1
|
Ngasotter S, Xavier KAM, Sagarnaik C, Sasikala R, Mohan CO, Jaganath B, Ninan G. Evaluating the reinforcing potential of steam-exploded chitin nanocrystals in chitosan-based biodegradable nanocomposite films for food packaging applications. Carbohydr Polym 2025; 348:122841. [PMID: 39562114 DOI: 10.1016/j.carbpol.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Chitosan-based films, despite being biodegradable and edible, often lack the necessary requisite properties such as mechanical strength, water resistance, and thermal stability, which are critical for effective food packaging. To address these limitations, incorporating reinforcing nanofiller materials offers a promising solution. This study utilizes steam-exploded chitin nanocrystals (ChNCs) to reinforce chitosan nanocomposite films through a solution-casting technique. The resulting nanocomposite films were evaluated for their physical, mechanical, optical, and thermal properties. Our findings indicate that ChNC incorporation significantly enhanced the mechanical and thermal properties, with tensile strength improving by 88.83 %, Young's modulus by 52.82 %, and elongation at break by 126.15 %, while reducing water uptake by 61.09 % and solubility by 43.03 %. The nanocomposite films also exhibited improved UV-Vis light barrier properties and maintained reasonable transparency. Additionally, color analysis revealed increased lightness and decreased yellowness compared to pure chitosan films. FTIR confirmed the successful integration of ChNCs into the chitosan matrix, while XRD indicated higher crystallinity for composite films. SEM analysis showed a homogeneous dispersion of ChNCs in the chitosan matrix. These results underscore the potential of steam-exploded ChNC-reinforced chitosan nanocomposite films for food packaging applications, positioning them as promising candidates for sustainable and functional packaging solutions in the food industry.
Collapse
Affiliation(s)
- Soibam Ngasotter
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India; ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - K A Martin Xavier
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| | - C Sagarnaik
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India; ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Remya Sasikala
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - C O Mohan
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Bindu Jaganath
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - George Ninan
- ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| |
Collapse
|
2
|
Wu J, Zhang Y, Zhang F, Mi S, Yu W, Sang Y, Wang X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem 2025; 463:141442. [PMID: 39342685 DOI: 10.1016/j.foodchem.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
This study incorporated purple sweet potato anthocyanin (PSPA) and silver-nanoparticles (AgNPs) into the chitosan/polyvinyl alcohol film matrix (PVA/CS) to successfully prepare a composite film, which effectively inhibited bacterial growth and indicated product freshness. The addition of AgNPs and PSPA led to a dense structure of the film, which effectively enhanced its physical properties, barrier properties and functional properties. The incorporation of PSPA made the composite film highly pH-sensitive, which exhibited distinct color changes in varying pH solutions. The PVA/CS-AgNPs-PSPA10 composite film with PSPA and AgNPs resulted the shelf life of strawberries to 13 days at 4 °C, which effectively reduced strawberry breathing during storage. Additionally, such composite film changed color from purple to yellow-purple, indicating the deterioration of strawberries. It also showed an antibacterial indication through its excellent antibacterial property and freshness indication performance, which demonstrated its significance in developing antibacterial indicator composite packaging materials for fruits and vegetables preservation.
Collapse
Affiliation(s)
- Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
3
|
Shoukat L, Javed S, Afzaal M, Akhter N, Shah YA. Starch-based encapsulation to enhance probiotic viability in simulated digestion conditions. Int J Biol Macromol 2024; 283:137606. [PMID: 39542318 DOI: 10.1016/j.ijbiomac.2024.137606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This research aims to meet the demand for efficient delivery systems in the food, nutraceutical, and pharmaceutical industries. The study involved the synthesis of starch-based nanoparticles for potential application in the encapsulation of Lactobacillus rhamnosus. Various techniques such as zeta sizer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the encapsulated probiotics in microbeads. The results showed 85.00 % encapsulation efficiency of beads. Microscopic analysis revealed that the probiotics accumulated within the wall material and formed small, smooth polygonal granules on the capsule surface. XRD analysis confirmed the presence of amorphous humps and some crystallinity of nanoparticles in the capsules. Moreover, encapsulation significantly improved probiotic viability under simulated gastrointestinal conditions. This study highlights the potential of starch-based nanoparticles to enhance the stability and viability of probiotics, demonstrating their potential applications across various industrial sectors. Further research should focus on investigating the long-term stability and functional efficacy of encapsulated probiotics in microbeads for real-world applications.
Collapse
Affiliation(s)
- Laraib Shoukat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan.
| | - Naheed Akhter
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Tang J, Zhang W, Li S, Dong M, Jiang L, Hou S, Qin Y. Vaterite-type calcium carbonate and aminopropyltriethoxysilane-modified cellulose nanofibrils for preservation of aged paper. Int J Biol Macromol 2024; 283:137824. [PMID: 39566787 DOI: 10.1016/j.ijbiomac.2024.137824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Deacidification and structural reinforcement are critically important for the long-term preservation of paper cultural relics. In this study, a novel approach is presented to synergistically combine highly reactive vaterite-type calcium carbonate with aminopropyltriethoxysilane-modified cellulose nanofibrils (NH2-CNFs) for the restoration of aged paper. Employed as a deacidification agent, vaterite demonstrated superior efficacy at a low dosage in comparison with commercially available calcite-type calcium carbonate. Concurrently, the carboxylate content of NH2-CNFs was reduced, enhancing its hydrophobicity and thermal stability. A comprehensive characterization of both vaterite and NH2-CNFs was conducted using multiple analytical techniques. Upon application of this restoration system to aged paper samples, the pH and alkaline reserve were elevated to 8.05 and 0.637 mol/kg, respectively. The tensile strength of the paper sample was augmented by 15 %, while folding endurance and tearing resistance were enhanced by 139 % and 66 %, respectively. Notably, the integration of vaterite exhibited no deleterious impact on the mechanical properties of the paper substrate. Additionally, this treatment imparted a substantial anti-aging effect, as evidenced by the results of dry heat and UV-irradiation aging. Consequently, this research introduces a novel and efficacious methodology for the restoration of aged paper, offering promising implications for the conservation of historical documents.
Collapse
Affiliation(s)
- Jiayun Tang
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Weiming Zhang
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Shan Li
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China.
| | - Maolin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lihua Jiang
- Jintan District Archives of Changzhou, 213299 Changzhou, PR China
| | - Sixian Hou
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Yong Qin
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China.
| |
Collapse
|
5
|
Pham BTT, Lien NHT, Nguyen DV, Nguyen TT. Effect of film-forming solution pH on the mechanical, barrier, and biological characteristics of chitosan/Piper betel L. leaf extract coating film for mango preservation. Int J Biol Macromol 2024; 279:135385. [PMID: 39245123 DOI: 10.1016/j.ijbiomac.2024.135385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The present work aimed to investigate the effect of film-forming solution pH on characteristics of chitosan (CH) - Piper betel L. leaf extract (PBe) coating films and their potential applications in mango preservation. The coating films were fabricated from CH-PBe solutions in the pH range of 3-5 using a solvent evaporation technique. The analysis results (DSC and FTIR) demonstrate higher miscibility, better compatibility, and tighter intermolecular interactions between CH and active compounds in the film matrix prepared at low pH. The mechanical and barrier properties of the CH-PBe film significantly decreased with increasing pH value. Varying the film-forming pH insignificantly affected the antioxidant activity and antibacterial inhibition against Staphylococcus aureus (Gram-positive) of the resultant films. However, Escherichia coli (Gram-negative) was less vulnerable to the blend film prepared at the higher pH medium. The coating solution at pH 4 proved suitable for preserving 'Tu Quy' mangoes, according to the observation of color changes, accumulated decay rate, respiration rate, ripening index, and other related factors. The findings of this work reveal the importance of pH control in producing CH-PBe coating films for mango preservation and provide more insights into pH-affected interactions between CH matrix and polyphenols in PBe.
Collapse
Affiliation(s)
- Bao-Tran Tran Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 71516, Viet Nam
| | - Ngoc-Huyen Thi Lien
- Department of Chemical Engineering, Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Dai Van Nguyen
- Faculty of Automotive Engineering, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 71516, Viet Nam.
| |
Collapse
|
6
|
Zhao D, Wang Y, Yu P, Kang Y, Xiao Z, Niu Y, Wang Y. Mussel-inspired chitosan and its applications in the biomedical field. Carbohydr Polym 2024; 342:122388. [PMID: 39048196 DOI: 10.1016/j.carbpol.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Chitosan (CS) has physicochemical properties including solubility, crystallinity, swellability, viscosity, and cohesion, along with biological properties like biocompatibility, biodegradation, antioxidant, antibacterial, and antitumor effects. However, these characteristics of CS are greatly affected by its degree of deacetylation, molecular weight, pH and other factors, which limits the application of CS in biomedicine. The modification of CS with catechol-containing substances inspired by mussels can not only improve these properties of CS, but also endow it with self-healing property, providing an environmentally friendly and sustainable way to promote the application of CS in biomedicine. In this paper, the properties of CS and its limitation in the biomedical filed are introduced in detail. Then, the modification methods and properties of substances with catechol groups inspired by mussels on CS are reviewed. Finally, the applications of modified CS in the biomedical field of wound healing, drug delivery, anticancer therapy, biosensor and 3D printing are further discussed. This review can provide valuable information for the design and exploitation of mussel-inspired CS in the biomedical field.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yizhuo Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yamei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
7
|
Yazdi JS, Salari M, Ehrampoush MH, Bakouei M. Development of active chitosan film containing bacterial cellulose nanofibers and silver nanoparticles for bread packaging. Food Sci Nutr 2024; 12:8186-8199. [PMID: 39479705 PMCID: PMC11521716 DOI: 10.1002/fsn3.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024] Open
Abstract
The objective was to develop an active chitosan-based coating and to evaluate its effect on the shelf life and microbial safety of bread. Bacterial cellulose nanofibers (BCNF) and various levels (0.5%, 1%, and 2%) of silver nanoparticles (AgNPs) were in the chitosan (CS) film. Characterization of films was determined by analyzing WVP, ultraviolet barrier, and opacity as well as FTIR, XRD, DSC, TGA, and SEM. The water vapor permeability (WVP) of CS was remarkably (p < .05) decreased from 3.75 × 10-10 to 0.85 × 10-10 g/smPa when filled with BCNF and 2% AgNPs. Thermal and structural properties were enhanced in nanoparticle-included films. Applying CS/BCNF/AgNPs coatings for bread samples demonstrated a significant improvement in moisture retention and a decrease in the hardness (from 10.2 to 7.05 N for CS and CS/BCNF/1% AgNPs coated samples, respectively). Moreover, microbial shelf life of bread sample increased from 5 to 38 days after packaging with CS/BCNF/2% AgNPs film. After a storage period of 15 days at 25°C, no fungal growth was detected in bread samples which were coated with nanocomposite suspensions containing 1% and 2% AgNPs. However, at the same condition, yeast and mold counts was 7.91 log CFU/g for control sample. In conclusion, the CS/BCNF/2% AgNPs film might have the potential for use as active packaging of bread.
Collapse
Affiliation(s)
- Jalal Sadeghizadeh Yazdi
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Salari
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mohammad Hasan Ehrampoush
- Department of Environmental Health Engineering, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrasa Bakouei
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
8
|
Eze FN, Eze RC, Singh S, Okpara KE. Fabrication of a versatile and efficient ultraviolet blocking biodegradable composite film consisting of Tara gum/PVA/Riceberry phenolics reinforced with biogenic riceberry phenolic-rich extract-nano‑silver. Int J Biol Macromol 2024; 278:134914. [PMID: 39173805 DOI: 10.1016/j.ijbiomac.2024.134914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The demand for UV-protective and biodegradable packaging materials has been increasing with greater awareness about environmental sustainability and human safety. In this work, the effect of incorporating riceberry phenolic extract (RPE) as well as combined RPE and green synthesized biogenic nano‑silver (RPE-NS, into Tara gum/PVA (TP)-based matrix was evaluated on the physical, mechanical, functional, biocompatible and biodegradable attributes of the resultant composite films. Integration of RPE (2 wt%) and RPE-NS (0.8 wt%) resulted in nanocomposite (TP/RPE-NS) film with improved physical properties relative to the plain TP and TP/RPE films. The TP/RPE-NS film displayed a compact structure and homogenous distribution of the nano‑silver. Increased molecular interactions, crystallinity and thickness was also observed for the nanocomposite film. Compared to plain TP film, TP/RPE-NS film exhibited improved water vapor barrier properties and surface hydrophobicity due to the extract and nanoparticles. The tensile strength and elongation-at-break of TP/RPE-NS were markedly higher (41.76 MPa and 37.40 %) compared to that of plain TP film (36.07 MPa and 20.80 %). Whereas TP/RPE film provided good UV protection (UPF value of 31.85) compared to the minimal protection by TP film (UPF value of 2.72), combination of RPE/RPE-NS ensured that TP/RPE-NS availed an excellent UV-barrier performance (UPF value of 61.09). Furthermore, TP/RPE-NS film exhibited significant antioxidant activity relative to TP film. Besides, all TP-based films were found to be compatible with rat erythrocytes and biodegradable. Taken together, these findings indicate that TP/RPE-NS holds good potential for the development of UV-protective and biodegradable packaging material.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- College of Agricultural and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, District, Nakhon Pathom 73170, Thailand.
| | - Sudarshan Singh
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Kingsley Ezechukwu Okpara
- Institute of Geosciences and Environmental Management, Rivers State University, P.M.B. 5080 Port Harcourt, Nigeria
| |
Collapse
|
9
|
Wang L, Li Y, Ye L, Zhi C, Zhang T, Miao M. Development of starch-cellulose composite films with antimicrobial potential. Int J Biol Macromol 2024; 276:133836. [PMID: 39004254 DOI: 10.1016/j.ijbiomac.2024.133836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
This study explored the structure and performance of starch-based antibacterial films reinforced with black tea cellulose nanocrystals (BT-CNCs). The optimal addition amount of BT-CNCs is 5 % (w/w Starch). This nanocrystal-infused film, incorporating chitosan (CS), ε-polylysine (ε-PL), and zinc oxide nanoparticles (ZnONP) as antibacterial agents, exhibited a smooth, continuous surface. The addition of BT-CNCs and antibacterial agents did not change the group characteristic peaks of the film, but changed the crystallinity slightly. The films, namely St, St/CNCs, St/CNCs/CS, and St/CNCs/ε-P, maintained high light transmittance (above 80 %), except for the St/CNCs/ZnONP film, which effectively shielded UV radiation. The combined use of antibacterial agents and BT-CNCs enhanced the water and oxygen barrier properties of the film. Notably, the St/CNCs/CS film exhibited the lowest solubility (17.74 % ± 0.36) and the highest tensile strength (14.23 ± 0.16 MPa). The antibacterial efficacy of the films decreased in the order of St/CNCs/ZnONP, St/CNCs/ε-PL, and St/CNCs/CS, with a more pronounced inhibitory effect on E. coli compared to S. aureus. This study marries natural waste recycling with cutting-edge food packaging technology, setting a new benchmark for the development of sustainable packaging materials.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yukun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
10
|
Jeong S, Lee HG, Yoo S. Effect of catalyst carrier type and concentration on oxygen-scavenging property and characteristics of iron-based active films. Food Sci Biotechnol 2024; 33:2533-2541. [PMID: 39144186 PMCID: PMC11319535 DOI: 10.1007/s10068-024-01520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 08/16/2024] Open
Abstract
The presence of oxygen can degrade food quality, making it essential to remove oxygen from the packaging headspace of food products. In this study, the effect of catalyst type and concentration on iron-based oxygen-scavenging films was investigated to enhance the oxygen removal efficiency in food packaging films. Among the investigated catalysts, calcium chloride and lipophilic silica improved the oxygen-scavenging capacity more than sodium chloride and hydrophilic silica. As the catalyst content was increased from 0.1 to 6.0 %(w/w), the oxygen content (%) in the package decreased from 3.90 to 0.36%. Application of oxygen-scavenging films in apple packaging decreased the apple browning index from 52.87 to 38.13 and reduced the oxygen concentration inside the package from 9.8 to 0.0%. Therefore, the food packaging film developed in this study can be used as a food packaging material that removes oxygen and thus prevents food quality deterioration. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01520-4.
Collapse
Affiliation(s)
- Suyeon Jeong
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hyun-Gyu Lee
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - SeungRan Yoo
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| |
Collapse
|
11
|
Herrera-Rivera MDR, Torres-Arellanes SP, Cortés-Martínez CI, Navarro-Ibarra DC, Hernández-Sánchez L, Solis-Pomar F, Pérez-Tijerina E, Román-Doval R. Nanotechnology in food packaging materials: role and application of nanoparticles. RSC Adv 2024; 14:21832-21858. [PMID: 38984259 PMCID: PMC11231830 DOI: 10.1039/d4ra03711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Global concerns about food security, driven by rising demand, have prompted the exploration of nanotechnology as a solution to enhance food supply. This shift comes in response to the limitations of conventional technologies in meeting the ever-increasing demand for food products. Consequently, nanoparticles play a crucial role in enhancing food production, preservation, and extending shelf life by imparting exceptional properties to materials. Nanoparticles and nanostructures with attributes like expansive surface area and antimicrobial efficacy, are versatile in both traditional packaging and integration into biopolymer matrices. These distinctive qualities contribute to their extensive use in various food sector applications. Hence, this review explores the physicochemical properties, functions, and biological aspects of nanoparticles in the context of food packaging. Furthermore, the synergistic effect of nanoparticles with different biopolymers, alongside its different potential applications such as food shelf-life extenders, antimicrobial agents and as nanomaterials for developing smart packaging systems were summarily explored. While the ongoing exploration of this research area is evident, our review highlights the substantial potential of nanomaterials to emerge as a viable choice for food packaging if the challenges regarding toxicity are carefully and effectively modulated.
Collapse
Affiliation(s)
| | - Sandra P Torres-Arellanes
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Carlos Inocencio Cortés-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Diana C Navarro-Ibarra
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Laura Hernández-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Francisco Solis-Pomar
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León San Nicolas de los Garza Nuevo León 66451 Mexico
| | - Eduardo Pérez-Tijerina
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León San Nicolas de los Garza Nuevo León 66451 Mexico
| | - Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| |
Collapse
|
12
|
Mesgari M, Matin MM, Goharshadi EK, Mashreghi M. Biogenesis of bacterial cellulose/xanthan/CeO 2NPs composite films for active food packaging. Int J Biol Macromol 2024; 273:133091. [PMID: 38878924 DOI: 10.1016/j.ijbiomac.2024.133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The increasing significance of biopolymer-based food packaging can be attributed to its biodegradability and independence from petroleum-derived materials. Concurrently, metal oxide nanoparticles (NPs) have gained prominence as effective antimicrobial agents against both wild-type and antibiotic-resistant microbes. In this study, cerium oxide or ceria, CeO2, nanoparticles with an average diameter of 50 nm were synthesized via a green method utilizing Vibrio sp. VLC cell lysate supernatant. The synthesized CeO2 NPs displayed remarkable antimicrobial properties, inhibiting the growth of Escherichia coli and Staphylococcus aureus by 93.7 % and 98 %, respectively. To enhance the potential of bacterial cellulose (BC) for advanced applications, we developed a BC/xanthan/CeO2 nanocomposite using both ex situ and in situ techniques. The integration of CeO2 NPs within the nanocomposite structure not only improved the inherent properties of BC, but also rendered it suitable for use in active food packaging systems. The nanocomposite exhibited no significant cytotoxicity on the human dermal fibroblast (HDF) cells, confirming its safety. Nanocomposites containing biogenically synthesized CeO2 NPs demonstrated exceptional efficacy for reducing microbial contamination. Bread samples coated with nanocomposite films displayed no signs of microbial growth. These results support the application of BC/xanthan/CeO2 nanocomposites as suitable and effective coating materials for antimicrobial food packaging applications.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elaheh K Goharshadi
- Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
13
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Synthetic Degradable Polyvinyl Alcohol Polymer and Its Blends with Starch and Cellulose-A Comprehensive Overview. Polymers (Basel) 2024; 16:1356. [PMID: 38794547 PMCID: PMC11124784 DOI: 10.3390/polym16101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Approximately 50% of global plastic wastes are produced from plastic packaging, a substantial amount of which is disposed of within a few minutes of its use. Although many plastic types are designed for single use, they are not always disposable. It is now widely acknowledged that the production and disposal of plastics have led to a plethora of negative consequences, including the contamination of both groundwater and soil resources and the deterioration of human health. The undeniable impact of excessive plastic manufacturing and waste generation on the global plastic pollution crisis has been well documented. Therefore, degradable polymers are a crucial solution to the problem of the non-degradation of plastic wastes. The disadvantage of degradable polymers is their high cost, so blending them with natural polymers will reduce the cost of final products and maximize their degradation rate, making degradable polymers competitive with industrial polymers that are currently in use daily. In this work, we will delineate various degradable polymers, including polycaprolactone, starch, and cellulose. Furthermore, we will elucidate several aspects of polyvinyl alcohol (PVA) and its blends with natural polymers to show the effects of adding natural polymers on PVA properties. This paper will study cost-effective and ecologically acceptable polymers by combining inexpensive natural polymers with readily accessible biodegradable polymers such as polyvinyl alcohol (PVA).
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
14
|
Chen C, Zhang S, Cheng X, Ren Y, Qian Y, Zhang C, Chen M, Sun N, Liu H. Reducing cherry rain-cracking: Enhanced wetting and barrier properties of chitosan hydrochloride-based coating with dual nanoparticles. Int J Biol Macromol 2024; 268:131660. [PMID: 38636766 DOI: 10.1016/j.ijbiomac.2024.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.
Collapse
Affiliation(s)
- Chengwang Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Shuangling Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China.
| | - Xiaofang Cheng
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yuhang Ren
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yaru Qian
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Cheng Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Min Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Nan Sun
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Heping Liu
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| |
Collapse
|
15
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Yadav M, Maurya AK, Behera K, Chiu FC, Rhee KY. Physical properties of cellulose nanocrystal/magnesium oxide/chitosan transparent composite films for packaging applications. Int J Biol Macromol 2024; 264:130560. [PMID: 38431019 DOI: 10.1016/j.ijbiomac.2024.130560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Hitherto unreported hybrid nanofillers (CNC:MgO) reinforced chitosan (CTS) based composite (CNC:MgO)/CTS films were synthesized using a solution-casting blend technique and synergistic effect of hybrid nanofiller in terms of properties enhancement were investigated. Optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were used to characterize the films. The hybrid nanofiller considerably changed the transparency and color of the CTS films. The tensile strengths of (3 wt%) CNC/CTS, (3 wt%) MgO/CTS, (1:1)(CNC:MgO)/CTS, (1:2)(CNC:MgO)/CTS and (2:1)(CNC:MgO)/CTS films were 27.49 %, 35.60 %, 91.62 %, 38.22 %, and 29.32 % higher than pristine CTS films respectively, while the water vapor permeation were 28.21 %, 30.77 %, 34.62 %, 38.46 %, and 37.44 % lower than pristine CTS film, respectively. Moreover, the CTS composite films exhibited an improvement in overall water barrier properties after incorporating hybrid nanofillers. Our observations suggest that chitosan-based hybrid nanofiller composite films are a good replacement for plastic-based packaging materials within the food industry.
Collapse
Affiliation(s)
- Mithilesh Yadav
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur, U.P. 222003, India.
| | - Anil Kumar Maurya
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur, U.P. 222003, India
| | - Kartik Behera
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - K Y Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin, Republic of Korea.
| |
Collapse
|
17
|
Wu H, Wang X, Li S, Zhang Q, Chen M, Yuan X, Zhou M, Zhang Z, Chen A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int J Biol Macromol 2024; 260:129469. [PMID: 38242415 DOI: 10.1016/j.ijbiomac.2024.129469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiangfeng Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Maoxu Chen
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
18
|
Feng Q, Fan B, He YC, Ma C. Antibacterial, antioxidant and fruit packaging ability of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan composite film. Int J Biol Macromol 2024; 256:128297. [PMID: 38007019 DOI: 10.1016/j.ijbiomac.2023.128297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Silver nanoparticles were prepared by loading Ag+ into biochar of waste barley distillers' grains shell by reduction with trisodium citrate, and this silver-loaded biochar was introduced into polyvinyl alcohol-chitosan. Various analysis with Fourier Transform Infrared spectroscopy, X-ray diffraction, Thermogravimetric analysis, and water contact angle revealed that biochar-based silver nanoparticle was incorporated into the polyvinyl alcohol-chitosan film, the biochar-based silver nanoparticles-polyvinyl alcohol-chitosan (C-Ag-loaded PVA/CS) composite film had good thermostability and hydrophobicity. Through the analysis via disk diffusion method, the composite containing 3 % of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan had high antibacterial activity (inhibition zone: 18 mm against E. coli and 15 mm against S. aureus), and the bacterial membrane permeability was measured, indicating that C-Ag-loaded PVA/CS composite film could destroy the cell membrane, release intracellular substances, and have high antioxidant activity. During the storage, the weight loss rate of the biochar-based silver nanoparticles-polyvinyl alcohol-chitosan plastic wrap group was 0.14 %, and the titratable acid content only decreased by 0.061 %, which had a good effect on extending the shelf life of blueberries. The C-Ag-loaded PVA/CS composite film could also delay deterioration of blueberries and prolong storage time. Overall, this composite film had potential in food packaging and extending food shelf-life aspects.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
19
|
Hamedi S, Mahmoodi-Barmesi M, Kermanian H, Ramezani O, Razmpour Z. Investigation of physicochemical and biological properties of bacterial cellulose & zein-reinforced edible nanocomposites based on flaxseed mucilage containing Origanum vulgare L. essential oil. Int J Biol Macromol 2024; 254:127733. [PMID: 37918591 DOI: 10.1016/j.ijbiomac.2023.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.
Collapse
Affiliation(s)
- Sepideh Hamedi
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Hossein Kermanian
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Omid Ramezani
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Zahra Razmpour
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
20
|
Yang J, Zhong F, Liu F. Properties of sodium alginate-based nanocomposite films: Effects of aspect ratio and surface charge of cellulose nanocrystals. Int J Biol Macromol 2024; 256:128420. [PMID: 38013077 DOI: 10.1016/j.ijbiomac.2023.128420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Three cellulose nanocrystals (CNCs) were prepared to reinforce sodium alginate (SA) films. This study investigated effects of aspect ratio (L/D) and surface charge of three CNCs (CCNC, MCNC, and WCNC) on the properties of films. At CNC concentrations ≤3 wt%, MCNC, with a medium L/D but the lowest surface charge density among the three CNCs, exhibited the highest efficiency in enhancing the Young's modulus and tensile strength of films. This indicated that, apart from L/D, CNC's surface charge density also affected its reinforcing effects in anionic SA-based films. Compared with other CNCs, MCNC with the lowest charge density exhibited weaker repulsion with SA, potentially contributing to stronger interfacial interactions between them. At concentrations >3 wt%, the reinforcing efficiency of MCNC was extremely close to that of WCNC, which had the highest L/D but medium charge density. This was possibly because, according to SEM results, MCNC with the lowest absolute value of zeta potential aggregated more severely than other CNCs. However, both MCNC and WCNC were consistently more efficient than CCNC. Moreover, FTIR results revealed that WCNC formed more hydrogen bonds with SA than other CNCs. Consequently, adding WCNC was more effective in reducing films' water vapor permeability and hydrophilicity.
Collapse
Affiliation(s)
- Jinshu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| |
Collapse
|
21
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
22
|
Bhat MI, Shahi NC, Lohani UC, Pathania S, Malik S, Singh S, Amin T. Cellulose nanocrystals reinforced chitosan/titanium dioxide bionanocomposite with enhanced interfacial compatibility: Fabrication, characterization, and application in fresh-cut apple slices. Int J Biol Macromol 2023; 253:127498. [PMID: 37858645 DOI: 10.1016/j.ijbiomac.2023.127498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
This research aimed to investigate the feasibility of using a bionanocomposite made of chitosan, CNC, and TiO2 nanoparticles to package freshly sliced apples. At the outset, the effect of varying concentrations of CNC (1, 5, and 10 %) and TiO2 (1, 3, and 5 %) on the mechanical, thermal, and water sensitivity characteristics of the chitosan bionanocomposite was studied. Among different combinations, the bionanocomposite containing 10 % CNC and 3 % TiO2 displayed significant enhancements compared to neat chitosan film. Notably, it exhibited a substantial increase in tensile strength (78.2 %), glass transition temperature (26.7 %), and melting temperature (30.0 %) compared to neat chitosan film. Additionally, it demonstrated reduced WVP (27.8 %), FWS (44.4 %), and SR (50.7 %). These improvements were attributed to the synergistic interactions among chitosan, CNC, and TiO2 nanoparticles through hydrogen and oxygen bonding, corroborated by spectral changes in the material. The photocatalytic degradation of ethylene and microbes by UV-A (intermittent) activated TiO2 contained in the developed bionanocomposite was confirmed by the retention of acceptable quality and radical scavenging activity (70 % retention) of fresh-cut apple slices up to 11 days. The developed bionanocomposite can thus preserve the quality of ethylene-producing horticultural produce.
Collapse
Affiliation(s)
- Mohd Ishfaq Bhat
- Department of Post-Harvest Process & Food Engineering, GBPUAT, Pantnagar, Uttarakhand 263145, India
| | - Navin Chandra Shahi
- Department of Post-Harvest Process & Food Engineering, GBPUAT, Pantnagar, Uttarakhand 263145, India.
| | - Umesh Chand Lohani
- Department of Post-Harvest Process & Food Engineering, GBPUAT, Pantnagar, Uttarakhand 263145, India
| | - Shivani Pathania
- Research Officer, Food Industry Development Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Sheeba Malik
- Department of Post-Harvest Process & Food Engineering, GBPUAT, Pantnagar, Uttarakhand 263145, India
| | - Shikhangi Singh
- Department of Post-Harvest Process & Food Engineering, GBPUAT, Pantnagar, Uttarakhand 263145, India
| | - Tawheed Amin
- Department of Food Science and Technology, SKUAST-K, Shalimar 190025, India
| |
Collapse
|
23
|
Nath PC, Sharma R, Debnath S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Recent trends in polysaccharide-based biodegradable polymers for smart food packaging industry. Int J Biol Macromol 2023; 253:127524. [PMID: 37865365 DOI: 10.1016/j.ijbiomac.2023.127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | | | - Praveen Kumar Dikkala
- College of Food Science and Technology, Acharya NG Ranga Agricultural University, Pulivendula 516390, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
24
|
Bahsaine K, El Allaoui B, Benzeid H, El Achaby M, Zari N, Qaiss AEK, Bouhfid R. Hemp cellulose nanocrystals for functional chitosan/polyvinyl alcohol-based films for food packaging applications. RSC Adv 2023; 13:33294-33304. [PMID: 37964908 PMCID: PMC10641453 DOI: 10.1039/d3ra06586c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
Hemp is known for its swift growth and remarkable sustainability, requiring significantly less water, an adaptable cultivation to a wide range of climates when compared to other fibers sources, making it a practical and environmentally friendly choice for packaging materials. The current research seeks to extract cellulose nanocrystals (CNCs) from hemp fibers using alkali treatment followed by acid hydrolysis and assess their reinforcing capacity in polyvinyl alcohol (PVA) and chitosan (CS) films. AFM analysis confirmed the existence of elongated, uniquely nanosized CNC fibers. The length of the isolated CNCs was approximately 277.76 ± 61 nm, diameter was 6.38 ± 1.27 nm and its aspect ratio was 44.69 ± 11.08. The FTIR and SEM analysis indicated the successful removal of non-cellulosic compounds. Furthermore, the study explored the impact of adding CNCs at varying weight percentages (0, 0.5, 1, 2.5, and 5 wt%) as a strengthening agent on the chemical composition, structure, tensile characteristics, transparency, and water solubility of the bionanocomposite films. Adding CNCs to the CS/PVA film, up to 5 wt%, resulted in an improvement in both the Young's modulus and tensile strength of the bionanocomposite film, which are measured at (412.46 ± 10.49 MPa) and (18.60 ± 3.42 MPa), respectively, in contrast to the control films with values of (202.32 ± 22.50 MPa) and (13.72 ± 2.61 MPa), respectively. The scanning electron microscopy (SEM) images reveal the creation of a CS/PVA/CNC film that appears smooth, with no signs of clumping or clustering. The blending and introduction of CNCs have yielded transparent and biodegradable CS/PVA films. This incorporation has led to a reduction in the gas transmission rate (from 7.013 to 4.159 cm3 (m2 day·0.1 MPa))-1, a decrease in transparency (from 90.23% to 82.47%), and a lowered water solubility (from 48% to 33%). This study is the inaugural effort to propose the utilization of hemp-derived CNC as a strengthening component in the development of mechanically robust and transparent CS/PVA-CNC bio-nanocomposite films, holding substantial potential for application in the field of food packaging.
Collapse
Affiliation(s)
- Kenza Bahsaine
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Brahim El Allaoui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Hanane Benzeid
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Mounir El Achaby
- Materials Science and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P) Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| |
Collapse
|
25
|
Westlake J, Laabei M, Jiang Y, Yew WC, Smith DL, Burrows AD, Xie M. Vanillin Cross-Linked Chitosan Film with Controlled Release of Green Tea Polyphenols for Active Food Packaging. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:1680-1693. [PMID: 37881445 PMCID: PMC10594654 DOI: 10.1021/acsfoodscitech.3c00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
We report a novel cross-linked chitosan composite film containing vanillin, glycerol, and green tea extract. The effects of vanillin-mediated cross-linking and the incorporation of antimicrobial green tea polyphenols were investigated. The cross-linking effect, confirmed by Fourier transform infrared (FTIR) analysis, increased the tensile strength of the biopolymer film to 20.9 ± 3 MPa. The release kinetics of polyphenols from the chitosan-vanillin matrix was studied, and we reported an initial burst release (8 h) followed by controlled release (8 to 400 h). It was found that both vanillin and green tea polyphenols were successful inhibitors of foodborne bacteria, with a minimum inhibitory concentration of the tea polyphenols determined as 0.15 mg/mL (Staphylococcus aureus). These active components also displayed strong antioxidant capacities, with polyphenols quenching >80% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals at all concentrations tested. Degradation results revealed that there was a significant (>85%) mass loss of all samples after being buried in compost for 12 weeks. The biopolymeric films, prepared by solvent casting methods, adhere to green chemistry and waste valorization principles. The one-pot recipe reported may also be applied to other cross-linkers and active compounds with similar chemical functionalities. Based on the obtained results, the presented material provides a promising starting point for the development of a degradable active packaging material.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department
of Biology, University of Bath, Bath BA2 7AY, U.K.
| | - Yunhong Jiang
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | - Wen Chyin Yew
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | - Darren L. Smith
- Department
of Applied Sciences, Northumbria University, Newcastle NE7 7XA, U.K.
| | | | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
26
|
Yavari Maroufi L, Shahabi N, Fallah AA, Mahmoudi E, Al-Musawi MH, Ghorbani M. Soy protein isolate/kappa-carrageenan/cellulose nanofibrils composite film incorporated with zenian essential oil-loaded MOFs for food packaging. Int J Biol Macromol 2023; 250:126176. [PMID: 37558021 DOI: 10.1016/j.ijbiomac.2023.126176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Edible films applied in food packaging must possess excellent inhibitory and mechanical properties. Protein-based films exhibit a high capacity for film formation and offer good gas barrier properties. However, they have weak mechanical and water barrier characteristics. The objective of this research was to develop active composite films based on reinforced soy protein isolate (SPI)/Kappa-carrageenan (K) with varying concentrations of bacterial cellulose nanofibrils (BCN). Increasing the BCN concentration improved the morphological, structural, mechanical, water vapor barrier, and moisture content properties. In comparison to the pure SPI film (S), the film with a high BCN concentration demonstrated a significant decrease in WS (22.98 ± 0.78 %), MC (21.72 ± 0.68 %), WVP (1.22 ± 0.14 g mm-1 S-1 Pa-1 10-10), and EAB (57.77 ± 5.25 %) properties. It should be emphasized that there was no significant alteration in the physicomechanical properties of the optimal film (SKB0.75) containing Zenian-loaded metal-organic frameworks (ZM). However, it substantially enhanced the thermal stability of this film, which can be attributed to the strong interfacial interactions between polymer chains and ZM. Furthermore, the ZM films inhibited the growth of pathogenic bacteria and increased the DPPH antioxidant activity. Thus, SKB0.75-ZM2 films can be utilized as practical components in food packaging.
Collapse
Affiliation(s)
- Leila Yavari Maroufi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Elham Mahmoudi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996, Tabriz, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Perveen S, Anwar MJ, Ismail T, Hameed A, Naqvi SS, Mahomoodally MF, Saeed F, Imran A, Hussain M, Imran M, Ur Rehman H, Khursheed T, Tufail T, Mehmood T, Ali SW, Al Jbawi E. Utilization of biomaterials to develop the biodegradable food packaging. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1122-1139. [DOI: 10.1080/10942912.2023.2200606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/23/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Tariq Ismail
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Syeda Sameen Naqvi
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Habib Ur Rehman
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Islamabad, Pakistan
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
28
|
Hemraz UD, Lam E, Sunasee R. Recent advances in cellulose nanocrystals-based antimicrobial agents. Carbohydr Polym 2023; 315:120987. [PMID: 37230623 DOI: 10.1016/j.carbpol.2023.120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Over the past five years, there has been growing interest in the design of modified cellulose nanocrystals (CNCs) as nanoscale antimicrobial agents in potential end-user applications such as food preservation/packaging, additive manufacturing, biomedical and water purification. The interest of applying CNCs-based antimicrobial agents arise due to their abilities to be derived from renewable bioresources and their excellent physicochemical properties including rod-like morphologies, large specific surface area, low toxicity, biocompatibility, biodegradability and sustainability. The presence of ample surface hydroxyl groups further allows easy chemical surface modifications for the design of advanced functional CNCs-based antimicrobial materials. Furthermore, CNCs are used to support antimicrobial agents that are subjected to instability issues. The current review summarizes recent progress in CNC-inorganic hybrid-based materials (Ag and Zn nanoparticles, other metal/metal oxide) and CNC-organic hybrid-based materials (polymers, chitosan, simple organic molecules). It focuses on their design, syntheses and applications with a brief discussion on their probable modes of antimicrobial action whereby the roles of CNCs and/or the antimicrobial agents are highlighted.
Collapse
Affiliation(s)
- Usha D Hemraz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada.
| | - Edmond Lam
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada; Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA.
| |
Collapse
|
29
|
Garavand F, Nooshkam M, Khodaei D, Yousefi S, Cacciotti I, Ghasemlou M. Recent advances in qualitative and quantitative characterization of nanocellulose-reinforced nanocomposites: A review. Adv Colloid Interface Sci 2023; 318:102961. [PMID: 37515865 DOI: 10.1016/j.cis.2023.102961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/31/2023]
Abstract
Nanocellulose has received immense consideration owing to its valuable inherent traits and impressive physicochemical properties such as biocompatibility, thermal stability, non-toxicity, and tunable surface chemistry. These features have inspired researchers to deploy nanocellulose as nanoscale reinforcement materials for bio-based polymers. A simple yet efficient characterization method is often required to gain insights into the effectiveness of various types of nanocellulose. Despite a decade of continuous research and booming growth in scientific publications, nanocellulose research lacks a measuring tool that can characterize its features with acceptable speed and reliability. Implementing reliable characterization techniques is critical to monitor the specifications of nanocellulose alone or in the final product. Many techniques have been developed aiming to measure the nano-reinforcement mechanisms of nanocellulose in polymer composites. This review gives a full account of the scientific underpinnings of techniques that can characterize the shape and arrangement of nanocellulose. This review aims to deliver consolidated details on the properties and characteristics of nanocellulose in biopolymer composite materials to improve various structural, mechanical, barrier and thermal properties. We also present a comprehensive description of the safety features of nanocellulose before and after being loaded within biopolymeric matrices.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Diako Khodaei
- School of Food Science and Environmental Health, Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy.
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
30
|
Tilwani YM, Lakra AK, Domdi L, Arul V. Preparation and functional characterization of the bio-composite film based on chitosan/polyvinyl alcohol blended with bacterial exopolysaccharide EPS MC-5 having antioxidant activities. Int J Biol Macromol 2023; 245:125496. [PMID: 37355066 DOI: 10.1016/j.ijbiomac.2023.125496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
In this study, the plate casting method was successfully used to prepare biocomposite films containing EPS from probiotic Enterococcus faecium MC-5 in combination with PVA and chitosan. The findings demonstrated that EPS was uniformly distributed in the film matrices and significantly improved the physicochemical properties of the resulting composite films. The development of intermolecular connections between the polymers was detected by high tensile strength and low water vapour transmission rate. EPS plays an important role in limiting the passage of UV- and visible light radiations through the films. FT-IR analysis was used to determine the molecular compatibility between the functional groups of the blended films made up of chitosan-EPS and PVA-EPS. The TGA results showed that composite films have a significant degree of thermal stability. The presence of amorphous peaks in the composite film was confirmed by XRD analysis. The EPS blended films displayed a greater antioxidant property than the PVA and chitosan films, as determined by DPPH and hydroxyl radical scavenging activities. Interestingly, the EPS-derived films showed enhanced metal chelation activity and strong antibacterial properties against Listeria monocytogenes and Staphylococcus aureus. EPS-based composite films performed better than chitosan and PVA films in terms of degradation rate. The overall functional characteristics of the EPS blended films suggested that they could be used as a packaging material to replace or reduce the use of conventional petroleum-based packaging materials.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Avinash Kant Lakra
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Latha Domdi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India.
| |
Collapse
|
31
|
Li W, Huang X, Liu H, Lian H, Xu B, Zhang W, Sun X, Wang W, Jia S, Zhong C. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydr Polym 2023; 313:120892. [PMID: 37182977 DOI: 10.1016/j.carbpol.2023.120892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Bacterial cellulose (BC) is a bio-produced nanostructure material widely used in biomedical, food, and paper-manufacturing industries. However, low production efficiency and high-cost have limited its industrial applications. This study aimed to examine the level of improvement in BC production by co-culturing Bacillus cereus and Komagataeibacter xylinus. The BC yield in corn stover enzymatic hydrolysate was found to be obviously enhanced from 1.2 to 4.4 g/L after the aforementioned co-culturing. The evidence indicated that acetoin (AC) and 2,3-butanediol (2,3-BD) produced by B. cereus were the key factors dominating BC increment. The mechanism underlying BC increment was that AC and 2,3-BD increased the specific activity of AC dehydrogenase and the contents of adenosine triphosphate (ATP) and acetyl coenzyme A (acetyl-CoA), thus promoting the growth and energy level of K. xylinus. Meanwhile, the immobilization of BC could also facilitate oxygen acquisition in B. cereus under static conditions. This study was novel in reporting that the co-culture could effectively enhance BC production from the lignocellulosic enzymatic hydrolysate.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xinxin Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Huan Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Hao Lian
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Bin Xu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wenjin Zhang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xuewen Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wei Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China.
| |
Collapse
|
32
|
Xie Q, Luo D, Mu K, Xue W. Preparation and characterization of carboxymethyl chitosan/nano-MgO/red cabbage anthocyanins multifunctional films via colloid formation and its application on shrimp preservation. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
33
|
Tavan M, Hanachi P, Mirjalili MH, Dashtbani-Roozbehani A. Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.). Sci Rep 2023; 13:6391. [PMID: 37076588 PMCID: PMC10115885 DOI: 10.1038/s41598-023-33625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
Green synthesized nanoparticles (GSNPs) display fascinating properties compared to physical and chemical synthesized ones. GSNPs are currently used in numerous applications such as food packaging, surface coating agents, environmental remediation, antimicrobial, and medicine. In the present study, the aqueous leaf extract of Perilla frutescens L. having suitable capping, reducing, and stabilizing compounds was used for green synthesis of silver nanoparticles (Pf-AgNPs). The bioreductant capacity of aqueous leaf extract of P. frutescens for Pf-AgNPs was determined by different confirmatory techniques including UV-Visible spectroscopy, XRD, FESEM, EDX, zeta potential, DLS, SERS, and FTIR analysis. The results exhibited that Pf-AgNPs had optimal size (< 61 nm), shape (spherical), and stability (- 18.1 mV). The antioxidant activity of Pf-AgNPs with both DPPH and FRAP assays was significantly higher compared to P. frutescens extract. Furthermore, Pf-AgNPs had high antimicrobial activity against Escherichia coli and Staphylococcus aureus (MIC = 0.78 mg/mL), and Candida albicans (MIC = 8 mg/mL) while the plant extract showed low antimicrobial activity against both bacterial strains and the fungus tested. Pf-AgNPs and P. frutescens extract also exhibited moderate toxicity on MCF-7 cancer cells with IC50 values of 346.2 and 467.4 µg/mL, respectively. The results provide insights into using the biosynthesized Pf-AgNPs as an eco-friendly material for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | | |
Collapse
|
34
|
Khater ES, Bahnasawy A, Gabal BA, Abbas W, Morsy O. Effect of adding nano-materials on the properties of hydroxypropyl methylcellulose (HPMC) edible films. Sci Rep 2023; 13:5063. [PMID: 36977763 PMCID: PMC10050313 DOI: 10.1038/s41598-023-32218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The bio-composite films based on Hydroxypropyl methylcellulose (HPMC) reinforced with silver nanoparticles (AgNPs) and Titanium oxide nanoparticles (TiO2-NPs) were developed. Some physical and mechanical properties: Tensile strength (TS), elongation (E), Young's elastic modulus (EM), water vapor permeability (WVP) and transparency were determined. Antibacterial properties of these films were also studied. The tensile strength values of HPMC film reinforced with Ag NPs and TiO2-NPs and HPMC without nanoparticles were 39.24, 143.87 and 157.92 MPa, respectively. Elongation of the HMPC film was less than the HPMC film reinforced with AgNPs and TiO2-NPs, the results were 2, 35 and 42%, respectively. Additionally, Young's elastic modulus of HMPC film was determined to be 19.62 MPa and the HPMC film reinforced with AgNPs and TiO2-NPs were 4.11 and 3.76 MPa, respectively. The values of WVP of HMPC film was higher than the HMPC film reinforced with AgNPs and TiO2-NPs, where they were 0.5076 × 10-3, 0.4596 × 10-3 and 0.4504 × 10-3 (g/msPa), respectively. Nano-composite films demonstrated strong antibacterial activity against tested pathogen bacteria in the contact surface zone. The antibacterial activites of AgNPs (~ 10 nm) at 80 ppm were more active than 20 and 40 ppm against foodborne pathogen i.e. Bacillus cereus and Escherichia coli, the inhibition zone diameters were 9 and 10 mm, respectively. As well, TiO2-NPs (~ 50 nm) at 80 ppm were more active than 20 and 40 ppm against B. cereus and Salmonella Typhimurium, the inhibition zone diameters were11 and 10 mm, respectively.
Collapse
Affiliation(s)
- El-Sayed Khater
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Toukh, Kalubia, Egypt.
| | - Adel Bahnasawy
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Toukh, Kalubia, Egypt
| | - Basma Abu Gabal
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Toukh, Kalubia, Egypt
| | - Wael Abbas
- Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), P.O. Box 2033, Cairo, Egypt
| | - Osama Morsy
- Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), P.O. Box 2033, Cairo, Egypt
| |
Collapse
|
35
|
Dai M, Xiong X, Cheng A, Zhao Z, Xiao Q. Development of pullulan-based nanocomposite films reinforced with starch nanocrystals for the preservation of fresh beef. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1981-1993. [PMID: 36260277 DOI: 10.1002/jsfa.12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Incorporation of polysaccharide-based nanofillers is an effective strategy to fabricate bio-nanocomposite films with preferable mechanical, barrier, and surface hydrophobicity properties compared to pure biopolymer films. The objective of this research is to investigate the influence of starch nanocrystals obtained from native (NSNC) and waxy rice starch (WSNC) on the physical-chemical properties of pullulan-based nanocomposite films and their preservation performance on fresh beef. RESULTS Continuous SNCs network structure was observed for pullulan-10% SNCs nanocomposite films, whereas the percolation network of SNCs was destroyed and became no longer continuous with increasing SNCs concentration up to 20% in pullulan films. Among the tested films, pullulan-10% SNCs films showed the highest TS values, lowest WVP and OTR values, due to the formation of percolating SNCs network in pullulan matrix. It is noteworthy that the WVP and OTR values of pullulan-10% WSNC films were significantly lower than that of pullulan-10% NSNC films, probably due to higher hydrophobicity and crystallinity of WSNC compared with NSNC. Beef pieces coated with pullulan-SNCs films had higher L* and a* values, lower TVB-N, TBARS, and TVC values during 7 days' storage at 4 °C compared with samples coated with pullulan films. CONCLUSION Pullulan-SNCs nanocomposite films, especially pullulan-WSNC films, could be potentially used as a coating material for fresh beef due to their desirable oxygen and water barrier properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaoqi Dai
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Xiong Xiong
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Anwei Cheng
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Zhengtao Zhao
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Qian Xiao
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| |
Collapse
|
36
|
The Effect of Active Chitosan Films Containing Bacterial Cellulose Nanofiber and ZnO Nanoparticles on the Shelf Life of Loaf Bread. J FOOD QUALITY 2023. [DOI: 10.1155/2023/7470296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Due to the disadvantages of synthetic packaging materials such as migration, environmental pollution, lack of easy recycling, and high production costs, natural polymers have received much attention as safe and biodegradable alternatives to plastics. The aim of this study was to investigate the effect of the active film of chitosan (CH) containing bacterial cellulose nanofiber (BCNF) and ZnO nanoparticles (ZnO NPCs) on the shelf life of loaf bread (toast, baguette, and sandwich-type bread). The results showed that ZnO NPCs significantly reduced the thickness and water vapor permeability (WVP) and increased the opacity of films
. CH-BCNF-ZnO 2% NPCs film had the lowest thickness and WVP and the highest opacity. Differential scanning calorimetric (DSC), thermal gravimetry analysis (TGA), and derivative thermogravimetry (DTG) showed that ZnO NPCs increased the thermal stability of chitosan films. CH-BCNF-ZnO 1% NPCs had the highest melting point (148.66°C) and melting enthalpy (ΔHm). Scanning electron microscopy (SEM) images showed the good distribution of ZnO NPCs in the chitosan film. The higher concentrations of ZnO NPCs formed aggregates in the polymer. ZnO NPCs had a significant effect on the physicochemical properties of bread. The highest moisture content and water activity
were observed in CH-BCNF-ZnO 2% toast and control toast, respectively. CH toast showed high ash and insoluble ash. CH baguettes and control baguettes showed the highest pH. As the ZnO NPCs concentration increased, the nanoparticle migration increased. The highest migration was observed in CH-BCNF-ZnO 2% baguette. The highest and lowest hardness was observed in CH-BCNF-ZnO NPCs 2% baguette and CH-BCNF- ZnO NPCs 1% toast bread, respectively. Composite films decreased the microbial population in all bread samples except sandwich-type bread. It can be concluded that BCNF and ZnO NPCs improve the physical properties of chitosan film and can be suggested as active packaging in bread.
Collapse
|
37
|
Chaudhary V, Thakur N, Chaudhary S, Bangar SP. Remediation plan of nano/microplastic toxicity in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:397-442. [PMID: 36863840 DOI: 10.1016/bs.afnr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Microplastic pollution is causing a stir globally due to its persistent and ubiquitous nature. The scientific collaboration is diligently working on improved, effective, sustainable, and cleaner measures to control the nano/microplastic load in the environment especially wrecking the aquatic habitat. This chapter discusses the challenges encountered in nano/microplastic control and improved technologies like density separation, continuous flow centrifugation, oil extraction protocol, electrostatic separation to extract and quantify the same. Although it is still in the early stages of research, biobased control measures, like meal worms and microbes to degrade microplastics in the environment have been proven effective. Besides the control measures, practical alternatives to microplastics can be developed like core-shell powder, mineral powder, and biobased food packaging systems like edible films and coatings developed using various nanotechnological tools. Lastly, the existing and ideal stage of global regulations is compared, and key research areas are pinpointed. This holistic coverage would enable manufacturers and consumers to reconsider their production and purchase decisions for sustainable development goals.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Neha Thakur
- Department of Livestock Products Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Suman Chaudhary
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
38
|
Wu H, Ma L, Li S, Wang J, Li T, Peng L, Li S, Li Q, Yuan X, Zhou M, Zhang Z, Liu Y. Sustained-release antibacterial gelatin films: Effects of diatomite/carvacrol complex on their structure, physicochemical and antibacterial properties. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Lei Y, Yao Q, Jin Z, Wang YC. Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness. Food Chem 2023; 404:134528. [DOI: 10.1016/j.foodchem.2022.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
40
|
Yang X, Huang J, Chen C, Zhou L, Ren H, Sun D. Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10506-10519. [PMID: 36800308 DOI: 10.1021/acsami.2c22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Jinjian Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Lu Zhou
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| |
Collapse
|
41
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Application of cellulose- and chitosan-based edible coatings for quality and safety of deep-fried foods. Compr Rev Food Sci Food Saf 2023; 22:1418-1437. [PMID: 36717375 DOI: 10.1111/1541-4337.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Excessive oil uptake and formation of carcinogens, such as acrylamide (AA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs), during deep-frying are a potential threat for food quality and safety. Cellulose- and chitosan-based edible coatings have been widely applied to deep-fried foods for reduction of oil uptake because of their barrier property to limit oil ingress, and their apparent inhibition of AA formation. Cellulose- and chitosan-based edible coatings have low negative impacts on sensory attributes of fried foods and are low cost, nontoxic, and nonallergenic. They also show great potential for reducing HCAs and PAHs in fried foods. The incorporation of nanoparticles improves mechanical and barrier properties of cellulose and chitosan coatings, which may also contribute to reducing carcinogens derived from deep-frying. Considering the potential for positive health outcomes, cellulose- and chitosan-based edible coatings could be a valuable method for the food industry to improve the quality and safety of deep-fried foods.
Collapse
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
43
|
Zarandona I, Correia DM, Moreira J, Costa CM, Lanceros-Mendez S, Guerrero P, de la Caba K. Magnetically responsive chitosan-pectin films incorporating Fe 3O 4 nanoparticles with enhanced antimicrobial activity. Int J Biol Macromol 2023; 227:1070-1077. [PMID: 36464184 DOI: 10.1016/j.ijbiomac.2022.11.286] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Chitosan-pectin films with iron oxide (Fe3O4) magnetic nanoparticles were prepared by solution casting in order to produce biopolymer based magnetically active materials. Infrared (FTIR) spectra indicated physical interactions between the matrix and nanoparticles, corroborated by differential scanning calorimetry (DSC) results. In addition, thermal characterization suggested that the interactions between chitosan, pectin and the nanoparticles resulted in a less compact structure, influencing the film mechanical properties. Regarding vibrating-sample magnetometry (VSM) and electrical analysis, chitosan-pectin films with Fe3O4 nanoparticles showed ferrimagnetic behavior, with an increase of the dielectric constant as the nanoparticle concentration increased. Furthermore, films displayed enhanced antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) bacteria. Therefore, chitosan-pectin films with Fe3O4 magnetic nanoparticles provide promising results for active and intelligent food packaging applications.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | | | - Joana Moreira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal; Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
44
|
Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Horue M, Silva JM, Berti IR, Brandão LR, Barud HDS, Castro GR. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020424. [PMID: 36839745 PMCID: PMC9963514 DOI: 10.3390/pharmaceutics15020424] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Bacterial cellulose (BC) is produced by several microorganisms as extracellular structures and can be modified by various physicochemical and biological strategies to produce different cellulosic formats. The main advantages of BC for biomedical applications can be summarized thus: easy moldability, purification, and scalability; high biocompatibility; and straightforward tailoring. The presence of a high amount of free hydroxyl residues, linked with water and nanoporous morphology, makes BC polymer an ideal candidate for wound healing. In this frame, acute and chronic wounds, associated with prevalent pathologies, were addressed to find adequate therapeutic strategies. Hence, the main characteristics of different BC structures-such as membranes and films, fibrous and spheroidal, nanocrystals and nanofibers, and different BC blends, as well as recent advances in BC composites with alginate, collagen, chitosan, silk sericin, and some miscellaneous blends-are reported in detail. Moreover, the development of novel antimicrobial BC and drug delivery systems are discussed.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Jhonatan Miguel Silva
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Larissa Reis Brandão
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| | - Guillermo R. Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| |
Collapse
|
46
|
Rashidi MJ, Nasiraie LR, Zomorrodi S, Jafarian S. Development and characterization of novel active opopanax gum and gelatin bio-nanocomposite film containing zinc oxide nanoparticles and peppermint essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics (Basel) 2022; 11:antibiotics11121820. [PMID: 36551477 PMCID: PMC9774598 DOI: 10.3390/antibiotics11121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing health concerns regarding the use of plasticware have led to the development of ecofriendly biodegradable packaging film from natural polymer and food additives. In the present study, basil essential oil (BEO) loaded halloysite nanotubes (HNTs) composite films were synthesized using a solution casting method. The effects of BEO and nanotube concentration on the mechanical, physical, structural, barrier, and antioxidant properties of films were evaluated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated well-dispersed HNTs and BEO in tailored composite films. The addition of BEO in Chitosan (Ch) film caused darkening of the film color; furthermore, the incorporation of HNTs in varied concentrations increased opaqueness in Ch/BEO film. The Ch/BEO film, upon adding HNTs 5-30 wt%, exhibited a corresponding increase in the film thickness (0.108-0.135 mm) when compared with the Ch/BEO film alone (0.081 mm). The BEO-loaded HNTs composite films displayed reduced moisture content and characteristic barrier and UV properties. The Ch/BEO film with 15 wt% HNTs was found to have enhanced antioxidant activity. The Ch/BEO/HNTs composite also managed to prevent broccoli florets from losing weight and firmness during storage. The enhanced barrier and antioxidant qualities of the nanocomposite film suggest its potential application in the food processing and packaging sector. This is the first ever report on the fabrication of nanocomposite film using BEO and HNTs for food packaging. The low production cost and ecofriendly approach make the film acceptable for further research and commercialization thereafter.
Collapse
|
48
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Malik US, Duan Q, Niazi MBK, Jahan Z, Liaqat U, Sher F, Gan Y, Hou H. Vanillin cross-linked hydrogel membranes interfacial reinforced by carbon nitride nanosheets for enhanced antibacterial activity and mechanical properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Yang D, Liu Q, Gao Y, Wan S, Meng F, Weng W, Zhang Y. Characterization of silver nanoparticles loaded chitosan/polyvinyl alcohol antibacterial films for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|