown in the Peruvian Andes. Next, using a simplex design with unrestricted centroid amplified centroid, 12 combinations were obtained for the combination of dried leaves with EA: 0∼100%, DM: 0∼100%, and M: 0∼100% optimal combination of EA: 6.59%, DM: 84.62%, and M: 8.79% maximizes functional components for total polyphenols (2,831.18 mg EAG/100 g), flavonoids (37.73 mg CAT/g), and antioxidant capacity (145.99 μmol Trolox/g). It can be confirmed that dried mixtures of these plants made into tea are a significant source of bioactive molecules, have a tolerable flavor, and can be used for therapeutic purposes when consumed.
Collapse
Affiliation(s)
- Johonathan Salazar-Campos
- Centro de Experimentación e Investigación, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Orlando Salazar-Campos
- Escuela de Ingeniería de Software, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Perú
| | - Osmar Gálvez-Ruiz
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Herlita Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Mery Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Lorena Irigoin-Guevara
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Jesús Obregón-Domínguez
- Departamento de Procesamiento de la Información, Data Engineering Perú, Trujillo 13009, Perú
| |
Collapse
|
13
|
Giorgini E, Notarstefano V, Foligni R, Carloni P, Damiani E. First ATR-FTIR Characterization of Black, Green and White Teas ( Camellia sinensis) from European Tea Gardens: A PCA Analysis to Differentiate Leaves from the In-Cup Infusion. Foods 2023; 13:109. [PMID: 38201143 PMCID: PMC10778641 DOI: 10.3390/foods13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
ATR-FTIR (Attenuated Total Reflectance Fourier Transform InfraRed) spectroscopy, combined with chemometric, represents a rapid and reliable approach to obtain information about the macromolecular composition of food and plant materials. With a single measurement, the chemical fingerprint of the analyzed sample is rapidly obtained. Hence, this technique was used for investigating 13 differently processed tea leaves (green, black and white) all grown and processed in European tea gardens, and their vacuum-dried tea brews, prepared using both hot and cold water, to observe how the components differ from tea leaf to the in-cup infusion. Spectra were collected in the 1800-600 cm-1 region and were submitted to Principal Component Analysis (PCA). The comparison of the spectral profiles of leaves and hot and cold infusions of tea from the same country, emphasizes how they differ in relation to the different spectral regions. Differences were also noted among the different countries. Furthermore, the changes observed (e.g., at ~1340 cm-1) due to catechin content, confirm the antioxidant properties of these teas. Overall, this experimental approach could be relevant for rapid analysis of various tea types and could pave the way for the industrial discrimination of teas and of their health properties without the need of time-consuming, lab chemical assays.
Collapse
Affiliation(s)
- Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (E.G.); (V.N.); (E.D.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (E.G.); (V.N.); (E.D.)
| | - Roberta Foligni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy;
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (E.G.); (V.N.); (E.D.)
| |
Collapse
|
14
|
Ma L, Sun Y, Wang X, Zhang H, Zhang L, Yin Y, Wu Y, Du L, Du Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7136-7152. [PMID: 37337850 DOI: 10.1002/jsfa.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-β-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while β-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yangyang Sun
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xuejiao Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Linqi Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yage Yin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yumeng Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ziping Du
- College of Economics and Management, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
15
|
Salehi F, Razavi Kamran H, Goharpour K. Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process. ULTRASONICS SONOCHEMISTRY 2023; 99:106591. [PMID: 37683419 PMCID: PMC10495677 DOI: 10.1016/j.ultsonch.2023.106591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to examine the influence of drying approaches (convective and infrared (IR)), sonication, and brewing time on the total phenolic content (TPC), antioxidant activity (AA), viscosity, color indexes, and sensory attributes of quince tea infusion (QTI). The AA and TPC in the QTI dried in the IR dryer were higher than in the convective dryer. The TPC and AA of QTI prepared by convective and IR dryers increased when the ultrasound treatment and brewing time were increased. In terms of viscosity and Brix, there was no differences between the QTIs and the average viscosity and density of the samples were 1.79 ± 0.28 mPa.s and 3.18 ± 0.07°Brix, respectively. The QTI prepared by the IR has a reddish-brown hue (higher a* value), but the samples prepared with the convective dryer were yellow (higher b* value). The sensory attributes scores of QTI prepared by IR were higher than those of convection-dried samples. In general, the use of an IR dryer for drying grated quince, ultrasound treatment for 8 min, and brewing time for 30 min is a promising condition for the production of QTI with higher TPC and AA, and with appropriate color and sensorial acceptance.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | - Helia Razavi Kamran
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Kimia Goharpour
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
16
|
He G, Chen T, Huang L, Zhang Y, Feng Y, Liu Q, Yin X, Qu S, Yang C, Wan J, Liang L, Yan J, Liu W. Tibetan tea reduces obesity brought on by a high-fat diet and modulates gut flora in mice. Food Sci Nutr 2023; 11:6582-6595. [PMID: 37823111 PMCID: PMC10563754 DOI: 10.1002/fsn3.3607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
It has been shown that Tibetan tea (TT) inhibits obesity and controls lipid metabolism. The fundamental processes by which TT prevents obesity are yet entirely unknown. Consequently, this research aimed to ascertain if TT may prevent obesity by modifying the gut flora. Our research demonstrated that TT prevented mice from gaining weight and accumulating fat due to the high-fat diet (HFD), decreased levels of blood total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), and raised levels of high-density lipoprotein cholesterol (HDL-C). Adipogenesis-related genes such as acetyl-Coenzyme A carboxylase 1 (ACC1, LOC107476), fatty acid synthase (Fas, LOC14104), sterol regulatory element-binding protein-1c (SREBP-1c, LOC20787), CCAAT/enhancer-binding protein α (C/EBPα, LOC12606), stearoyl-CoA desaturase 1 (SCD1, LOC20249), and peroxisome proliferator-activated receptor γ (PPARγ, LOC19016) had their expression downregulated by lowering the Firmicutes/Bacteroidetes (F/B) ratio and controlling the number of certain gut bacteria. TT also alleviated HFD-induced abnormalities of the gut microbiota. The Muribaculaceae, Lachnospiraceae NK4A136_group, Alistipes, and Odoribacter families were identified as the major beneficial gut microorganisms using Spearman's correlation analysis. Fecal microbiota transplantation (FMT) demonstrated that TT's anti-obesity and gut microbiota-modulating benefits might be transmitted to mice on an HFD, demonstrating that one of TT's targets for preventing obesity is the gut microbiota. TT also increased the amount of short-chain fatty acids (SCFAs) in the feces, including acetic, propionic, and butyric acids. These results indicate the possible development of TT as a prebiotic to combat obesity and associated disorders. These results suggest that TT may act as a prebiotic against obesity and its associated diseases.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Qijun Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jianghong Wan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
- Sichuan Jiang's Tibetan Tea Co., LTDYa'anChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
17
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Carloni P, Albacete A, Martínez-Melgarejo PA, Girolametti F, Truzzi C, Damiani E. Comparative Analysis of Hot and Cold Brews from Single-Estate Teas ( Camellia sinensis) Grown across Europe: An Emerging Specialty Product. Antioxidants (Basel) 2023; 12:1306. [PMID: 37372036 DOI: 10.3390/antiox12061306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Tea is grown around the world under extremely diverse geographic and climatic conditions, namely, in China, India, the Far East and Africa. However, recently, growing tea also appears to be feasible in many regions of Europe, from where high-quality, chemical-free, organic, single-estate teas have been obtained. Hence, the aim of this study was to characterize the health-promoting properties in terms of the antioxidant capacity of traditional hot brews as well as cold brews of black, green and white teas produced across the European territory using a panel of antioxidant assays. Total polyphenol/flavonoid contents and metal chelating activity were also determined. For differentiating the characteristics of the different tea brews, ultraviolet-visible (UV-Vis) spectroscopy and ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry were employed. Overall, our findings demonstrate for the first time that teas grown in Europe are good quality teas that are endowed with levels of health-promoting polyphenols and flavonoids and that have an antioxidant capacity similar to those grown in other parts of the world. This research is a vital contribution to the characterization of European teas, providing essential and important information for both European tea growers and consumers, and could be of guidance and support for the selection of teas grown in the old continent, along with having the best brewing conditions for maximizing the health benefits of tea.
Collapse
Affiliation(s)
- Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| |
Collapse
|
19
|
de Andrade Arruda Fernandes I, Ribeiro IS, Maciel GM, Pedro AC, Bortolini DG, Ribeiro VR, Barros L, Haminiuk CWI. Biosorption of bioactive compounds in bacterial nanocellulose: Mechanisms and physical-chemical properties. Int J Biol Macromol 2023; 240:124349. [PMID: 37054855 DOI: 10.1016/j.ijbiomac.2023.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial produced by Gluconacetobacter xylinus, with wide applicability in different areas, such as biomedical, pharmaceutical, and food. BC production is usually carried out in a medium containing phenolic compounds (PC), such as teas, however, the purification process leads to the loss of such bioactive. Thus, the innovation of this research consists of the reincorporation of PC after the purification of the BC matrices through the biosorption process. In this context, the effects of the biosorption process in BC were evaluated to maximize the incorporation of phenolic compounds from a ternary mixture of hibiscus (Hibiscus sabdariffa), white tea (Camellia sinensis), and grape pomace (Vitis labrusca). The biosorbed membrane (BC-Bio) showed a great concentration of total phenolic compounds (TPC = 64.89 mg L-1) and high antioxidant capacity through different assays (FRAP: 130.7 mg L-1, DPPH: 83.4 mg L-1, ABTS: 158.6 mg L-1, TBARS: 234.2 mg L-1). The physical tests also indicated that the biosorbed membrane presented high water absorption capacity, thermal stability, low permeability to water vapor and improved mechanical properties compared to BC-control. These results index that the biosorption of phenolic compounds in BC efficiently increases bioactive content and improves physical membrane characteristics. Also, PC release in a buffered solution suggests that BC-Bio can be used as a polyphenol delivery system. Therefore, BC-Bio is a polymer with wide application in different industrial segments.
Collapse
Affiliation(s)
| | - Isabela Sampaio Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), 81280-340 Curitiba, Paraná, Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| | | |
Collapse
|
20
|
He Q, Yang K, Wu X, Zhang C, He C, Xiao P. Phenolic compounds, antioxidant activity and sensory evaluation of sea buckthorn ( Hippophae rhamnoides L.) leaf tea. Food Sci Nutr 2023; 11:1212-1222. [PMID: 36911815 PMCID: PMC10003008 DOI: 10.1002/fsn3.3155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Sea buckthorn leaf tea, an emerging potential functional beverage product, has not yet had appropriate product standards and corresponding quality evaluation methods, and its poor taste directly affects the acceptance of the population, thus limiting its market consumption potential. In this study, two major packaging forms of sea buckthorn leaf tea available in the Chinese market were selected. The contents of total phenolics, total flavonoids, and 10 phenolic compounds, as well as the in vitro antioxidant capacity and sensory characteristics of sea buckthorn leaf tea were analyzed. Results showed that the quality of sea buckthorn leaf tea in the Chinese market varied widely. The total phenolic content, total flavonoid content, antioxidant activity, and consumer acceptance of bagged sea buckthorn leaf tea were higher than those of bulk sea buckthorn leaf tea. Multifactorial statistical analysis showed that the taste astringency of sea buckthorn leaf tea was closely related to ellagic acid and isorhamnetin-3-O-neohesperidin. Furthermore, isorhamnetin-3-O-neohesperidin had a greater effect on the antioxidant activity of sea buckthorn leaf tea. Therefore, ellagic acid and isorhamnetin-3-O-neohesperidin can be used as potential quality markers for sea buckthorn leaf tea. This work provides a reference for taste improvement and quality control of sea buckthorn leaf tea.
Collapse
Affiliation(s)
- Qian He
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
- Baotou Medical CollegeBaotouChina
| | - Kailin Yang
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xinyan Wu
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | | | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Smartphone-based digital images as a low-cost and simple colorimetric approach for the assessment of total phenolic contents in several specific Vietnamese dried tea products and their liquors. Food Chem 2023; 401:134147. [DOI: 10.1016/j.foodchem.2022.134147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022]
|
22
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
23
|
Targeted and untargeted metabolomic analyses and biological activity of Tibetan tea. Food Chem 2022; 384:132517. [PMID: 35228002 DOI: 10.1016/j.foodchem.2022.132517] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
Tibetan tea is not only a national product of geographical identity, but also a traditional beverage inherits Chinese tradition. This study evaluated the metabolic profiles and biological activity in four Tibetan teas. 83 non-volatile metabolites were identified as differentially expressed metabolites, including amino acids and their derivatives, phenolic acids, flavonoids, nucleotides and their derivatives, terpenes, alkaloids, organic acids, lipids and others. CC and 131 were rich in terpenoids and lipids. MZ contained the highest contents of amino acids and their derivatives, phenolic acids and flavonoids. 26 key volatile compounds were considered as odor-active compounds. MZ showed the highest level of antioxidant and hypoglycemic activity. Statistics analysis indicated that polyphenols, flavonoids and catechins were significantly correlated (|r| ≥ 0.7, P < 0.05) with biological activities. This study indicated significant differences in the metabolic profiles of various types of Tibetan tea, which provided a clear database for quality detection of Tibetan tea.
Collapse
|
24
|
Evaluation of the Brewing Characteristics, Digestion Profiles, and Neuroprotective Effects of Two Typical Se-Enriched Green Teas. Foods 2022; 11:foods11142159. [PMID: 35885402 PMCID: PMC9318317 DOI: 10.3390/foods11142159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
As a functional beverage, selenium (Se)-enriched green tea (Se-GT) has gained increasing popularity for its superior properties in promoting health. In this study, we compared the brewing characteristics, in vitro digestion profiles, and protective effects on neurotoxicity induced through the amyloid-beta (Aβ) peptide of two typical Se-GTs (Enshi Yulu (ESYL) and Ziyang Maojian (ZYMJ), representing the typical low-Se green tea and high-Se green tea, respectively). ESYL and ZYMJ showed similar chemical component leaching properties with the different brewing methods, and the optimized brewing conditions were 5 min, 90 °C, 50 mL/g, and first brewing. The antioxidant activities of the tea infusions had the strongest positive correlation with the tea polyphenols among all of the leaching substances. The tea infusions of ESYL and ZYMJ showed similar digestive behaviors, and the tea polyphenols in the tea infusions were almost totally degraded or transferred after 150 min of dynamic digestion. Studies conducted in a cell model of Alzheimer’s disease (AD) showed that the extract from the high-Se green tea was more effective for neuroprotection compared with the low-Se green tea. Overall, our results revealed the best brewing conditions and digestion behaviors of Se-GT and the great potential of Se-GT or Se-enriched green extract (Se-GTE) to be used as promising AD-preventive beverages or food ingredients.
Collapse
|
25
|
Enzymatic treatment in black tea manufacturing processing: Impact on bioactive compounds, quality, and bioactivities of black tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Optimization of brewing conditions for Tieguanyin oolong tea by quadratic orthogonal regression design. NPJ Sci Food 2022; 6:25. [PMID: 35468971 PMCID: PMC9038793 DOI: 10.1038/s41538-022-00141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Tieguanyin is one of the most consumed oolong teas because of its distinctive flavor. The brewing process is crucial for the flavor performance of traditional teas, thus the effects of brewing conditions, including water/tea ratio (R), brewing temperature (T), and time (S) on the sensory traits, chemical composition, and antioxidant activity of Tieguanyin tea infusion were investigated using quadratic orthogonal regression design. Results showed that R affected all the quality variables most, its reduction could lead to the promotion of tea infusion concentration, antioxidant activity, and taste intensity, which was favored by the tea consumers drinking tea almost daily (DTD) but unacceptable for those drinking tea hardly (DTH). Based on the optimization of brewing conditions in response surface methodology (RSM), we recommended several brewing schemes for diverse consume goals: R = 34 mL/g, T = 80 °C, S = 80 s for DTH; R = 39 mL/g, T = 100 °C, S = 127 s for DTO (the consumers drinking tea occasionally); R = 20 mL/g, T = 100 °C, S = 100 s for DTD; R = 26 mL/g, T = 100 °C and S = 127 s for the common consumers seeking for flavor and health benefits. These results would be helpful for tea consumers with multiple demands.
Collapse
|
27
|
Huang W, Zhang C, Gu Z, Li C, Fang Z, Zeng Z, Zhang Z, Hu B, Chen H, Wu W, Wang T, Lan X, Liu Y. Effect of microbial fermentation on the sensory characteristics and chemical compositions of Chinese sweet tea (Lithocarpus litseifolius (Hance) Chun). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Effect of brewing time and temperature on the physical properties, antioxidant activities and sensory of the kenaf leaves tea. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:510-517. [PMID: 35185172 PMCID: PMC8814219 DOI: 10.1007/s13197-021-05034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
Kenaf (Hibiscus cannabinus L.), an annual herbaceous plant in the Malvaceae family, has become a multifunctional crop in Malaysia due to its large number of industrial applications for its fibrous stem. Recently, its kenaf leaves that have high antioxidant properties are getting more attention to be developed into tea. Therefore, this research aims to determine the best brewing time and temperature based on the physical properties, antioxidant activities and sensory of kenaf leaves tea (KLT). The kenaf leaves powder which was infused in hot (80 °C or 100 °C; 5 min or 10 min) or cold water (room temperature; 60 min or 120 min) were analysed. Results demonstrated that the KLT brewed at 80 °C for 10 min and 100 °C for 10 min showed the highest antioxidant activities in most of the antioxidant analysis conducted. Moreover, the colour of cold-brewed KLT was much lighter than the hot-brewed KLT and the cold-brewed KLT (room temperature; 120 min) can likely be a new trend for the consumer since it contained high antioxidising capabilities. However, the pH, greenness, yellowness, sensory results in KLT were not affected significantly by both brewing time and temperature (p > 0.05). The antioxidant test was correlated positively with the phytochemical contents but insignificant relationship with most of the colour parameters. Overall, the optimum temperature and time for brewing KLT was 80 °C at 10 min because it saved energy and extracted the highest amount of antioxidants while retaining similar sensory taste with other brewing conditions.
Collapse
|
29
|
Berilli P, Fanaro GB, Santos JP, Reyes Reyes FG, Iglesias AH, Reis M, Cazarin CBB, Maróstica Junior MR. White tea modulates antioxidant defense of endurance-trained rats. Curr Res Physiol 2022; 5:256-264. [PMID: 35800140 PMCID: PMC9253650 DOI: 10.1016/j.crphys.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The interest in nutritional strategies that may counteract the deleterious oxidative effects induced by strenuous exercises is remarkable. Herein, the impact of white tea (Camellia sinensis) (WT), a polyphenol-rich beverage, on antioxidant status in endurance-trained rats after one session of exhaustive exercise were evaluated. Male Wistar rats were divided into groups, which received: control groups - water, and testing groups - WT1 (0.25%; w/v) or WT2 (0.5%; w/v). Drinks were consumed, ad libitum, for 5 or 10 weeks, concomitantly with the running training. Exhaustive running tests were applied before and after the experimental periods. WT intake increased the serum antioxidant capacity of rats in a dose-dependent manner (P < 0.001), which was unaccompanied by the activity of endogenous antioxidant enzymes SOD, GPx, and GR, and GSH content. Inflammatory markers in serum [IL-1β (P = 0.004) and IL-6 (P = 0.001)] could be downregulated by tea intake. In liver tissue, lower levels of lipid oxidation (P < 0.05) and improved antioxidant defenses (SOD, GPx, GR, and GSH, P < 0.05) were related to the consumption of 10.13039/100010269WT in both doses, supporting protective effects in this responsible metabolic organ. In conclusion, long-term consumption of WT could be a promising adjuvant to exercise-stress management, emphasizing its ability to regulate antioxidant responses and prevent oxidative tissue damage. White tea intake improved antioxidant status of blood and liver of runner rats. White tea intake promoted protective effect against liver lipid peroxidation after an exhaustive exercise. Long term white tea intake did not enhance physical performance.
Collapse
|
30
|
Hemmati V, Garavand F, Khorshidian N, Cacciotti I, Goudarzi M, Chaichi M, Tiwari BK. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
SILVEIRA TFFD, MEINHART AD, SOUZA TCLD, CUNHA ECE, MORAES MRD, LORINI A, TEIXEIRA FILHO J, GODOY HT. Impact of water temperature of chimarrão on phenolic compounds extraction. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Li H, Guo H, Luo Q, Wu DT, Zou L, Liu Y, Li HB, Gan RY. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34702110 DOI: 10.1080/10408398.2021.1995843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tea, as a beverage, has been reputed for its health benefits and gained worldwide popularity. Tea polyphenols, especially catechins, as the main bioactive compounds in tea, exhibit diverse health benefits and have wide applications in the food industry. The development of tea polyphenol-incorporated products is dependent on the extraction, purification, and identification of tea polyphenols. Recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of tea polyphenols. This review, therefore, introduces the classification of tea and summarizes the main conventional and novel techniques for the extraction of polyphenols from various tea products. The advantages and disadvantages of these techniques are also intensively discussed and compared. In addition, the purification and identification techniques are summarized. It is hoped that this updated review can provide a research basis for the green and efficient extraction, purification, and identification of tea polyphenols, which can facilitate their utilization in the production of various functional food products and nutraceuticals.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Qiong Luo
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
33
|
Dardashti Pour E, Yaghobian F, Dehghan F, Azarbayjani MA. Forecast of ameliorating effect of dietary flavonol consumption in white tea with or without aerobic training on type 2 diabetes (T2D) in females. Clin Nutr ESPEN 2021; 45:134-140. [PMID: 34620309 DOI: 10.1016/j.clnesp.2021.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Diabetes Mellitus (D.M.) is a chronic metabolic disease characterized by hyperglycemia due to insufficient or inefficient insulin secretory response that has become a widespread epidemic primarily due to the increasing prevalence and incidence of type 2 diabetes. Phytochemicals such as flavonoids and regular physical activity have recently attracted attention to developing new anti-diabetic drugs or alternative therapy to control diabetes. The aim of this study was to compare effects of dietary Flavonol consumption in white tea, with or without aerobic training, among patients with type 2 diabetes mellitus as a randomized trial. METHODS 49 women with T2D were randomly assigned into groups including control, white tea, aerobic training, and aerobic training + white tea. The interventions were carried out for six months. Weight, Body Mass Index (BMI), body Fat, peak oxygen consumption (VO2Max), and Blood Pressure were evaluated at both the first and last days of the research period. Blood samples were withdrawn on the same days via venipuncture to test blood glucose, insulin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, and triglycerides (T.G.). RESULTS Characteristics analysis showed significant improvements in treated groups. In addition, glucose, insulin, LDL, Cholesterol, and T.G. were significantly reduced while HDL was remarkably increased in treated groups compared to pre-experiment values or the diabetic control group. CONCLUSION Collectively, white tea combined with aerobic training favorably affects glycemic parameters, lipid profile, blood pressure, and VO2Max in six months in women with T2D. Registered under Clinical Trials.gov Identifier no. NCT00123456.
Collapse
Affiliation(s)
- Elnaz Dardashti Pour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnaz Yaghobian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Firouzeh Dehghan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
Jayasinghe SL, Kumar L, Kaliyadasa E. The future of high-quality Ceylon tea seems bleak in the face of climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1629-1646. [PMID: 33782787 DOI: 10.1007/s00484-021-02118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Understanding the interactive effects and relationships between biochemical elements of tea leaves and the related factors, particularly climatic, cultivar, and geographic, is key for high-quality Ceylon tea production. The objectives of this study were to (1) investigate the effects of season × cultivar × agro-ecological regions (AERs) on the four tested biochemicals in fresh tea leaves, total polyphenol content (TPC), free sugar, protein, and theanine; (2) determine the relationships between, and develop a model to estimate, the biochemicals and their related factors; and (3) project the potential concentrations and distributions of four tested biochemicals in tea leaves with respect to the current and future climate. This study primarily uses inferential statistics via the Statistical Package for the Social Sciences (SPSS), cross-validation using R software, and the inverse distance weighting (IDW) approach in ArcGIS. The results demonstrate that the season, cultivar (Ceylon tea cultivars of TRI 2025 and TRI 4053), and AER and their interactions on biochemicals have significant effects (p < 0.05). The models derived in the regression analysis demonstrate the strong relationships between the independent variables and the biochemicals, with multiple correlation coefficients (R) around 0.8 and coefficient of determination (R2) around 0.6. The low standard deviation of error of prediction (SDEP < 0.1) and the high correlation coefficient of leave-one-out cross-validation (Q2) for all four biochemicals ranged from 0.56 to 0.61, which signifies the predictive ability of the models. The future projections show a considerable increase in the thresholds of all tested biochemicals. The distribution category with 'very high' concentrations of TPC and theanine is predicted to increase in the future by averages of 10% and 14%, respectively, while reducing the classes of protein and free sugar by 14% and 12%, respectively. Overall, the changing concentrations of the thresholds of relevant biochemicals and their distribution will negatively affect the final quality of tea, and these variations indicate that climate change has started to diminish Ceylon tea quality.
Collapse
Affiliation(s)
- Sadeeka Layomi Jayasinghe
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
- Faculty of Animal Science and Export Agriculture, Passara Road, Badulla, 90000, Sri Lanka.
| | - Lalit Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Ewon Kaliyadasa
- Faculty of Animal Science and Export Agriculture, Passara Road, Badulla, 90000, Sri Lanka
| |
Collapse
|
35
|
Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021; 10:antiox10101541. [PMID: 34679676 PMCID: PMC8532973 DOI: 10.3390/antiox10101541] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.
Collapse
|
36
|
Ilyasoğlu H, Arpa Zemzemoğlu TE. Effect of Brewing Conditions on Sensorial and Antioxidant Properties of Linden Tea. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1972886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huri Ilyasoğlu
- Gümüşhane University, Department of Nutrition and Dietetics, Gümüşhane, TURKEY
| | | |
Collapse
|
37
|
Relationship between Total Phenolic Content, Antioxidant Capacity, Fe and Cu Content from Tea Plant Samples at Different Brewing Times. Processes (Basel) 2021. [DOI: 10.3390/pr9081311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to investigate the antioxidant capacity of different tea plant: mint, linden, chamomile, St. John’s wort, green and black tea in relation to total phenolic content. The antioxidant capacity of the tea infusions at different brewing times was determined using DPPH assay while the total phenolic content (TPC) was assessed using the modified Folin-Ciocalteu method. The results showed that there were significant statistical differences in antioxidant capacity depending on infusion time, according to one-way ANOVA analysis. Leaves used as components of tea infusions were analyzed by FAAS for their content of iron and copper in the dry product and in the infusion. The correlation between TPC and DPPH capacity of tea plant infusions was evaluated by Pearson correlation matrix. Total phenolics compounds content was positively and significantly correlated with DPPH capacity for all infusions time. Significant correlation was observed between TPC and the copper concentration (p < 0.05). Consequently, the correlations between the physicochemical parameters, TPC, DPPH capacity, Fe and Cu content suggested that the TPC may be a good indicator of the DPPH capacity in the tea infusions and also, suggested the influence of antioxidant compounds on mineral bioavailability.
Collapse
|
38
|
Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Green Tea and Its Relation to Human Gut Microbiome. Molecules 2021; 26:molecules26133907. [PMID: 34206736 PMCID: PMC8271705 DOI: 10.3390/molecules26133907] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Alicia López-Maldonado
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-28-41
| |
Collapse
|
39
|
Cao QQ, Wang F, Wang JQ, Chen JX, Yin JF, Li L, Meng FK, Cheng Y, Xu YQ. Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions. Food Chem 2021; 364:130235. [PMID: 34175625 DOI: 10.1016/j.foodchem.2021.130235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
The effects of brewing water on the sensory attributes and physicochemical properties of tea infusions made from Chinese teas were investigated. The tea infusions brewed in water with higher pH and total dissolved solids (TDS), generally had a darker color and lower overall sensory acceptability. Moreover, those infusions had less catechins, particularly galloylated-catechins, and lower antioxidant capacity. The teas with less fermentation contained more galloylated-catechins and had higher antioxidant capacity, but were much more susceptible to high mineral brewing water. Green tea was proved to be the most susceptible one, whereas dark tea the most stable one. Green tea infusions prepared with higher pH/TDS water were more rapidly oxidized, resulting in a darker color due to polymerization of catechins, when exposed to the air. These findings suggested that low mineral brewing water was better for Chinese tea, both from the sensory and health benefit perspectives.
Collapse
Affiliation(s)
- Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fan-Ke Meng
- Foshan Shunde Midea Water Dispenser Manufacturing Co., Ltd, 68 Guangle Road, Foshan 528300, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Co., Ltd, Anji 313300, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
40
|
Ribeiro VR, Maciel GM, Fachi MM, Pontarolo R, de Andrade Arruda Fernandes I, Stafussa AP, Isidoro Haminiuk CW. Biosorption of biocompounds from white and green tea in Saccharomyces cerevisiae waste: Study of the secondary metabolites by UPLC-QToF-MS and simulated in vitro gastrointestinal digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
42
|
Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hot beverage commonly known as tea results from the infusion of dried leaves of the plant Camellia sinensis (L.) O. Kuntze. Ranking second only to water for its consumption worldwide, it has always been appreciated since antiquity for its aroma, taste characteristics, and beneficial effects on human health. There are many different processed tea types, including green tea, a non-fermented tea which, due to oxidation prevention maintains the structure of the bioactive compounds, especially polyphenols; these bioactive compounds show a number of benefits for the human health. The main producers of tea are China and India, followed by Kenya, Sri Lanka, Turkey, and Vietnam, however recently new countries are entering the market, with quality niche productions, among which also Italy. The present research aimed to assess the bioactive compounds (polyphenols) and the antioxidant activity of two green teas (the “Camellia d’Oro” tea—TCO, and the “Compagnia del Lago” tea—TCL) produced in Italy, in the Lake Maggiore district, where nurserymen have recently started to cultivate C. sinensis. In this area the cultivation of acidophilic plants as ornamentals has been known since around 1820. Due to the crisis of the floricultural sector, producers have been trying to diversify their product in order to increase their competitiveness, starting to cultivate Italian tea. Their antioxidant activity was assessed, finding a similar or higher antioxidant capacity than in other green teas, as reported in literature. TCO showed a higher antioxidant activity (42,758.86 mmol Fe2+ kg−1; 532.37 µmol TE g−1 DW; 881.08 µmol TE g−1 DW) and phenolic content (14,918.91 mg GAE 100 g−1 DW) than TCL (25,796.61 mmol Fe2+ kg−1; 302.35 µmol TE g−1 DW; 623.44 µmol TE g−1 DW; 8540.42 mg GAE 100 g−1 DW). Through HPLC, a total of thirteen phenolic compounds were identified quantitatively, including catechins, benzoic acids, cinnamic acids, and flavonols, in TCO while only 9 in TCL, and mainly in lower amounts. Albeit with differences, both teas were found to be of quality proving that Italy could have the possibility to grow profitably C. sinensis.
Collapse
|
43
|
Can we control microbiota in spontaneous food fermentation? – Chinese liquor as a case example. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Yu J, Liu Y, Zhang S, Luo L, Zeng L. Effect of brewing conditions on phytochemicals and sensory profiles of black tea infusions: A primary study on the effects of geraniol and β-ionone on taste perception of black tea infusions. Food Chem 2021; 354:129504. [PMID: 33756321 DOI: 10.1016/j.foodchem.2021.129504] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/27/2023]
Abstract
As a worldwide popular drink, black tea has always been one of the main focuses of tea studies. However, few studies have addressed the flavor profiles and related components, and most researches were based on a single factor. This study investigated the effects of multiple brewing conditions (temperature, time, water/tea ratio, and particle size) on the phytochemicals (non-volatile and volatile compounds) and sensory profiles of black tea infusions through response surface methodology. The regression models describing the brewing of detected indexes were significant (p ≤ 0.01) and reliable (R2 ≥ 0.902). The particle size led to the greatest variation of non-volatile compounds and presented negative correlations, while the water/tea ratio affected the composition of volatile compounds the most. Meanwhile, through the addition of the selected aroma compounds (geraniol and β-ionone), an enhancement of black tea infusion sweetness was observed, proved the existence of odor-taste interaction in black tea infusions.
Collapse
Affiliation(s)
- Jieyao Yu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China
| | - Yan Liu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China
| | - Shaorong Zhang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China.
| | - Liang Zeng
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China.
| |
Collapse
|
45
|
Li J, Liao H, Sun Y, Li R, Zhu B, Zhong Z, Yao Z. Fabrication of MWCNTs/PDMS mixed matrix membranes for recovery of volatile aromatic compounds from brewed black tea. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Lin Q, Ni H, Wu L, Weng SY, Li L, Chen F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci Nutr 2021; 9:605-615. [PMID: 33598146 PMCID: PMC7866617 DOI: 10.1002/fsn3.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
White tea is a famous Chinese tea that is cooked at boiling point before drinking. The simultaneous distillation-extraction (SDE) was used to collect volatile compounds during tea cooking. The SDE extract was dominated with green, floral, roasted and woody notes, and weak sweet note. There were 32 volatile compounds identified via gas chromatography-mass spectrometry analysis, and 19 of them had strong fragrance based on the gas chromatography-olfactometry analyzed results. Hexanal, 2-hexenal, cis-3-hexen-1-ol, and camphene were the main contributors to the green note. The floral note was mainly contributed by 2-hexanone, benzeneacetaldehyde, trans-linalool oxide, and linalool, and the sweet note was induced by trans-β-damascenone. The roasted note was mainly contributed by 2-pentyl-furan. The woody note was mainly contributed by trans-α-ionone and trans-β-ionone. Four putative reaction pathways, including amino acid degradation, carotene degradation, Maillard reaction, and glycosides hydrolysis, were figured out to explain the generation of aromatic-active volatiles at high temperatures. This study added our knowledge on tea aroma under cooking as well as other thermal treatments.
Collapse
Affiliation(s)
- Qi Lin
- College of Food and BioengineeringJimei UniversityXiamenChina
| | - Hui Ni
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Ling Wu
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Shu Yi Weng
- DAMIN Foodstuff (Zhangzhou) Co., LtdZhangzhouChina
| | - Lijun Li
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Feng Chen
- College of Food and BioengineeringJimei UniversityXiamenChina
- Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonSCUSA
| |
Collapse
|
47
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
48
|
Lou X, Guo X, Wang K, Wu C, Jin Y, Lin Y, Xu H, Hanna M, Yuan L. Phenolic profiles and antioxidant activity of Crataegus pinnatifida fruit infusion and decoction and influence of in vitro gastrointestinal digestion on their digestive recovery. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Pérez-Burillo S, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JA. Plant extracts as natural modulators of gut microbiota community structure and functionality. Heliyon 2020; 6:e05474. [PMID: 33251359 PMCID: PMC7677688 DOI: 10.1016/j.heliyon.2020.e05474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/27/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The main objective of this work was to evaluate the effect that several plant extracts (currently sold as functional ingredients) have on gut microbiota community structure and functionality. Plant extracts were submitted to an in vitro digestion and fecal fermentation. Overall, plant extracts showed a marked inhibitory activity when compared to basal conditions. However, they also favored the growth of some bacteria such as Coprococcus and Butyricimonas, two butyrate producers. Especially interesting was tea extract which inhibited the growth of the genus Escherichia/Shigella, known to involve species related with gastrointestinal disorders. Additionally, tea extract increased the growth of Faecalibacterium, a known butyrate producer. Regarding short chain fatty acids production, while plant extracts reduced acetate production, butyrate was increased for most samples, especially tea extract. Propionate production was less affected in comparison with basal conditions. Fermentation by gut microbiota also modified the antioxidant capacity (assessed via DPPH, FRAP and Folin-Ciocalteu methods).
Collapse
Affiliation(s)
- S Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - D Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - S Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - J A Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| |
Collapse
|
50
|
Ni H, Jiang Q, Lin Q, Ma Q, Wang L, Weng S, Huang G, Li L, Chen F. Enzymatic hydrolysis and auto-isomerization during β-glucosidase treatment improve the aroma of instant white tea infusion. Food Chem 2020; 342:128565. [PMID: 33199121 DOI: 10.1016/j.foodchem.2020.128565] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
The aroma changes in instant white tea resulting from β-glucosidase treatment was investigated by quantitative descriptive analysis (QDA), gas chromatography-mass spectrometry (GC-MS), odour activity value analysis (OAV), aroma reconstruction and omission tests. The grassy, floral and sweet notes increased significantly (P < 0.05), and the roasted note decreased significantly (P < 0.05) upon β-glucosidase treatment. Quantitative analysis showed that the concentrations of benzaldehyde, benzeneacetaldehyde, (Z)-3-hexen-1-ol, linalool, phenylethyl alcohol, cis-linalool oxide, trans-linalool oxide, hexanol, hotrienol and (E)-2-hexen-1-ol increased significantly (P < 0.05) after treatment; however, (Z)-3-hexen-1-ol isomerized to (E)-2-hexen-1-ol. OAV analysis, aroma reconstruction and the omission test showed that the grassy, floral and sweet notes increased as the (Z)-3-hexen-1-ol, cis/trans-linalool oxide and benzeneacetaldehyde increased, whereas the roasted note declined under the same conditions. The enzymatic hydrolysis of glycosidic precursors and the auto-isomerization of volatile compounds provide new information for understanding how β-glucosidase treatment improves the aroma of tea products.
Collapse
Affiliation(s)
- Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Qingxiang Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Qi Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Qiongqing Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Lu Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, China.
| | - Shuyi Weng
- Fujian Da Ming Co., Ltd, Zhangzhou, Fujian Province, China.
| | - Gaoling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Feng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|