1
|
Del Mercado PPV, Mojica L, González-Ávila M, Espinosa-Andrews H, Alcázar-Valle M, Morales-Hernández N. Pea protein - gum Arabic gel addition as ingredient to increase protein, fiber and decrease lipid content in muffins without impair the texture and intestinal microbiota. Food Chem 2025; 463:141305. [PMID: 39316906 DOI: 10.1016/j.foodchem.2024.141305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
This study evaluated the use of a protein-polysaccharide gel (PGEL) as a muffin ingredient, and its effect on the nutritional, textural, and gut microbiome profiles. PGEL was generated by complex coacervation with Pea protein and Gum Arabic. A mixture design was performed with different flour, lipids, and PGEL proportions, where Tx9 (26 % PGEL) showed improved physicochemical characteristics. Optimization was performed using 3 variables, hardness, protein content, and in vitro protein digestibility, to generate an optimal muffin with PGEL (PGEL-Muffin). PGEL-Muffin had a positive effect in its nutritional content and texture (protein: 12.03 %, fiber: 7.90 %, lipids: 9.23 %, and hardness: 4.41 N) compared to a muffin without protein addition (Control) and a muffin with added pea protein powder (Powder-Muffin). PGEL-Muffin did not modify gut microbiome using an ex-vivo system after 4-days of administration. PGEL ingredient could be an opportunity to develop nutritionally improved products without a negative impact on textural properties.
Collapse
Affiliation(s)
- Pavel Prieto-Vázquez Del Mercado
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Normalistas 800, Colinas de la normal. C.P. 44270. Guadalajara, Jalisco. Mexico
| | - Hugo Espinosa-Andrews
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Montserrat Alcázar-Valle
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Norma Morales-Hernández
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico.
| |
Collapse
|
2
|
Yu X, Wu Z, Luo K, Zhou W, Mai K, Zhang W. Comparative analysis of intestinal microbiota and its function on digestion and immunity of juvenile abalone Haliotis discus hannai fed two different sources of dietary soybean protein. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110060. [PMID: 39617308 DOI: 10.1016/j.fsi.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The present study evaluated the replacement of fish meal (FM) with two different soybean protein sources (soybean protein concentrate (SPC) and soybean meal (SBM)) on the intestine microbiota of abalone Haliotis discus hannai and the implications for the host intestinal function and health. The control diet with FM as the main protein source (CON), and the four experimental diets with 50 % and 100 % SBM replacing FM (SBM50 and SBM100), and 25 % and 100 % SPC replacing FM (SPC25 and SPC100) were fed to abalone for 110 days. The intestinal microbiota analysis results revealed that there were no significant differences in α-diversity indices (Chao1, Ace, Sobs, and Shannon) among all groups. However, analysis of similarity (ANOSIM) demonstrated dramatic shifts in the intestinal microbiota component at the genus level among the groups. Venn diagram analysis identified 470 overlapping operational taxonomic units (OTUs) across the five groups, with the SBM50 and CON groups exhibiting the highest and lowest number of unique OTUs, respectively. Firmicutes and Proteobacteria were the predominant phyla in abalone, with Mycoplasma being the dominant genus (CON: 42.95 %; SBM50: 23.98 %; SBM100: 49.32 %; SPC25: 27.20 %; SPC100: 34.25 %). Notably, the pathogens Vibrio abundance in the SPC25 group was significantly lower than in the CON group. The intestinal microbiota networks in the CON, SBM50, SBM100, SPC25, and SPC100 groups consisted of 1757, 2140, 1992, 2281 and 1747 edges, respectively. Furthermore, correlation heatmap results suggested that digestive enzymes and immune indices in abalone were associated with specific intestinal microbiota. Functional prediction via the KEGG pathway analysis revealed that the replacement levels of dietary FM with SBM and SPC significantly affect various biological functions of the intestinal microbiota. In summary, feeding SBM (50 %) and SPC (25 %) diets to abalone increased the abundance of beneficial bacterium in the intestines, contributing to improved digestion and increased growth rate of abalone.
Collapse
Affiliation(s)
- Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, 264500, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Mansour H, Slika H, Nasser SA, Pintus G, Khachab M, Sahebkar A, Eid AH. Flavonoids, gut microbiota and cardiovascular disease: Dynamics and interplay. Pharmacol Res 2024; 209:107452. [PMID: 39383791 DOI: 10.1016/j.phrs.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of global morbidity and mortality. Extensive efforts have been invested to explicate mechanisms implicated in the onset and progression of CVD. Besides the usual suspects as risk factors (obesity, diabetes, and others), the gut microbiome has emerged as a prominent and essential factor in the pathogenesis of CVD. With its endocrine-like effects, the microbiome modulates many physiologic processes. As such, it is not surprising that dysbiosis-by generating metabolites, inciting inflammation, and altering secondary bile acid signaling- could predispose to or aggravate CVD. Nevertheless, various natural and synthetic compounds have been shown to modulate the microbiome. Prime among these molecules are flavonoids, which are natural polyphenols mainly present in fruits and vegetables. Accumulating evidence supports the potential of flavonoids in attenuating the development of CVD. The ascribed mechanisms of these compounds appear to involve mitigation of inflammation, alteration of the microbiome composition, enhancement of barrier integrity, induction of reverse cholesterol transport, and activation of farnesoid X receptor signaling. In this review, we critically appraise the methods by which the gut microbiome, despite being essential to the human body, predisposes to CVD. Moreover, we dissect the mechanisms and pathways underlying the cardioprotective effects of flavonoids.
Collapse
Affiliation(s)
- Hadi Mansour
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Harris RM, Pace F, Kuntz TM, Morgan XC, Hyland P, Summers K, McDermott E, Blumen K, Watnick PI. Testosterone treatment impacts the intestinal microbiome of transgender individuals. mSphere 2024; 9:e0055724. [PMID: 39254049 PMCID: PMC11520287 DOI: 10.1128/msphere.00557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Medical modulation of sex hormone levels is a cornerstone of treatment for many conditions that impact well-being, including cancer, fertility/infertility, gender dysphoria, and chronic metabolic diseases such as diabetes and obesity. The microbial residents of the intestine, known as the microbiota, interact with sex hormones in the intestine, and there is correlative evidence that this interaction is bidirectional. Based on these published findings, we hypothesized that transgender individuals receiving exogenous testosterone as part of their gender-affirming medical treatment might undergo changes in their intestinal microbiome. To test this, we collected 26 stool samples from nine individuals before and up to 8 months after initiation of treatment with exogenous testosterone and subjected these samples to metagenomic analysis. While no species were significantly associated with the duration of testosterone therapy, pathways that generate glutamate increased in abundance, while those that consume glutamate decreased. Glutamate is a precursor of arginine, and testosterone is known to increase levels of arginine and its metabolites in the plasma. We hypothesize that testosterone increases the uptake of glutamate by enterocytes, thus decreasing access of the microbiota to this amino acid. While this pilot study establishes the impact of testosterone therapy on the intestinal microbiome, a more comprehensive study is necessary to establish the impact of testosterone-driven metagenomic shifts on the stool metatranscriptome, the stool metabolome, and the plasma metabolome.IMPORTANCEThe human intestine is inhabited by a large community of microbes known as the microbiome. Members of the microbiome consume the diet along with their human host. Thus, the metabolomes of the host and microbe are intricately linked. Testosterone alters the plasma metabolome. In particular, plasma levels of arginine and its metabolites and testosterone are positively correlated. To investigate the impact of exogenous testosterone on the microbiome, we analyzed the stool metagenomes of transgender individuals before and after the initiation of testosterone treatment. In this pilot project, we found a modest impact on the microbiome community structure but an increase in the abundance of metabolic pathways that generate glutamate and spare glutamate consumption. We propose that the host uses glutamate to generate arginine, decreasing the amount available for the microbiome.
Collapse
Affiliation(s)
- Rebecca M. Harris
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernanda Pace
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Thomas M. Kuntz
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Xochitl C. Morgan
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Phoebe Hyland
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kiana Summers
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Em McDermott
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kai Blumen
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Paula I. Watnick
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Contreras F, Al-Najim W, le Roux CW. Health Benefits Beyond the Scale: The Role of Diet and Nutrition During Weight Loss Programmes. Nutrients 2024; 16:3585. [PMID: 39519418 PMCID: PMC11547696 DOI: 10.3390/nu16213585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Obesity management strategies such as caloric restriction, very-low-calorie diets (VLCDs), and meal replacements can lead to moderate short-term weight loss. However, many patients face significant challenges in maintaining these results. Personalized interventions, including behavioral counseling and physical activity, have been shown to improve long-term adherence and success. Current clinical guidelines emphasize the pivotal role of dietitians in enhancing patient outcomes through nutritional therapy. When combined with pharmacotherapy and bariatric surgery, the focus shifts from mere weight loss to broader health improvements. METHODS This review explores the evolving role of dietitians in obesity management, advocating for a shift from a weight-centric approach to a more holistic model that prioritizes overall health gains. Key areas of interest include dietetic interventions' impact on metabolic health, cardiovascular function, gut microbiome balance, inflammation, and psychological well-being. RESULTS Dietetic interventions have been shown to provide significant health improvements beyond weight loss. These include enhanced metabolic and cardiovascular health, better gut microbiome balance, reduced inflammation, improved sleep quality, mental well-being, and overall quality of life. By focusing on non-scale victories such as improved insulin sensitivity, lipid profiles, and mental health, dietitians play a crucial role in driving long-term success in obesity management. These outcomes highlight the need to shift the focus from short-term weight loss to a more comprehensive view of health gains. CONCLUSIONS The role of dietitians in obesity management is expanding to encompass a more comprehensive and individualized approach. Moving beyond a focus on weight reduction, this paradigm promotes long-term, patient-centered strategies that address the multifactorial nature of obesity. By combining dietary changes with regular physical activity and behavioral support, dietitians can contribute to sustained health improvements, treating obesity as a chronic, complex disease.
Collapse
Affiliation(s)
| | | | - Carel W. le Roux
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin Belfield, Dublin 4, Ireland; (F.C.); (W.A.-N.)
| |
Collapse
|
6
|
Yu YH, Wu LB, Liu X, Zhao LC, Li LQ, Jin MY, Yu X, Liu F, Li Y, Li L, Yan JK. In vitro simulated digestion and fermentation characteristics of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel. Food Chem 2024; 452:139606. [PMID: 38744127 DOI: 10.1016/j.foodchem.2024.139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Luo-Bang Wu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Li-Chao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
7
|
Chen R, Zhang H, Cai J, Cai M, Dai T, Liu Y, Wu J. Germination-Induced Enhancement of Brown Rice Noodle Nutritional Profile and Gut Microbiota Modulation. Foods 2024; 13:2279. [PMID: 39063363 PMCID: PMC11275603 DOI: 10.3390/foods13142279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible starch content and a decrease in resistant starch content. Subsequently, an in vitro human fecal fermentation model was used to simulate the human intestinal environment, showing that germination altered pH levels and the production of short-chain fatty acids, particularly by increasing propionate while decreasing acetate and butyrate. Additionally, the study noted a decrease in gut microbiota diversity following fermentation, accompanied by an increase in Megamonas growth and a decrease in Bacteroides and Bifidobacterium. In conclusion, these findings suggest that germination could enhance the nutritional value and intestinal probiotic properties of brown rice noodles. This research contributes valuable insights into the role of germination in improving the nutritional properties of rice-based products and provides a foundation for further exploration into the development of health-promoting rice noodles.
Collapse
Affiliation(s)
- Ruiyun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
| | - Huibin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
8
|
Chatterjee A, Kumar S, Roy Sarkar S, Halder R, Kumari R, Banerjee S, Sarkar B. Dietary polyphenols represent a phytotherapeutic alternative for gut dysbiosis associated neurodegeneration: A systematic review. J Nutr Biochem 2024; 129:109622. [PMID: 38490348 DOI: 10.1016/j.jnutbio.2024.109622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Globally, neurodegeneration and cerebrovascular disease are common and growing causes of morbidity and mortality. Pathophysiology of this group of diseases encompasses various factors from oxidative stress to gut microbial dysbiosis. The study of the etiology and mechanisms of oxidative stress as well as gut dysbiosis-induced neurodegeneration in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, autism spectrum disorder, and Huntington's disease has recently received a lot of attention. Numerous studies lend credence to the notion that changes in the intestinal microbiota and enteric neuroimmune system have an impact on the initiation and severity of these diseases. The prebiotic role of polyphenols can influence the makeup of the gut microbiota in neurodegenerative disorders by modulating intracellular signalling pathways. Metabolites of polyphenols function directly as neurotransmitters by crossing the blood-brain barrier or indirectly via influencing the cerebrovascular system. This assessment aims to bring forth an interlink between the consumption of polyphenols biotransformed by gut microbiota which in turn modulate the gut microbial diversity and biochemical changes in the brain. This systematic review will further augment research towards the association of dietary polyphenols in the management of gut dysbiosis-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Satish Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Ritabrata Halder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Rashmi Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India.
| |
Collapse
|
9
|
Lu Y, Hao YJ, Zhou X, Huang F, Li C, Wang J, Miao Z, Chen S, Zhang Y, Pan Z, Yin S, Li Y, Sun G. Effects of long-term intake of carotenoid-enriched eggs on healthy people: a randomized controlled study. Food Funct 2024; 15:7032-7045. [PMID: 38864191 DOI: 10.1039/d4fo00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Red palm oil, a natural repository abundant in tocotrienols, tocopherols and carotenoids, is frequently employed as a pigment and nutritional enhancer in food products. The principal aim of this study is to explore the disparities in vitamin A levels, fatty acid profiles and gut microbiota among healthy adults who consume carotenoid-enriched eggs compared to those who consume normal eggs. A total of 200 hens were randomly assigned to either the red palm oil group or the soybean oil group, with the objective of producing carotenoid-enriched eggs and normal eggs. Throughout a six-month, double-blinded, randomized controlled trial, participants were instructed to consume one carotenoid-enriched or normal egg daily at a fixed time. Fecal and blood samples were collected from the participants at the start and conclusion of the six-month intervention period for further analysis. Our findings indicated that there was no significant change in the vitamin A level for daily supplementation with one carotenoid-enriched egg, but there were significant changes in some indicators of fatty acid profiles and gut microbiota compared to the control group of the population. Nonetheless, the consumption of eggs, regardless of carotenoid-enriched eggs or normal eggs, positively influenced dietary habits by reducing the intake of saturated fatty acids and enhancing the intake of monounsaturated and polyunsaturated fatty acids of the population.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yoong Jun Hao
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Xin Zhou
- Jintan District Center for Disease Control and Prevention, Changzhou City, Chang Zhou 213200, P.R. China
| | - Feilin Huang
- Jintan Jianchang Health Center, Changzhou City, Chang Zhou 213200, P.R. China
| | - Chao Li
- Jintan Jianchang Health Center, Changzhou City, Chang Zhou 213200, P.R. China
| | - Jiao Wang
- Jintan District Center for Disease Control and Prevention, Changzhou City, Chang Zhou 213200, P.R. China
| | - Zhiyue Miao
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, 201108, P.R. China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, 201108, P.R. China
| | - Yihan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Zhenyu Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Shiyu Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Qian SX, Bao YF, Li XY, Dong Y, Zhang XL, Wu ZY. Multi-omics Analysis Reveals Key Gut Microbiota and Metabolites Closely Associated with Huntington's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04271-9. [PMID: 38850348 DOI: 10.1007/s12035-024-04271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Dysbiosis of the gut microbiota is closely associated with neurodegenerative diseases, including Huntington's disease (HD). Gut microbiome-derived metabolites are key factors in host-microbiome interactions. This study aimed to investigate the crucial gut microbiome and metabolites in HD and their correlations. Fecal and serum samples from 11 to 26 patients with HD, respectively, and 16 and 23 healthy controls, respectively, were collected. The fecal samples were used for shotgun metagenomics while the serum samples for metabolomics analysis. Integrated analysis of the metagenomics and metabolomics data was also conducted. Firmicutes, Bacteroidota, Proteobacteria, Uroviricota, Actinobacteria, and Verrucomicrobia were the dominant phyla. At the genus level, the presence of Bacteroides, Faecalibacterium, Parabacteroides, Alistipes, Dialister, and Christensenella was higher in HD patients, while the abundance of Lachnospira, Roseburia, Clostridium, Ruminococcus, Blautia, Butyricicoccus, Agathobaculum, Phocaeicola, Coprococcus, and Fusicatenibacter decreased. A total of 244 differential metabolites were identified and found to be enriched in the glycerophospholipid, nucleotide, biotin, galactose, and alpha-linolenic acid metabolic pathways. The AUC value from the integrated analysis (1) was higher than that from the analysis of the gut microbiota (0.8632). No significant differences were found in the ACE, Simpson, Shannon, Sobs, and Chao indexes between HD patients and controls. Our study determined crucial functional gut microbiota and potential biomarkers associated with HD pathogenesis, providing new insights into the role of the gut microbiota-brain axis in HD occurrence and development.
Collapse
Affiliation(s)
- Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, Zhejiang, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao-Ling Zhang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, Zhejiang, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Nanhu Brain-Computer Interface Institute, Hangzhou, China.
| |
Collapse
|
11
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
12
|
Bernal-Castro C, Espinosa-Poveda E, Gutiérrez-Cortés C, Díaz-Moreno C. Vegetable substrates as an alternative for the inclusion of lactic acid bacteria with probiotic potential in food matrices. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:833-846. [PMID: 38487286 PMCID: PMC10933215 DOI: 10.1007/s13197-023-05779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 03/17/2024]
Abstract
Vegetable substrates are food matrices with micronutrients, antioxidants, and fiber content with a high potential for bioprocesses development. In addition, they have been recognized as essential sources of a wide range of phytochemicals that, individually or in combination, can act as bioactive compounds with potential benefits to health due to their antioxidant and antimicrobial activity and recently due to their status as prebiotics in the balance of the human intestinal microbiota. This systematic review explores the benefits of lactic fermentation of plant matrices such as fruits, vegetables, legumes, and cereals by bacteria with probiotic potential, guaranteeing cell viability (106-107 CFU/mL) and generating bioactive metabolic products for modulation of the gut microbiome.
Collapse
Affiliation(s)
- Camila Bernal-Castro
- Facultad de Ciencias, Doctorado en Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elpidia Espinosa-Poveda
- Departamento de Nutrición Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Gutiérrez-Cortés
- Universidad Nacional Abierta y a Distancia (UNAD), Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Bogotá, Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
Yoo S, Jung SC, Kwak K, Kim JS. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024; 25:4834. [PMID: 38732060 PMCID: PMC11084426 DOI: 10.3390/ijms25094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.
Collapse
Affiliation(s)
- Suyeon Yoo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Erhardt R, Steels E, Harnett JE, Taing MW, Steadman KJ. Effects of a prebiotic formulation on the composition of the faecal microbiota of people with functional constipation. Eur J Nutr 2024; 63:777-784. [PMID: 38165420 DOI: 10.1007/s00394-023-03292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Prebiotics are defined as substances which selectively promote beneficial gut microbes leading to a health benefit for the host. Limited trials have been carried out investigating their effect on the microbiota composition of individuals afflicted by functional constipation with equivocal outcomes. In a 21-day randomised, controlled clinical trial involving 61 adults with functional constipation, a prebiotic formulation with partially hydrolysed guar gum and acacia gum as its main ingredients, significantly increased complete spontaneous bowel motions in the treatment group. This follow-up exploratory analysis investigated whether the prebiotic was associated with changes to the composition, richness, and diversity of the faecal microbiota. METHODS Participants provided a faecal specimen at baseline and on day 21 of the intervention period. Whole genome metagenomic shotgun sequencing comprehensively assessed taxonomic and functional composition of the microbiota. RESULTS Linear mixed effects regression models adjusted for potential confounders showed a significant reduction in species richness of 28.15 species (95% CI - 49.86, - 6.43) and Shannon diversity of 0.29 units (95% CI - 0.56, - 0.02) over the trial period in the prebiotic group. These changes were not observed in the control group, and functional composition was unchanged in both groups. CONCLUSION In adults with functional constipation, the intake of a prebiotic formulation was associated with a decline of species richness and Shannon diversity. Further research regarding the associations between prebiotics and the composition and function of the gut microbiota is warranted.
Collapse
Affiliation(s)
- Rene Erhardt
- School of Pharmacy, The University of Queensland, Brisbane, Australia.
- School of Pharmacy, The University of Queensland, 20 Cornwall Street , Woolloongabba, QLD, 4102, Australia.
| | - Elizabeth Steels
- School of Pharmacy, The University of Queensland, Brisbane, Australia
- Evidence Sciences Pty. Ltd., New Farm, Australia
| | | | - Meng-Wong Taing
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
15
|
Bashmil YM, Dunshea FR, Appels R, Suleria HAR. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024; 29:1535. [PMID: 38611814 PMCID: PMC11013930 DOI: 10.3390/molecules29071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| |
Collapse
|
16
|
Bertin L, Zanconato M, Crepaldi M, Marasco G, Cremon C, Barbara G, Barberio B, Zingone F, Savarino EV. The Role of the FODMAP Diet in IBS. Nutrients 2024; 16:370. [PMID: 38337655 PMCID: PMC10857121 DOI: 10.3390/nu16030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The low FODMAP (fermentable oligosaccharide, disaccharide, monosaccharide, and polyol) diet is a beneficial therapeutic approach for patients with irritable bowel syndrome (IBS). However, how the low FODMAP diet works is still not completely understood. These mechanisms encompass not only traditionally known factors such as luminal distension induced by gas and water but also recent evidence on the role of FOMAPs in the modulation of visceral hypersensitivity, increases in intestinal permeability, the induction of microbiota changes, and the production of short-chain fatty acids (SCFAs), as well as metabolomics and alterations in motility. Although most of the supporting evidence is of low quality, recent trials have confirmed its effectiveness, even though the majority of the evidence pertains only to the restriction phase and its effectiveness in relieving abdominal bloating and pain. This review examines potential pathophysiological mechanisms and provides an overview of the existing evidence on the effectiveness of the low FODMAP diet across various IBS subtypes. Key considerations for its use include the challenges and disadvantages associated with its practical implementation, including the need for professional guidance, variations in individual responses, concerns related to microbiota, nutritional deficiencies, the development of constipation, the necessity of excluding an eating disorder before commencing the diet, and the scarcity of long-term data. Despite its recognized efficacy in symptom management, acknowledging these limitations becomes imperative for a nuanced comprehension of the role of a low FODMAP diet in managing IBS. By investigating its potential mechanisms and evidence across IBS subtypes and addressing emerging modulations alongside limitations, this review aims to serve as a valuable resource for healthcare practitioners, researchers, and patients navigating the intricate landscape of IBS.
Collapse
Affiliation(s)
- Luisa Bertin
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Miriana Zanconato
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Martina Crepaldi
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Brigida Barberio
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| |
Collapse
|
17
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
18
|
Wang R, Wang X, Xiong Y, Cao J, Nussio LG, Ni K, Lin Y, Wang X, Yang F. Dietary Paper Mulberry Silage Supplementation Improves the Growth Performance, Carcass Characteristics, and Meat Quality of Yangzhou Goose. Animals (Basel) 2024; 14:359. [PMID: 38338002 PMCID: PMC10854908 DOI: 10.3390/ani14030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
There have been few investigations into the health benefits and meat quality of supplementing Yangzhou geese with paper mulberry silage. One hundred and twenty 28-day-old Yangzhou geese were selected for the experiment and randomly divided into two groups: a control group (CON) and a paper mulberry silage group (PM), with six replicates in each group. The experiment lasted for a total of 6 weeks. The experiment found that compared with CON, PM had a promoting effect on the average daily weight gain of Yangzhou geese (p = 0.056). Sensory and nutritional analysis of breast muscles revealed a decrease in a* value (p < 0.05) and an increase in protein content (p < 0.05) following PM treatment. Through untargeted metabolomics analysis of breast muscle samples, it was found that 11 different metabolites, including guanidinoacetic acid and other substances, had a positive effect on amino acid metabolism and lipid antioxidant pathways of PM treatment. Overall, the strategy of feeding Yangzhou geese with paper mulberry silage is feasible, which can improve the sensory quality and nutritional value of goose meat. The experiment provides basic data for the application form of goose breeding, so exploring the impact of substances within paper mulberry on goose meat should be focused on in the future.
Collapse
Affiliation(s)
- Ruhui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Jingwen Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Luiz Gustavo Nussio
- Department of Animal Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
20
|
Maleki S, Razavi SH, Yadav H, Letizia Manca M. New horizon to the world of gut microbiome: seeds germination. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38227048 DOI: 10.1080/10408398.2023.2300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The second brain of humans has been known as the microbiome. The microbiome is a dynamic network composed of commensal bacteria, archaea, viruses, and fungi colonized in the human gastrointestinal tract. They play a vital role in human health by metabolizing components, maturation of the immune system, and taking part in the treatment of various diseases. Two important factors that can affect the gut microbiome's composition and/or function are the food matrix and methods of food processing. Based on scientific research, the consumption of whole grains can make positive changes in the gut microbiota. Seeds contain different microbiota-accessible substrates that can resist digestion in the upper gastrointestinal tract. Seed germination is one of the simplest and newest food processing approaches to improve seeds' bioavailability and overall nutritional value. During germination, the dormant hydrolytic seed's enzymes have been activated and then metabolize the macromolecules. The quality and quantity of bioactive compounds like prebiotics, fiber, phenolic compounds (PC), total free amino acids, and γ-aminobutyric acid (GABA) can increase even up to 4-10 folds in some cases. These components stimulate the survival and growth of healthful bacteria like probiotics and boost their activity. This effect depends on several parameters, e.g., germination environmental conditions. This review aims to provide up-to-date and latest research about promoting bioactive components during seed germination and investigating their impacts on gut microbiota to understand the possible direct and indirect effects of seed germination on the microbiome and human health.
Collapse
Affiliation(s)
- Sima Maleki
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, and Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
21
|
Akkulak M, Evin E, Durukan O, Celebioglu HU, Adali O. Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants. Anticancer Agents Med Chem 2024; 24:372-378. [PMID: 38058098 DOI: 10.2174/0118715206271514231124111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression. METHODS Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed. RESULTS Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment. CONCLUSION The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.
Collapse
Affiliation(s)
- Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Emre Evin
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Ozlem Durukan
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Hasan Ufuk Celebioglu
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
22
|
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JDS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2023; 36:181-198. [PMID: 34668465 PMCID: PMC8593414 DOI: 10.1017/s0954422421000317] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut-lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.
Collapse
Affiliation(s)
- Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Juliana Gondim de Albuquerque
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil
- Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Mariany Bernardino da Silva Barbalho
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
23
|
Guo S, Shi Y, Xu A, Wang Y, Xu P. Liubao tea extract ameliorates ovalbumin-induced allergic asthma by regulating gut microbiota in mice. Food Funct 2023; 14:10605-10616. [PMID: 37961950 DOI: 10.1039/d3fo03470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Asthma, a chronic airway inflammatory disease, has a complicated pathogenesis and limited therapeutic treatment. Evidence shows that the intestinal microbiota exhibits crucial functional interaction with asthma syndrome. Liubao tea (LBT), a type of postfermented tea in China, positively modulates gut microbiota. However, the potential benefits of LBT extract (LBTE) for allergic asthma are still not understood. Herein, the anti-inflammatory effects of LBTE and its modulation of the gut microbiota of asthmatic mice induced by ovalbumin were explored. The results demonstrate that LBTE significantly inhibited airway hyper-responsiveness and restrained the proliferation of proinflammatory cytokines and inflammatory cells associated with allergic asthma. Additionally, LBTE suppressed inflammatory infiltration, mucus secretion, and excessive goblet cell production by downregulating the gene expression of inflammatory indicators. Interestingly, fecal microbiota transplantation results further implied that the modulation of LBTE on gut microbiota played an essential role in alleviating airway inflammatory symptoms of allergic asthma.
Collapse
Affiliation(s)
- Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
24
|
Xiao N, Ruan S, Mo Q, Zhao M, Feng F. The Effect of Sodium Benzoate on Host Health: Insight into Physiological Indexes and Gut Microbiota. Foods 2023; 12:4081. [PMID: 38002138 PMCID: PMC10670719 DOI: 10.3390/foods12224081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Sodium benzoate (SB) is a common food preservative widely used in the food industry. However, the effects of SB intake on host health at different stages were still unclear. Hence, we investigated the impact of SB with three concentrations (150 mg/kg, 500 mg/kg and 1000 mg/kg) and at three stages (intake for 5-weeks, intake for 10-weeks and removal for 5 weeks) on host health in normal mice. The results showed that SB intake for 5 weeks slightly changed gut microbiota composition, but it significantly increased TG (only 150 mg/kg and 1000 mg/kg) and blood glucose levels (only 500 mg/kg) and promoted the secretion of interleukin (IL)-1β and IL-6 (p < 0.01). However, SB intake for 10 weeks mostly maintained normal glucolipid metabolism; although, IL-1β (p < 0.01) and IL-6 (p < 0.05) levels were also significantly increased and positively regulated the gut microbiota by significantly increasing the relative abundance of Lactobacillus and significantly decreasing the relative abundance of Ileibacterium. Meanwhile, the safety of SB for host metabolism and gut microbiota was also confirmed via a fecal microbiota transplantation experiment. In addition, we found that SB removal after 10 weeks of intake significantly increased the levels of blood glucose, insulin and HOMA-IR index, which might be attributed to gut microbiota dysbiosis. Mechanistically, these positive effects and negative effects had no close relationship with the concentration of short-chain fatty acids in the gut, which might be associated with metabolites of SB or special bacterial strains. In short, this work provided positive evidence for the safety of SB consumption within the recommended range.
Collapse
Affiliation(s)
- Nanhai Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (N.X.); (S.R.); (Q.M.); (M.Z.)
| | - Shengyue Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (N.X.); (S.R.); (Q.M.); (M.Z.)
| | - Qiufen Mo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (N.X.); (S.R.); (Q.M.); (M.Z.)
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (N.X.); (S.R.); (Q.M.); (M.Z.)
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (N.X.); (S.R.); (Q.M.); (M.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Chen H, Shi Y, Wang L, Hu X, Lin X. Phenolic profile and α-glucosidase inhibitory potential of wampee (Clausena lansium (Lour.) Skeels) peel and pulp: In vitro digestion/in silico evaluations. Food Res Int 2023; 173:113274. [PMID: 37803586 DOI: 10.1016/j.foodres.2023.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
To investigate the changes in phenolics, flavonoids, and their bio-activities of wampee (Clausena lansium (Lour.) Skeels) during digestion, the peel and pulp were subjected to simulated in vitro digestion, encompassing oral, gastric, small intestine, and large intestine digestion stages. The peel exhibited a total release of 91.93 mg GAE/g DW of phenolics and 61.86 mg RE/g DW of flavonoids, whereas the pulp displayed a release of 27.83 mg GAE/g DW of phenolics and 8.94 mg RE/g DW of flavonoids. Notably, the phenolics and flavonoids were mostly released during the oral digestion stage for peel, while they were mostly released during the small intestine digestion stage for pulp. The results of the targeted flavonoids analysis indicated that rutin and l-epicatechin were the two most widely released compounds in each digestion step. Moreover, myricetin has been identified as the best inhibitor against α-glucosidase, probably because it formed the most H-bonds, 8, with 6 catalytic residues, which was the highest number. Furthermore, the soluble substances released from the peel exhibited significantly higher antioxidant activities and inhibitory activity against α-glucosidase (p < 0.05) compared to those from the pulp. Positive correlations were observed between the total phenolic content or total flavonoid content and the antioxidant activities (r > 0.73 (peel), > 0.61 (pulp)), as well as α-glucosidase inhibitory activity (r < - 0.48 (peel), < -0.64 (pulp)) of peel and pulp. In conclusion, these findings provide valuable insights into the digestive characteristics and health benefits of both wampee peel and pulp.
Collapse
Affiliation(s)
- Hua Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Yousheng Shi
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
26
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
27
|
Adekolurejo OO, McDermott K, Greathead HMR, Miller HM, Mackie AR, Boesch C. Effect of Red-Beetroot-Supplemented Diet on Gut Microbiota Composition and Metabolite Profile of Weaned Pigs-A Pilot Study. Animals (Basel) 2023; 13:2196. [PMID: 37443994 PMCID: PMC10339942 DOI: 10.3390/ani13132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.
Collapse
Affiliation(s)
- Opeyemi O. Adekolurejo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Katie McDermott
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Henry M. R. Greathead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Helen M. Miller
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Alan R. Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| |
Collapse
|
28
|
Li A, Kou R, Liu H, Chen M, Wang J, Liu Q, Xing X, Zhang B, Dong L, Wang S. Multi-omics analyses reveal relationships among polyphenol-rich oolong tea consumption, gut microbiota, and metabolic profile: A pilot study. Food Chem 2023; 426:136653. [PMID: 37348398 DOI: 10.1016/j.foodchem.2023.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Convincing evidence has suggested the health potentials of oolong tea (OT) on gut microbiota homeostasis; however, limited population-based studies exist regarding the effect of OT consumption on human gut microbial and metabolic profile. This pilot study explored gut microbial and metabolic changes in healthy adults with a 3-week oolong tea intake. Our findings showed that OT treatment significantly altered gut microbial diversity (Shannon index, 5.4±0.1 vs. 5.7±0.1 pre- and post-OT treatment), reorganized gut microbiota composition, enriched Bacteroides and Prevotella, decreased Megamonas, and improved gastrointestinal function. Also, gut microbes from overweight subjects with BMI >23.9 exhibited greater responses to OT treatment compared with normal-weight counterparts. Metabolomic analysis identified OT intake-induced 23 differential metabolites and 10 enriched metabolic pathways. This study may provide new insights into the association among OT intervention, host gut microbiome and metabolic profile, and improve the knowledge of clinical strategies and personalized nutrition.
Collapse
Affiliation(s)
- Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Ruixin Kou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Mengshan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Xiaolong Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China.
| |
Collapse
|
29
|
Liang T, Xie X, Wu L, Li L, Yang L, Jiang T, Du M, Chen M, Xue L, Zhang J, Ding Y, Wu Q. Metabolism of resistant starch RS3 administered in combination with Lactiplantibacillus plantarum strain 84-3 by human gut microbiota in simulated fermentation experiments in vitro and in a rat model. Food Chem 2023; 411:135412. [PMID: 36652881 DOI: 10.1016/j.foodchem.2023.135412] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
This study aimed to investigate the metabolic and population responses of gut microbiota to resistant starch (RS3) in the presence of exogenous Lactiplantibacillus plantarum strain 84-3 (Lp84-3) in vitro and in vivo. Lp84-3 promoted acetate, propionate, and butyrate production from RS3 by gut microbiota and increased Lactobacillus and Blautia contents in vitro. Furthermore, in the presence of Lp84-3, starch granules presented a "dot-by-hole" fermentation pattern. Administration of Lp84-3 with RS3 increased the level of SCFA-producing Faecalibaculum, Parabacteroides, Alistipes, and Anaeroplasma in the faeces of rates, with Lactobacillus and Akkermansia representing the key genera that significantly promoted SCFAs, especially propionate and butyrate. Lp84-3 with RS3 promoted genes related to tryptophan synthase (EC 4.2.1.20) and beta-glucosidase (EC 3.2.1.21) in faecal bacteria. Our findings highlight the ability of Lp84-3 to enhance RS3 degradation, possibly by promoting SCFA-producing bacteria, and indicate that Lp84-3 could be a potential probiotic with a beneficial effect on gut microbiota.
Collapse
Affiliation(s)
- Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mingzhu Du
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou 510632, PR China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
30
|
Su Y, Cheng S, Ding Y, Wang L, Sun M, Man C, Zhang Y, Jiang Y. A comparison of study on intestinal barrier protection of polysaccharides from Hericium erinaceus before and after fermentation. Int J Biol Macromol 2023; 233:123558. [PMID: 36746300 DOI: 10.1016/j.ijbiomac.2023.123558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The intestinal barrier protects the host from harmful substances. This paper investigated two polysaccharides extracted from the Hericium erinaceus before and after fermentation (HEP and FHEP). The effects of two polysaccharides on the intestinal barrier were investigated in cell and mice models. The results showed that polysaccharides had a protective effect against acrylamide-induced injury in IEC-6 cell. Compared with HEP, FHEP significantly increased TEER and paracellular permeability (P < 0.05). Both polysaccharides the expression of alter tight junction (TJ) and mucin (MUC) as observed in cell Western Bolt (WB). Polysaccharides also enhance the intestinal barrier function in mice by improving cyclophosphamide induced cytokines level, TJ and MUC expression, and gut microbiota. The results showed that FHEP significantly increased IgA, IgG, and IgM levels while decreasing TNF-, IL-1, and IL-6 levels (P < 0.05). The immunohistochemical results showed that both polysaccharides significantly increased the expression of occludin, ZO-1, ZO-2, claudin-3, claudin-4, MUC2 and decreased claudin-2. In parallel, polysaccharides could alter the composition of the gut microbiota, indicating that increased in Bacteriodetes, Firmicutes and decreased in Klebsiella and Shigella. This work provides important views on the protective effect of fermented polysaccharides on the intestinal barrier, and provides a potential mechanism for the beneficial health properties of these biomacromolecules.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linge Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingshuang Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
31
|
Cardilli A, Hamad I, Dyczko A, Thijs S, Vangronsveld J, Müller DN, Rosshart SP, Kleinewietfeld M. Impact of High Salt-Intake on a Natural Gut Ecosystem in Wildling Mice. Nutrients 2023; 15:nu15071565. [PMID: 37049406 PMCID: PMC10096756 DOI: 10.3390/nu15071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023] Open
Abstract
The mammalian holobiont harbors a complex and interdependent mutualistic gut bacterial community. Shifts in the composition of this bacterial consortium are known to be a key element in host health, immunity and disease. Among many others, dietary habits are impactful drivers for a potential disruption of the bacteria–host mutualistic interaction. In this context, we previously demonstrated that a high-salt diet (HSD) leads to a dysbiotic condition of murine gut microbiota, characterized by a decrease or depletion of well-known health-promoting gut bacteria. However, due to a controlled and sanitized environment, conventional laboratory mice (CLM) possess a less diverse gut microbiota compared to wild mice, leading to poor translational outcome for gut microbiome studies, since a reduced gut microbiota diversity could fail to depict the complex interdependent networks of the microbiome. Here, we evaluated the HSD effect on gut microbiota in CLM in comparison to wildling mice, which harbor a natural gut ecosystem more closely mimicking the situation in humans. Mice were treated with either control food or HSD and gut microbiota were profiled using amplicon-based methods targeting the 16S ribosomal gene. In line with previous findings, our results revealed that HSD induced significant loss of alpha diversity and extensive modulation of gut microbiota composition in CLM, characterized by the decrease in potentially beneficial bacteria from Firmicutes phylum such as the genera Lactobacillus, Roseburia, Tuzzerella, Anaerovorax and increase in Akkermansia and Parasutterella. However, HSD-treated wildling mice did not show the same changes in terms of alpha diversity and loss of Firmicutes bacteria as CLM, and more generally, wildlings exhibited only minor shifts in the gut microbiota composition upon HSD. In line with this, 16S-based functional analysis suggested only major shifts of gut microbiota ecological functions in CLM compared to wildling mice upon HSD. Our findings indicate that richer and wild-derived gut microbiota is more resistant to dietary interventions such as HSD, compared to gut microbiota of CLM, which may have important implications for future translational microbiome research.
Collapse
|
32
|
Ribaldone DG, Pellicano R, Fagoonee S, Actis GC. Modulation of the gut microbiota: opportunities and regulatory aspects. Minerva Gastroenterol (Torino) 2023; 69:128-140. [PMID: 35179341 DOI: 10.23736/s2724-5985.22.03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human gut is an intensively colonized organ containing microorganisms that can be health-promoting or pathogenic. This feature led to the development of functional foods aiming to fortify the former category at the expense of the latter. Since long, cultured products, including probiotics fortification, have been used for humans as live microbial feed additions. This review presents some of the microbes used as probiotics and discusses how supplementation with probiotics may help initiate and/or restore eubiotic composition of gut microbiota. Additionally, it considers safety and regulatory aspects of probiotics.
Collapse
Affiliation(s)
| | | | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging (CNR) c/o Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
33
|
Pantoja-Feliciano IG, Karl JP, Perisin M, Doherty LA, McClung HL, Armstrong NJ, Renberg R, Racicot K, Branck T, Arcidiacono S, Soares JW. In vitro gut microbiome response to carbohydrate supplementation is acutely affected by a sudden change in diet. BMC Microbiol 2023; 23:32. [PMID: 36707764 PMCID: PMC9883884 DOI: 10.1186/s12866-023-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consuming a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to measure community composition and functional potential. Specific statistical analyses were implemented to detect changes in relative abundance from taxa, genes and pathways. RESULTS Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermentation were observed as a function of the diet intervention and correlated to specific taxa of interest. CONCLUSIONS These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut commensals during stress-induced states.
Collapse
Affiliation(s)
| | - J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Matthew Perisin
- grid.420282.e0000 0001 2151 958XU.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Laurel A. Doherty
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Holly L. McClung
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Nicholes J. Armstrong
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Rebecca Renberg
- grid.420282.e0000 0001 2151 958XGeneral Technical Services, U.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Kenneth Racicot
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Tobyn Branck
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Steve Arcidiacono
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Jason W. Soares
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| |
Collapse
|
34
|
Simon MC, Sina C, Ferrario PG, Daniel H. Gut Microbiome Analysis for Personalized Nutrition: The State of Science. Mol Nutr Food Res 2023; 67:e2200476. [PMID: 36424179 DOI: 10.1002/mnfr.202200476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Whereas most concepts of personalized nutrition (PN) in the past, included genotyping, recent years have brought new approaches that include microbiome analysis to optimize recommendations for diet and lifestyle changes. The new approach, offered by companies, that microbiome analysis provides a real benefit to either more concise recommendations or for increased compliance to PN, is largely lacking scientific validation. Although the microbiome field shows enormous proliferation, it has some major flaws that make its use in the public health domain currently critical. Starting with the quality and representative character of the stool samples, its processing and analysis as well as assembly of metagenome data and the interpretation. Moreover, there is still no consensus of what constitutes a "normal/healthy" microbiome, nor what features characterize a dysbiotic microbiome. And, based on hundreds of individual parameters and environmental factors, the intestinal microbiome shows a huge variability and consequently changing one factor-such as food intake-is likely to have a limited impact in achieving optimized health. The present review intends to summarize the state of consolidated knowledge on human gut microbiome in the context of diet and disease, its key features, and its influencing factors as well as its "add-on" quality for PN offers.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Department of Nutrition and Food Science, Nutrition and Microbiome, University of Bonn, 53115, Bonn, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, 23538, Campus Lübeck, Germany
| | - Paola G Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131, Karlsruhe, Germany
| | | | -
- Department of Nutrition and Food Science, Nutrition and Microbiome, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
35
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Song EJ, Shin JH. Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities. J Microbiol Biotechnol 2022; 32:1497-1505. [PMID: 36398438 PMCID: PMC9843811 DOI: 10.4014/jmb.2209.09050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea,Corresponding author Phone: +82-63-219-9446 Fax: +82-63-219-9876 E-mail:
| |
Collapse
|
37
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:nu14234950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-328-4687215
| |
Collapse
|
38
|
Shang P, Dong S, Han Y, Bo S, Ye Y, Duan M, Chamba Y. Environmental exposure to swine farms reshapes human gut microbiota. CHEMOSPHERE 2022; 307:135558. [PMID: 35780983 DOI: 10.1016/j.chemosphere.2022.135558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The gut microbiota can change to varying degrees because of changes in the environment. In the present study, we performed microbial amplicon sequencing on the feces of people who had long-term exposure to swine farms (F) and that of people living in normal environments (S) to investigate the impact of the environment on the human gut microbiota. A total of 1,283,503 high-quality ordered sequences were obtained, which provided different levels of microbial classification and statistics. We found that different environments did not alter the richness and diversity of the microbial communities in participants, but caused significant changes in the proportion of some bacteria. The main bacterial phyla found in group F participants were Firmicutes (69.44-89.03%), Actinobacteria (1.7-18.95%), and Bacteroidetes (1.17-22.35%); those found in group S participants were Firmicutes (49.93-95.04%), Bacteroidetes (0.62-39.59%), and Proteobacteria (0.98-11.95%). Additionally, because of changes in phylum proportions, the Bugbase phenotypic classification predicted an increase in the proportion of Gram-positive bacteria in group F and an increase in the proportion of Gram-negative bacteria in group S. In conclusion, our findings suggest that human exposure to swine farms can reshape the gut microbiota, resulting in changes in the microbial abundances. This change can potentially reduce the odds of developing bowel disease and contribute to the prevention of intestinal diseases, providing a theoretical basis for improving human health.
Collapse
Affiliation(s)
- Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Shixiong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yuqing Han
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Suxue Bo
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China.
| |
Collapse
|
39
|
Santos D, Frota EG, Vargas BK, Tonieto Gris CC, Santos LFD, Bertolin TE. What is the role of phenolic compounds of yerba mate (Ilex paraguariensis) in gut microbiota? PHYTOCHEMISTRY 2022; 203:113341. [PMID: 35952769 DOI: 10.1016/j.phytochem.2022.113341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Diet actively influences gut microbiota and body homeostasis. The predominance of beneficial species results in symbiosis, while dysbiosis is characterized by an imbalance between microbial communities. Food plays a key role in this dynamic and in promoting the health of individuals. Ilex paraguariensis, also known as yerba mate, is a traditional plant from Latin America that has a complex matrix of bioactive substances, including methylxanthines, triterpenes, saponins, and phenolics. The consumption of yerba mate is associated with antioxidant, cardioprotective, anti-inflammatory, and anti-obesity effects. However, to the best of our knowledge, there have been no studies on yerba mate as a modulating agent of intestinal microbiota. Phenolics are the major compounds in yerba mate and have been reported to act in modulating the microbiome. In this review, we explore the activity of yerba mate as a possible stimulant of gut microbiota and present its main phenolics and their biological effects. We also propose different mechanisms of action of these phenolics and possible doses for their effectiveness.
Collapse
Affiliation(s)
- Daiane Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Elionio Galvão Frota
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Bruna Krieger Vargas
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Cintia Cassia Tonieto Gris
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Lára Franco Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
40
|
Wu DT, He Y, Yuan Q, Wang S, Gan RY, Hu YC, Zou L. Effects of molecular weight and degree of branching on microbial fermentation characteristics of okra pectic-polysaccharide and its selective impact on gut microbial composition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Geng S, Li Q, Zhou X, Zheng J, Liu H, Zeng J, Yang R, Fu H, Hao F, Feng Q, Qi B. Gut commensal E. coli outer membrane proteins activate the host food digestive system through neural-immune communication. Cell Host Microbe 2022; 30:1401-1416.e8. [PMID: 36057258 DOI: 10.1016/j.chom.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract facilitates food digestion, with the gut microbiota playing pivotal roles in nutrient breakdown and absorption. However, the microbial molecules and downstream signaling pathways that activate food digestion remain unexplored. Here, by establishing a food digestion system in C. elegans, we discover that food breakdown is regulated by the interaction between bacterial outer membrane proteins (OMPs) and a neural-immune pathway. E. coli OmpF/A activate digestion by increasing the neuropeptide NLP-12 that acts on the receptor CCKR. NLP-12 is homologous to mammalian cholecystokinin, known to stimulate dopamine, and we found that loss of dopamine receptors or addition of a dopamine antagonist inhibited OMP-mediated digestion. Dopamine and NLP-12-CKR-1 converge to inhibit PMK-1/p38 innate immune signaling. Moreover, directly inhibiting PMK-1/p38 boosts food digestion. This study uncovers a role of bacterial OMPs in regulating animal nutrient uptake and supports a key role for innate immunity in digestion.
Collapse
Affiliation(s)
- Shengya Geng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Qian Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Xue Zhou
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Junkang Zheng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Huimin Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Jie Zeng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Ruizhi Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Herui Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Fanrui Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Qianxu Feng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Bin Qi
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China.
| |
Collapse
|
42
|
D’Archivio M, Santangelo C, Silenzi A, Scazzocchio B, Varì R, Masella R. Dietary EVOO Polyphenols and Gut Microbiota Interaction: Are There Any Sex/Gender Influences? Antioxidants (Basel) 2022; 11:antiox11091744. [PMID: 36139818 PMCID: PMC9495659 DOI: 10.3390/antiox11091744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates that regular consumption of extra virgin olive oil (EVOO), the main source of fat in the Mediterranean diet, is associated with beneficial health effects and a reduced risk of developing chronic degenerative disorders. The beneficial effects of EVOO can be attributed to its unique composition in monounsaturated fats and phenolic compounds that provide important antioxidant, anti-inflammatory, and immune-modulating activities. On the other hand, it is well known that the gut microbiota has several important roles in normal human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors, among which dietary components play a relevant role. In the last few years, the two-way interaction between polyphenols, including those in EVOO, and the gut microbiota, i.e., the modulation of the microbiota by polyphenols and that of polyphenol metabolism and bioavailability by the microbiota, has attracted growing attention, being potentially relevant to explain the final effects of polyphenols, as well as of the microbiota profile. Furthermore, sex and gender can affect dietary habits, polyphenol intake, and nutrient metabolism. Lastly, it has been recently suggested that differences in gut microbiota composition could be involved in the unequal incidence of metabolic diseases observed between women and men, due to sex-dependent effects on shaping gut microbiota profiles according to diet. This review summarizes the most recent studies on the relationship between EVOO polyphenols and the gut microbiota, taking into account possible influences of sex and gender in modulating such an interaction.
Collapse
|
43
|
A balanced gut microbiota is essential to maintain health in captive sika deer. Appl Microbiol Biotechnol 2022; 106:5659-5674. [PMID: 35922588 DOI: 10.1007/s00253-022-12111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Certain animals harbor a high proportion of pathogens, particular the zoonotic pathogens, in their gut microbiome but are usually asymptomic; however, their carried pathogens may seriously threaten the public health. By understanding how the microbiome overcomes the negative effects of pathogens to maintain host health, we can develop novel solutions to control animal-mediated pathogen transmission including identification and application of beneficial microbes. Here, we analyzed the gut microbiota of 10 asymptomic captive sika deer individuals by full-length 16S rDNA sequencing. Twenty-nine known pathogens capable of infecting humans were identified, and the accumulated proportions of the identified pathogens were highly variable among individuals (2.33 to 39.94%). The relative abundances of several beneficial bacteria, including Lactobacillus and Bifidobacterium, were found to be positively correlated with the relative abundances of accumulated pathogens. Whole-genome metagenomic analysis revealed that the beneficial- and pathogenic-associated functions, such as genes involved in the synthesis of short chain fatty acids and virulence factors, were also positively correlated in the microbiome, indicating that the beneficial and pathogenic functions were maintained at a relatively balanced ratio. Furthermore, the bacteriophages that target the identified pathogens were found to be positively correlated with the pathogenic content in the microbiome. Several high-quality genomes of beneficial bacteria affiliated with Lactobacillus and Bifidobacterium and bacteriophages were recovered from the metagenomic data. Overall, this study provides novel insights into the interplay between beneficial and pathogenic content to ensure maintenance of a healthy gut microbiome, and also contributes to discovery of novel beneficial microbes and functions that control pathogens. KEY POINTS: • Certain asymptomic captive sika deer individuals harbor relatively high amounts of zoonotic pathogens. • The beneficial microbes and the beneficial functions are balanced with the pathogenic contents in the gut microbiome. • Several high-quality genomes of beneficial bacteria and bacteriophages are recovered by metagenomics.
Collapse
|
44
|
Teng Y, Wang Y, Guan WY, Wang C, Yu HS, Li X, Wang YH. Effect of Lactobacillus plantarum LP104 on hyperlipidemia in high-fat diet induced C57BL/6N mice via alteration of intestinal microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
45
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
46
|
Feng W, Liu J, Cheng H, Zhang D, Tan Y, Peng C. Dietary compounds in modulation of gut microbiota-derived metabolites. Front Nutr 2022; 9:939571. [PMID: 35928846 PMCID: PMC9343712 DOI: 10.3389/fnut.2022.939571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Gut microbiota, a group of microorganisms that live in the gastrointestinal tract, plays important roles in health and disease. One mechanism that gut microbiota in modulation of the functions of hosts is achieved through synthesizing and releasing a series of metabolites such as short-chain fatty acids. In recent years, increasing evidence has indicated that dietary compounds can interact with gut microbiota. On one hand, dietary compounds can modulate the composition and function of gut microbiota; on the other hand, gut microbiota can metabolize the dietary compounds. Although there are several reviews on gut microbiota and diets, there is no focused review on the effects of dietary compounds on gut microbiota-derived metabolites. In this review, we first briefly discussed the types of gut microbiota metabolites, their origins, and the reasons that dietary compounds can interact with gut microbiota. Then, focusing on gut microbiota-derived compounds, we discussed the effects of dietary compounds on gut microbiota-derived compounds and the following effects on health. Furthermore, we give our perspectives on the research direction of the related research fields. Understanding the roles of dietary compounds on gut microbiota-derived metabolites will expand our knowledge of how diets affect the host health and disease, thus eventually enable the personalized diets and nutrients.
Collapse
Affiliation(s)
- Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Xie J, Sun N, Huang H, Xie J, Chen Y, Hu X, Hu X, Dong R, Yu Q. Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chem 2022; 396:133719. [PMID: 35868282 DOI: 10.1016/j.foodchem.2022.133719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Mung bean coat is a good source of dietary polyphenols. In this study,in vitro simulated digestion and colonic fermentation were performed to investigate the release of polyphenols from mung bean coat and their bioactivities. Polyphenols released by colonic fermentation were much higher than those released by digestion and reached a peak at 12 h, resulting in higher antioxidant capacities (DPPH, ORAC, FRAP assays). About 49 polyphenols and metabolites including quercetin, vanillin, catechin and p-hydroxybenzoic acid were identified, and possible biotransformation pathways were postulated. Moreover, the relative abundance of beneficial bacteria (such as Lactococcus and Bacteroides) was improved during colonic fermentation. Altogether, gut microbiota could release polyphenols, the released polyphenols and their catabolic metabolites, alongside dietary fiber in mung bean coat selectively regulated the composition of gut microbiota and promoted the synthesis of SCFAs. These findings indicated that polyphenols in mung bean coat potentially contributed to gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
48
|
Bi Y, Wei H, Nian H, Liu R, Ji W, Liu H, Bao J. Socializing Models During Lactation Alter Colonic Mucosal Gene Expression and Fecal Microbiota of Growing Piglets. Front Microbiol 2022; 13:819011. [PMID: 35875524 PMCID: PMC9301273 DOI: 10.3389/fmicb.2022.819011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
The enrichment of the social environment during lactation alleviates the stress of weaned piglets. It is significant to understand how the enriched social environment improves the weaning stress of piglets. RNA sequencing (RNA-seq) of colonic mucosa, 16S rRNA sequencing of feces, and short-chain fatty acids (SCFAs) of colonic content were used to determine the effects of social contact during lactation. In this study, thirty litter lactating piglets were divided into intermittent social contact (ISC) group that contacted with neighbors intermittently, continuous social contact (CSC) group that contacted with neighbors starting at day (D) 14 after birth, and control (CON) group in which piglets were kept in their original litter. The piglets were weaned at D35 and regrouped at D36. The colonic mucosal RNA-seq, fecal microbes, and SCFAs of colonic contents of 63-day-old piglets were analyzed. The results of RNA-seq showed that compared with the CON group, the pathways of digestion and absorption of minerals, protein, and vitamins of piglets were changed in the ISC group, whereas the pathways of retinol metabolism and nitrogen metabolism in the colonic mucosal were affected and stimulated the immune response in the CSC group. Compared with the CON group, the abundances of pernicious microorganisms (Desulfovibrio, Pseudomonas, Brevundimonas, etc.) in the CSC group and pernicious microorganisms (Desulfovibrio, Neisseria, Sutterella, etc.) and beneficial bacteria (Bifidobacterium, Megamonas, and Prevotella_9) in the ISC group were significantly higher (p < 0.05). The abundances of proinflammatory bacteria (Coriobacteriaceae_unclassified, Coprococcus_3, and Ruminococcus_2) in the CSC group were significantly increased (p < 0.05), but the abundances of SCFAs producing bacteria (Lachnospiraceae_UCG-010, Parabacteroides, Anaerotruncus, etc.) and those of anti-inflammatory bacteria (Eubacterium, Parabacteroides, Ruminiclostridium_9, and Alloprevotella) were significantly reduced (p < 0.05) in the CSC group. Compared with the CON group, the concentrations of microbial metabolites, acetate, and propionate in the colonic contents were reduced (p < 0.05) in the ISC group, whereas the concentration of acetate was reduced (p < 0.05) in the CSC group. Therefore, both ISC and CSC during lactation affected the composition of fecal microbes and changed the expression of intestinal mucosal genes related to nutrient metabolism and absorption of piglets.
Collapse
Affiliation(s)
- Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
49
|
Goya-Jorge E, Gonza I, Bondue P, Douny C, Taminiau B, Daube G, Scippo ML, Delcenserie V. Human Adult Microbiota in a Static Colon Model: AhR Transcriptional Activity at the Crossroads of Host–Microbe Interaction. Foods 2022; 11:foods11131946. [PMID: 35804761 PMCID: PMC9265634 DOI: 10.3390/foods11131946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functional symbiotic intestinal microbiota regulates immune defense and the metabolic processing of xenobiotics in the host. The aryl hydrocarbon receptor (AhR) is one of the transcription factors mediating host–microbe interaction. An in vitro static simulation of the human colon was used in this work to analyze the evolution of bacterial populations, the microbial metabolic output, and the potential induction of AhR transcriptional activity in healthy gut ecosystems. Fifteen target taxa were explored by qPCR, and the metabolic content was chromatographically profiled using SPME-GC-MS and UPLC-FLD to quantify short-chain fatty acids (SCFA) and biogenic amines, respectively. Over 72 h of fermentation, the microbiota and most produced metabolites remained stable. Fermentation supernatant induced AhR transcription in two of the three reporter gene cell lines (T47D, HepG2, HT29) evaluated. Mammary and intestinal cells were more sensitive to microbiota metabolic production, which showed greater AhR agonism than the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) used as a positive control. Some of the SCFA and biogenic amines identified could crucially contribute to the potent AhR induction of the fermentation products. As a fundamental pathway mediating human intestinal homeostasis and as a sensor for several microbial metabolites, AhR activation might be a useful endpoint to include in studies of the gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Pauline Bondue
- Research & Development, ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium;
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
- Correspondence: ; Tel.: +32-4-366-51-24
| |
Collapse
|
50
|
Tiozon RJN, Sartagoda KJD, Serrano LMN, Fernie AR, Sreenivasulu N. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends Food Sci Technol 2022; 127:14-25. [PMID: 36090468 PMCID: PMC9449372 DOI: 10.1016/j.tifs.2022.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Scope and approach Key findings and conclusion Phenolic compounds are critical in avoiding metabolic disorders associated with oxidative stress. Breeding cereal crops to enrich phenolic compounds in grains contributes to personalized nutrition. A diet rich in cereal phenolics likely to increase human gut health, thereby lowering the risk of non-communicable illness.
Collapse
Affiliation(s)
- Rhowell Jr. N. Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kristel June D. Sartagoda
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Luster May N. Serrano
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Corresponding author.
| |
Collapse
|