1
|
Cao R, Gao Y, Li C, Li Y, Guo Z, Wang Z, Qiu J. Modifications and functional applications of cereal non-starch polysaccharides: Structure-property relationships and industrial potentials in food systems. Food Chem 2025; 480:143976. [PMID: 40147274 DOI: 10.1016/j.foodchem.2025.143976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
This review provides recent advancements in modification of cereal cell wall non-starch polysaccharides (NSPs) and their functional applications in food systems. NSPs, predominantly derived from cereal bran, play a critical role in food texture, functionality, and health-promoting properties. However, their natural characteristics often limit their direct application in foods. This article systematically examines various modification strategies, including chemical, physical, and enzymatic approaches, aimed at enhancing the solubility, viscosity, gelation, and emulsification properties of NSPs. Such modifications improve their performance as thickeners, stabilizers, and emulsifiers, while simultaneously boosting their biological activities, such as hypoglycemic, cholesterol-lowering, and antioxidant effects. The review also explores the molecular mechanisms behind these modifications and their interactions with other food components, to optimize food structure and stability. By summarizing recent innovations and outlining challenges and future research directions, this work offers valuable insights for advancing the use of modified cereal NSPs in food science.
Collapse
Affiliation(s)
- Ruge Cao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yi Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chaomin Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yinta Li
- Weihai Key Laboratory of Medical Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China
| | - Zicong Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China
| | - Zhenguo Wang
- Tongliao Academy of Agricultural and Animal Husbandry Sciences, Tongliao 028015, China
| | - Ju Qiu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Gu X, Mao Y, Liu K, Zhao Y, Zha F, Xu X, Zhao Y. Construction of gel network based on soybean dietary fiber-sturgeon myofibrillar protein: Mechanism of influence in modification treatment on gel structure and properties. Food Chem 2025; 474:143171. [PMID: 39914353 DOI: 10.1016/j.foodchem.2025.143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
This study discuss the influence of interactions between soybean dietary fiber and sturgeon myofibrillar protein on gel properties, thereby providing theoretical guidance for the surimi processing industry. Firstly, the physicochemical and functional properties of soybean dietary fiber treated with Alkaline Hydrogen Peroxide were evaluated. Subsequently, the interactions between various dietary fibers and sturgeon myofibrillar protein, along with their effects on the enhancement of gel properties, were systematically examined. The results showed that AHP-treated samples had a higher water-holding capacity and more compact and uniform micromorphology, the gel structure was improved, and the gel performance was improved. A-SIDF-1.5 % had the highest hardness (7.37 N), whereas its water-holding capacity reached 64.39 %. The addition of the modified SIDF significantly increased the density of the gel network and the stability of the gel. These results support the modification of SIDF and its application in surimi products to improve its gel properties.
Collapse
Affiliation(s)
- Xiaoyu Gu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuxuan Mao
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Fengchao Zha
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yilin Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Lei H, Zhang Y, Guan T, Liu M, Li Z, Liu J, Zhao J, Liu T. Modification of black soybean (Glycine max(L.)merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion. Food Chem 2025; 473:143020. [PMID: 39864176 DOI: 10.1016/j.foodchem.2025.143020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions. Notably, HPIDF treated under high-temperature and high-pressure conditions exhibited the highest adsorption capacities: 9.86 mmol/g for glucose, 8.69 mg/g (pH 2) and 9.69 mg/g (pH 7) for cholesterol, 0.183 g/g (pH 2) and 0.127 g/g (pH 7) for sodium cholate, and 0.699 mg/g (pH 2) and 0.774 mg/g (pH 7) for Cr2+.
Collapse
Affiliation(s)
- Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tianci Guan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Mengge Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhiming Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
4
|
Wang Y, Tong J, Wang T, Ma R, Elmalki M, Li D, Li C, Xue Z, Fang X, Nie G. Combined use of steam explosion, alkali, and microbial methods improving the yield, structure and properties of soluble dietary fiber from bamboo shoot shells. Food Chem 2025; 471:142754. [PMID: 39798368 DOI: 10.1016/j.foodchem.2025.142754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.28 % was achieved, and the properties of SDF were improved as follows: 1.4 g/g oil holding capacity (OHC), 0.61 g/g water holding capacity (WHC), 1.56 mmol/g glucose adsorption capacity (GAC), 87 % ABTS+ scavenging capability, and 74 % DPPH⋅ scavenging capability. The mechanism of the strategy was uncovered to understand the synergic effects on SDF production. SE destroyed lignin molecules and promoted AE to further hydrolyze the molecules of lignin and hemicellulose, resulting in a sparse and porous architecture. This is beneficial for Lactobacillus to utilize insoluble dietary fiber to make smaller size of SDF with various structures. Hopefully, the findings will be generalized in other SDF production.
Collapse
Affiliation(s)
- Yu Wang
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Jie Tong
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Ting Wang
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Ruotong Ma
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Mariem Elmalki
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Dandan Li
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China
| | - Chuang Li
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China.
| | - Zhenglian Xue
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Guangjun Nie
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China.
| |
Collapse
|
5
|
Meng K, Wang Y, Liu F, Zhan Q, Zhao L. Effect of modifications on structure, physicochemical properties and lead ions adsorption behavior of dietary fiber of Flammulina velutipes. Food Chem 2025; 464:141597. [PMID: 39396472 DOI: 10.1016/j.foodchem.2024.141597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The health effects of dietary fiber have been widely concerned, which are closely related to physicochemical properties. This study focused on soluble dietary fiber of Flammulina velutipes (FDF), evaluated the effects of modifications on structural characterization, the physicochemical properties and the heavy metal adsorption characteristics, and further clarified underlying mechanisms on Pb2+ adsorption behavior of FDFs. The results showed the modifications of extrusion and cellulase improved the yield of FDFs, increased the release of active groups and enhanced the adsorption ability in vitro. Besides, Pb2+ adsorption altered porous structure and led to the presence of carboxylate. It was a spontaneous endothermic reaction and can be fitted by the pseudo-second-order kinetic equation. The Freundlich equation was suitable to describe the adsorption isotherm. These results highlighted potential applications of the dietary fiber modification and laid the theoretical foundation for the modification processing of F. velutipes and protection from food-derived heavy metal toxicity.
Collapse
Affiliation(s)
- Keke Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Lei YT, Meng FB, Jiao XL, Tang YM, Wu QJ, Li YC. Effects of UV-A irradiation and microbial fermentation on the physicochemical, microstructure and functional properties of okara. Food Res Int 2025; 200:115445. [PMID: 39779102 DOI: 10.1016/j.foodres.2024.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content. Saccharomyces cerevisiae fermentation (YUO), Lactiplantibacillus plantarum fermentation (LUO), and mixed fermentation (MUO) followed by UV-A irradiation of okara significantly reduced the IDF/SDF ratio to 2.48, 1.86 and 2.25, respectively. The modifications significantly reduced the lipid and total nitrogen contents and decreased the E-nose sensor values associated with beany odors. The combined treatment of microbial fermentation and UV-A irradiation partially destroyed the crystalline, resulting in a loose and porous surface, further enhanced the functional properties of water holding capacity, water solubility, antioxidant properties and cation exchange capacity. In particular, the DPPH and ABTS scavenging abilities of okara subject to microbial fermentation followed by UV-A irradiation were greater than that of other samples. These results indicate that the treatment sequence is very important for the functional properties of okara and microbial fermentation followed by UV-A irradiation is most conducive to improve the physicochemical properties and functionalities of okara.
Collapse
Affiliation(s)
- Ya-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiao-Lei Jiao
- Neijiang Academy of Agricultural Sciences, Neijiang 641099, PR China
| | - Yuan-Mou Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi-Jun Wu
- Longchang Siyu Food Co., Ltd, Neijiang 642150, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
7
|
Lin M, Wang C, Wu W, Miao Q, Guo Z. Quality, improvement of soluble dietary fiber from Dictyophora indusiata by-products by steam explosion and cellulase modification: Structural and functional analysis. Food Chem X 2025; 25:102084. [PMID: 39791116 PMCID: PMC11714722 DOI: 10.1016/j.fochx.2024.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Steam explosion (SE) and cellulase treatment are potentially effective processing methods for Dictyophora indusiata by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.16 times after the SE and cellulase treatments, respectively. The both treatments did not affect the functional groups and crystal types of the polysachharides, but both reduced the crystallinity. The SDF had a porous microstructure, which would increase the specific surface area and facilitates the adsorption of water and glucose, thereby improving its functional properties. SE and cellulase treatment significantly improved the hydration capacity of SDF; the glucose adsorption capacity increased by 1.15 and 1.07 times, respectively. Overall, the modified SDF showed different degrees of advantages in terms of yield, physicochemical and functionality. This study demonstrated that SE and cellulase are effective modification methods for SDF made from D. indusiata by-products.
Collapse
Affiliation(s)
- Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Wenfei Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Qingsong Miao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| |
Collapse
|
8
|
Kajszczak D, Sosnowska D, Frąszczak B, Podsędek A. Composition, Anti-Diabetic, and Antioxidant Potential of Raphanus sativus Leaves. Molecules 2024; 29:5689. [PMID: 39683848 DOI: 10.3390/molecules29235689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Limiting and/or slowing down the starch digestion process and consequently the release of glucose can be an important strategy for the prevention of type 2 diabetes (T2D). The aim of the current in vitro study was to assess the anti-diabetic and antioxidant potential of red radish leaves of the Carmen, Jutrzenka, Saxa, and Warta cultivars. In the context of anti-diabetic activity, the effect of leaves on potato starch digestion and free glucose binding, as well as inhibitory effects of leaf extracts against α-amylase and α-glucosidase and non-enzymatic glycation (AGEs) were determined. The basic chemical composition, quantitative composition of phenolic compounds, and antioxidant activity of leaves were also estimated. This study showed that all radish leaves inhibited the breakdown of potato starch and showed their ability to bind glucose. This activity was correlated with the content of hydroxycinnamic acids, protein and dietary fiber while flavones was probably responsible for glucose binding. Leaf extracts inhibited α-glucosidase activity and formation of AGEs but were practically inactive towards α-amylase. Inhibition of α-glucosidase activity was related to the content of proanthocyanidins and inhibition of AGEs formation to flavonols. These results point to radish leaves, especially the Warta and Jutrzenka cultivars, as a potential natural remedy for treating T2D.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| |
Collapse
|
9
|
Li M, Ma S. Effects of interaction between wheat bran dietary fiber and gluten protein on gluten protein aggregation behavior. Int J Biol Macromol 2024; 283:137692. [PMID: 39549795 DOI: 10.1016/j.ijbiomac.2024.137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Effects of wheat bran dietary fiber (WBDF) as a nutritional additive on flour products quality mainly depends on the interaction between WBDF and gluten protein. In this study, the effects and mechanisms of WBDF with different particle sizes and additive amounts on gluten protein aggregation behavior were investigated. The results showed that the addition of WBDF led to a decrease in free sulfhydryl content, particle size, molecular weight and gluten macromer (GMP) content, an increase in zeta potential and SDS-extractable protein content, and a deterioration in the gluten network morphology compared to the control group, suggesting that the aggregation behavior of gluten protein was inhibited. When WBDF was added at 3 % and 6 %, dilution effect, mechanical shear, steric hindrance, and non-covalent binding were the main mechanisms leading to depolymerization. Further addition of WBDF (9 %, 12 %) inhibited the depolymerization of gluten protein due to competitive hydration and non-covalent binding. However, when WBDF was added at 15 %, the dilution effect, mechanical shear and steric hindrance of WBDF (88 μm < particle size<150 μm) dominated, and their inhibitory of aggregation induced the formation of a loose gluten network structure. In contrast, the weaker mechanical shear and steric hindrance effects of WBDF (particle size<88 μm) mitigated the degradation of gluten network structures by WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
10
|
Yan S, Ma JJ, Wu D, Huang GL, Yu XW, Wang YN. Value-added biotransformation of agricultural byproducts by cellulolytic fungi: a review. Crit Rev Biotechnol 2024:1-20. [PMID: 39582184 DOI: 10.1080/07388551.2024.2423152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024]
Abstract
Agricultural byproducts generally contain abundant bioactive compounds (e.g., cellulose/hemicellulose, phenolic compounds (PCs), and dietary fibers (DFs)), but most of them are neglected and underutilized. Owing to the complicated and rigid structures of agricultural byproducts, a considerable amount of bioactive compounds are entrapped in the polymer matrix, impeding their further development and utilization. In recent years, the prominent performance of cellulolytic fungi to grow and degrade agricultural byproducts has been applied to achieve efficient biotransformation of byproducts to high-value compounds, which is a green and sustainable strategy for the reutilization of agricultural byproducts. This review comprehensively summarizes recent progress in the value-added biotransformation of agricultural byproducts by cellulolytic fungi, including (1) direct utilization of agricultural byproducts for biochemicals and bioethanol production via a consolidated bioprocessing, (2) recovery and biotransformation of bounded PCs from agricultural byproducts for higher bioactive properties, as well as (3) modification and conversion of insoluble DF from agricultural byproducts to produce functional soluble DF. The functional enzymes, potential mechanisms, and metabolic pathways involved are emphasized. Moreover, promising advantages and current bottlenecks using cellulolytic fungi have also been elucidated, shedding further perspectives for sustainable and efficient reutilization of agricultural byproducts by cellulolytic fungi.
Collapse
Affiliation(s)
- Su Yan
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Jia-Jia Ma
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Dan Wu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Gui-Li Huang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Xiao-Wei Yu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yu-Ning Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| |
Collapse
|
11
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
12
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
13
|
Wei Q, Cui J, Zhang W, Jiang L, Li T. Mechanisms of Degradation of Insoluble Dietary Fiber from Coconut Chips by Ultra-High Pressure. Foods 2024; 13:3174. [PMID: 39410209 PMCID: PMC11475923 DOI: 10.3390/foods13193174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Coconut chips are a popular leisure food, but the residual crumbly feeling after chewing affects the eating experience. To address this problem, we investigated the mechanism of degradation of insoluble dietary fiber (IDF) from coconut chips by ultra-high pressure (UHP). The optimal conditions for UHP treatment were 100 MPa and 40 min. After UHP treatment, the hardness decreased by 60%, and the content of soluble dietary fiber (SDF) increased by 55%. So far, the meaning of SDF has not been defined. The microstructure of IDF was damaged and the surface was rough. There was no obvious change in the chemical structure. The position of the characteristic diffraction peaks was basically unchanged, but the crystallinity dropped by almost three times. The thermal stability decreased, and the composition of the monosaccharides changed. Together, UHP treatment can improve the problem of the residual crumbly feeling after chewing coconut chips and improve the quality of the product.
Collapse
Affiliation(s)
- Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Jingtao Cui
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| |
Collapse
|
14
|
Tan R, Tang Q, Xia B, Fu C, Wang L. Organic acid treatments on citrus insoluble dietary fibers and the corresponding effects on starch in vitro digestion. Int J Biol Macromol 2024:134082. [PMID: 39084968 DOI: 10.1016/j.ijbiomac.2024.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Three environmentally friendly organic acids, acetic acid, citric acid and oxalic acid, were used to treat citrus insoluble dietary fiber (CIDF) in present study, aiming to explore the changes in structural properties as well as their inhibitory effects on starch digestion. The results showed that organic acid treatment significantly reduced the particle size of all three CIDFs, with rougher and folded surfaces, improved crystallinity and thermal stability. During in vitro digestion, it was found that organic acid treatment could increase the particle size and viscosity of digestion, and also effectively enhance the inhibitory ability of α-glucosidase activity, resulting in a further blockage of starch digestion. The starch digestion in oxalic acid-treated group (with 3 wt% addition) was significantly reduced by 18.72 % compared to blank group and 9.05 % compared to untreated. These findings provide evidence of the potential of organic acid-treated insoluble dietary fiber as a functional food.
Collapse
Affiliation(s)
- Ruilin Tan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qingmiao Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Xia
- Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China
| | - Caixia Fu
- HuBei TuLaoHan Ecological Agriculture Technology Co., Ltd., Yichang, Hubei 443000, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Kang J, Wang L, Dong L, Yin M, Wei S, Luo P. Agrocybe cylindracea Dietary Fiber Modification: Sodium Hydroxide Treatment Outperforms High-Temperature, Cellulase, and Lactobacillus Fermentation. Molecules 2024; 29:3519. [PMID: 39124923 PMCID: PMC11314503 DOI: 10.3390/molecules29153519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Agrocybe cylindracea dietary fiber (ADF) contains 95% water-insoluble dietary fiber, resulting in poor application performance. To address this issue, ADF was modified by four methods (cellulase, sodium hydroxide, high-temperature, and Lactobacillus fermentation) in this paper. By comparing the physicochemical properties, microstructures, monosaccharide compositions, and functional characteristics (antioxidant and α-glucosidase inhibitory activities in vitro) of all modified ADF samples, the optimal modification method was selected. Results showed that sodium hydroxide treatment was deemed the most effective modification method for ADF, as alkali-treated ADF (ADF-A) revealed a higher oil-holding capacity (2.02 g/g), swelling capacity (8.38 mL/g), cholesterol adsorption (6.79 mg/g), and α-glucosidase inhibitory activity (more than 70% at 0.4-0.6 mg/mL) than the other modified samples. The looser microstructure in ADF-A might be attributed to molecular rearrangement and spatial structure disruption, which resulted in smaller molecular sizes and decreased viscosity, hence improving ADF's physicochemical and functional qualities. All these findings indicate the greater application potential of modified ADF products in food and weight-loss industries, providing a comprehensive reference for the industrial application of ADF.
Collapse
Affiliation(s)
- Jingjing Kang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Li Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Mingyue Yin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
16
|
Seong HJ, Kim H, Cho JY, Yang KY, Nam SH. Modulating flavanone compound for reducing the bitterness and improving dietary fiber, physicochemical properties, and anti-adipogenesis of green yuzu powder by enzymatic hydrolysis. Food Chem X 2024; 22:101329. [PMID: 38623509 PMCID: PMC11016862 DOI: 10.1016/j.fochx.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Yuzu (Citrus junos Sieb.) is a peel-edible fruit with a pleasant aroma, but its bitter taste can impact consumer appeal. In this study, an efficient enzymatic method reduced bitterness in green yuzu powder (GYP). Cellulase KN and naringinase from Aspergillus oryzae NYO-2 significantly decreased naringin and neohesperidin content by over 87 %, while increasing total dietary fiber and soluble dietary fiber by up to 10 % and 51 %, respectively. Insoluble dietary fiber decreased by up to 22 %. Cellulose, hemicellulose, lignin, and pectin contents in enzyme-treated YP decreased by 1.15-2.00-fold, respectively. Enzyme-treated GYP exhibited improved physicochemical properties, including enhanced solubility, oil-holding capacity, and water swelling capacities. 3T3-L1 cells treated with cellulase-treated GYP and naringinase-treated GYP showed lower lipid accumulation and higher lipolysis capability than GYP, along with decreased fatty acid synthase contents. These findings suggest that enzyme-treated GYP holds potential as a functional ingredient in the food industry.
Collapse
Affiliation(s)
- Hyeon-Jun Seong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Hee Nam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Liu T, Zhen X, Lei H, Li J, Wang Y, Gou D, Zhao J. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chem X 2024; 22:101424. [PMID: 38840726 PMCID: PMC11152658 DOI: 10.1016/j.fochx.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Legumes are widely appreciated for their abundant reserves of insoluble dietary fiber, which are characterized by their high fiber content and diverse bioactive compounds. Insoluble dietary fiber in leguminous crops is primarily localized in the structural cell walls and outer integument and exhibits strong hydrophilic properties that enable water absorption and volumetric expansion, resulting in increased food bulk and viscosity. This contributes to enhanced satiety and accelerated gastrointestinal transit. The benefits of legume insoluble dietary fiber extend to its notable antioxidant, anti-inflammatory, and anti-cancer properties, as well as its ability to modulate the composition of the intestinal microbiota, promoting the growth of beneficial bacteria while suppressing the proliferation of harmful pathogens, thereby promoting optimal intestinal health. It is highly valued as a valuable thickening agent, stabilizer, and emulsifier, contributing to the texture and stability of a wide range of food products.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Junbo Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| |
Collapse
|
18
|
Zhang JG, Yang G, Zhang WW, Thakur K, Hu F, Khan MR, Ni ZJ, Wei ZJ. Physicochemical and functional properties of carboxymethylated insoluble dietary fiber of Lycium barbarum seed dreg. Food Chem X 2024; 22:101270. [PMID: 38495459 PMCID: PMC10944130 DOI: 10.1016/j.fochx.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lycium barbarum seed dregs (LBSDs) were used for carboxymethyl modification, resulting in three degree of substitution samples (DS). Based on the substitution degree, samples were designated as low degree of substitution insoluble dietary fiber (L-IDF), medium degree of substitution insoluble dietary fiber (M-IDF) and high degree of substitution insoluble dietary fiber (H-IDF). Physicochemical and functional properties of IDFs were examined in relation to carboxymethylation degree. Infrared Fourier transform spectroscopy (FT-IR) confirmed the carboxymethyl group. According to the results, IDF, L-IDF, M-IDF, and H-IDF acquired higher enthalpy changes, and their thermal stability improved significantly. A higher DS resulted in an increase in hydration properties such as water retention capacity and water swelling capacity, as well as functional properties such as glucose adsorption capacity, nitrite ion adsorption capacity, and cholesterol adsorption capacity. As a result, carboxymethylation could effectively enhance the biological properties of L. barbarum seed dreg insoluble dietary fiber (LBSDIDF).
Collapse
Affiliation(s)
- Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Gang Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
19
|
Yang B, Li K, Niu M, Wei J, Zhao S, Jia C, Xu Y. Structural characteristics of wheat bran insoluble dietary fiber with various particle size distributions and their influences on the kinetics of gastrointestinal emptying in mice. Int J Biol Macromol 2024; 272:132905. [PMID: 38862317 DOI: 10.1016/j.ijbiomac.2024.132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Wheat bran is an abundant yet underutilized agricultural byproduct. Herein, the insoluble dietary fiber from wheat bran (WBIDF) was ultra-milled to investigate its impact on physicochemical properties and gastrointestinal emptying. SEM and CLSM showed that the laminar structure of WBIDF was disrupted as the particle size was significantly reduced. In the similar characteristic peaks appearing at 3410, 2925, 1635, 1041, and 895 cm-1 in the FT-IR spectra and at 2940, 1593, 1080, and 526 cm-1 in the Raman spectra, the peak intensity was increased as the particle size decreased. It may be that the hydrogen bonding between cellulose, hemicellulose, or other macromolecules was enhanced. X-ray diffraction showed cellulose type I results for all five samples. Correspondingly, the water-holding, swelling, and oil-holding capacities increased by 75.33 %, 52.62 %, and 75.00 %, respectively, in WBIDF-CW1.8 compared with WBIDF-CWy. Additionally, smaller particle sizes had lower viscosity, thereby enhancing intestinal propulsion and gastric emptying rates. Enhanced contact of the cecal tissue growth factor with the intestinal mucosa delayed ghrelin secretion and stimulated the secretion of motilin, gastrin, and cholecystokinin. In conclusion, the particle sizes of WBIDF were reduced through ultramicro-grinding, leading to altered structure, enhanced hydration and oil-holding capacities, decreased viscosity, and improved gastrointestinal emptying capacity.
Collapse
Affiliation(s)
- Bingqian Yang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Niu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangxi Yangxiang Co., Ltd., Guigang 537100, China.
| | - Jianying Wei
- Guangxi Yangxiang Co., Ltd., Guigang 537100, China
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Caihua Jia
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Xu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
Quan W, Wang J, Huang J, Zhang D. Structure Characterization and Dye Adsorption Properties of Modified Fiber from Wheat Bran. Molecules 2024; 29:2581. [PMID: 38893457 PMCID: PMC11173784 DOI: 10.3390/molecules29112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The fibers from four wheat varieties (FT, XW 26, XW 45, and KW 1701) were selected and chemically modified with NaOH, epichlorohydrin, and dimethylamine to improve the adsorption capacity for anionic dye. The structure of the fibers with or without modification was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectrometry. The modified products were studied from the aspects of adsorption capacities, adsorption kinetics, and thermodynamics to provide a reference for the utilization of wheat bran. By SEM, more porous and irregular structures were found on the modified fibers. The XRD results showed that the crystals from the original fibers were destroyed in the modification process. The changes in fibers' infrared spectra before and after modification suggested that quaternary ammonium salts were probably formed in the modification process. The maximum adsorption capacity of wheat bran fibers for Congo red within 120 min was 20 mg/g for the unmodified fiber (XW 26) and 93.46 mg/g for the modified one (XW 45). The adsorption kinetics of Congo red by modified wheat bran fiber was in accord with the pseudo-second-order kinetic model at 40 °C, 50 °C, and 60 °C, indicating that the adsorption process might be mainly dominated by chemisorption. The adsorption was more consistent with the Langmuir isothermal adsorption model, implying that this process was monolayer adsorption. The thermodynamic parameters suggested that the adsorption occurred spontaneously, and the temperature increase was favorable to the adsorption. As mentioned above, this study proved that the wheat bran fiber could possess good adsorption capacities for anion dye after chemical modification.
Collapse
Affiliation(s)
- Wenbin Quan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
- College of Agriculture, Henan University, Kaifeng 475001, China
| | - Dale Zhang
- College of Agriculture, Henan University, Kaifeng 475001, China
| |
Collapse
|
22
|
Wang C, Lin M, Li Y, Guo Z. Improvement of soluble dietary fiber quality in Tremella fuciformis stem by steam explosion technology: An evaluation of structure and function. Food Chem 2024; 437:137867. [PMID: 37924764 DOI: 10.1016/j.foodchem.2023.137867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Edible fungi by-products are rich in dietary fiber (DF). In this study, we used steam explosion (SE) to modify Tremella fuciformis (T. fuciformis) stem DF. The SE conditions were optimized using response surface methodology (RSM), and the soluble dietary fiber (SDF) extraction rate increased 1.42-fold (from 23.33 ± 0.42 % to 33.21 ± 0.28 %) under optimized conditions. SE destroyed the dense structure of SDF, which improved the specific surface area and thermal stability. Furthermore, the structural changes induced by SE resulted in improved functional properties, and SDF had better hydration properties (water holding capacity, oil holding capacity, and swelling capacity increased by 1.23, 1.59, and 1.24 times, respectively) and hypoglycemic capacity (glucose adsorption capacity increased 1.84-fold at 100 mmol/L glucose). Therefore, SE is an excellent modification method for improving quality of edible fungi processing by-products SDF.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Yibin Li
- Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China.
| |
Collapse
|
23
|
Li J, Xi H, Wang A, Nie M, Gong X, Lin R, Zhang X, Tian Y, Wang F, Tong LT. Effects of high-pressure microfluidization treatment on the structural, physiochemical properties of insoluble dietary fiber in highland barley bran. Int J Biol Macromol 2024; 262:129743. [PMID: 38280692 DOI: 10.1016/j.ijbiomac.2024.129743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
High-pressure microfluidization treatment (HPMT) was performed on the insoluble dietary fiber (IDF) of highland barley bran (HBB), with conditions set at 60 MPa (IDF-60), 120 MPa (IDF-120), and two consecutive high-pressure treatments at 120 MPa (IDF-120-2), respectively. Then the particle size, structural, physicochemical and adsorption properties of different IDF samples were analyzed. After HPMT, the particle size of IDF samples gradiently decreased (p < 0.05), and part of IDF was transferred into soluble dietary fiber (SDF), accompanied by the decrease of hemicellulose and lignin content. In addition, the morphology of the IDF samples became more fragmented and wrinkled, and the two consecutive treatments at 120 MPa significantly damaged the crystalline structure of the IDF. Moreover, the adsorption capacities to water, oil, cholesterol, and NO2- were basically enhanced with the increase of treatment pressure and treatment number. The IDF-120-2 sample had the strongest water/oil-holding, swelling, and cholesterol trapping capacities, and the IDF-120 showed strongest NO2- trapping capacity (pH = 2). Through the correlation analysis, the adsorption capacities were positively to the particle size and SDF content, and negatively correlated with the specific surface area (SSA) and IDF content. The adsorption capacities of IDF for the four substances were positively correlated with each other.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xue Gong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiya Zhang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yu Tian
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
24
|
Chen Z, Liang G, Ru Y, Weng H, Zhang Y, Chen J, Xiao Q, Xiao A. Media-milled agar particles as a novel emulsifier for food Pickering emulsion. Int J Biol Macromol 2023; 253:127185. [PMID: 37797859 DOI: 10.1016/j.ijbiomac.2023.127185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsions was successfully fabricated using ball-milled agar particles with sizes and sulfate content around 7 μm and 0.62 %, respectively. These particles were obtained through a simple media-milling process using agar powders initially sized at 120 μm. The lamellated agar is aggregated into a mass after the milling process. The surface charge and hydrophobicity of the ball-milled agar particles were characterized through zeta potential and contact angle measurements, respectively. The droplet size of Pickering emulsions was related to oil fraction and particle concentration, ranging from approximately 45 μm to 80 μm. Ball-milled agar stabilized emulsions were sensitive to pH and salt conditions. The results of confocal laser scanning microscopy and cryo-SEM showed that at low particle concentrations and oil fractions, ball-milled agar stabilized the emulsions by dispersing particles on the surface of the oil droplets through electrostatic repulsion. Conversely, ball-milled agar stabilized the emulsions under high particle concentrations and oil fractions by forming a gel network structure to bind the oil droplets. In this research, this developed method provides the basis for the high-value application of agar and a new idea for preparing stable food-grade Pickering emulsion-based functional foods using raw-food material without surface wettability.
Collapse
Affiliation(s)
- Zizhou Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Guanglin Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
25
|
Jeong H, Rani Das P, Kim H, Im AE, Lee BB, Yang KY, Nam SH. A combination of commercial and traditional food-source-derived enzymatic treatment acts as a potential tool to produce functional yuzu ( Citrus junos) powder. Food Chem X 2023; 20:100918. [PMID: 38144855 PMCID: PMC10740101 DOI: 10.1016/j.fochx.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 12/26/2023] Open
Abstract
Enzymatic modifications have been applied in citrus to enhance their physicochemical and biological properties and reduce their bitterness. Notwithstanding, research on the combination of enzyme treatment of yuzu is lacking. In this study, yuzu was treated with a combination of isolated cellulase NY203, pectinase UF, and cellulase KN, and this enzymatic treatment was found to increase monosaccharide, naringenin, and hesperetin levels. In contrast, dietary fiber, cellulose, hemicellulose, lignin, and pectin levels were decreased. Moreover, the enzymes disintegrated the inner and outer surface structures and chemical bonding of yuzu, thus improving its solubility rate, water-holding capacity, oil-adsorption capacity, cholesterol-binding capacity, and water-swelling capacity. Furthermore, NY203 + UF + KN combination treatment reduced the bitterness of treated yuzu by 50 % compared with the control. Additionally, NY203 + UF + KN treatment yielded a 28 % decrease in lipid accumulation and two-fold higher lipolytic activity in 3T3L-1 adipocytes. These findings are potentially beneficial to the food/nutraceutical industries regarding functional yuzu powder production.
Collapse
Affiliation(s)
- Hana Jeong
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Protiva Rani Das
- Plant Science Department, University of Tennessee, Knoxville, TN 37922, USA
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bio-science and Technology, Seoul National University, Pyeonchang-gun, Gangwon-do 25354, Republic of Korea
| | - Ae Eun Im
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, Jeonnam 59021, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Hee Nam
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
26
|
Zhao S, Pan Z, Azarakhsh N, Ramaswamy HS, Duan H, Wang C. Effects of high-pressure processing on the physicochemical and adsorption properties, structural characteristics, and dietary fiber content of kelp ( Laminaria japonica). Curr Res Food Sci 2023; 8:100671. [PMID: 38235495 PMCID: PMC10792453 DOI: 10.1016/j.crfs.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
To investigate the effects of high-pressure processing (HPP) on the physicochemical and adsorption properties and structural characteristics of kelp, kelp slice (KS) and kelp powder (KP) were treated under different pressures (300, 450, and 600 MPa) for 5 and 10 min. Compared to untreated KP, HPP-treated KP yielded a 1.31-fold increase in water holding capacity (600 MPa/5 min), a 0.12-fold increase in swelling capacity (450 MPa/10 min), a 1.33-fold increase in oil holding capacity (600 MPa/10 min), a 10-fold increase in glucose adsorption capacity (450 MPa/10 min), and a 0.22-fold increase in cholesterol adsorption capacity (163.1 mg/g DW at 450 MPa/10 min), and exhibited good Cd (Ⅱ) adsorption capacity when its concentration was 10 mmol/L in the small intestine. The physicochemical properties of HPP-treated KS were not improved due to its low specific surface area. In addition, HPP treatment efficiently reduced the particle size of KP and increased its total and soluble dietary fiber content by 17% and 63% at 600 MPa/10 min, respectively. Scanning electron microscope micrographs demonstrated that the surface of HPP-treated KP was rough and porous, and the specific surface area increased with increasing pressure and processing time. To conclude, the results obtained in the present study suggest that HPP is a promising processing method for improving the functionality and structural characteristics of KP and provide a theoretical basis for the utilization of HPP-treated KP as a fiber-rich ingredient in the functional food industry.
Collapse
Affiliation(s)
- Songlin Zhao
- International School, Jinan University, Guangzhou, 510632, China
| | - Zhitao Pan
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nima Azarakhsh
- International School, Jinan University, Guangzhou, 510632, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Montréal, QC, Canada
| | - Hanying Duan
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
27
|
Baskaya-Sezer D. The effects of high-pressure, enzymatic, and high-pressure-assisted enzymatic treatment on the properties of soluble dietary fibers and their use in jelly prepared with grape waste extract. J Food Sci 2023; 88:4962-4973. [PMID: 37960937 DOI: 10.1111/1750-3841.16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
This study aimed to investigate the physicochemical attributes of soluble dietary fibers (SDFs) of grape, which were isolated after enzymatic (using cellulase [0.1 MPa/60°C/30 min]), high-pressure (HP) (100 MPa/60°C/30 min), or HP-assisted enzymatic treatment (using cellulase [100 MPa/60°C/30 min]), then to evaluate textural properties, color, and microbiological load of jelly prepared using grape waste extract and either pectin or SDF types. HP-assisted enzymatic treatment increased glucose adsorption capacity by more than 50%, and the water-holding capacity of SDF more than twofold as compared to the levels measured in untreated-SDF. After treatments, glucose and galactose contents decreased, whereas fructose, mannose, xylose, arabinose, and rhamnose ratios increased. The arabinose ratio increased more than twice by the effect of HP, whereas the xylose content increased almost fivefold with HP-assisted enzymatic treatment. For the textural properties of jelly, HP-assisted enzymatic treated-SDF provided almost double values in gel strength and adhesiveness than those contributed by untreated-SDF. It was followed by HP-treated SDF jelly. The results showed that HP-assisted enzymatic treatment developed more similar outcomes with enzymatic treatment, rather than HP treatment alone. HP-assisted enzymatic hydrolysis is recommended for treating SDF for use in jelly due to its synergistic effect. PRACTICAL APPLICATION: High-pressure-assisted cellulase treatment provided the best properties to SDF for jelly. In combined treatment, impacts of cellulase treatment were more prominent than HP effects. Therefore, the use of HP assistance for enzymatic hydrolysis shortens the processing time. Moreover, the technological and functional properties (water holding, glucose adsorption capacity, and monosaccharide composition) of the combined treated-fiber can improve. In addition, the color and textural properties of the jelly prepared with this treated-fiber can be enhanced. In this way, it may be possible to obtain a good thickening agent. This material can also be an alternative to pectin.
Collapse
Affiliation(s)
- Duygu Baskaya-Sezer
- Amasya Social Sciences Vocational School, Amasya University, Amasya, Türkiye
| |
Collapse
|
28
|
Xiong M, Feng M, Chen Y, Li S, Fang Z, Wang L, Lin D, Zhang Q, Liu Y, Luo Y, Chen H. Comparison on structure, properties and functions of pomegranate peel soluble dietary fiber extracted by different methods. Food Chem X 2023; 19:100827. [PMID: 37780339 PMCID: PMC10534148 DOI: 10.1016/j.fochx.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023] Open
Abstract
In this research, the different methods (acid extraction, alkaline extraction and enzymatic extraction) were used to extract soluble dietary fiber (SDF) from pomegranate peel and compared with water extraction. Results revealed that all three extraction methods influenced the structure, physicochemical and functional properties of SDF. Especially, SDF extracted by enzymes (E-SDF) and SDF extracted by alkali (A-SDF) had higher yield (27.30% and 27.17%), molecular weight and thermal stability than SDF extracted by water (W-SDF). Higher oil holding capacity (OHC) was found in SDF extracted by acid (C-SDF) (3.18 g/g), A-SDF (3.18 g/g) and E-SDF (5.36 g/g) compared with W-SDF. In addition, A-SDF showed the smallest particle size, lowest ζ-potential and highest viscosity among the tested samples. E-SDF presented a more porous structure, better glucose adsorption capacity (GAC) and antioxidant activity than C-SDF and A-SDF. To sum up, A-SDF and E-SDF may have great potential to be functional food ingredients in the food industry.
Collapse
Affiliation(s)
- Min Xiong
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Mei Feng
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yanli Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Lina Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| |
Collapse
|
29
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Manthei A, López-Gámez G, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R. Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies. Foods 2023; 12:3720. [PMID: 37893613 PMCID: PMC10606636 DOI: 10.3390/foods12203720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The preparation and processing of fruits and vegetables produce high amounts of underutilized fractions, such as pomace and peel, which present a risk to the environment but constitute a valuable source of dietary fiber (DF) and bioactive compounds. The utilization of these fiber-rich products as functional food ingredients demands the application of treatments to improve their techno-functional properties, such as oil and water binding, and health-related properties, such as fermentability, adsorption, and retardation capacities of glucose, cholesterol, and bile acids. The enhancement of health-promoting properties is strongly connected with certain structural and techno-functional characteristics, such as the soluble DF content, presence of hydrophobic groups, and viscosity. Novel physical, environmentally friendly technologies, such as ultrasound (US), high-pressure processing (HPP), extrusion, and microwave, have been found to have higher potential than chemical and comminution techniques in causing desirable structural alterations of the DF network that lead to the improvement of techno-functionality and health promotion. The application of enzymes was related to higher soluble DF content, which might be associated with improved DF properties. Combined physical and enzymatic treatments can aid solubilization and modifications, but their benefit needs to be evaluated for each DF source and the desired outcome.
Collapse
Affiliation(s)
| | | | | | | | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida/Agrotecnio-CeRCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.M.)
| |
Collapse
|
31
|
Chen L, He X, Pu Y, Cao J, Jiang W. Polysaccharide-based biosorbents for cholesterol and bile salts in gastric-intestinal passage: Advances and future trends. Compr Rev Food Sci Food Saf 2023; 22:3790-3813. [PMID: 37548601 DOI: 10.1111/1541-4337.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol is one of the hazard elements for many cardiovascular diseases, but many cholesterol-lowering drugs are expensive and unhealthy. Therefore, it is necessary to develop edible and safe biosorbents to reduce excess cholesterol and bile salts in the gastric-intestinal passage. Polysaccharide-based biosorbents offer a feasible strategy for decreasing them. This review summarized polysaccharide-based biosorbents that have been developed for adsorbing cholesterol and bile salts from the gastric-intestinal passage and analyzed common modification methods for these adsorbents. Finally, the adsorption models were also elucidated. Polysaccharides, including β-cyclodextrin, pectin, chitin/chitosan, dietary fiber extract, and cellulose, have been proposed for adsorbing cholesterol and bile salts in the gastric-intestinal passage as biosorbents. This is mainly due to the retention of pores, the capture of the viscosity network, and the help of hydrophobic interactions. In spite of this, the adsorption capacity of polysaccharides is still limited. Therefore, the modifications for them became the most popular areas in the recent studies of in vitro cholesterol adsorption. Chemical approaches namely grafting, (1) acetylation, (2) hydroxypropylation, (3) carboxymethylation, and (4) amination are considered to modify the polysaccharides for higher adsorption ability. Moreover, ultrasonic/microwave/pressure treatment and micron technology (microfluidization, micronization, and ball milling) are effective physical modification methods, while the biological approach mainly refers to enzymatic hydrolysis and microbial fermentation. The adsorption models are generally explained by two adsorption isotherms and two adsorption kinetics. In sum, it is reckoned that further food applications will follow soon.
Collapse
Affiliation(s)
- Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Chen L, Wu Y, Jiang X, Gan D, Fan J, Sun Y, Liu W, Li X. Dietary fiber extraction from citrus peel pomace: Yield optimization and evaluation of its functionality, rheological behavior, and microstructure properties. J Food Sci 2023; 88:3507-3523. [PMID: 37458301 DOI: 10.1111/1750-3841.16702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Citrus fruits were widely used in processing and production, generating a large amount of peel pomace and a low utilization rate, resulting in substantial economic losses and environmental risks. It was important to extract compounds from citrus peel pomaces and find suitable preparation methods to improve their yield and physicochemical properties. Grapefruit peel pomace (GP) and navel orange peel pomace (OP) were used as raw materials in this study to prepare green and edible soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Analysis was done on the effects of solid-liquid ratio, cellulase hydrolysis time, cellulase dosage, and ultrasonic time on dietary fiber (DF) yield. To obtain the best DF preparation conditions, we used range analysis, variance analysis, and orthogonal experimental design. We also analyzed the structural, physicochemical, and rheological characteristics of SDF and IDF. According to the study's findings, SDF and IDF showed a loose and expansive structure with reduced particle size, higher specific surface area, and noticeably better physical and chemical properties after treating GP and OP with ultrasound-assisted composite enzyme method. Both SDF solution and IDF suspension were discovered through rheological analysis to be non-Newtonian pseudoplastic fluids, which was advantageous for expanding their applications in the field of food packaging. In conclusion, DF prepared using the ultrasound-assisted composite enzyme method was an excellent source of edible packaging materials, offering a benchmark for the recycling of other citrus peel wastes and ultimately paving the way for new methods of recycling citrus waste.
Collapse
Affiliation(s)
- Lily Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
- School of Fine Arts, Hengyang Normal University, Hengyang, China
| | - Yincai Wu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Xinjia Jiang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Diansong Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Jingxin Fan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Yanmei Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Wenliang Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Xianggang Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
33
|
Guan Y, Xie C, Zhang R, Zhang Z, Tian Z, Feng J, Shen X, Li H, Chang S, Zhao C, Chai R. Characterization and the cholesterol-lowering effect of dietary fiber from fermented black rice ( Oryza sativa L.). Food Funct 2023. [PMID: 37334479 DOI: 10.1039/d3fo01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Black rice was fermented with Neurospora crassa, after which the dietary fiber (DF) extracted from it was characterized and evaluated for its cholesterol-lowering effect in mice. The findings demonstrated that fermentation increased the level of soluble DF from 17.27% ± 0.12 to 29.69% ± 0.26 and increased the adsorption capacity of DF for water, oil, cholesterol, glucose and sodium cholate. The fermented DF had a more loose and porous structure than that extracted from unfermented rice. Additionally, feeding with DF from the fermented black rice significantly reduced body weight, lowered total cholesterol levels and improved the lipid profile in mice gavaged with a high dose (5 g per kg bw) or a low dose (2.5 g per kg·bw). ELISA showed that the hepatic expression of typical proteins and enzymes that are involved in cholesterol metabolism was regulated by the fermented rice DF, leading to reduced cholesterol production and increased cholesterol clearance. The fermented DF also modified the gut microbiota composition (e.g. Firmicutes reduced and Akkermansia increased), which promoted the production of short-chain fatty acids. In conclusion, fermentation can modify the structure and function of DF in black rice and the fermented dietary fiber has excellent cholesterol lowering effects possibly by cholesterol adsorption, cholesterol metabolism modulation, and intestinal microflora regulation.
Collapse
Affiliation(s)
- Yuting Guan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Chanyuan Xie
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Rui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Ziyang Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Zhenyang Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Jianing Feng
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Xiaoyong Shen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Haiqin Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Shimin Chang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ran Chai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| |
Collapse
|
34
|
Effects of three biological combined with chemical methods on the microstructure, physicochemical properties and antioxidant activity of millet bran dietary fibre. Food Chem 2023; 411:135503. [PMID: 36682165 DOI: 10.1016/j.foodchem.2023.135503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
The effects of cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the physicochemical properties and antioxidant activity of millet bran dietary fibre (MBDF) were investigated. Compared to cellulase hydrolysis alone, these dual modifications more effectively improved the soluble fibre content, water-swelling ability, viscosity, emulsifying capacity and cation-exchange capacity of MBDF but reduced the emulsion stability, brightness and polyphenol content of MBDF (P < 0.05). MBDF modified by cellulase hydrolysis combined with hydroxypropylation showed the highest emulsifying capacity (60.03 m2/g) and oil-adsorption capacity (3.32 g/g) but the lowest nitrite ion-adsorbing ability (NIAA). MBDF modified by cellulase hydrolysis with carboxymethylation showed the highest surface hydrophobicity, cation-exchange capacity (0.352 mmol/g) and NIAA (152.89 μg/g). MBDF modified by cellulase hydrolysis combined with phosphate crosslinking exhibited excellent copper ion-adsorbing ability (19.97 mg/g) and viscosity (19.33 cp). Moreover, these dual modifications all enhanced the Fe2+ chelating ability and reducing power of MBDF (P < 0.05).
Collapse
|
35
|
Dong Y, Li Q, Zhao Y, Cao J. Effects of ultrasonic assisted high-temperature cooking method on the physicochemical structure characteristics and in vitro antioxidant capacities of dietary fiber from Dendrocalamus brandisii Munro shoots. ULTRASONICS SONOCHEMISTRY 2023; 97:106462. [PMID: 37285633 DOI: 10.1016/j.ultsonch.2023.106462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this study, the ultrasonic assisted high-temperature cooking extraction method of soluble dietary fiber from bamboo shoots was optimized by response surface methodology, and the effects of ultrasonic assisted high-temperature cooking extraction on the structural characteristics, physicochemical properties and antioxidant activity of soluble dietary fiber (SDF) from bamboo shoots were evaluated. The yield of modified UH-SDF1 was significantly higher than that of untreated D-SDF2. FTIR and XRD confirmed that UH-SDF had more hydrophilic groups and higher crystallinity (28.73 %), resulting in better thermal stability. SEM observation showed that UH-SDF exhibited a more loose microstructure, and the particle size of UH-SDF (601.52 μm) was significantly smaller than that of D-SDF (242.59 μm), so UH-SDF had a larger specific surface area. In addition, UH-SDF has stronger water holding capacity, water swelling capacity and oil holding capacity than D-SDF. The DPPH radical and hydroxyl radical scavenging rates of UH-SDF were 8.91 % and 7.49 % higher than those of D-SDF. In addition, the reducing ability of UH-SDF was higher than that of D-SDF, which had better antioxidant activity. In summary, UH-SDF has the potential to be developed as an anti-inflammatory functional food.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China; Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
36
|
Tian Y, Wu T, Sheng Y, Li L, Wang C. Effects of cavitation-jet technology combined with enzyme treatment on the structure properties and functional properties of OKARA insoluble dietary fiber. Food Chem 2023; 423:136286. [PMID: 37178598 DOI: 10.1016/j.foodchem.2023.136286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
In this study, a new composite modification method utilizing a cavitation jet combined with a composite enzyme (cellulase and xylanase) was developed to modify the insoluble dietary fibre (IDF) of okara (IDF was first treated with the cavitation jet at 0.3 MPa for 10 min, and then 6% of the enzyme was added, the composite enzyme with a 1:1 enzyme activity was hydrolysed for 1.5 h to obtain the modified IDF), and explored the structure-activity relationship between the structural properties, physicochemical properties and biological activities of IDF before and after modification. Under the action of cavitation jet and double enzyme hydrolysis, the modified IDF had a wrinkled and loose porous structure, which improved the thermal stability. Its water holding capacity (10.81 ± 0.17 g/g), oil holding capacity (4.83 ± 0.03 g/g) and swelling capacity (18.60 ± 0.60 mL/g) were significantly higher than those of unmodified IDF. In addition, compared with other IDFs, the combined modified IDF had greater advantages in nitrite adsorption (13.75 ± 0.14 μg/g), glucose adsorption (6.46 ± 0.28 mmol/g) and cholesterol adsorption (16.86 ± 0.83 mg/g), and improved in vitro probiotic activity and in vitro anti-digestion rate. The results show that the cavitation jet combined with compound enzyme modification method can effectively improve the economic value of okara.
Collapse
Affiliation(s)
- Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; Chinese National Engineering Research Center, Daqing 163319, China.
| |
Collapse
|
37
|
Zhao M, Wang B, Li L, Zhao W. Anti-Obesity Effects of Dietary Fibers Extracted from Flaxseed Cake in Diet-Induced Obese Mice. Nutrients 2023; 15:nu15071718. [PMID: 37049557 PMCID: PMC10097256 DOI: 10.3390/nu15071718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Although many efforts have been made to characterize the functional properties of flaxseed, knowledge concerning the properties of insoluble and soluble dietary fibers in flaxseed is still limited. Here, insoluble and soluble dietary fibers were extracted from flaxseed cake—a valuable resource that has not been fully exploited. Subsequently, their monosaccharide compositions, structural properties, and anti-obesity effects in male mice were characterized. The anti-obesity effects of flaxseed cake insoluble dietary fiber (FIDF), flaxseed cake soluble dietary fiber (FSDF), and FIDF combined with FSDF in diet-induced obese mice were investigated in our study. Supplementation with FSDF alone or FIDF and FSDF together lowered the fat accumulation, improved the serum lipid profile, increased the basal metabolism, and improved the gut microbiota of obese mice. Supplementation with FIDF and FSDF together significantly enriched the abundance of g_Akkermansia and g_Bifidobacterium, which are negatively associated with obesity. Supplementation with FIDF alone improved the liver lipid profile, raised the basal metabolism, and enhanced the short-chain fatty acid levels in the guts of the mice. In conclusion, our results collectively support the therapeutic potential of FIDF and FSDF in obesity treatment and indicate that FIDF and FSDF play different roles in the process of obesity treatment. Furthermore, our results provide critical information for flaxseed cake resource exploitation.
Collapse
Affiliation(s)
- Manman Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beibei Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
39
|
Chen HH, Shyu YT, Wu SJ. Physicochemical characteristics and retardation effects on in vitro starch digestibility of non-starch polysaccharides in jelly-fig (Ficus pumila L. var. awkeotsang). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
40
|
Zhu WW, Zhang Y, Tang CH. Maximizing cholesterol-lowering benefits of soy protein isolate by glycation with soy soluble polysaccharide. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Dong Y, Li Q, Guo Y, Zhao Y, Cao J. Comparison of physicochemical and in vitro hypoglycemic activity of bamboo shoot dietary fibers from different regions of Yunnan. Front Nutr 2023; 9:1102671. [PMID: 36712536 PMCID: PMC9879356 DOI: 10.3389/fnut.2022.1102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, the physicochemical properties, thermal characteristics, and in vitro hypoglycemic activity of dietary fibers extracted from four bamboo shoots were characterized and compared. The results showed that Dendrocalamus brandisii Munro (C-BSDF) had the highest dietary fiber content (6.1%) and the smallest particle size (222.21 μm). SEM observations found that C-BSDF exhibited a loose and porous microstructure, while FTIR and XRD confirmed that C-BSDF had a higher degree of decomposition of insoluble dietary fiber components and the highest crystallinity, resulting in a better microstructure. Furthermore, C-BSDF exhibited excellent physiochemical properties with the highest water hold capacity, water swelling capacity, and preferable oil holding capacity. Thermal analysis showed that C-BSDF had the lowest mass loss (64.25%) and the highest denaturation temperature (114.03°C). The hypoglycemic activity of dietary fibers from bamboo shoots were examined in vitro and followed this order of activity: C-BSDF>D-BSDF>A-BSDF>B-BSDF. The inhibition ratios of GAC, GDRI and α-amylase activity of C-BSDF were 21.57 mmol/g, 24.1, and 23.34%, respectively. In short, C-BSDF display excellent physicochemical and functional properties due to its high soluble dietary fiber content, small particle size with a high specific surface area, and loose microstructure. Thus, D. brandisii Munro can be considered a promising new source of dietary fiber for hypoglycemic health products.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yuhong Guo
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China,*Correspondence: Yihe Zhao,
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Jianxin Cao,
| |
Collapse
|
42
|
Niu L, Guo Q, Xiao J, Li Y, Deng X, Sun T, Liu X, Xiao C. The effect of ball milling on the structure, physicochemical and functional properties of insoluble dietary fiber from three grain bran. Food Res Int 2023; 163:112263. [PMID: 36596174 DOI: 10.1016/j.foodres.2022.112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The effects of ball milling processing on the structure, physicochemical, and functional properties of insoluble dietary fiber (IDF) in bran from prosomillet, wheat and rice were investigated. Meanwhile, the effect of IDF on glucose tolerance and blood lipid levels in mice was evaluated as well. With findings, for all three grains, the particle sizes of IDF were significantly reduced after ball milling treatment (p < 0.05). Scanning electron microscopy revealed fragmented fiber with numerous pores and cracks. The reactive groups of three IDF samples were found to be similar by fourier transform infrared spectroscopy. And consistent with X-ray diffraction and thermal analysis, for all three grains, ball milling reduced the crystallinity of IDF and helped to increase the release of free phenol by 23.4 %, 8.9 %, and 12.2 %, respectively. Furthermore, the water holding capacity, glucose delay capacity, glucose, sodium cholate, and cholesterol adsorption capacity, and in vitro digestibility of starch and fat were all improved to varying degrees. Animal experiments showed that ball milling treatment effectively slowed the postprandial rise in blood sugar (especially IDF of rice bran) and blood lipids (especially IDF of prosomillet bran). As a result, ball milling treatment is a potential method for dietary fiber modification in the food industry.
Collapse
Affiliation(s)
- Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
43
|
Effects of steam explosion on phenolic compounds and dietary fiber of grape pomace. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Liu H, Liang J, Liang C, Liang G, Lai J, Zhang R, Wang Q, Xiao G. Physicochemical properties of dietary fiber of bergamot and its effect on diabetic mice. Front Nutr 2022; 9:1040825. [PMID: 36407540 PMCID: PMC9674159 DOI: 10.3389/fnut.2022.1040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Bergamot (Citrus medica L. var. sarcodactylis) contains different bioactive compounds, and their effects remain unclear. Therefore, the structural and bio-function of bergamot dietary fiber were investigated. A sequential extraction procedure was utilized to obtain soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) from bergamot. The main monosaccharide in SDF and IDF is arabinose. SDF had a porous structure, which enhanced the water and oil holding capacity, as well as the cholesterol and glucose adsorption capacity, which was superior to that of IDF. In db/db diabetic mice, SDF and IDF regulated glucose tolerance and controlled blood glucose levels. Reduction of serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol in SDF and IDF could be observed. In summary, SDF and IDF from bergamot effectively promoted health in patients with diabetes.
Collapse
Affiliation(s)
- Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
| | - Jiaxi Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Churong Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guiqiang Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiacong Lai
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renying Zhang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
- *Correspondence: Qin Wang
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
- Gengsheng Xiao
| |
Collapse
|
45
|
Chen YR, Wu SJ. Effects of high-hydrostatic pressure and high-pressure homogenization on the biological activity of cabbage dietary fiber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6299-6308. [PMID: 35531767 DOI: 10.1002/jsfa.11980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cabbage is one of the most economical cooked vegetables in terms of its relatively low price and high nutritional value. It is rich in dietary fiber, multivitamins, and a variety of anti-oxidants. In this study, we compared the effects of high-hydrostatic pressure (HHP) and high-pressure homogenization (HPH) treatments on changes in composition and physiological functions of cabbage dietary fiber. RESULTS The total dietary fiber content (36.06 ± 1.65%) and nitrite ion adsorption capacity (2.37 ± 0.01 μmol·g-1 ) of HHP-treated cabbage powder were higher than those of untreated cabbage powder. The soluble dietary fiber content (36.18 ± 0.89%) and the emulsifying activity (36.18 ± 0.89%) and emulsifying stability (47.88 ± 4.35%) of HPH-treated cabbage powder were higher than those of untreated cabbage powders. The significant reduction in particle size induced by the high-pressure treatments caused differences in the properties of the treated and untreated cabbage powder samples. Scanning electronic microscopy analysis revealed that the microstructure of the HPH-treated cabbage powder changed from patches to fine granules with concave-convex markings on the surface, and that the surface area was significantly higher than that of the untreated cabbage powder. The high-pressure-treated cabbage powder has good homogeneity sensory properties after rehydration. Moreover, the changes in the properties of cabbage powder induced by the high-pressure treatments caused the cholesterol adsorption capacity and glucose dialysis retardation index of the treated cabbage powders to be higher than those of the untreated cabbage powder. CONCLUSION In summary, high-pressure processing and micronization of cabbage can render it a multifunctional source of dietary fiber. We believe that this study provides a new method for processing and using leftover vegetables. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Rou Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Lu Y, Kokje T, Schutyser MA, Zhang L. The effect of colloid milling on the microstructure and functional properties of asparagus dietary fibre concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Effects of ultrafine grinding and cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the in vitro hypoglycaemic and hypolipidaemic properties of millet bran dietary fibre. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
49
|
Baky MH, Salah M, Ezzelarab N, Shao P, Elshahed MS, Farag MA. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit Rev Food Sci Nutr 2022; 64:1954-1968. [PMID: 36094440 DOI: 10.1080/10408398.2022.2119931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed Salah
- Microbiology Department, College of Pharmacy, Port Said University, Port Said, Egypt
| | - Nada Ezzelarab
- Biology Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, PR China
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
50
|
Tang C, Wu L, Zhang F, Kan J, Zheng J. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers. Food Chem 2022; 386:132642. [PMID: 35349899 DOI: 10.1016/j.foodchem.2022.132642] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
The effect of alkali extraction (AE), enzymatic extraction (EE), ultrasonic-assisted enzymatic extraction (UAEE), and shear homogeneous-assisted enzymatic extraction (SHAEE) on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers (BSDF) were investigated and compared. BSDF obtained by AE had the lowest protein content and crystallinity index. The lowest oil holding capacity (OHC) and highest protein content were observed in EE. BSDF generated highest OHC and glucose adsorption capacity by UAEE. SHAEE obtained the highest SDF content (17.89%), water-holding capacity (8.81 g/g), and α-amylase activity inhibition ratio (19.89%) and the smallest particle size (351.33 μm). BSDF extracted by SHAEE and UAEE presented a porous and loose structure. Furthermore, the in vitro hypoglycemic activity of the four BSDF samples generally followed the order of SHAEE > UAEE > EE > AE. Results show that SHAEE is an innovative and promising method to obtain BSDF with its excellent physicochemical and functional properties.
Collapse
Affiliation(s)
- Caidie Tang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou 310012, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China.
| |
Collapse
|