1
|
Symoniuk E, Rosa A, Siger A, Grygier A, Kruszewski B. The effect of ultrasound-assisted maceration of selected cold-pressed oils with lyophilized mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. Food Chem 2025; 472:142843. [PMID: 39808910 DOI: 10.1016/j.foodchem.2025.142843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The study aimed to evaluate the effect of ultrasound maceration of cold-pressed oils with freeze-dried mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. After the maceration process, oils' were subjected to their oxidative stability (80-120 °C) and their chemical composition, Moreover, oils kinetics parameters were calculated. Maceration enhanced the oxidative stability of the tested oils, particularly linseed and chia oils, from 9.66 to 13.44 h and 4.95 to 8.10 h at 90 °C, respectively. The levels of phenolic compounds and phenolic acids significantly increased, especially in rapeseed oil, from 148.02 to 387.43 (mg GAE 100 g -1) and from 84.16 to 2620.93 (μg 100 g-1), respectively. The oils were also enriched with flavonoids and carotenoids. The oils exhibited higher acid and peroxide value, but lower p-anisidine value after maceration process. The fatty acid composition and the content of sterols and tocochromanols in the oils changed only slightly.
Collapse
Affiliation(s)
- Edyta Symoniuk
- Warsaw University of Life Sciences, Institute of Food Sciences, Department of Food Technology and Assessment, Nowoursynowska St. 166, 02-787 Warsaw, Poland.
| | - Aleksandra Rosa
- Warsaw University of Life Sciences, Institute of Food Sciences, Department of Food Technology and Assessment, Nowoursynowska St. 166, 02-787 Warsaw, Poland
| | - Aleksander Siger
- Poznań University of Life Sciences, Faculty of Food Sciences and Nutrition, Department of Food Biochemistry and Analysis, Wojska Polskiego St. 28, Poznań 60-637, Poland.
| | - Anna Grygier
- Poznań University of Life Sciences, Faculty of Food Sciences and Nutrition, Department of Food Technology of Plant Origin, Wojska Polskiego St. 28, 60-637 Poznan, Poland.
| | - Bartosz Kruszewski
- Warsaw University of Life Sciences, Institute of Food Sciences, Department of Food Technology and Assessment, Nowoursynowska St. 166, 02-787 Warsaw, Poland.
| |
Collapse
|
2
|
Waszkowiak K, Szymandera-Buszka K, Kidoń M, Kobus-Cisowska J, Brzozowska A, Kowiel A, Jarzębski M, Radziejewska-Kubzdela E. Application of Chia and Flaxseed Meal as an Ingredient of Fermented Vegetable-Based Spreads to Design Their Nutritional Composition and Sensory Quality. Foods 2025; 14:438. [PMID: 39942032 PMCID: PMC11816384 DOI: 10.3390/foods14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Fermented vegetable spreads could offer an opportunity to diversify the range of plant-based foods. The challenge in developing the spreads is to achieve high quality, including stable consistency, consumer desirability and high nutritional value. The aim was to evaluate the application of chia and flaxseed meal for fermented zucchini-cucumber spread production. The effect on the chemical composition, phenolic compound content, antioxidant activity, and sensory quality of the vegetable spread was evaluated. Its color, viscosity, and microstructure were also analyzed using instrumental methods. The meal addition varied from 4.0 to 14.0%. The spread with meal addition had higher fat, protein, ash, and dietary fiber content than the control. Total free phenolic compound content and antioxidant activity also increased, and chia seed meal impacted the parameters more. On the contrary, flaxseed meal improved more the product's consumer desirability than chia. Both were effective gelling agents that increased viscosity and enhanced product spreadability, and only flaxseed meal showed a masking ability. Its addition reduced the perception and intensity of the bitter, tart, and sour taste. The spread formula consisting of fermented zucchini and cucumber with 9 to 11.5% flaxseed meal addition was the most recommended to achieve the product with high consumer desirability.
Collapse
Affiliation(s)
- Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Marcin Kidoń
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Angelika Kowiel
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| |
Collapse
|
3
|
Balakrishnan G, Garg S, Ramesh B, Rajendran EGMG, Rathnakumar K. A Comprehensive Review of Phenolic Compounds in Chia Seeds and Their Applications in the Food Industry. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:46. [PMID: 39853445 DOI: 10.1007/s11130-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 01/26/2025]
Abstract
Chia seeds (Salvia hispanica L.) have emerged as a significant focus in the food industry due to their rich nutritional profile and health-promoting attributes. They are a major powerhouse of bioactive compounds such as flavonoids, phenolic acids, and tocopherols that have been shown to possess anti-inflammatory, anti-diabetic, anti-cholesterol functions, enhance cognitive performance, and improve heart health. This article provides an in-depth review of the phenolic compounds in chia seeds and various fractions such as oil, and chia meal, their bioaccessibility, along with unique applications in food products. Additionally, 'green techniques' for extracting chia oil, as a sustainable alternative to conventional methods, have also been discussed. The findings presented in this review suggest that chia seeds, due to their bioactive components and versatile functional properties, are well-positioned to be a valuable ingredient in the development of novel foods, contributing to better health outcomes and innovation in food processing.
Collapse
Affiliation(s)
- Gayathri Balakrishnan
- Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA.
| | - Sumedha Garg
- Sustainable Food Systems Program, Department of Health and Human Development, Montana State University, Bozeman, MT, 59717, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, 19711, USA
| | | | - Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Çoban F. Fenugreek Sprouts Around the World: Exploring Therapeutic and Nutritional Benefits. Food Sci Nutr 2025; 13:e4668. [PMID: 39803269 PMCID: PMC11717055 DOI: 10.1002/fsn3.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates the therapeutic and nutritional potential of fenugreek sprouts from 30 diverse genotypes sourced from various regions. The aim was to characterize and compare their therapeutic attributes, including antioxidant capacity, antidiabetic, and anti-cholinesterase activities, along with their nutritional compositions, particularly minerals, and protein content. Results revealed significant variations among the genotypes in terms of their therapeutic properties. China genotypes exhibited notable α-amylase inhibition 64.57%, suggesting potential antidiabetic properties, while South Sudan genotypes demonstrated significant acetylcholinesterase (14.44%) and butyrylcholinesterase inhibitions, indicating possible cognitive health benefits. The Morocco and Konya/Türkiye genotypes exhibited noteworthy antioxidant effects, with showing DPPH • scavenging activities of 7.79% and 7.23%, and ABTS •+ activities of 27.87% and 27.31%, respectively. Mineral analysis revealed considerable differences across genotypes. Israel genotypes had the highest iron content (43.18 mg/100 g), Sivas/Türkiye genotype had the highest potassium levels (2259.87 mg/100 g), and Kayseri/Türkiye genotype had the highest sodium content (616.91 mg/100 g). Ukraine genotypes contained the most magnesium (266.61 mg/100 g), while Israel genotypes also had the highest zinc content (54.44 mg/100 g). The protein content of the fenugreek sprouts varied significantly, with Corum/Türkiye showing the highest protein content at 5.75/100 g. Principal component analysis (PCA) highlighted the relationships among the mineral nutrients and protein content, revealing distinct groupings of genotypes based on their mineral compositions. Correlation analysis further elucidated the associations between various minerals and protein content. In conclusion, this study underscores the potential therapeutic and nutritional significance of fenugreek sprouts.
Collapse
Affiliation(s)
- Furkan Çoban
- Department of Plant BreedingThe Swedish University of Agricultural SciencesLommaSweden
- Department of Field Crops, Faculty of AgricultureAtatürk UniversityErzurumTürkiye
| |
Collapse
|
5
|
Han KN, Meral H, Demirdöven A. Recovery of carotenoids as bioactive compounds from peach pomace by an eco-friendly ultrasound-assisted enzymatic extraction. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2354-2366. [PMID: 39431191 PMCID: PMC11486865 DOI: 10.1007/s13197-024-06001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 10/22/2024]
Abstract
The industrial processing of fruits generates by-products. These by-products serve as a source of valuable bioactive compounds. In this study, carotenoid was extracted from peach pomace (PP) by using the ultrasound-assisted enzymatic extraction (UAEE), an eco-friendly method. The process conditions ensuring the highest carotenoid content and b* color value for UAEE were detected by response surface methodology (RSM). To demonstrate the effectiveness of the ultrasonic process, enzymatic extraction was carried out at the optimum point. Physicochemical (pH, titratable acidity, total soluble solids), color (L*, a*, b*, chroma value (ΔC) and color difference (ΔE), total phenolic compound (TPC) and antioxidant activity analyses (ABTS and FRAP) were carried. When the analysis results evaluated, the highest b* color parameter, TPC (761.10 mg gallic acid/L), ABTS (1933.33 mg Trolox/L) and FRAP (52.66 µmol Trolox/L) results of the extracts was observed with UAEE method. The study shows that ultrasound based upon the cavitation event was increased efficiency of enzymatic reaction with higher extraction yield and this provided in higher amounts of carotenoid and bioactive compounds. In other respects, when obtained carotenoid extracts are used in food formulations compatible with their acidic structure, they will contribute to protection of the product and minimizing color losses.
Collapse
Affiliation(s)
- Kübra Nur Han
- Faculty of Engineering and Architecture, Food Engineering Departement, Tokat Gaziosmanpasa University, 60150 Tokat, Turkey
| | - Hilal Meral
- Faculty of Engineering and Architecture, Food Engineering Departement, Tokat Gaziosmanpasa University, 60150 Tokat, Turkey
| | - Aslıhan Demirdöven
- Faculty of Engineering and Architecture, Food Engineering Departement, Tokat Gaziosmanpasa University, 60150 Tokat, Turkey
| |
Collapse
|
6
|
Kaur M, Singh B, Kaur A. Dry-air roasting impact on physicochemical, functional, antioxidant properties, phenolic profile and Maillard reaction products of flaxseed flour and cake flour. Food Chem 2024; 442:138571. [PMID: 38306766 DOI: 10.1016/j.foodchem.2024.138571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The study investigated and compared physicochemical, functional, antioxidant properties, phenolic profile and Maillard reaction products (MRP) of flaxseed flour (FF) and flaxseed cake flour (FCF) upon dry-air roasting (DaR) of flaxseeds at 140, 160 and 180 °C for 5 and 10 min. This information on FF and FCF is limited and has considerable gaps. The raw FF exhibited higher fat, ash, antioxidant and functional properties while lower protein than the FCF. Upon increasing DaR conditions, the ash and protein increased in FCF and decreased in FF. DaR at 180 °C for 10 min augmented water solubility index, ΔE, MRP, free rutin and syringic acid, bound epicatechin, gallic acid and syringic acid while lowered moisture, L*, b*, hue, chroma, potassium, iron, selenium, emulsion indexes, caffeic acid, flavonoids and free resveratrol in FF and FCF. In conclusion, DaR improves phenolic profile, antioxidant properties, MRP, water solubility and oil absorption capacity of FF and FCF.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balwinder Singh
- P.G. Department of Botany, Khalsa College, Amritsar 143002, Punjab, India.
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
7
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Gómez-Velázquez HDJ, Aparicio-Fernández X, Escobar-Ortiz A, Feregrino-Pérez AA, Reynoso-Camacho R, Pérez-Ramírez IF. Phytochemical Fingerprint of Chia Sprouts Grown Under Chemical Elicitation with Salicylic Acid and Hydrogen Peroxide. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:127-136. [PMID: 38206479 DOI: 10.1007/s11130-023-01133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Chia seeds (CS) and sprouts are rich sources of phenolic compounds and polyunsaturated fatty acids (PUFA). We hypothesized that the application of chemical stressors, such as salicylic acid (SA) and hydrogen peroxide (H2O2), would induce changes in the polyphenol and fatty acid profile of chia sprouts, leading to an increase in their nutraceutical potential. This study aimed to assess the effect of non-elicited (NE) and chemically elicited (CE with 1-mM SA and 20-mM H2O2) sprouting on the polyphenol and fatty acid (FA) profiles of chia through high-resolution liquid chromatography-mass spectrometry and chemometric analyses. NE and CE chia sprouts showed increased content and diversity of polyphenols compared to the CS but with lower content of FA. Interestingly, rosmarinic acid was the major polyphenol identified in CS and was increased about 4-fold in all chia sprouts, whereas the major PUFA of CS, α-linolenic acid, was reduced by 39%. Regarding the chemical elicitation, the multivariate analyses indicated that SA-elicited chia sprouts were characterized by their high content of most polyphenols, mainly flavones and isoflavones, as well as a high antioxidant capacity, whereas H2O2-elicited chia sprouts were differentiated by protects their PUFA composition and seedling growth parameters. These results demonstrate that the chemical elicitation with SA and H2O2 represents a promising approach for improving sprouts' nutraceutical quality and could be used in further research to develop strategies for agriculture and food production.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, México
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Xochitl Aparicio-Fernández
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, México
| | | | - Ana A Feregrino-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, El Marqués, Querétaro, México
| | | | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México.
| |
Collapse
|
9
|
Kumar A, Singh N, Joshi R. Deciphering the metabolic signatures of Trigonella microgreens as a function of photoperiod and temperature using targeted compound analysis and non-targeted UHPLC-QTOF-IMS based approach. Food Res Int 2024; 176:113834. [PMID: 38163730 DOI: 10.1016/j.foodres.2023.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Trigonella foenum-graecum L. (Fenugreek) is an annual herb that belongs to Fabaceae family. The compositional make-up of microgreens depends on prevailing environmental conditions. So, Trigonella microgreens were cultivated under different photoperiod and temperature conditions and evaluated for plant height, total chlorophyll content (TCC), targeted compound analysis and non-targeted UHPLC-QTOF-IMS based metabolomic profile. The plant height and TCC of Trigonella microgreens increased by approximately 22 % and 20 %, respectively under T1 conditions (longer photoperiod of 22 h with 22 °C in light and 17 °C in dark). The targeted phenolic profile analysis revealed the dominant presence of gallic acid, p-coumaric acid and apigenin in Trigonella microgreens. Also, the concentration of p-coumaric acid concentration raised from 3.51 mg/g to 5.83 mg/g as a response of T1 conditions. The sugar profile revealed augmented concentration of myo-inositol, glucose, fructose, xylose, maltose, and sucrose in longer photoperiod with T1 conditions. The microgreens were also rich in amino acids like aspartic acid, glutamic acid, leucine, isoleucine, and phenylalanine. Notably, the concentration of proline increased from 10.40 mg/g to 16.92 mg/g as a response to T1 growth conditions. The concentration of these metabolites varied significantly under different photoperiod and temperature conditions. The comprehensive non-targeted UHPLC-QTOF-IMS analysis of microgreens revealed different class of metabolites like organic compounds, alkaloids, coumarin-derivatives, phenolic and flavonoid derivatives, terpenoids, sugars, amino acids and few nucleic acid derivatives. The multivariate PLS-DA explained different expression level of metabolites under different growing conditions. The T1 growing condition resulted in the increased biosynthesis of phenolic compounds and various metabolites. The expression level of terpenoid derivatives specifically of Trigonelloside C and Trigoneoside XIIa/b increased under T1 conditions. The substantial alteration in the metabolites due to growing conditions may alter the microgreen's dietary benefits. So, additional research may be warranted.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India.
| | - Robin Joshi
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania (UPenn), Philadelphia, PA 19104, USA; Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
10
|
Farag MA, Reda A, Nabil M, Elimam DM, Zayed A. Evening primrose oil: a comprehensive review of its bioactives, extraction, analysis, oil quality, therapeutic merits, and safety. Food Funct 2023; 14:8049-8070. [PMID: 37614101 DOI: 10.1039/d3fo01949g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Oil crops have become increasingly farmed worldwide because of their numerous functions in foods and health. In particular, oil derived from the seeds of evening primrose (Oenothera biennis) (EPO) comprises essential fatty acids of the omega-6 (ω-6) series. It is well recognized to promote immune cells with a healthy balance and management of female ailments. The nutrients of interest in this oil are linoleic acid (LA, 70-74%) and γ-linolenic acid (GLA, 8-10%), which are polyunsaturated fatty acids (PUFA) that account for EPO's popularity as a dietary supplement. Various other chemicals in EPO function together to supply the body with PUFA, elevate normal ω-6 essential fatty acid levels, and support general health and well-being. The inclusive EPO biochemical analysis further succeeded in identifying several other components, i.e., triterpenes, phenolic acids, tocopherols, and phytosterols of potential health benefits. This comprehensive review capitalizes on EPO, the superior product of O. biennis, highlighting the interrelationship between various methods of cultivation, extraction, holistic chemical composition, sensory characters, and medicinal value. Besides the literature review, this study restates the numerous health advantages of primrose oil and possible drug-EPO interactions since a wide spectrum of drugs are administered concomitantly with EPO. Modern techniques to evaluate EPO chemical composition are addressed with emphasis on the missing gaps and future perspectives to ensure best oil quality and nutraceutical benefits.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562 Cairo, Egypt.
| | - Ali Reda
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Nabil
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafr Elsheikh University, Kafr El-sheikh, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish street (Medical Campus), Tanta 31527, Egypt
| |
Collapse
|
11
|
Pérez-Ochoa ML, Vera-Guzmán AM, Mondragón-Chaparro DM, Sandoval-Torres S, Carrillo-Rodríguez JC, Mayek-Pérez N, Chávez-Servia JL. Effects of Annual Growth Conditions on Phenolic Compounds and Antioxidant Activity in the Roots of Eryngium montanum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3192. [PMID: 37765355 PMCID: PMC10537384 DOI: 10.3390/plants12183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Medicinal plants grown in natural settings are exposed to different adverse environmental conditions that determine their growth and development as well as the composition and concentration of secondary metabolites in their organs. The objective of this study was to evaluate the effects of environmental conditions associated with localities and annual growth cycles on the contents of phenolic compounds and flavonoids, antioxidant activity and potentially bioactive phenolic acids in the roots of Eryngium montanum, a medicinal species from temperate Mexico. The samples for composition analysis were collected using a bifactorial design: Factor A consisted of the localities (Morelos and La Unión de San Martin Huamelulpam, Mexico) and Factor B was represented by the annual growth cycle (2020 and 2021). In each sample, the contents of polyphenols and equivalent flavonoids of quercetin and catechin and antioxidant activity were evaluated using spectrophotometry. Subsequently, chlorogenic, caffeic and rosmarinic acids were identified and quantified using high-performance liquid chromatography with diode-array detection (HPLC-DAD). The annual growth conditions and, to a lesser extent, the locality of origin of the samples significantly influenced the contents of phenolic compounds and antioxidant activity. The environmental conditions that occurred in 2021 favored an increase in the contents of phenolic compounds compared to those in 2020, and the same pattern was observed for chlorogenic acid; however, for caffeic and rosmarinic acids, the opposite pattern was observed. The content of phenolic acids in the roots of E. montanum follows different and independent patterns between cycles based on the interaction between the locality of origin and annual growth cycle. This study quantifies the magnitude of the total environmental effect on the phenolic compound concentrations in E. montanum roots, which was measured via sampling during two annual growth cycles, where the sampling locations factor had little influence. The bioactive compounds identified in E. montanum roots have the potential for use as alternative medicines, as mentioned by different families from Oaxaca, Mexico.
Collapse
Affiliation(s)
- Mónica L. Pérez-Ochoa
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de Mexico 07320, Mexico; (M.L.P.-O.); (D.M.M.-C.); (S.S.-T.)
| | - Araceli M. Vera-Guzmán
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de Mexico 07320, Mexico; (M.L.P.-O.); (D.M.M.-C.); (S.S.-T.)
| | - Demetria M. Mondragón-Chaparro
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de Mexico 07320, Mexico; (M.L.P.-O.); (D.M.M.-C.); (S.S.-T.)
| | - Sadoth Sandoval-Torres
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de Mexico 07320, Mexico; (M.L.P.-O.); (D.M.M.-C.); (S.S.-T.)
| | | | | | - José L. Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de Mexico 07320, Mexico; (M.L.P.-O.); (D.M.M.-C.); (S.S.-T.)
| |
Collapse
|
12
|
Hernández-Olivas E, Muñoz-Pina S, Andrés A, Heredia A. The impact of age-related digestive disorders on in vitro digestibility of macronutrients and bioaccessibility of minor components of chia seeds. Food Res Int 2023; 169:112874. [PMID: 37254324 DOI: 10.1016/j.foodres.2023.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Gastrointestinal (GI) functions deteriorate with age, primarily affecting protein digestion. The consumption of chia seeds may be helpful for the elderly because they offer a vegetable-based source of proteins, healthy lipids, fibre and micronutrients. The impact of common age-related GI deterioration on chia seed digestibility was assessed using in vitro digestion models. The goal was to study the potential of chia seeds as part of the diet of seniors. Deterioration in the oral, gastric and intestinal stages of digestion was cumulatively assessed in three digestion models: E1 (deterioration in oral conditions), E2 (deterioration in oral and gastric conditions) and E3 (deterioration in oral, gastric and intestinal conditions). Less efficient chewing (E1) decreased proteolysis, lipolysis and antioxidant capacity (p < 0.05). In contrast, deterioration in gastric functions seemed to affect only total polyphenolic content. Finally, in the model simulating the greatest deterioration in digestive functions (E3), all measured variables were negatively affected (proteolysis, lipolysis, amino acid release, total phenolic content, antioxidant capacity and calcium). Calcium bioaccessibility fell by 24 % with a decrease in pancreatic enzymes and bile secretion (E3). Age-related reduced digestive function did not affect the ratio of essential to non-essential amino acids in the digested samples in any case. However, under suboptimal GI conditions (E3), amino acids such as valine, leucine and isoleucine, which are important for sarcopenia prevention in the elderly, fell by 39 %, 49 % and 44 %, respectively. These findings might be helpful for further in vitro studies of chia seeds as a possible food ingredient. They may also be useful for the development of more targeted nutrition strategies in the elderly.
Collapse
Affiliation(s)
- Ever Hernández-Olivas
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
13
|
Symoniuk E, Marczak Z, Brzezińska R, Janowicz M, Ksibi N. Effect of the Freeze-Dried Mullein Flower Extract ( Verbascum nigrum L.) Addition on Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils. Foods 2023; 12:2391. [PMID: 37372603 DOI: 10.3390/foods12122391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the study was to analyze the influence of mullein flower extract addition on the oxidative stability and antioxidant activity of cold-pressed oils with a high content of unsaturated fatty acids. The conducted research has shown that the addition of mullein flower extract increases the oxidative stability of oils, but its addition depends on the type of oil and should be selected experimentally. In rapeseed and linseed oil, the best stability was found for samples with 60 mg of extract/kg of oil, while in chia seed oil and hemp oil, it was found with 20 and 15 mg of extract/kg of oil, respectively. The hemp oil exhibited the highest antioxidant properties, as evidenced by an increase in the induction time at 90 °C from 12.11 h to 14.05 h. Additionally, the extract demonstrated a protective factor of 1.16. Oils (rapeseed, chia seed, linseed, and hempseed) without and with the addition of mullein extract (2-200 mg of extract/kg of oil) were analyzed for oxidative stability, phenolic compounds content, and antioxidant activity using DPPH• and ABTS•+ radicals. After the addition of the extract, the oils had from 363.25 to 401.24 mg GAE/100 g for rapeseed oil and chia seed oil, respectively. The antioxidant activity of the oils after the addition of the extract ranged from 102.8 to 221.7 and from 324.9 to 888.8 µM Trolox/kg for the DPPH and ABTS methods, respectively. The kinetics parameters were calculated based on the oils' oxidative stability results. The extract increased the activation energy (Ea) and decreased the constant oxidation rate (k).
Collapse
Affiliation(s)
- Edyta Symoniuk
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Zuzanna Marczak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Nour Ksibi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar I, Tunis 2092, Tunisia
- Center of Biotechnology of Borj Cedria, Laboratory of Aromatic and Medicinal Plants (LPAM), P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
14
|
Salam SGA, Rashed MM, Ibrahim NA, Rahim EAA, Aly TAA, Al-Farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum-graecum Linn.) seeds and leaves. Sci Rep 2023; 13:7032. [PMID: 37120447 PMCID: PMC10148852 DOI: 10.1038/s41598-023-31888-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/20/2023] [Indexed: 05/01/2023] Open
Abstract
The impact of household processes on fenugreek leaves and seeds has been analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying for leaves and germinating, soaking, and boiling for seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE g-1 D.W.) and TF (7.71 mg QE g-1 D.W.) (milligram quercetin equivalents per gram dry weight). The TP contents of unprocessed, germinated, soaked, and boiled seeds were 6.54, 5.60, 4.59, and 3.84 mg gallic acid equivalents per gram of dry weight (mg GAE g-1 D.W.), respectively. The TF contents in unprocessed fenugreek seeds, germinated fenugreek seeds, soaked fenugreek seeds, and boiled fenugreek seeds (BFS) were 4.23, 2.11, 2.10, and 2.33 mg QE g-1 D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds has been identified using high-performance liquid chromatography. Antioxidant activity using 2,2-diphenyl-1-picrylhydrazil (DPPH·), 2,2-azinobis (3-ethylbenothiazoline-6-sulfonic acid (ABTS+·), and ferric reducing antioxidant power (FRAP·) assays indicated that ADFL had the highest activity. Antimicrobial activity has been evaluated against each of the eight pathogenic bacterial and fungal strains. ADFL showed the strongest activity with minimum inhibitory concentrations values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml·1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using the nitric oxide (NO) assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to the NO assay. Household processes significantly reduced the in-vitro biological properties of processed seeds.
Collapse
Affiliation(s)
- Shaimaa G Abdel Salam
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Mohamed M Rashed
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nabih A Ibrahim
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt
| | - Emam A Abdel Rahim
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Tahany A A Aly
- Regional Centre for Food and Feed, Agriculture Research Center, Ministry of Agriculture, Giza, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, P.O. Box 34, Jeddah, 21959, Saudi Arabia
| |
Collapse
|
15
|
Lee S, Yeo HJ, Lee SY, Kim SR, Park SU, Park CH. The Effect of Light and Dark Treatment on the Production of Rosmarinic Acid and Biological Activities in Perilla frutescens Microgreens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1613. [PMID: 37111837 PMCID: PMC10142874 DOI: 10.3390/plants12081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to investigate the effect of light [a long-day photoperiod (16 h light/8 h dark cycle)] and dark treatment on the production of rosmarinic acid in P. frutescens microgreens and to determine its antioxidant and antibacterial activities. Microgreens of P. frutescens were grown under light and dark conditions and harvested after 10, 15, 20, and 25 days of each treatment. Although dry weight values of microgreens gradually increased from 10 to 25 days of both treatments, the microgreens grown under light treatment possessed slightly higher levels of dry weight than those grown in the dark. Rosmarinic acid and total phenolic content (TPC) were also analyzed using high-performance liquid chromatography (HPLC) and Folin-Ciocalteu assay. The accumulation patterns of rosmarinic acid and TPC gradually increased and decreased, respectively, in P. frutescens microgreens grown in continuous darkness. The highest accumulation was observed in microgreens grown for 20 days. However, rosmarinic acid and TPC values were not significantly different in microgreens grown under light conditions. According to the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assay, the extracts of P. frutescens microgreens were confirmed to be strong antioxidants, and their ability to scavenge DPPH radicals was positively correlated with the total phenolic content in the microgreens after 10, 15, 20, and 25 days of both treatments. Considering the relatively higher values of dry weight, rosmarinic acid, TPC, and DPPH assay, P. frutescens microgreens after 20 days of darkness and 20 days of light treatment, respectively, were selected for screening antibacterial activity using nine pathogens. Both microgreen extracts showed strong antibacterial activity against pathogens. In particular, the extracts of microgreens grown for 20 days under light treatment showed higher antimicrobial effects. Therefore, the light treatments for 20 days, as well as the darkness treatment for 20 days, were the best conditions for P. frutescens microgreen production because of their high levels of dry weight, phenolics, and biological activities.
Collapse
Affiliation(s)
- Seom Lee
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Sang Yeob Lee
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Su Ryang Kim
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Cheng J, Sun J, Yao K, Xu M, Wang S, Fu L. Hyperspectral technique combined with stacking and blending ensemble learning method for detection of cadmium content in oilseed rape leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2690-2699. [PMID: 36479694 DOI: 10.1002/jsfa.12376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/21/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oilseed rape, as one of the most important oil crops, is an important source of vegetable oil and protein for mankind. As a non-essential element for plant growth, heavy metal cadmium (Cd) is easily absorbed by plants. Cd will inhibit the photosynthesis of plants, destroy the cell structure, slow the growth of plants, and affect their development and yield. It is necessary to develop a method based on visible near-infrared (NIR) hyperspectral imaging (HSI) technology to quickly and nondestructively determine the Cd content in rape leaves. RESULTS Two-layer estimation models were established by combining visible-NIR HSI with ensemble learning methods (stacking and blending). One layer used support vector regression, extreme learning machine, decision tree, and random forest (RF) as basic learners, and the other layer used support vector regression or RF as a meta learner. Different models were used to analyze the spectra of rape treated with five Cd concentrations to obtain the best prediction method. The results showed that the best model to predict Cd content was the stacking ensemble model with RF as the meta learner, with coefficient of determination for prediction of 0.9815 and root-mean-square error for prediction of 5.8969 mg kg-1 . A pseudo-color image was developed using this stacking model to visualize the content and distribution of Cd. CONCLUSION The combination of visible-NIR HSI technology and the stacking ensemble learning method is a feasible method to detect the Cd content in rape leaves, which has the potential of being rapid and nondestructive. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiehong Cheng
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| | - Kunshan Yao
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| | - Min Xu
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| | - Simin Wang
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| | - Lvhui Fu
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules 2023; 28:molecules28062728. [PMID: 36985699 PMCID: PMC10056211 DOI: 10.3390/molecules28062728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The purpose of this study was to evaluate the phytochemical profiles of the seeds, sprouts, leaves, flowers, roots and herb of Salvia hispanica and to demonstrate their significant contribution to antioxidant and antimicrobial activities. Applied methods were: HPLC-DAD coupled with post-column derivatization with ABTS reagent, untargeted metabolomics performed by LC-Q-Orbitrap HRMS, and two-fold micro-dilution broth method, which involved suspending a solution of tested compounds dissolved in DMSO in Mueller–Hinton broth for bacteria or Mueller–Hinton broth with 2% glucose for fungi. Metabolomic profiling using LC-Q-Orbitrap HRMS used in this study yielded the identification and preliminary characterization of one hundred fifteen compounds. The dominant class of compounds was terpenoids (31 compounds), followed by flavonoids (21 compounds), phenolic acids and derivatives (19 compounds), organic acids (16 compounds) and others (fatty acids, sugars and unidentified compounds). The organic and phenolic acids were the most abundant classes in terms of total peak area, with distribution depending on the plant raw materials obtained from S. hispanica. The main compound among this class for all types of extracts was rosmarinic acid which was proven to be the most abundant for antioxidant potential. All tested extracts exhibited considerable antibacterial and antifungal activity. The strongest bioactivity was found in leaf extracts, which presented bactericidal activity against Gram-positive bacteria (S. aureus, S. epidermidis, M. luteus and E. faecalis). The work represents the first compendium of knowledge comparing different S. hispanica plant raw materials in terms of the profile of biologically active metabolites and their contribution to antioxidant, antimicrobial and antifungal activity.
Collapse
|
18
|
Stavropoulos P, Mavroeidis A, Papadopoulos G, Roussis I, Bilalis D, Kakabouki I. On the Path towards a "Greener" EU: A Mini Review on Flax ( Linum usitatissimum L.) as a Case Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1102. [PMID: 36903961 PMCID: PMC10005532 DOI: 10.3390/plants12051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the pressures imposed by climate change, the European Union (EU) has been forced to design several initiatives (the Common Agricultural Policy, the European Green Deal, Farm to Fork) to tackle the climate crisis and ensure food security. Through these initiatives, the EU aspires to mitigate the adverse effects of the climate crisis and achieve collective prosperity for humans, animals, and the environment. The adoption or promotion of crops that would facilitate the attaining of these objectives is naturally of high importance. Flax (Linum usitatissimum L.) is a multipurpose crop with many applications in the industrial, health, and agri-food sectors. This crop is mainly grown for its fibers or its seed and has recently gained increasing attention. The literature suggests that flax can be grown in several parts of the EU, and potentially has a relatively low environmental impact. The aim of the present review is to: (i) briefly present the uses, needs, and utility of this crop and, (ii) assess its potential within the EU by taking into account the sustainability goals the EU has set via its current policies.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios Bilalis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
19
|
Mondor M. Chia (Salvia Hispanica) Seed Oil Extraction By-Product and Its Edible Applications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2160457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Martin Mondor
- J2S 8E3 St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| |
Collapse
|
20
|
Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:485-494. [PMID: 36083408 DOI: 10.1007/s11130-022-01011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil
| | | | - Roberta Fontanive Miyahira
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil.
| |
Collapse
|
21
|
Bermejo NF, Munné-Bosch S. Mixing chia seeds and sprouts at different developmental stages: a cost-effective way to improve antioxidant vitamin composition. Food Chem 2022; 405:134880. [DOI: 10.1016/j.foodchem.2022.134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
22
|
Jimenez D, Lobo M, Mota C, Castanheira I, Sammán N. Nutritional, technological and sensory changes induced by different drying methods on purees made with Andean grains. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dolores Jimenez
- Faculty of Engineering ‐ CIITED ‐ National University of Jujuy – CONICET Argentina
| | - Manuel Lobo
- Faculty of Engineering ‐ CIITED ‐ National University of Jujuy – CONICET Argentina
| | - Carla Mota
- Reference Materials Laboratory ‐ Food and Nutrition Department, National Health Institute Doctor Ricardo Jorge Portugal
| | - Isabel Castanheira
- Reference Materials Laboratory ‐ Food and Nutrition Department, National Health Institute Doctor Ricardo Jorge Portugal
| | - Norma Sammán
- Faculty of Engineering ‐ CIITED ‐ National University of Jujuy – CONICET Argentina
| |
Collapse
|
23
|
Arshad M, Mohanty AK, Van Acker R, Riddle R, Todd J, Khalil H, Misra M. Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review. RSC Adv 2022; 12:27230-27245. [PMID: 36321163 PMCID: PMC9535402 DOI: 10.1039/d2ra03253h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Global environmental pollution is a growing concern, especially the release of carbon dioxide from the use of petroleum derived materials which negatively impacts our environment's natural greenhouse gas level. Extensive efforts have been made to explore the conversion of renewable raw materials (vegetable oils) into bio-based products with similar or enhanced properties to those derived from petroleum. However, these edible plant oils, commonly used for human food consumption, are often not suitable raw materials for industrial applications. Hence, there is an increasing interest in exploring the use of non-edible plant oils for industrial applications. One such emerging oil seed crop is Camelina sativa, generally known as camelina, which has limited use as a food oil and so is currently being explored as a feedstock for various industrial applications in both Europe and North America. Camelina oil is highly unsaturated, making it an ideal potential AGH feedstock for the manufacture of lower carbon footprint, biobased products that reduce our dependency on petroleum resources and thus help to combat climate change. This review presents a brief description of camelina highlighting its composition and its production in comparison with traditional plant oils. The main focus is to summarize recent data on valorization of camelina oil by various chemical means, with specific emphasis on their industrial applications in biofuels, adhesives and coatings, biopolymers and bio-composites, alkyd resins, cosmetics, and agriculture. The review concludes with a discussion on current challenges and future opportunities of camelina oil valorization into various industrial products.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Plant Agriculture, Bioproducts Discovery & Development Centre, Crop Science Building, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Amar K Mohanty
- Department of Plant Agriculture, Bioproducts Discovery & Development Centre, Crop Science Building, University of Guelph Guelph Ontario N1G 2W1 Canada
- School of Engineering, Thornbrough Building, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Rene Van Acker
- Department of Plant Agriculture, University of Guelph Guelph ON N1G 2W1 Canada
| | - Rachel Riddle
- Department of Plant Agriculture, University of Guelph Simcoe Research Station, 1283 Blueline Road Simcoe Ontario N3Y 4N5 Canada
| | - Jim Todd
- Ontario Ministry of Agriculture, Food and Rural Affairs Simcoe Research Station, 1283 Blueline Road, Simcoe ON N3Y 4N5 Canada
| | - Hamdy Khalil
- The Woodbridge Group 8214 Kipling Avenue Woodbridge ON L4L 2A4 Canada
| | - Manjusri Misra
- Department of Plant Agriculture, Bioproducts Discovery & Development Centre, Crop Science Building, University of Guelph Guelph Ontario N1G 2W1 Canada
- School of Engineering, Thornbrough Building, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
24
|
El-salam SG.A, Rashed MM, Ibrahim NA, Rahim EA, Aly TAA, Al-farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum- graecum Linn.) seeds and leaves.. [DOI: 10.21203/rs.3.rs-1952713/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The impact of household processes on fenugreek leaves and seeds was analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying of leaves and germinating, soaking, and boiling of seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE/g D.W.) and TF (7.71 mg QE/g D.W.). The TF of unprocessed, germinated, soaked, and boiled seeds had 6.54, 5.60, 4.59, and 3.84 mg GAE/g D.W., respectively. The TF in UFS, GFS, SFS, and BFS were 4.23, 2.11, 2.10, and 2.33 mg QE/g D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds were identified using the HPLC. Antioxidant activity using DPPH•, ABTS+•, and FRAP• assays indicated that ADFL had high activity. Antimicrobial activity was evaluated against each eight pathogenic bacterial and fungal strains. ADFL showed a strong activity with MIC values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml− 1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using of NO assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to NO assay. Household processes significantly declined the in-vitro biological properties of processed seeds.
Collapse
|
25
|
Polyphenol content and antioxidant activity of phytoestrogen containing food and dietary supplements: DPPH free radical scavenging activity by HPLC. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:375-388. [PMID: 36651542 DOI: 10.2478/acph-2022-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/26/2023]
Abstract
Soy, red clover, chaste tree, hop and flax have all been found to contain a wide range of phytoestrogenic compounds, and a large number of dietary supplements contain their extracts as principal ingredients. This study is aimed to evaluate the total polyphenolic content and antioxidant activity of phytoestrogen-containing food and formulated dietary supplements. The HPLC-DPPH method was applied for DPPH free radical scavenging activity testing of various phytoestrogen-containing samples. Polyphenol content and antioxidant activity in dietary supplements were higher than in functional food samples; multiple-botanical-source preparations showed higher polyphenol content and antioxidant activity than the mono-botanical counterparts. Furthermore, the correlation between polyphenol content and anti-oxidant activity was strongly statistically significant, so it might be concluded that antioxidant activity is proportional to the content of these secondary metabolites. The most striking batch-to-batch deviations were represented by one chaste berry-based product (RSD 41.3 %) and one red clover derived product (RSD 57.9 %). The results of this study contribute to a better understanding of the phenolic profile and antioxidant properties of phytoestrogen containing food and dietary supplements.
Collapse
|
26
|
Kosiorowska A, Pietrzyk S, Pająk P, Socha R. The effect of the addition of gold flax (Linum usitatissimum L.) and chia seeds (Salvia hispanica L.) on the physicochemical and antioxidant properties of cranberry jams. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractDifferent form of seeds (whole or ground) may have a gelling effect and can substitute pectin in jams, moreover the type of their form have a remarkable impact on jams quality. The objective of this study was to ascertain if the form of added seeds have an influence on the physicochemical and antioxidant properties of cranberry jams incorporated in gold flax and chia seeds. Compared to traditional cranberry jam, the addition of both chia and gold flax seeds to the jams enhanced the nutritional value of samples by significant increase in protein, dietary fiber and polyunsaturated fatty acids content. Moreover, the enrichment of cranberry jams with seeds caused an increase in total polyphenols and phenolic acids content as well as their antioxidant activities. The texture measurement showed that both chia and flax seeds (irrespectively of their form) exhibited a gelling properties, however, the jams with the addition of ground seeds were characterized by similar texture as the control cranberry jam. Based on the obtained results, both gold flax and chia seeds can be considered as promising substitute for the gelling agents which additionally can change the physicochemical and antioxidant properties of jams.
Collapse
|
27
|
Multielement determination of metals in edible seeds by HR-CS GF AAS and direct analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Mathematical Estimation of the Energy, Nutritional and Health-Promoting Values of Multi-Layer Freeze-Dried Vegetable Snacks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nowadays, the popularity of snack foods is increasing due to the fast-paced lifestyle of society. Thanks to the prevailing trends related to a healthy lifestyle and organic food, the need to create new products is increasing, but also more and more attention is being paid to high nutritional value. The aim of the study has been to evaluate the energy, nutritional, and health-promoting value of freeze-dried vegetable-based products with hydrocolloids as structure forming additives. The research included mathematical estimation of the energy and nutrients content, as well as selected health-promoting components, such as vitamins and micro- and macro-nutrients. The calculation was based on tabular data of the nutritional values each components of the products. In addition, the quality of the bars has been assessed by means of the daily requirement and the nutritional quality index. The bars have proven to be characterized by high energy and nutritional and health-promoting value. The Index Nutritional Quality (INQ) indicator has shown that the tested products are incorrectly adjusted in terms of the content of nutrients in relation to the energy supplied. The broccoli bar has turned out to be the best option because it has the highest content of protein, fat, and all the relevant vitamins and minerals. Obtained results verified that tested snacks were not enough to cover daily intake of specific nutrients, but introducing such products to balanced diet may have beneficial influence on human health and well-being.
Collapse
|
29
|
Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract-Complex Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123920. [PMID: 35745044 PMCID: PMC9227154 DOI: 10.3390/molecules27123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
In the context of the increasing lactation problems among breastfeeding women, the development of a healthy lifestyle is needed. Different variants of pork, turkey, and beef meatballs, with added lemon balm (Melissa officinalis L.) and wild thyme (Thymus serpyllum L.) aqueous extract (6%), were obtained. These herbs were selected and used due to their antioxidant, antimicrobial, and lactogenic potential. Two thermal treatments, hot air convection (180 °C) and steam convection (94 °C), were applied for meatballs processing. The obtained meatballs were further subjected to a complex characterization. The functionality of the plant extracts was proved by the values of total content of polyphenols (2.69 ± 0.02 mg AG/g dw) and flavonoids (3.03 ± 0.24 mg EQ/g dw). FT-IR analysis confirmed the presence of trans-anethole and estragole at 1507–1508 cm−1 and 1635–1638 cm−1, respectively. Costumers’ overall acceptance had a score above 5.5 for all samples, on a scale of 1 to 9. Further analysis and human trials should be considered regarding the use of lactogenic herbs, given their health benefits and availability.
Collapse
|
30
|
Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. SEPARATIONS 2022. [DOI: 10.3390/separations9060152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to evaluate the antioxidant potential of sprout and seed extracts from three species of plants, namely Glycine max (GMsp-sprouts, GMsd-seeds), Anethum graveolens (AGsp-sprouts, AGsd-seeds) and Pimpinella anisum (PAsp-sprouts, PAsd-seeds), which are widely accepted by consumers and have various applications in food flavoring, and also in natural medical treatments in the pharmaceutical industries. These plants are rich in valuable compounds that show a remarkable antioxidant power and are associated with many health benefits. Ethanol extracts were obtained by ultrasound-assisted extraction and they were comparatively evaluated for their in vitro antioxidant properties. The extracts were characterized by HPTLC, HPLC-DAD, total phenol content (TPC), total flavonoid content (TFC) analysis and antioxidant activities with different assays, such as total antioxidant capacity (TAC), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay (ABTS), 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH) and iron binding ability of chelators. Our results showed that the sprout and seed extracts of the studied plants exhibited a high content of phytochemicals and promising antioxidant properties. The highest polyphenols content was detected for AGsd (53.02 ± 0.57 mg/g DW), PAsd (48.75 ± 0.34 mg/g DW) and the highest flavonoids content for PAsp (26.84 ± 0.57 mg/g DW). Moreover, the presence of valuable compounds was demonstrated by using HPTLC, FT-IR and HPLC-DAD techniques. In order to have a better understanding of the relationship between the biological properties and the electronic structure, a molecular modelling study of genistein was also conducted. Our approach to the comparative assessment of these three plant species was based on a priori knowledge from literature data; however, this study demonstrated that these plant extracts of seeds and also sprouts are excellent sources of natural antioxidants. Significant additional differences that were found in the phytochemical composition could be exploited in future research for pharmaceutical purposes.
Collapse
|
31
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
32
|
Evening Primrose Extracts Inhibit PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Regulating Cell-Cycle-Related Proteins. Curr Issues Mol Biol 2022; 44:1928-1940. [PMID: 35678660 PMCID: PMC9164085 DOI: 10.3390/cimb44050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.
Collapse
|
33
|
Elliott H, Woods P, Green BD, Nugent AP. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? NUTR BULL 2022; 47:138-156. [DOI: 10.1111/nbu.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Elliott
- Linwoods Health Foods Co. Armagh UK
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | | | - Brian D. Green
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | - Anne P. Nugent
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
- School of Agriculture and Food Sciences Institute of Food and Health University College Dublin Dublin Ireland
| |
Collapse
|
34
|
Enhanced recovery of bioactive compounds from Trigonella-foenum graecum seeds by ultrasonic-assisted extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01240-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Gómez-Velázquez HDJ, Aparicio-Fernández X, Mora O, González Davalos ML, de Los Ríos EA, Reynoso-Camacho R. Chia seeds and chemical-elicited sprouts supplementation ameliorates insulin resistance, dyslipidemia, and hepatic steatosis in obese rats. J Food Biochem 2022; 46:e14136. [PMID: 35322435 DOI: 10.1111/jfbc.14136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
Abstract
Chia seeds (CS) and sprouts are rich in bioactive compounds. This study aimed to assess the effects of germination and chemical elicitation (salicylic acid [SA]; hydrogen peroxide [H2 O2 ]) on proximate chemical, total phenolics compounds (TPC), non-extractable proanthocyanidins (NEPA), and carotenoids content of chia sprouts; besides, the effects of their supplementation on obesity-associated complications in rats fed with high-fat and fructose diet (HFFD) were evaluated. Protein, carbohydrate, TPC, NEPA, and carotenoids content were higher in sprouts than CS; elicitation enhanced TPC and carotenoids compared to non-elicited (NE) sprouts. CS, NE, and elicited chia sprouts ameliorated insulin resistance and dyslipidemia at the same level in HFFD-fed rats. NE and SA-chia sprouts exerted the biggest reduction in hepatic triglycerides, which could be partially related to inhibition of pancreatic lipase activity. In addition, SA elicitation induced the greatest effect on insulin levels and corporal weight. CS and their sprouts decreased obesity and its complication, mainly SA-elicited sprouts. PRACTICAL APPLICATIONS: The growing epidemic of non-communicable diseases such as diabetes and obesity has led to the search for prevention and treatment through lifestyle changes, including the consumption of foods rich in bioactive compounds, such as seeds and their sprouts. Since sprouts contain higher concentrations of bioactive compounds and nutrients than seed, germination is a natural alternative to produce ready-to-eat functional foods. Chemical elicitation is a strategy to increase even more the bioactivity of sprouts. CS has been recognized for its beneficial health effects ameliorating dyslipidemia and insulin resistance. This study demonstrates that elicitation, with SA and H2 O2 , during germination of CS, increases the nutrient and phytochemical content of sprouts, with beneficial effects on body weight gain, insulin resistance, dyslipidemia, and prevention of NAFLD progression in diet-induced obese rats. Therefore, chia sprouts, natural and elicited, may be used as potential nutraceutical foods for the prevention and treatment of obesity and its complications.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico.,Research and Graduate School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico
| | - Xochitl Aparicio-Fernández
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN). Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - María Laura González Davalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN). Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Erika A de Los Ríos
- Instituto de Neurobiologıa, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Rosalía Reynoso-Camacho
- Research and Graduate School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico
| |
Collapse
|
36
|
Ebert AW. Sprouts and Microgreens-Novel Food Sources for Healthy Diets. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040571. [PMID: 35214902 PMCID: PMC8877763 DOI: 10.3390/plants11040571] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops' wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers.
Collapse
Affiliation(s)
- Andreas W Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
37
|
Effect of malting on nutritional and antioxidant properties of the seeds of two industrial hemp (Cannabis sativa L.) cultivars. Food Chem 2022; 370:131348. [PMID: 34788961 DOI: 10.1016/j.foodchem.2021.131348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
The impact of malting on antioxidant, nutritional, and antinutritional features of two industrial hemp cultivars was investigated. The seeds were steeped (5 h; RT), germinated (3-days; 24 °C), and kilned at different temperatures (6 h; 50 °C or 70 °C). The following determinations were performed on malted and unmalted samples: total phenolic content, polyphenol profile, total antioxidant capacity, tocopherol composition, proximate analysis, fatty acids profile, trypsin inhibitors and phytate content. The results showed that malting increased the protein content up to 9%, without affecting the fat amount, and the fatty acids profile. Total phenolic content, tocopherol profile and total antioxidant capacity were also improved. 70 °C kilning temperature resulted effective to reduce the trypsin inhibitors (up to -27%), increase the reducing power and the level of N-trans-caffeoyltyramine and cannabisin A. Based on this, malting using 3 germination days and 70 °C as kilning temperature could be considered suitable transformation process for improving hempseeds quality.
Collapse
|
38
|
Dobrowolska-Iwanek J, Zagrodzki P, Galanty A, Fołta M, Kryczyk-Kozioł J, Szlósarczyk M, Rubio PS, Saraiva de Carvalho I, Paśko P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022; 11:foods11030371. [PMID: 35159521 PMCID: PMC8834360 DOI: 10.3390/foods11030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: elemental deficiency may result in the malfunctioning of human organisms. Sprouts, with their attractive looks and well-established popularity, may be considered as alternative sources of elements in the diet. Moreover, the uptake of micro- and macronutrients from sprouts is better when compared to other vegetable sources. The aim of the study was to determine and compare the level of the selected essential minerals and trace elements in 25 sprouts from different botanical families, to preselect the richest species of high importance for human diets. Methods: the Cu, Zn, Mn, Fe, Mg, Ca determinations were performed using atomic absorption spectrometry with flame atomization and iodine by the colorimetric method. Results: beetroot sprouts had the highest levels of Zn, Fe, and Mg, while onion sprouts were the richest in Mn and Ca, among all of the tested sprouts. Sprouts of the Brassicaceae family were generally richer in Ca, Mg, and Zn than sprouts from the Fabaceae family. Results allow preselection of the most perspective sprouts as possible dietary sources of essential minerals and trace elements. For rucola, leeks, onions, and beetroot sprouts, the data on minerals and trace element compositions were performed for the first time.
Collapse
Affiliation(s)
- Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Marek Szlósarczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Pol Salvans Rubio
- Faculty of Pharmacy and Food Science, University of Barcelona, Diagonal Campus, Joan XXIII 27-31, 08-028 Barcelona, Spain;
| | - Isabel Saraiva de Carvalho
- Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, 8005-139 Faro, Portugal;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
- Correspondence: ; Tel.: +48-126-205-670
| |
Collapse
|
39
|
Bermejo NF, Hoummadi G, Munné-Bosch S. β-Carotene biofortification of chia sprouts with plant growth regulators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:398-409. [PMID: 34715565 DOI: 10.1016/j.plaphy.2021.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chia (Salvia hispanica) is a native plant species from South America that is very appreciated for its oleaginous seeds in the agri-food field. Chia seeds are natural sources of many bioactive compounds which provide benefits to human health. Nevertheless, chia sprouts have better nutritional properties than seeds, such as antioxidants, essential amino acids, and phenolic compounds. Among all these beneficial compounds, β-carotene has not been studied in chia sprouts. β-carotene is a precursor of vitamin A, which contributes to maintaining our health status. In this study, to improve β-carotene content in chia sprouts, some plant growth regulators (abscisic acid, methyl jasmonate and methyl salicylate) were applied exogenously to germinating chia seeds. Gibberellins A4/A7 and cytokinin 6-benzyladenine (Promalin®) were also applied, combined with the other regulators, to antagonize a possible inhibition in the germination. Seeds were grown in darkness for 4 days, then seeds were exposed to a short light stimulus (30') and finally to a continued light stimulus (48h). β-carotene, xanthophylls, chlorophylls, de-epoxidation status of xanthophyll cycle (DPS), germination rate, and sprouts fresh weight were analysed. The results show that sprouts treated with methyl salicylate in-creased 2,35 fold their β-carotene content when they were exposed to light for 30'+48h. Sprouts fresh weight and germination were not affected by methyl salicylate. Although more research is needed before industrial application, it is concluded that methyl salicylate can be used to improve β-carotene contents in chia sprouts.
Collapse
Affiliation(s)
- Núria F Bermejo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Ghita Hoummadi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain.
| |
Collapse
|
40
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
41
|
Mondor M, Hernández‐Álvarez AJ. Camelina sativa
Composition, Attributes, and Applications: A Review. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Mondor
- St‐Hyacinthe Research and Development Centre Agriculture and Agri‐Food Canada 3600 Casavant Blvd. West, St‐Hyacinthe Quebec J2S 8E3 Canada
- Institute of Nutrition and Functional Foods (INAF) Université Laval Quebec QC G1V 0A6 Canada
| | | |
Collapse
|
42
|
Moraes MS, Melo Queiroz AJ, Figueirêdo RMF, Paz de Matos JD, Silva LPFR, Nascimento Silva S, Vieira AF. Germinated seeds of three
Cucurbita
varieties: Physical characteristics, minerals profile, and drying behavior. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Suiane Moraes
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | | | - Joana D'arc Paz de Matos
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | - Semirames Nascimento Silva
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Agdylannah Felix Vieira
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| |
Collapse
|
43
|
Gómez-Velázquez HDJ, Aparicio-Fernández X, Reynoso-Camacho R. Chia Sprouts Elicitation with Salicylic Acid and Hydrogen Peroxide to Improve their Phenolic Content, Antioxidant Capacities In Vitro and the Antioxidant Status in Obese Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:363-370. [PMID: 34378171 DOI: 10.1007/s11130-021-00912-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elicitation is a biotechnological approach to improve phenolic compounds content and antioxidant properties of ready-to-eat functional foods. This study aimed to evaluate the chemical elicitation effects using salicylic acid (SA) and hydrogen peroxide (H2O2) in optimized-germination conditions on seedling vigor, phenolic content, and their antioxidant capacities in vitro and serum and urine of Wistar obese rats. Optimized-germination conditions of 26.5 °C and 178 h produced a 64% of germination and a sprout length of 56 mm. Only, the elicitation with H2O2 (20 mM) enhanced the germination (75%) and H2O2 (10 and 20 mM) the sprout length (69 and 59 mm, respectively). In contrast, both elicitors enhanced phenolic contents, being more significant total phenolic compounds content for SA (1 and 2 mM), up to 65.5-73.5%. SA and H2O2 improved total flavonoids content (36.5-64.1%), ABTS (19.3-61.1%), and DPPH capacities (51-86%), depending on SA and H2O2 concentration, compared with non-elicited chia sprouts. The QUENCHER antioxidant capacities of elicited chia sprouts increased up to three times more than extracts capacities, principally Q-ABTS, which could be attributed to phenolic bounds to dietary fiber. Rats fed with a high-fat and fructose diet (HFFD) and supplemented with chia sprouts, especially 1-mM SA, improve the obesity-related oxidative stress through an increase of antioxidant capacities, using DPPH and ABTS test, on serum (70-118%) and urine samples (80-116%). These results suggest that chia sprouts elicited with 1-mM SA are a source of antioxidant compounds that can be used to decrease obesity related oxidative stress.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Departamento de Ciencias de La Tierra Y de La Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Paseos de la Montaña No. 1144, C.P. 47460, Lagos de Moreno, Jal, Mexico
- Research and Graduate School of Chemistry, Autonomous University of Queretaro, Cerro de Las Campanas S/N, C.P.76010, Queretaro, Qro, Mexico
| | - Xochitl Aparicio-Fernández
- Departamento de Ciencias de La Tierra Y de La Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Paseos de la Montaña No. 1144, C.P. 47460, Lagos de Moreno, Jal, Mexico.
| | - Rosalía Reynoso-Camacho
- Research and Graduate School of Chemistry, Autonomous University of Queretaro, Cerro de Las Campanas S/N, C.P.76010, Queretaro, Qro, Mexico.
| |
Collapse
|
44
|
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021; 10:foods10071542. [PMID: 34359411 PMCID: PMC8304690 DOI: 10.3390/foods10071542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G’ and G” decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
Collapse
|
45
|
Herbal Additives Substantially Modify Antioxidant Properties and Tocopherol Content of Cold-Pressed Oils. Antioxidants (Basel) 2021; 10:antiox10050781. [PMID: 34069017 PMCID: PMC8157206 DOI: 10.3390/antiox10050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to examine combinations of base oils and herbal additives with a view to obtaining macerates with improved health benefits. Base oils were cold-pressed from the seeds of black cumin, borage, evening primrose, safflower, walnut, common hazel, and oilseed rape, as well as the flesh of sea-buckthorn fruits. They were then supplemented with herbs, including basil, thyme, and sage, in order to create macerates. Total antioxidant activity and tocopherol level were analyzed in oils, macerates, and oil cakes. Additionally, chemical properties of oil cakes—such as the level of fibre, vitamin C, β-carotene, and lutein—were also examined. Supplementation with herbs caused diversified effects on antioxidant activity and tocopherol level in macerates depending on the base oil, herb, and supplementation method. The obtained results indicate that tocopherol level does not play a decisive role in determining the antioxidant properties of oils, macerates, and oil cakes, suggesting significant involvement of other antioxidants. Among the tested macerates, the most promising one seems to be oilseed rape oil enriched with sage or basil to maximize its health benefits. The study can serve as a starting point for the development and implementation of functional macerates and oil cakes in healthy nutrition.
Collapse
|
46
|
Vinco Pimenta A, Agrizzi Verediano T, Souza Carneiro JC, Brunoro Costa NM, Vasconcelos Costa AG. Bioaccessibility and bioavailability of calcium in sprouted brown and golden flaxseed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2788-2798. [PMID: 33135783 DOI: 10.1002/jsfa.10908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Germination promotes changes in the composition of seeds by providing potential nutritional and health benefits compared with unsprouted seeds. This study investigated the influence of germination on the bioaccessibility and bioavailability of calcium in brown flaxseed (BF) and golden flaxseed (GF). RESULTS Germination did not influence the calcium levels of BF or GF, but the sprouted GF (SGF, 265.6 ± 12.9 mg) presented higher levels of calcium than the sprouted BF (SBF, 211.6 ± 3.20 mg). Tannin levels were similar among the groups (GF = 79.97 ± 3.49 mg; SGF = 78.81 ± 0.77 mg; BF = 81.82 ± 2.61 mg; SBF = 79.24 ± 4.58 mg), whereas phytate and oxalate levels decreased after germination. Germination reduced the phytate:calcium and oxalate:calcium molar ratios. In the in vitro study, germination increased calcium bioaccessibility (GF = 35.60 mg versus SGF = 41.45 mg; BF = 31.01 mg versus SBF = 38.84 mg). In the in vivo study, all groups present similar levels of urinary calcium (GF = 1.04 mg versus SGF = 2.06 mg; BF = 1.68 mg versus SBF = 1.35 mg) and fecal calcium (GF = 5.06 mg versus SGF = 6.14 mg; BF = 6.47 mg versus SBF = 8.40 mg). The calcium balance/day of the SBF group (37.97 mg) was smaller than the control group (47.22 mg). The germination maintained the plasma levels of calcium, phosphorus, creatinine, and alkaline phosphatase similar among the groups. No changes were observed in morphology and calcium levels of animal femurs. CONCLUSION The germination reduced the antinutritional factor in both flaxseed varieties. Although there was an improvement in the in vitro bioaccessibility of calcium, the germination did not increase calcium absorption and balance in the animals, which may be due to the interaction with other compounds in the organism. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Vinco Pimenta
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Thaísa Agrizzi Verediano
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Joel Camilo Souza Carneiro
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
- Department of Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Neuza Maria Brunoro Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, Universidade Federal do Espírito Santo, Alegre, Brazil
| |
Collapse
|
47
|
Khare B, Sangwan V, Rani V. Influence of sprouting on proximate composition, dietary fiber, nutrient availability, antinutrient, and antioxidant activity of flaxseed varieties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Varsha Rani
- Department of Foods & Nutrition CCS HAU Hisar India
| |
Collapse
|
48
|
Wang Z, Wu Z, Zuo G, Lim SS, Yan H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods 2021; 10:foods10030538. [PMID: 33807644 PMCID: PMC8002154 DOI: 10.3390/foods10030538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
The defatted seeds of Oenothera biennis (DSOB) are a by-product of evening primrose oil production that are currently not effectively used. In this study, α-glucosidase inhibition, aldose reductase inhibition, antioxidant capacity, polyphenol composition, and nutritional value (carbohydrates, proteins, minerals, fat, organic acid, and tocopherols) of DSOB were evaluated using the seeds of Oenothera biennis (SOB) as a reference. DSOB was an excellent inhibitor of α-glucosidase (IC50 = 3.31 μg/mL) and aldose reductase (IC50 = 2.56 μg/mL). DSOB also showed considerable antioxidant capacities (scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, nitric oxide, peroxynitrite, and hydroxyl radicals). DSOB was a reservoir of polyphenols, and 25 compounds in DSOB were temporarily identified by liquid chromatography coupled with electrospray ionization–quadrupole time of flight–mass spectrometry analysis. Moreover, the carbohydrate, protein, and mineral content of DSOB were increased compared to that of SOB. DSOB contained large amounts of fiber and low levels of sugars, and was rich in calcium and iron. These results imply that DSOB may be a potential functional food ingredient for diabetes, providing excellent economic and environmental benefits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| | - Zhaoyang Wu
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| |
Collapse
|
49
|
Dębski H, Wiczkowski W, Horbowicz M. Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts. Molecules 2021; 26:molecules26051345. [PMID: 33802449 PMCID: PMC7959454 DOI: 10.3390/molecules26051345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (−)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.
Collapse
Affiliation(s)
- Henryk Dębski
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland;
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Marcin Horbowicz
- Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland;
- Correspondence: ; Tel.: +48-25-643-1232
| |
Collapse
|
50
|
Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel) 2020; 9:antiox9121309. [PMID: 33371338 PMCID: PMC7767362 DOI: 10.3390/antiox9121309] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
Collapse
|