1
|
Mokrá D, Adamčáková J, Bálentová S, Barošová R, Hanusrichterová J, Žideková N, Mikolka P, Mokrý J, Kertys M. Novel pilot study on plasma metabolites and biomarkers in a rat model of silica-induced lung inflammation and fibrosis. Biochim Biophys Acta Gen Subj 2024:130729. [PMID: 39447776 DOI: 10.1016/j.bbagen.2024.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Silica-induced lung damage may be associated with changes in distinct metabolites potentially serving as biomarkers. Due to the lack of metabolomic data from animal models, this pilot study aimed to evaluate changes in markers of inflammation and fibrosis, as well as plasma metabolites in rats at 14 and 28 days after silica instillation. Adult male Wistar rats were administered a single oropharyngeal intratracheal dose of silica suspension or sterile saline in controls. Selected markers of inflammation, oxidative stress, fibrosis, and cell counts in blood and bronchoalveolar lavage fluid have been evaluated. Finally, plasma metabolites were detected using a targeted metabolomics approach with an MxP® Quant 500 kit. Silica instillation induced noticeable inflammatory, oxidative, and fibrotic changes in lung tissue within the first 14 days. During the next two weeks, the shifts in some markers were further accentuated. After exposure to silica, the metabolomic analysis identified significant changes in metabolites associated with lipid metabolism, biogenic amines, amino acid derivatives, carboxylic acids, bile acids, putrescine, glycosylceramides, and acylcarnitines. This pilot study provides initial evidence that significant alterations in plasma metabolite profiles accompany silica-induced lung injury in rats. These findings suggest a possible systemic impact, particularly on lipid metabolism, and indicate the urgent need for a deeper understanding of the metabolic reprogramming associated with silica-induced lung injury to pave the way for the discovery of novel biomarkers.
Collapse
Affiliation(s)
- Daniela Mokrá
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Adamčáková
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Romana Barošová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juliana Hanusrichterová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Nela Žideková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokrý
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kertys
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
2
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024:1-19. [PMID: 39418113 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Zhang J, Zhang J, Yao Z, Shao W, Song Y, Tang W, Li B. GAMG ameliorates silica-induced pulmonary inflammation and fibrosis via the regulation of EMT and NLRP3/TGF-β1/Smad signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117124. [PMID: 39342756 DOI: 10.1016/j.ecoenv.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models. GAMG significantly improved fibrotic pathological changes and collagen deposition in the lungs, alleviated lung inflammation in the BALF, reduced the expression of TNF-α, IL-6, NLRP3, TGF-β1, vimentin, Col-Ⅰ, N-cadherin, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Moreover, the dose of 100 mg/kg GAMG can effectively prevent early-stage silicosis, while that of 200 mg/kg was recommended for advanced silicosis. In vitro and in vivo study verified that GAMG can suppress EMT through the NLRP3/TGF-β1/Smad2/3 signaling pathway. Therefore, GAMG could be a promising preventive (early-stage silicosis) and therapeutic (advanced silicosis) strategy, which provides a new idea for formulating prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| | - Jiazhen Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Zongze Yao
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
4
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
5
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2024:1-12. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Liu K, Sun X, Hu WJ, Mei LY, Zhang HD, Su SB, Ning K, Nie YF, Qiu LP, Xia Y, Han L, Zhi Q, Shi CB, Wang G, Wen W, Gao JQ, Yu B, Wang X, Dong YW, Kang N, Han F, Bian HY, Chen YQ, Ye M. Occupational Exposure to Silica Dust and Silicosis Risk in Chinese Noncoal Mines: Qualitative and Quantitative Risk Assessment. JMIR Public Health Surveill 2024; 10:e56283. [PMID: 39222341 PMCID: PMC11406111 DOI: 10.2196/56283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite increasing awareness, silica dust-induced silicosis still contributes to the huge disease burden in China. Worryingly, recent silica dust exposure levels and silicosis risk in Chinese noncoal mines remain unclear. OBJECTIVE We aimed to determine recent silica dust exposure levels and assess the risk of silicosis in Chinese noncoal mines. METHODS Between May and December 2020, we conducted a retrospective cohort study on 3 noncoal mines and 1 public hospital to establish, using multivariable Cox regression analyses, prediction formulas of the silicosis cumulative hazard ratio (H) and incidence (I) and a cross-sectional study on 155 noncoal mines in 10 Chinese provinces to determine the prevalence of silica dust exposure (PDE), free silica content, and total dust and respirable dust concentrations. The qualitative risk of silicosis was assessed using the International Mining and Metals Commission's risk-rating table and the occupational hazard risk index; the quantitative risk was assessed using prediction formulas. RESULTS Kaplan-Meier survival analysis revealed significant differences in the silicosis probability between silica dust-exposed male and female miners (log-rank test χ21=7.52, P=.01). A total of 126 noncoal mines, with 29,835 miners and 4623 dust samples, were included; 13,037 (43.7%) miners were exposed to silica dust, of which 12,952 (99.3%) were male. The median PDE, free silica content, total dust concentration, and respirable dust concentration were 61.6%, 27.6%, 1.30 mg/m3, and 0.58 mg/m3, respectively, indicating that miners in nonmetal, nonferrous metal, small, and open-pit mines suffer high-level exposure to silica dust. Comprehensive qualitative risk assessment showed noncoal miners had a medium risk of silicosis, and the risks caused by total silica dust and respirable silica dust exposure were high and medium, respectively. When predicting H and I over the next 10, 20, and 30 years, we assumed that the miner gender was male. Under exposure to current total silica dust concentrations, median I10, I20, and I30 would be 6.8%, 25.1%, and 49.9%, respectively. Under exposure to current respirable silica dust concentrations, median I10, I20, and I30 would be 6.8%, 27.7%, and 57.4%, respectively. These findings showed that miners in nonmetal, nonferrous metal, small, and open-pit mines have a higher I and higher qualitative silicosis risk. CONCLUSIONS Chinese noncoal miners, especially those in nonmetal, nonferrous metal, small, and open-pit mines, still suffer high-level exposure to silica dust and a medium-level risk of silicosis. Data of both total silica dust and respirable silica dust are vital for occupational health risk assessment in order to devise effective control measures to reduce noncoal mine silica dust levels, improve miners' working environment, and reduce the risk of silicosis.
Collapse
Affiliation(s)
- Kai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei-Jiang Hu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang-Ying Mei
- Institute of Occupational Disease Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Heng-Dong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Shi-Biao Su
- Institute of Occupational Health Assessment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Kang Ning
- Institute of Occupational Disease Prevention, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Yun-Feng Nie
- Department of Health Risk Assessment, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Le-Ping Qiu
- Institute of Occupational Health and Radiological Health, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Ying Xia
- Institute of Occupational Disease Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qiang Zhi
- Department of Occupational Disease Prevention and Control, Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Hohhot, China
| | - Chun-Bo Shi
- Institute of Occupational Health and Public Health, Qinghai Center for Disease Control and Prevention, Xining, China
| | - Geng Wang
- Institute of Occupational Health and Public Health, Qinghai Center for Disease Control and Prevention, Xining, China
| | - Wei Wen
- Institute of Occupational Health Assessment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Jian-Qiong Gao
- Department of Occupational Disease Prevention and Control, Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Hohhot, China
| | - Bing Yu
- Enshi Tujia and Miao Autonomous Prefectural Center for Disease Control and Prevention, Enshi, China
| | - Xin Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi-Wen Dong
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Kang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Han
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Ying Bian
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong-Qing Chen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Kumari S, Singh P, Dash D, Singh R. Understanding the molecular basis of anti-fibrotic potential of intranasal curcumin and its association with mitochondrial homeostasis in silica-exposed mice. Mitochondrion 2024; 78:101943. [PMID: 39122226 DOI: 10.1016/j.mito.2024.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Silicosis is an occupational disease of the lungs brought in by repeated silica dust exposures. Inhalation of crystalline silica leads to persistent lung inflammation characterized by lung lesions due to granuloma formation. The specific molecular mechanism has not yet been identified, though. The Present study investigated the impact of silica-exposed lung fibrosis and probable molecular mechanisms. Here, Curcumin, derived from Curcuma longa shown to be an effective anti-inflammatory and anti-fibrotic molecule has been taken to investigate its therapeutic efficacy in silica-induced lung fibrosis. An experimental model of silicosis was established in mice where curcumin was administered an hour before intranasal silica exposure every alternate day for 35 days. Intranasal Curcumin treatment reduced silica-induced oxidative stress, inflammation marked by inflammatory cell recruitment, and prominent granuloma nodules along with aberrant collagen repair. Its protective benefits were confirmed by reduced MMP9 activities along with EMT markers (Vimentin and α-SMA). It has restored autophagy and suppressed the deposition of damaged mitochondria after silica exposure. Intranasal Curcumin also inhibited oxidative stress by boosting antioxidant enzyme activities and enhanced Nrf2-Keap1 expressions. Higher levels of PINK1, PARKIN, Cyt-c, P62/SQSTM, and damaged mitochondria in the silicosis group were significantly lowered after curcumin and dexamethasone treatments. Curcumin-induced autophagy resulted in reduced silica-induced mitochondria-dependent apoptosis. We report that intranasal curcumin treatment showed protective properties on pathological features prompted by silica particles, suggesting that the compound may constitute a promising strategy for the treatment of silicosis in the near future.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Ellingsen DG, Sikkeland LIB, Lund MB, Skaugset NP, Ulvestad B. A study of inflammatory biomarkers in crystalline silica exposed rock drillers. Int Arch Occup Environ Health 2024; 97:587-595. [PMID: 38702427 PMCID: PMC11130035 DOI: 10.1007/s00420-024-02070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Crystalline silica (CS) exposure can cause serious lung disease in humans, but mechanisms of pulmonary toxicity have not been completely elucidated. AIMS To assess pro-inflammatory and anti-inflammatory biomarkers and biomarkers related to the development of chronic obstructive pulmonary disease and fibrosis in serum of rock drillers exposed to CS. METHODS Rock drillers (N = 123) exposed to CS and non-specified particulate matter (PM) were compared to 48 referents without current or past exposure to PM in a cross-sectional study. RESULTS The rock drillers had been exposed to CS for 10.7 years on average. Geometric mean (GM) current exposure was estimated to 36 µg/m3. Their GM concentration of matrix metalloproteinase 12 (MMP-12) was significantly higher (16 vs. 13 ng/L; p = 0.04), while interleukin (IL) 6 and IL-8 were significantly lower compared to the referents. Also pentraxin 3 was significantly lower (3558 vs. 4592 ng/L; p = 0.01) in the rock drillers. A dose-response relationship was observed between cumulative exposure to CS and MMP-12, the highest exposed subgroup having significantly higher MMP-12 concentrations than the referents. CONCLUSION Exposure to CS may increase circulating MMP-12 concentrations in a dose-response related fashion. The results may also suggest a down-regulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway.
| | - Liv Ingunn Bjoner Sikkeland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - May Britt Lund
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| | - Bente Ulvestad
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| |
Collapse
|
9
|
Buford M, Lacher S, Slattery M, Levings DC, Postma B, Holian A, Migliaccio C. A mouse model of wildfire smoke-induced health effects: sex differences in acute and sustained effects of inhalation exposures. Inhal Toxicol 2024; 36:367-377. [PMID: 38769076 PMCID: PMC11298299 DOI: 10.1080/08958378.2024.2354398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Due to climate change, wildfires have increased in intensity and duration. While wildfires threaten lives directly, the smoke has more far-reaching adverse health impacts. During an extreme 2017 wildfire event, residents of Seeley Lake, Montana were exposed to unusually high levels of wood smoke (WS) causing sustained effects on lung function (decreased FEV1/FVC). Objective: The present study utilized an animal model of WS exposure to research cellular and molecular mechanisms of the resulting health effects. Methods: Mice were exposed to inhaled WS utilizing locally harvested wood to recapitulate community exposures. WS was generated at a rate resulting in a 5 mg/m3 PM2.5 exposure for five days. Results: This exposure resulted in a similar 0.28 mg/m2 particle deposition (lung surface area) in mice that was calculated for human exposure. As with the community observations, there was a significant effect on lung function, increased resistance, and decreased compliance, that was more pronounced in males at an extended (2 months) timepoint and males were more affected than females: ex vivo assays illustrated changes to alveolar macrophage functions (increased TNFα secretion and decreased efferocytosis). Female mice had significantly elevated IL-33 levels in lungs, however, pretreatment of male mice with IL-33 resulted in an abrogation of the observed WS effects, suggesting a dose-dependent role of IL-33. Additionally, there were greater immunotoxic effects in male mice. Discussion: These findings replicated the outcomes in humans and suggest that IL-33 is involved in a mechanism of the adverse effects of WS exposures that inform on potential sex differences.
Collapse
Affiliation(s)
- Mary Buford
- University of Montana, Center for Environmental Health Sciences, Missoula, MT
| | - Sarah Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Daniel C. Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Britten Postma
- University of Montana, Center for Environmental Health Sciences, Missoula, MT
| | - Andrij Holian
- University of Montana, Center for Environmental Health Sciences, Missoula, MT
| | - Chris Migliaccio
- University of Montana, Center for Environmental Health Sciences, Missoula, MT
| |
Collapse
|
10
|
Wang G, Xie W, Deng L, Huang X, Sun M, Liu W, Tang S. Nrf2 mediates the effects of shionone on silica-induced pulmonary fibrosis. Chin Med 2024; 19:88. [PMID: 38898509 PMCID: PMC11188511 DOI: 10.1186/s13020-024-00947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Extended contact with silica particles can lead to Silicosis, a chronic lung condition lacking established treatment protocols or clear mechanisms of development. The urgency for innovative treatments arises from the unavailability of effective treatment methodologies. The origin of silica-induced pulmonary fibrosis includes essential processes such as macrophage activation and the conversion of fibroblasts into myofibroblasts, with oxidative stress playing a pivotal role. Shionone (SHI), a triterpenoid extracted from the Aster tataricus plant, is recognized for its extensive health benefits. This study explores the capability of SHI to alleviate the effects of silica-induced lung fibrosis in mice. METHODS This investigation explored the impact of SHI on lung inflammation and fibrosis at different stages (early and late) triggered by silica in mice, focusing specifically on the initial and more developed phases. It comprised an analysis of isolated peritoneal macrophages and fibroblasts extracted from mice to elucidate SHI's therapeutic potential and its underlying mechanism. The methodology employed encompassed quantitative PCR, immunofluorescence, flow cytometry, and western blotting to examine macrophage activity and their transition into myofibroblasts. The activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by SHI was confirmed via immunofluorescence and western blot studies. SHI's antioxidative properties were evidenced by the measurement of reactive oxygen species (ROS) and mitochondrial ROS within both macrophages and fibroblasts, using 2', 7'-dichlorodihydrofluorescein diacetate and MitoSOX, respectively. The relevance of SHI was further underscored by applying ML385 and Nrf2 siRNA to gauge its effectiveness. RESULTS Starting SHI treatment early countered the harmful effects of lung inflammation and fibrosis caused by silica, while initiating SHI at a later phase decelerated the advancement of fibrosis. SHI's action was linked to the activation of the Nrf2 signaling pathway, a boost in antioxidant enzyme levels, and a decrease in oxidative stress and inflammation in macrophages affected by silica. Furthermore, SHI prevented the conversion of fibroblasts into myofibroblasts prompted by TGF-β, along with the resultant oxidative stress. The beneficial outcomes of SHI were negated when ML385 and Nrf2 siRNA were applied, highlighting the pivotal role of the Nrf2 pathway in SHI's efficacy. CONCLUSION SHI plays a significant role in stimulating the Nrf2 pathway, thereby defending against silica-induced oxidative stress and inflammatory reactions in macrophages, and inhibiting the conversion of fibroblasts to myofibroblasts due to TGF-β. This suggests that SHI is a viable option for treating lung inflammation and fibrosis in mice suffering from silicosis.
Collapse
Affiliation(s)
- Guiyun Wang
- Shandong Xiehe University, Jinan, Shandong, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Jiménez-Gómez G, Campos-Caro A, García-Núñez A, Gallardo-García A, Molina-Hidalgo A, León-Jiménez A. Analysis of Immune Cell Subsets in Peripheral Blood from Patients with Engineered Stone Silica-Induced Lung Inflammation. Int J Mol Sci 2024; 25:5722. [PMID: 38891910 PMCID: PMC11171478 DOI: 10.3390/ijms25115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Silicosis caused by engineered stone (ES-silicosis) is an emerging worldwide issue characterized by inflammation and fibrosis in the lungs. To our knowledge, only a few reports have investigated leukocyte/lymphocyte subsets in ES-silicosis patients. The present study was designed to explore the proportions of the main lymphocyte subsets in ES-silicosis patients stratified into two groups, one with simple silicosis (SS) and the other with a more advanced state of the disease, defined as progressive massive fibrosis (PMF). The proportions of B (memory and plasmablasts) cells, T (helper, cytotoxic, regulatory) cells, and natural killer (NK) (regulatory and cytotoxic) cells were investigated by multiparameter flow cytometry in 91 ES-silicosis patients (53 SS patients and 38 PMF patients) and 22 healthy controls (HC). Although the total number of leukocytes did not differ between the groups studied, lymphopenia was observed in patients compared to healthy controls. Compared with those in healthy controls, the proportions of memory B cells, naïve helper T cells, and the CD4+/CD8+ T cells' ratio in the peripheral blood of patients with silicosis were significantly decreased, while the percentages of plasma cells, memory helper T cells, and regulatory T cells were significantly increased. For the NK cell subsets, no significant differences were found between the groups studied. These results revealed altered cellular immune processes in the peripheral blood of patients with ES-silicosis and provided further insight into silicosis pathogenesis.
Collapse
Affiliation(s)
- Gema Jiménez-Gómez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain; (G.J.-G.); (A.G.-N.); (A.M.-H.); (A.L.-J.)
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Antonio Campos-Caro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain; (G.J.-G.); (A.G.-N.); (A.M.-H.); (A.L.-J.)
- Genetics Area, Biomedicine, Biotechnology and Public Health Department, School of Marine and Environmental Sciences, University of Cadiz, 11510 Cadiz, Spain
| | - Alejandro García-Núñez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain; (G.J.-G.); (A.G.-N.); (A.M.-H.); (A.L.-J.)
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | | | - Antonio Molina-Hidalgo
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain; (G.J.-G.); (A.G.-N.); (A.M.-H.); (A.L.-J.)
- Pulmonology Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Antonio León-Jiménez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009 Cadiz, Spain; (G.J.-G.); (A.G.-N.); (A.M.-H.); (A.L.-J.)
- Pulmonology Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| |
Collapse
|
12
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
13
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
14
|
Bernal K, Kose O, Leclerc L, Vergnon JM, Pourchez J, Forest V. Development of a protocol of isolation of nanoparticles from patients' broncho-alveolar lavages for their in vitro toxicity assessment. NANOSCALE ADVANCES 2024; 6:458-466. [PMID: 38235099 PMCID: PMC10790975 DOI: 10.1039/d3na00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
To investigate potential correlations between human exposure to inhaled particles and pathological effects, the biological monitoring of nanoparticles in broncho-alveolar lavages (BAL) from patients has been proposed. To better understand the underlying mechanisms of toxicity, we propose to couple this biomonitoring of nanoparticles to their in vitro toxicity assessment. However, BAL obtained from regular clinical practice are conditioned with sodium hypochlorite solution (in a 50% v/v ratio), which is toxic to cells. The aim of this study was to develop a protocol to neutralize sodium hypochlorite, allowing to properly investigate the toxicity of the nanoparticles BAL contain. We first tried to neutralize chemically the sodium hypochlorite using H2O2, ascorbic acid or sodium ascorbate but this approach was unsuccessful. In addition, standard toxicology assays (MTT, LDH) could not be used because of interference with neutralizing solutions. We thus changed strategy and used ultracentrifugation to isolate nanoparticles from the sodium hypochlorite solution, with satisfactory extraction yields (88 to 100%). We then incubated the extracted nanoparticles with macrophages from the RAW264.7 cell line and assessed the cell viability and pro-inflammatory response. This study can be used as a proof-of-concept for further study of the biological impact of nanoparticles. This approach paves the way for studies aiming at a better understanding of the aetiology of some idiopathic diseases and underlying mechanisms.
Collapse
Affiliation(s)
- Kévin Bernal
- Mines Saint-Etienne, Univ Jean Monnet, INSERM U 1059 Sainbiose, Centre CIS, CS 62362 42023, 158 cours Fauriel F-42023 Saint-Etienne Cedex 2 France +33477499776
| | - Ozge Kose
- Mines Saint-Etienne, Univ Jean Monnet, INSERM U 1059 Sainbiose, Centre CIS, CS 62362 42023, 158 cours Fauriel F-42023 Saint-Etienne Cedex 2 France +33477499776
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM U 1059 Sainbiose, Centre CIS, CS 62362 42023, 158 cours Fauriel F-42023 Saint-Etienne Cedex 2 France +33477499776
| | - Jean-Michel Vergnon
- Univ Lyon, Univ Jean Monnet, INSERM U 1059 Sainbiose F-42023 Saint-Etienne France
- CHU Saint-Etienne, Service de Pneumologie F-42055 Saint-Etienne France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM U 1059 Sainbiose, Centre CIS, CS 62362 42023, 158 cours Fauriel F-42023 Saint-Etienne Cedex 2 France +33477499776
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM U 1059 Sainbiose, Centre CIS, CS 62362 42023, 158 cours Fauriel F-42023 Saint-Etienne Cedex 2 France +33477499776
| |
Collapse
|
15
|
Kendall RL, Holian A. Lysosomal BK channels facilitate silica-induced inflammation in macrophages. Inhal Toxicol 2024; 36:31-43. [PMID: 38261520 PMCID: PMC11080613 DOI: 10.1080/08958378.2024.2305112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lysosomal ion channels are proposed therapeutic targets for a number of diseases, including those driven by NLRP3 inflammasome-mediated inflammation. Here, the specific role of the lysosomal big conductance Ca2+-activated K+ (BK) channel was evaluated in a silica model of inflammation in murine macrophages. A specific-inhibitor of BK channel function, paxilline (PAX), and activators NS11021 and NS1619 were utilized to evaluate the role of lysosomal BK channel activity in silica-induced lysosomal membrane permeabilization (LMP) and NLRP3 inflammasome activation resulting in IL-1β release. METHODS Murine macrophages were exposed in vitro to crystalline silica following pretreatment with BK channel inhibitors or activators and LMP, cell death, and IL-1β release were assessed. In addition, the effect of PAX treatment on silica-induced cytosolic K+ decrease was measured. Finally, the effects of BK channel modifiers on lysosomal pH, proteolytic activity, and cholesterol transport were also evaluated. RESULTS PAX pretreatment significantly attenuated silica-induced cell death and IL-1β release. PAX caused an increase in lysosomal pH and decrease in lysosomal proteolytic activity. PAX also caused a significant accumulation of lysosomal cholesterol. BK channel activators NS11021 and NS1619 increased silica-induced cell death and IL-1β release. BK channel activation also caused a decrease in lysosomal pH and increase in lysosomal proteolytic function as well as a decrease in cholesterol accumulation. CONCLUSION Taken together, these results demonstrate that inhibiting lysosomal BK channel activity with PAX effectively reduced silica-induced cell death and IL-1β release. Blocking cytosolic K+ entry into the lysosome prevented LMP through the decrease of lysosomal acidification and proteolytic function and increase in lysosomal cholesterol.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
16
|
Wang R, Zhang S, Liu Y, Li H, Guan S, Zhu L, Jia L, Liu Z, Xu H. The role of macrophage polarization and related key molecules in pulmonary inflammation and fibrosis induced by coal dust dynamic inhalation exposure in Sprague-Dawley rats. Cytokine 2024; 173:156419. [PMID: 37976700 DOI: 10.1016/j.cyto.2023.156419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1β, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-β. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Siyi Zhang
- Wuxi Center For Disease Control And Prevention, Wuxi, Jiangsu 214000, China
| | - Yifei Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Hongmei Li
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Leina Jia
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
17
|
Jiang F, Jiang Q, Hou L, Zhao J, Zhu Z, Jia Q, Xue W, Wang H, Wang Y, Tian L. Inhibition of macrophage pyroptosis ameliorates silica-induced pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115693. [PMID: 37976936 DOI: 10.1016/j.ecoenv.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Macrophage pyroptosis has recently been involved in some inflammatory and fibrosis diseases, however, the role of macrophage pyroptosis in silica-induced pulmonary fibrosis has not been fully elucidated. In this study, we explored the role of macrophage pyroptosis in silicosis in vivo and in vitro. A mouse model of silicosis was established and mice were sacrificed at 7, 14, and 28 days after exposure of silica. The results revealed that the expression of GSDMD and other pyroptosis-related indicators was up-regulated obviously at 14 days after silica exposure, indicating that silica induced pyroptosis in vivo. In vitro, human monocytic leukemia cells (THP-1) and human lung fibroblasts (MRC-5) were used to detect the relationship between macrophage pyroptosis and lung fibroblasts. It showed that silica increased the levels of GSDMD and other pyroptosis-related indicators remarkably in macrophages and the supernatant of macrophage stimulated by silica could promote the upregulation of fibrosis markers in fibroblasts. However, GSDMD knockdown suppressed silica-induced macrophage pyroptosis and alleviated the upregulation of fibrosis markers in fibroblasts, suggesting the important role of macrophage pyroptosis in the activation of myofibroblasts during the progression of silicosis. Taken together, it showed that silica could induce macrophage pyroptosis and inhibiting macrophage pyroptosis could be a feasible clinical strategy to alleviate silicosis.
Collapse
Affiliation(s)
- Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Tian Y, Shi H, Zhang D, Wang C, Zhao F, Li L, Xu Z, Jiang J, Li J. Nebulized inhalation of LPAE-HDAC10 inhibits acetylation-mediated ROS/NF-κB pathway for silicosis treatment. J Control Release 2023; 364:618-631. [PMID: 37848136 DOI: 10.1016/j.jconrel.2023.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(β-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKβ, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Hongyang Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
| |
Collapse
|
19
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
20
|
Favor OK, Rajasinghe LD, Wierenga KA, Maddipati KR, Lee KSS, Olive AJ, Pestka JJ. Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation. Front Immunol 2023; 14:1274147. [PMID: 38022527 PMCID: PMC10665862 DOI: 10.3389/fimmu.2023.1274147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phagocytosis of inhaled crystalline silica (cSiO2) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO2-triggered oxylipin responses, in vitro investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO2-induced eicosanoids. Methods We first compared how delivery of 25 µM DHA as ethanolic suspensions or as bovine serum albumin (BSA) complexes to C57BL/6 FLAMs impacts phospholipid fatty acid content. We subsequently treated FLAMs with 25 µM ethanolic DHA or ethanol vehicle (VEH) for 24 h, with or without LPS priming for 2 h, and with or without cSiO2 for 1.5 or 4 h and then measured oxylipin production by LC-MS lipidomics targeting for 156 oxylipins. Results were further related to concurrent proinflammatory cytokine production and cell death induction. Results DHA delivery as ethanolic suspensions or BSA complexes were similarly effective at increasing ω-3 PUFA content of phospholipids while decreasing the ω-6 PUFA arachidonic acid (ARA) and the ω-9 monounsaturated fatty acid oleic acid. cSiO2 time-dependently elicited myriad ARA-derived eicosanoids consisting of prostaglandins, leukotrienes, thromboxanes, and hydroxyeicosatetraenoic acids in unprimed and LPS-primed FLAMs. This cSiO2-induced eicosanoid storm was dramatically suppressed in DHA-supplemented FLAMs which instead produced potentially pro-resolving DHA-derived docosanoids. cSiO2 elicited marked IL-1α, IL-1β, and TNF-α release after 1.5 and 4 h of cSiO2 exposure in LPS-primed FLAMs which was significantly inhibited by DHA. DHA did not affect cSiO2-triggered death induction in unprimed FLAMs but modestly enhanced it in LPS-primed FLAMs. Discussion FLAMs are amenable to lipidome modulation by DHA which suppresses cSiO2-triggered production of ARA-derived eicosanoids and proinflammatory cytokines. FLAMs are a potential in vitro alternative to primary AMs for investigating interventions against early toxicant-triggered inflammation in the lung.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | | | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
RenChen X, Wang W, Lu Y. Emerging trends in silicosis research: a scientometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113280-113296. [PMID: 37864705 DOI: 10.1007/s11356-023-30418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Silicosis is a global disease whose prevention efforts cannot be ignored today. Although numerous silicosis-related data have been published recently, emphasizing the characteristics and nature of silicosis, a summary of the developmental laws of research is lacking, especially in the visual analysis of the literature. We aim to address this issue through a scientometric review. The Web of Science Core Collection and the All Databases were searched with "silicosis" as the topic, excluding unrelated publications, and obtained data from 9802 and 1613 publications, respectively. The data was then analyzed using the Web of Science's online scientometric analysis function and CiteSpace's visual analysis functionality, including publication volume analysis, co-occurrence analysis, co-citation analysis, cluster analysis, and explosive detection. The results identify the "respiratory system" as the most influential area over a century. Furthermore, the publication's number was correlated with the gross domestic product. We ranked countries and institutions based on the frequency of publications and discovered that Europe, the USA, and China are the leading regions for silicosis research, with the USA and Europe having a stronger influence. Many reports related to artificial stone and denim jean production have been studied through citation analysis, indicating new epidemic trends in silicosis. Besides, silicosis-related diseases and the pathogenesis of silicosis were the research hotspots of silicosis through co-occurrence keyword analysis and outbreak detection. Furthermore, related diseases include coal workers' pneumoconiosis and tuberculosis, while the mechanism of silicosis includes studies on inflammation and fibrosis, oxidative stress, alveolar macrophages, apoptosis, and pathways.
Collapse
Affiliation(s)
- Xiaotian RenChen
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Anhui, China
| | - Wenyang Wang
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China.
| | - Yuting Lu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Anhui, China
| |
Collapse
|
22
|
Chang JH, Lee YL, Chang LT, Chang TY, Hsiao TC, Chung KF, Ho KF, Kuo HP, Lee KY, Chuang KJ, Chuang HC. Climate change, air quality, and respiratory health: a focus on particle deposition in the lungs. Ann Med 2023; 55:2264881. [PMID: 37801626 PMCID: PMC10561567 DOI: 10.1080/07853890.2023.2264881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
This review article delves into the multifaceted relationship between climate change, air quality, and respiratory health, placing a special focus on the process of particle deposition in the lungs. We discuss the capability of climate change to intensify air pollution and alter particulate matter physicochemical properties such as size, dispersion, and chemical composition. These alterations play a significant role in influencing the deposition of particles in the lungs, leading to consequential respiratory health effects. The review paper provides a broad exploration of climate change's direct and indirect role in modifying particulate air pollution features and its interaction with other air pollutants, which may change the ability of particle deposition in the lungs. In conclusion, climate change may play an important role in regulating particle deposition in the lungs by changing physicochemistry of particulate air pollution, therefore, increasing the risk of respiratory disease development.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kin Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
TIAN X, HOU R, LIU X, ZHAO P, TIAN Y, LI J. Yangqing Chenfei formula alleviates crystalline silica induced pulmonary inflammation and fibrosis by suppressing macrophage polarization. J TRADIT CHIN MED 2023; 43:1126-1139. [PMID: 37946475 PMCID: PMC10623247 DOI: 10.19852/j.cnki.jtcm.20230517.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/23/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To explore the underlying mechanisms of the effects of Yangqing Chenfei formula (, YCF) on inflammation and fibrosis in silicosis via inhibition of macrophage polarization. METHODS A silicotic rat model was established via a single intratracheal instillation of silica particles on the first day of week 0. Subsequently, YCF was administered intragastrically to silicotic rats during weeks 0-2 and 5-8 twice daily. The mouse-derived alveolar macrophage cell line was used to investigate the mechanisms of YCF in M1/M2 polarization. RESULTS YCF treatment effectively inhibited lung pathological changes, including inflammatory cell infiltration and tissue damage, and increased the forced expiratory volume in the first 0.3 s, functional residual capacity, and maximal mid-expiratory flow in weeks 2 and 8. Furthermore, the treatment improved lung functions by upregulating tidal volume, pause increase, and expiratory flow at 50% tidal volume from weeks 5 to 8. Moreover, YCF could significantly suppressed the progression of inflammation and fibrosis, by reducing the levels of inflammatory cytokines, as well as collagen- I and III. YCF treatment also decreased the numbers of macrophages and M1/M2 macrophages and the level of transforming growth factor-β (TGF-β). Additionally, YCF5, the effective substance in YCF, decreased lipopolysaccharide and interferon-γ-induced M1 macrophage polarization in a concentration-dependent manner. The mechanism of anti-M1 polarization might be related to a decrease in extracellular signal-regulated kinase, c-JUN N-terminal kinase, P38, and P65 phosphorylation. Furthermore, YCF5 inhibited interleukin-4-induced M2 macrophages by decreasing the protein and mRNA expressions of arginase-1 and CD206 as well as the levels of profibrotic factors, such as TGF-β and connective tissue growth factor. The mechanisms underlying the anti-M2 polarization of YCF5 were primarily associated with the inhibition of the nuclear translocation of phosphorylated signal transducer and activator of transcription 6 (p-STAT6). CONCLUSION YCF significantly inhibits inflammation and fibrosis in silicotic rats probably via the suppression of M1/M2 macrophage polarization mediated by the inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways and Janus kinase/STAT6 pathways.
Collapse
Affiliation(s)
- Xinrong TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Runsu HOU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinguang LIU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng ZHAO
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiansheng LI
- 4 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 5 Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co constructed by Henan province and Education Ministry of P.R. China, Zhengzhou 450046, China
- 6 Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
24
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
25
|
Lam CW, Castranova V, Driscoll K, Warheit D, Ryder V, Zhang Y, Zeidler-Erdely P, Hunter R, Scully R, Wallace W, James J, Crucian B, Nelman M, McCluskey R, Gardner D, Renne R, McClellan R. A review of pulmonary neutrophilia and insights into the key role of neutrophils in particle-induced pathogenesis in the lung from animal studies of lunar dusts and other poorly soluble dust particles. Crit Rev Toxicol 2023; 53:441-479. [PMID: 37850621 PMCID: PMC10872584 DOI: 10.1080/10408444.2023.2258925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023]
Abstract
The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.
Collapse
Affiliation(s)
- Chiu-wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kevin Driscoll
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Valerie Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Utilization and Life Sciences Office, Kennedy Space Center, Merritt Island, FL, USA
| | - Patti Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Robert Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - William Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - John James
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Brian Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Mayra Nelman
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | | | | | - Roger Renne
- Roger Renne ToxPath Consulting Inc., Sumner, WA, USA
| | - Roger McClellan
- Toxicology and Human Health Risk Analysis, Albuquerque, NM, USA
| |
Collapse
|
26
|
Poland CA, Duffin R, Weber K, Dekant W, Borm PJA. Is Pulmonary Inflammation a Valid Predictor of Particle Induced Lung Pathology? The Case of Amorphous and Crystalline silicas. Toxicol Lett 2023:S0378-4274(23)00226-6. [PMID: 37454774 DOI: 10.1016/j.toxlet.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Although inflammation is a normal and beneficial response, it is also a key event in the pathology of many chronic diseases, including pulmonary and systemic particle-induced disease. In addition, inflammation is now considered as the key response in standard settings for inhaled particles and a critical endpoint in OECD-based sub-acute/ chronic animal inhalation testing protocols. In this paper, we discuss that whilst the role of inflammation in lung disease is undeniable, it is when inflammation deviates from normal parameters that adversity occurs. We introduce the importance of the time course and in particular, the reversibility of inflammation in the progression towards tissue remodelling and neoplastic changes as commonly seen in rat inhalation studies. For this purpose, we used chronic inhalation studies with synthetic amorphous silicas (SAS) and reactive crystalline silica (RCS) as a source of data to describe the time-course of inflammation towards and beyond adversity. Whilst amorphous silicas induce an acute but reversible inflammatory response, only RCS induces a persistent, progressive response after cessation of exposure, resulting in fibrosis and carcinogenicity in rodents and humans. This suggests that the use of inflammation as a fixed endpoint at the cessation of exposure may not be a reliable predictor of particle-induced lung pathology. We therefore suggest extending the current OECD testing guidelines with a recovery period, that allows inflammation to resolve or progress into altered structure and function, such as fibrosis.
Collapse
Affiliation(s)
- Craig A Poland
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian, EH20 9TY, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Klaus Weber
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal/Switzerland
| | | | | |
Collapse
|
27
|
Tapak M, Sadeghi S, Ghazanfari T, Mosaffa N. Chemical exposure and alveolar macrophages responses: 'the role of pulmonary defense mechanism in inhalation injuries'. BMJ Open Respir Res 2023; 10:e001589. [PMID: 37479504 PMCID: PMC10364189 DOI: 10.1136/bmjresp-2022-001589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 07/23/2023] Open
Abstract
Epidemiological and clinical studies have indicated an association between particulate matter (PM) exposure and acute and chronic pulmonary inflammation, which may be registered as increased mortality and morbidity. Despite the increasing evidence, the pathophysiology mechanism of these PMs is still not fully characterised. Pulmonary alveolar macrophages (PAMs), as a predominant cell in the lung, play a critically important role in these pathological mechanisms. Toxin exposure triggers events associated with macrophage activation, including oxidative stress, acute damage, tissue disruption, remodelling and fibrosis. Targeting macrophage may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Biological toxins, their sources of exposure, physical and other properties, and their effects on the individuals are summarised in this article. Inhaled particulates from air pollution and toxic gases containing chemicals can interact with alveolar epithelial cells and immune cells in the airways. PAMs can sense ambient pollutants and be stimulated, triggering cellular signalling pathways. These cells are highly adaptable and can change their function and phenotype in response to inhaled agents. PAMs also have the ability to polarise and undergo plasticity in response to tissue damage, while maintaining resistance to exposure to inhaled agents.
Collapse
Affiliation(s)
- Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Alinasab Hospital, Labratory Department, Iranian Social Security Organization (ISSO), Tabriz, Iran
| | - Somaye Sadeghi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
- Department of Immunology, Shahed University, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Avramescu ML, Potiszil C, Kunihiro T, Okabe K, Nakamura E. An investigation of the internal morphology of asbestos ferruginous bodies: constraining their role in the onset of malignant mesothelioma. Part Fibre Toxicol 2023; 20:19. [PMID: 37150820 PMCID: PMC10165766 DOI: 10.1186/s12989-023-00522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an "asbestos ferruginous body" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction. RESULTS The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers. CONCLUSIONS The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.
Collapse
Affiliation(s)
- Maya-Liliana Avramescu
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Kazunori Okabe
- Bell Land General Hospital, 500-3 Higashiyama, Sakai, Osaka, 599-8247, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan.
- Advanced Science Research Center, Okayama University, Tsushima, Okayama, 700-8530, Japan.
| |
Collapse
|
29
|
Wei Y, You Y, Zhang J, Ban J, Min H, Li C, Chen J. Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131562. [PMID: 37148789 DOI: 10.1016/j.jhazmat.2023.131562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Environmental exposure to crystalline silica (CS) can lead to silicosis. Alveolar macrophages (AMs) play a crucial role in the pathogenesis of silicosis. Previously, we demonstrated that enhancing AMs mitophagy exerted protective effects on silicosis with a restrained inflammatory response. However, the exact molecular mechanisms are elusive. Pyroptosis and mitophagy are two different biological processes that determine cell fate. Exploring whether there were interactions or balances between these two processes in AMs would provide new insight into treating silicosis. Here we reported that crystalline silica induced pyroptosis in silicotic lungs and AMs with apparent mitochondria injury. Notably, we identified a reciprocal inhibitory effect between mitophagy and pyroptosis cascades in AMs. By enhancing or diminishing mitophagy, we demonstrated that PINK1-mediated mitophagy helped clear damaged mitochondria to negatively regulate CS-induced pyroptosis. While constraining pyroptosis cascades by NLRP3, Caspase1, and GSDMD inhibitors, respectively, displayed enhanced PINK1-dependent mitophagy with lessened CS-injured mitochondria. These observed effects were echoed in the mice with enhanced mitophagy. Therapeutically, we demonstrated abolishing GSDMD-dependent pyroptosis by disulfiram attenuated CS-induced silicosis. Collectively, our data demonstrated that macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis, which may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiarui Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Experimental Teaching Center, School of Public health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiaqi Ban
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
30
|
Ma J, Wang J, Ma C, Cai Q, Wu S, Hu W, Yang J, Xue J, Chen J, Liu X. Wnt5a/Ca 2+ signaling regulates silica-induced ferroptosis in mouse macrophages by altering ER stress-mediated redox balance. Toxicology 2023; 490:153514. [PMID: 37075931 DOI: 10.1016/j.tox.2023.153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Silicosis is a chronic pulmonary disease characterized by diffuse fibrosis of lung caused by the deposition of silica dust (SiO2). The inhaled silica-induced oxidative stress, ROS production and macrophage ferroptosis are key drivers of the pathological process of silicosis. However, mechanisms that involved in the silica-induced macrophage ferroptosis and its contributions to pathogenesis of silicosis remain elusive. In the present study, we showed that silica induced murine macrophage ferroptosis, accompanied by elevation of inflammatory responses, Wnt5a/Ca2+ signaling activation, and concurrent increase of endoplasmic reticulum (ER) stress and mitochondrial redox imbalance in vitro and vivo. Mechanistic study further demonstrated that Wnt5a/Ca2+ signaling played a key role in silica-induced macrophage ferroptosis by modulating ER stress and mitochondrial redox balance. The presence of Wnt5a/Ca2+ signaling ligand Wnt5a protein increased the silica-induced macrophage ferroptosis by activating ER-mediated immunoglobulin heavy chain binding protein (Bip)-C/EBP homology protein (Chop) signaling cascade, reducing the expression of negative regulators of ferroptosis, glutathione peroxidase 4 (Gpx4) and solute carrier family 7 member 11 (Slc7a11), subsequentially increasing lipid peroxidation. The pharmacologic inhibition of Wnt5a signaling or block of calcium flow exhibited an opposite effect to Wnt5a, resulted in the reduction of ferroptosis and the expression of Bip-Chop signaling molecules. These findings were further corroborated by the addition of ferroptosis activator Erastin or inhibitor ferrostatin-1. These results provide a mechanism by which silica activates Wnt5a/Ca2+ signaling and ER stress, sequentially leads to redox imbalance and ferroptosis in mouse macrophage cells.
Collapse
Affiliation(s)
- Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Jiaqi Wang
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Juan Chen
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| |
Collapse
|
31
|
Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, Brown JM, Tsai CSJ. The dependence of particle size on cell toxicity for modern mining dust. Sci Rep 2023; 13:5101. [PMID: 36991007 PMCID: PMC10060429 DOI: 10.1038/s41598-023-31215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractProgressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (p < 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Collapse
|
32
|
Walker RT, Illanes O, Conan A, Williams BH, Hilchie D, Bolfa P. Histology, prevalence, and environmental sources for pulmonary silicates depositions in domestic and wild animals. Vet Pathol 2023; 60:245-257. [PMID: 36636952 DOI: 10.1177/03009858221146095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The source and significance of pulmonary silicate crystals in animals and people are poorly understood. To estimate the prevalence and characterize the pulmonary crystalline material in animals from St. Kitts, tissue samples from dogs, horses, cattle, sheep, goats, pigs, chickens, mongooses, and monkeys were examined by light microscopy, scanning electron microscopy with energy-dispersive x-ray analysis (SEM/EDXA), and x-ray diffraction. Crystalline material was seen in 201 of 259 (77.6%) lung samples as perivascular and interstitial accumulations of heterogeneous crystalline particulate material, free or within macrophages (silicate-laden macrophages [SLMs]), mostly lacking evidence of chronic inflammation or fibrosis. The crystalline material was birefringent, basophilic on acid-fast, and composed of silicas on SEM/EDXA. Mongooses (100%) and monkeys (98%) had the highest prevalence of SLM, followed by cattle and chickens. Lesions were graded on a 3-point scale based on the histologic location and extent of silicates and SLM and were significantly more severe in mongooses (median = 3) than in monkeys (median = 2), dogs (median = 2), and chickens (median = 1). On EDXA, the crystalline material from lungs, air, and topsoil was composed of silicon, oxygen, aluminum, and iron, with a particulate matter size between 2.5 and 10 µm. We hypothesize Saharan dust, volcanic ash, topsoil, and rock quarry dust are potential sources of siliceous dust inhalation and SLM accumulations lacking chronic inflammation (silicosis); dust generation may be potentiated by road vehicle or wind suspension. Future investigations are warranted on the role of silicate inhalation and respiratory comorbidities in people, with monkeys, mongooses, or chickens serving as possible sentinels for exposure.
Collapse
Affiliation(s)
- Randall T Walker
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis.,University of Florida, Gainesville, FL
| | - Oscar Illanes
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis.,Long Island University College of Veterinary Medicine, Brookville, NY
| | - Anne Conan
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis.,City University of Hong Kong, Kowloon, Hong Kong
| | | | - David Hilchie
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis
| | - Pompei Bolfa
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis
| |
Collapse
|
33
|
Esfahani M, Rahbar AH, Asl SS, Bashirian S, Mir Moeini ES, Mehri F. The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat. Saf Health Work 2023; 14:118-123. [PMID: 36941929 PMCID: PMC10024237 DOI: 10.1016/j.shaw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Background Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. Method In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. Results Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. Conclusion These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.
Collapse
Affiliation(s)
- Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, School of Medicine Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saed Bashirian
- Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Effat Sadat Mir Moeini
- Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences. Hamadan, Iran
- Corresponding author.
| |
Collapse
|
34
|
Hasegawa Y, Franks JM, Tanaka Y, Uehara Y, Read DF, Williams C, Srivatsan S, Pitstick LB, Nikolaidis NM, Shaver CM, Wu H, Gardner JC, Osterburg AR, Yu JJ, Kopras EJ, Teitelbaum SL, Wikenheiser-Brokamp KA, Trapnell C, McCormack FX. Pulmonary osteoclast-like cells in silica induced pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528996. [PMID: 36824953 PMCID: PMC9949165 DOI: 10.1101/2023.02.17.528996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The pathophysiology of silicosis is poorly understood, limiting development of therapies for those who have been exposed to the respirable particle. We explored the mechanisms of silica-induced pulmonary fibrosis in a mouse model using multiple modalities including whole-lung single-nucleus RNA sequencing. These analyses revealed that in addition to pulmonary inflammation and fibrosis, intratracheal silica challenge induced osteoclast-like differentiation of alveolar macrophages and recruited monocytes, driven by induction of the osteoclastogenic cytokine, receptor activator of nuclear factor-κB ligand (RANKL) in pulmonary lymphocytes and alveolar type II cells. Furthermore, anti-RANKL monoclonal antibody treatment suppressed silica-induced osteoclast-like differentiation in the lung and attenuated silica-induced pulmonary fibrosis. We conclude that silica induces osteoclast-like differentiation of distinct recruited and tissue resident monocyte populations, leading to progressive lung injury, likely due to sustained elaboration of bone resorbing proteases and hydrochloric acid. Interrupting osteoclast-like differentiation may therefore constitute a promising avenue for moderating lung damage in silicosis.
Collapse
Affiliation(s)
- Yoshihiro Hasegawa
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Jennifer M. Franks
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yusuke Tanaka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Yasuaki Uehara
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - David F. Read
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Claire Williams
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lori B. Pitstick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center – Nashville, TN/US
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Jason C. Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Andrew R. Osterburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Jane J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Elizabeth J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, and Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine – St. Louis, MO/US
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine and Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center – Cincinnati, OH/US, Department of Pathology & Laboratory Medicine, University of Cincinnati – Cincinnati, OH/US
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati – Cincinnati, OH/US
| |
Collapse
|
35
|
Zhang Z, Cao Z, Hou L, Song M, Zhou Y, Chen Y, Hu H, Hou Y, Liu Y, Li B, Song X, Ge W, Li B, Jiang X, Yang J, Song D, Zhang X, Pang J, Zhang T, Zhang H, Yang P, Wang J, Wang C. Adenovirus-mediated Overexpression of FcγRIIB Attenuates Pulmonary Inflammation and Fibrosis. Am J Respir Cell Mol Biol 2023; 68:213-227. [PMID: 36227848 DOI: 10.1165/rcmb.2022-0056oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-γ receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found upregulated FcγRIIB in human and mouse lungs after exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation, and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific overexpression of FcγRIIB and in mice treated with adenovirus by intratracheal instillation to upregulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral overexpression, representing a potential therapeutic strategy for PF-ILDs.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | | | - Lin Hou
- Department of Physiology and
| | - Meiyue Song
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yiling Chen
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Huiyuan Hu
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Yangfeng Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Bolun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Baicun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | | | | | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinri Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Junling Pang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tiantian Zhang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
36
|
Effects of Green Tea Polyphenol Epigallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis. Int J Mol Sci 2023; 24:ijms24031857. [PMID: 36768179 PMCID: PMC9916388 DOI: 10.3390/ijms24031857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Inhalation of silica particles causes inflammatory changes leading to fibrotizing silicosis. Considering a lack of effective therapy, and a growing information on the wide actions of green tea polyphenols, particularly epigallocatechin-3-gallate (EGCG), the aim of this study was to evaluate the early effects of EGCG on markers of inflammation and lung fibrosis in silicotic rats. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/mL/animal), while controls received an equivalent volume of saline. The treatment with intraperitoneal EGCG (20 mg/kg, or saline in controls) was initiated the next day after silica instillation and was given twice a week. Animals were euthanized 14 or 28 days after the treatment onset, and the total and differential counts of leukocytes in the blood and bronchoalveolar lavage fluid (BALF), wet/dry lung weight ratio, and markers of inflammation, oxidative stress, and fibrosis in the lung were determined. The presence of collagen and smooth muscle mass in the walls of bronchioles and lung vessels was investigated immunohistochemically. Early treatment with EGCG showed some potential to alleviate inflammation, and a trend to decrease oxidative stress-induced changes, including apoptosis, and a prevention of fibrotic changes in the bronchioles and pulmonary vessels. However, further investigations should be undertaken to elucidate the effects of EGCG in the lung silicosis model in more detail. In addition, because of insufficient data from EGCG delivery in silicosis, the positive and eventual adverse effects of this herbal compound should be carefully studied before any preventive use or therapy with EGCG may be recommended.
Collapse
|
37
|
Plasma Cytokine Profiling Reveals Differences between Silicotic Patients with Simple Silicosis and Those with Progressive Massive Fibrosis Caused by Engineered Stone. Int J Mol Sci 2023; 24:ijms24021541. [PMID: 36675056 PMCID: PMC9860830 DOI: 10.3390/ijms24021541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Engineered stone silicosis has become an occupational epidemic disease that progresses rapidly to progressive massive fibrosis with respiratory failure and death, and there is no effective treatment. Silica deposition in the lung triggers a series of inflammatory reactions with the participation of multiple cytokines and cellular mediators whose role in the development and progression of the disease is largely unknown. We hypothesized that differences in plasma cytokine levels exist between patients diagnosed with simple silicosis (SS) and patients diagnosed with progressive massive fibrosis (PMF). Plasma samples from 91 ES silicosis patients, diagnosed and classified by chest radiography and/or high-resolution computed tomography with SS (n = 53) and PMF (n = 38), were assayed by multiplex assays for levels of 34 cytokines. Additionally, a healthy volunteer control group (n = 22) was included. Plasma levels of a high number of cytokines were significantly higher in subjects with silicosis than in healthy control subjects. Moreover, the levels of IL-1RA, IL-8, IL-10, IL-16, IL-18, TNF-α, MIP-1α, G-CSF and VEGF were significantly elevated in PMF compared to SS patients. This study shows that plasma cytokine levels differ between healthy people and silicosis patients, and some of them are also significantly elevated in patients with PMF compared with patients with SS, which could indicate their involvement in the severity of the disease, be considered as biomarkers and could be explored as future therapeutic targets for the disease.
Collapse
|
38
|
Lam M, Mansell A, Tate MD. Preclinical Mouse Model of Silicosis. Methods Mol Biol 2023; 2691:111-120. [PMID: 37355541 DOI: 10.1007/978-1-0716-3331-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Silicosis is an untreatable occupational lung disease caused by chronic inhalation of crystalline silica. Cyclical release and reuptake of silica particles by macrophages and airway epithelial cells causes repeated tissue damage, characterized by widespread inflammation and progressive diffuse fibrosis. While inhalation is the main route of entry for silica particles in humans, most preclinical studies administer silica via the intratracheal route. In vivo mouse models of lung disease are valuable tools required to bridge the translational gap between in vitro cell culture and human disease. This chapter describes a mouse model of silicosis which mimics clinical features of human silicosis, as well as methods for intranasal instillation of silica and disease analysis. Lung tissue can be collected for histological assessment of silica particle distribution, inflammation, structural damage, and fibrosis in sections stained with hematoxylin and eosin or Masson's trichrome. This approach can be extended to other chronic fibrotic lung diseases where inhalation of small damaging particles such as pollutants causes irreversible disease.
Collapse
Affiliation(s)
- Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
39
|
Tyrkalska SD, Pedoto A, Martínez-López A, Ros-Lucas JA, Mesa-Del-Castillo P, Candel S, Mulero V. Silica crystals activate toll-like receptors and inflammasomes to promote local and systemic immune responses in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104523. [PMID: 36055417 DOI: 10.1016/j.dci.2022.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Silica crystals are potent activators of the inflammasome that cause a fibrotic lung disease, called silicosis, with no effective treatment available. We report here that injection of silica crystals into the hindbrain ventricle of zebrafish embryos led to the initiation of local and systemic immune responses driven through both Toll-like receptors (TLR)- and inflammasome-dependent signaling pathways, followed by induction of pro-fibrotic markers. Genetic and pharmacological analysis revealed that the Nlrp3 inflammasome regulated silica crystal-induced inflammation and pyroptotic cell death, but not emergency myelopoiesis. In addition, Cxcl8a/Cxcr2-dependent recruitment of myeloid cells to silica crystals was required to promote emergency myelopoiesis and systemic inflammation. The zebrafish model of silicosis developed here shed light onto the molecular mechanisms involved in the activation of the immune system by silica crystals.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alicia Martínez-López
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Ros-Lucas
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Servicio de Neumología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Servicio de Reumatología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
41
|
Effects of early dexamethasone treatment on several markers of inflammation and fibrosis in an animal model of lung silicosis in rats – A pilot study. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Lung silicosis is primarily caused by inhalation of particles of silicon oxide (silica). Despite a huge progress in understanding the interactions among the pathomechanisms of lung silicosis in the last years, there is a lack of effective therapy. With respect to a wide therapeutic action of corticosteroids, the purpose of this pilot study was to evaluate early effects of dexamethasone on several markers of inflammation and lung fibrosis in a rat model of silicosis. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/ml/animal), while the controls received an equivalent volume of sterile saline. The treatment with intraperitoneal dexamethasone initiated the next day after the silica instillation and was given 2-times a week at a dose of 1 mg/kg, while the controls received an equivalent volume of saline. The animals were euthanized 14 or 28 days after the treatment onset. Total and differential counts of leukocytes in the blood and bronchoalveolar lavage (BAL) fluid were determined. The presence of collagen in the bronchioles and lung vessels was detected by Sirius red staining and a smooth muscle mass was detected by smooth muscle actin. In comparison to saline, the instillation of silica increased the total count of circulating leukocytes after 14 and 28 days of the experiment (both p<0.05), which was associated with higher counts of lymphocytes (p<0.05 after 14 days, p>0.05 after 28 days) and slight but non-significant increases in neutrophils and eosinophils (both p>0.05). Although the total cell count in the BAL fluid did not change significantly, the percentages and absolute counts of neutrophils, eosinophils, and lymphocytes (p<0.05, p<0.01 or p<0.001) elevated after 14 and 28 days of the experiment. Silica induced an accumulation of collagen in the bronchioles (p<0.001 after both 14 and 28 days) and pulmonary vessels (p<0.01 after both 14 and 28 days) and elevated a formation of smooth muscle mass (p<0.05 after 14 days, p<0.01 or p<0.001 after 28 days). Treatment with dexamethasone decreased circulating leukocytes (p<0.01) and lymphocytes (p<0.001) and increased neutrophils (p<0.05), which was associated with a slightly decreased total cell count in BAL (p>0.05), decline in lymphocytes (p<0.01), and slight decreases in neutrophils and eosinophils after 28 days of the treatment. Moreover, dexamethasone reduced the accumulation of collagen (p<0.01 after 14 days and p<0.001 after 28 days) and the formation of smooth muscle mass (p<0.01 for bronchioles and p>0.05 for vessels after 24 days, p<0.001 for both bronchioles and vessels after 28 days). In conclusion, early dexamethasone treatment mitigated silica-induced granulocytic-lymphocytic inflammation and decreased a formation of collagen and smooth muscle mass in the bronchiolar and vascular walls, demonstrating a therapeutic potential of dexamethasone in the lung silicosis.
Collapse
|
42
|
Weissman DN. Progressive massive fibrosis: An overview of the recent literature. Pharmacol Ther 2022; 240:108232. [PMID: 35732247 PMCID: PMC10053429 DOI: 10.1016/j.pharmthera.2022.108232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
This review provides an overview of literature addressing progressive massive fibrosis (PMF) from September 2009 to the present. Advances are described in understanding its pathophysiology, epidemiology of the occurrence of PMF and related conditions, the impact of PMF on pulmonary function, advances in imaging of PMF, and factors affecting progression of pneumoconiosis in dust-exposed workers to PMF. Basic advances in understanding the etiology of PMF are impeded by the lack of a well-accepted animal model for human PMF. Recent studies evaluating lung tissue samples and epidemiologic investigations support an important role for the silica component of coal mine dust in causing coal workers' pneumoconiosis and PMF in contemporary coal miners in the United States and for silica in causing silicosis and PMF in artificial stone workers throughout the world. Development of PMF is associated with substantial decline in pulmonary function relative to no disease or small opacity pneumoconiosis. In recent reports, computed tomography has had greater sensitivity for detecting PMF than chest x-ray. Magnetic resonance imaging shows promise in differentiating between PMF and lung cancer. Although PMF develops in dust-exposed workers without previously identified small opacity pneumoconiosis, the presence of small opacity pneumoconiosis increases the risk for progression to PMF, as does heavier dust exposure. Recent literature does not document any effective new treatments for PMF and new therapies to prevent and treat PMF are an important need.
Collapse
Affiliation(s)
- David N Weissman
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America.
| |
Collapse
|
43
|
Kobayashi T, Tsubokura Y, Oshima Y, Sasaki T, Kawaguchi K, Koga K, Uchida K, Shinohara N, Ajimi S, Kayashima T, Nakai M, Imatanaka N. Time‐course analysis of pulmonary inflammation induced by intratracheal instillation of nanosized crystalline silica particles in F344 rats. J Appl Toxicol 2022; 43:649-661. [PMID: 36317230 DOI: 10.1002/jat.4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Crystalline silica is an important cause of serious pulmonary diseases, and its toxic potential is known to be associated with its surface electrical properties. However, in vivo data clarifying the relevance of silica's toxic potential, especially its long-term effects, remain insufficient. To investigate the contribution of physico-chemical property including surface potential on the hazard of nanocrystalline silica, we performed single intratracheal instillation testing using five different crystalline silicas in a rat model and assessed time-course changes in pulmonary inflammation, lung burden, and thoracic lymph node loads. Silica-nanoparticles were prepared from two commercial products (Min-U-Sil5 [MS5] and SIO07PB [SPB]) using three different pretreatments: centrifugation (C), grinding (G), and surface dissolving (D). The five types of silica particles-MS5, MS5_C, SPB_C, SPB_G, and SPB_D-were intratracheally instilled into male F344 rats at doses of 0 mg/kg (purified water), 0.22 mg/kg (SPB), and 0.67, 2, or 6 mg/kg (MS5). Bronchoalveolar lavage, a lung burden analysis, and histopathological examination were performed at 3, 28, and 91 days after instillation. Granuloma formation was present in MS5 group at 91 days after instillation, although granuloma formation was suppressed in MS5_C group, which had a smaller particle size. SPB_C induced severe and progressive inflammation and kinetic lung overload, whereas SPB_G and SPB_D induced only slight and transient acute inflammation. Our results support that in vivo toxic potential of nanosilica by intratracheal instillation may involve with surface electrical properties leading to prolonged effect and may not be dependent not only on surface properties but also on other physico-chemical properties.
Collapse
Affiliation(s)
- Toshio Kobayashi
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Yasuhiro Tsubokura
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Yutaka Oshima
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Takeshi Sasaki
- National Institute of Advanced Industrial Science and Technology Tsukuba Ibaraki Japan
| | - Kenji Kawaguchi
- National Institute of Advanced Industrial Science and Technology Tsukuba Ibaraki Japan
| | - Kenji Koga
- National Institute of Advanced Industrial Science and Technology Tsukuba Ibaraki Japan
| | - Kunio Uchida
- National Institute of Advanced Industrial Science and Technology Tsukuba Ibaraki Japan
| | - Naohide Shinohara
- National Institute of Advanced Industrial Science and Technology Tsukuba Ibaraki Japan
| | - Shozo Ajimi
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Takakazu Kayashima
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Makoto Nakai
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute, Japan, Hita 3‐822 Ishiimachi Hita‐shi Oita 877‐0061 Japan
| |
Collapse
|
44
|
Ganesan N, Ronsmans S, Hoet P. Differential immunological effects of silica nanoparticles on peripheral blood mononuclear cells of silicosis patients and controls. Front Immunol 2022; 13:1025028. [PMID: 36311760 PMCID: PMC9606771 DOI: 10.3389/fimmu.2022.1025028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Silicosis is a fibrotic disease caused by the inhalation of respirable silica particles, which are typically engulfed by alveolar macrophages and subsequently induce the release of inflammatory cytokines. Various animal experimental and human studies have focused on modeling silicosis, to assess the interactions of macrophages and other cell types with silica particles. There is still, however, limited knowledge on the differential response upon silica-exposure between silicosis patients and controls. We focused on studying the responsiveness of peripheral blood mononuclear cells (PBMCs) to silica nanoparticles (SiNPs) - Ludox and NM-200 - of silicosis patients and controls. The proliferative capacity of T- CD3+ and B- CD19+ cells, were evaluated via Carboxyfluorescein succinimidyl ester (CFSE) assay. The activation status of lymphocyte subsets and response to silica were also evaluated by comparing the extent of micro-granuloma or aggregate formation with the cytokine secretion profiles between both groups of individuals. The proliferative capacity of CD19+ cells was elevated in silicotic patients as opposed to controls. Subsets of regulatory T cells (CD4+ CD25+ and CD8+ CD25+) and immunoglobulins IgM and IgG were also significantly increased in patients. The number and the size of aggregates formed were higher with SiNPs stimulation in patients compared to controls. Multivariable analysis also elucidated the role of key cytokines like interleukin-1β (IL-1β), IL-6 and interferon-gamma (IFN-γ), which were upregulated in SiNP-stimulated PBMCs of patients compared to controls. Our ex vivo model thus has potential to provide insights into the immunological effects of silica particles in lymphocytes of silicosis patients and controls.
Collapse
Affiliation(s)
- Nirosha Ganesan
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Steven Ronsmans
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Clinic for Occupational and Environmental Medicine, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- *Correspondence: Peter Hoet,
| |
Collapse
|
45
|
Guan Y, Liu N, Yu Y, Zhou Q, Chang M, Wang Y, Yao S. Pathological Comparison of Rat Pulmonary Models Induced by Silica Nanoparticles and Indium-Tin Oxide Nanoparticles. Int J Nanomedicine 2022; 17:4277-4292. [PMID: 36134200 PMCID: PMC9484578 DOI: 10.2147/ijn.s380259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/11/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose The objective of this study was to evaluate and compare the histopathological implications of silica nanoparticles (Nano-SiO2) and indium-tin oxide nanoparticles (Nano-ITO), in vivo. Methods Male Sprague-Dawley rats were exposed to Nano-SiO2 (50 mg/kg) and Nano-ITO (6 mg/kg) by a single intratracheal instillation, respectively. Broncho-alveolar lavage fluid (BALF) and lung tissue were obtained at 7, 14, 28, and 56 days post exposure for analysis of BALF inflammatory factors, total protein, and for lung tissue pathology. Histopathological and ultrastructural change in lungs were investigated by hematoxylin and eosin, Masson’s trichrome, sirius red staining, periodic acid Schiff stain, and transmission electron microscopy. The expression of SP-A, collagen type I and III in lung tissue was determined by immunohistochemistry and ELISA. Results The rats in both models exhibited obvious collagen fibrosis and the severity of the lung injury increased with time after exposure to respective dosage increased. Several parameters of pulmonary inflammation and fibrosis significantly increased in both groups, which was reflected by increased LDH activity, total proteins, TNF-α, and IL-6 levels in BALF, and confirmed by histopathological examination. The results also showed that the two models exhibited different features. Exposure to Nano-ITO caused persistent chronic lung inflammation, illustrated by the infiltration of a large amount of enlarged and foamy macrophages and neutrophils into the lung parenchyma. In Nano-SiO2 exposed rat lung tissue, granulomatous inflammation was most prominent followed by progressive and massive fibrotic nodules. Compared with the Nano-SiO2 rats, Nano-ITO exposed rats exhibited significantly severe pulmonary alveolar proteinosis (PAP) pathological changes, lower fibrosis, and higher levels of inflammatory biomarkers. However, Nano-SiO2 exposed rats had greater fibrosis pathological changes and more severe granulomas than Nano-ITO exposed rats. Conclusion This study suggests that the Nano-SiO2-induced model has greater value in research into granulomas and fibrosis, while the Nano-ITO-induced model has greater repeatability in area of PAP.
Collapse
Affiliation(s)
- Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Nan Liu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yan Yu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
46
|
Li K, Zhang Q, Wang T, Rong R, Hu X, Zhang Y. Laboratory investigation of pollutant emissions and PM 2.5 toxicity of underground coal fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155537. [PMID: 35489495 DOI: 10.1016/j.scitotenv.2022.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Widespread underground coal fires (UCFs) release large amounts of pollutants, thus leading to air pollution and health impacts. However, this topic has not been widely investigated, especially regarding the potential health hazards. We quantified the pollutant emissions and analyzed the physicochemical properties of UCF PM2.5 in a laboratory study of coal smoldering under a simulated UCF background. The emission factors of CO2, CO, and PM2.5 were 2489 ± 35, 122 ± 9, 12.90 ± 1.79 g/kg, respectively. UCF PM2.5 are carbonaceous particles with varied morphology and complex composition, including heavy metals, silica and polycyclic aromatic hydrocarbons (PAHs). The main PAHs components were those with 2-4 rings. Benzoapyrene (BaP) and indeno[1,2, 3-cd]pyrene (IcdP) were important contributors to the carcinogenesis of these PAHs. We quantitatively evaluate the toxicity of inhaled UCF PM2.5 using a nasal inhalation exposure system. The target organs of UCF PM2.5 are lungs, liver, and kidneys. UCF PM2.5 presented an enriched chemical composition and induced inflammation and oxidative stress, which together mediated multiple organ injury. Long-term PM2.5 metabolism is the main cause of persistent toxicity, which might lead to long-term chronic diseases. Therefore, local authorities should recognize the importance and effects of UCF emissions, especially PM2.5, to establish control and mitigation measures.
Collapse
Affiliation(s)
- Kaili Li
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China.
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory (HFIPS), Chinese Academy of Science, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Niu Z, Wang L, Qin X, Ye Z, Xie B, Hu Y. Macrophage derived miR-7219-3p-containing exosomes mediate fibroblast trans-differentiation by targeting SPRY1 in silicosis. Toxicology 2022; 479:153310. [PMID: 36075289 DOI: 10.1016/j.tox.2022.153310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Silicosis is one of the most serious occupational diseases with the main feature of inflammatory cell infiltration, fibroblasts activation, and large deposition of extracellular matrix in the lung. Increasing evidence indicates that macrophage-derived exosomes may play an important role in the development of silicosis by transferring their loaded microRNAs (miRNAs). Hence we carried out high-throughput sequencing to identify the expression of exosomal miRNA from macrophages exposed to silica or not in the previous study. Then we verified that miR-7219-3p was significantly up-regulated in macrophages and their exosomes after silica-exposure, as well as in the silicotic mice model by qRT-PCR, subsequent experiments confirmed that the increase of miR-7219-3p facilitated fibroblast to myofibroblast trans-differentiation (FMT), as well as cell proliferation and migration. Spouty1 (SPRY1), which served as a negative modulator of the Ras/ERK/MAPK signaling pathway, was verified as the target gene of miR-7219-3p, the knockdown or over-expression of SPRY1 apparently promoted or inhibited FMT via the Ras/ERK/MAPK signaling pathway. Furthermore, the inhibition of exosomal miR-7219-3p partially suppressed FMT and silica-induced pulmonary fibrosis in vitro and in vivo. In brief, our results demonstrated that exosomal miR-7219-3p played an important role in FMT and might be a novel therapeutic target of silicosis.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, PR China
| | - Xiaofeng Qin
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Bin Xie
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China.
| |
Collapse
|
48
|
Lee SJ, Kim YA, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Decoy ODNs for TFEB in an Animal Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158138. [PMID: 35897713 PMCID: PMC9330689 DOI: 10.3390/ijms23158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.
Collapse
|
49
|
Yang YS, Cao MD, Wang A, Liu QM, Zhu DX, Zou Y, Ma LL, Luo M, Shao Y, Xu DD, Wei JF, Sun JL. Nano-silica particles synergistically IgE-mediated mast cell activation exacerbating allergic inflammation in mice. Front Immunol 2022; 13:911300. [PMID: 35936002 PMCID: PMC9355306 DOI: 10.3389/fimmu.2022.911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Background Allergic respiratory diseases have increased dramatically due to air pollution over the past few decades. However, studies are limited on the effects of inorganic components and particulate matter with different particle sizes in smog on allergic diseases, and the possible molecular mechanism of inducing allergies has not been thoroughly studied. Methods Four common mineral elements with different particle sizes in smog particles were selected, including Al2O3, TiO2, Fe2O3, and SiO2. We studied the relationship and molecular mechanism of smog particle composition, particle size, and allergic reactions using mast cells, immunoglobulin E (IgE)-mediated passive cutaneous anaphylaxis (PCA) model, and an ovalbumin (OVA)-induced asthmatic mouse model in vitro and in vivo, combined with transmission electron microscopy, scanning transmission X-ray microscopy analysis, and transcriptome sequencing. Results Only 20 nm SiO2 particles significantly increased β-hexosaminidase release, based on dinitrophenol (DNP)-human serum albumin (HSA) stimulation, from IgE-sensitized mast cells, while other particles did not. Meanwhile, the PCA model showed that Evan’s blue extravasation in mice was increased after treatment with nano-SiO2 particles. Nano-SiO2 particles exposure in the asthmatic mouse model caused an enhancement of allergic airway inflammation as manifested by OVA-specific serum IgE, airway hyperresponsiveness, lung inflammation injury, mucous cell metaplasia, cytokine expression, mast cell activation, and histamine secretion, which were significantly increased. Nano-SiO2 particles exposure did not affect the expression of FcϵRI or the ability of mast cells to bind IgE but synergistically activated mast cells by enhancing the mitogen-activated protein kinase (MAPK) signaling pathway, especially the phosphorylation levels of the extracellular signal-regulated kinase (ERK)1/2. The ERK inhibitors showed a significant inhibitory effect in reducing β-hexosaminidase release. Conclusion Our results indicated that nano-SiO2 particles stimulation might synergistically activate IgE-sensitized mast cells by enhancing the MAPK signaling pathway and that nano-SiO2 particles exposure could exacerbate allergic inflammation. Our experimental results provide useful information for preventing and treating allergic diseases.
Collapse
Affiliation(s)
- Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - An Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qing-Mei Liu
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan-Xuan Zhu
- Women and Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Ma
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Min Luo
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Shao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Dian-Dou Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| |
Collapse
|
50
|
Kumari S, Singh R. Protective effects of intranasal curcumin on silica-induced lung damage. Cytokine 2022; 157:155949. [PMID: 35764024 DOI: 10.1016/j.cyto.2022.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Being anti-inflammatory and an antioxidant in nature, curcumin has been studied for its anti-asthmatic effects, but its impact on silicosis has not been investigated before. It is a form of occupational lung illness caused by inhaling crystalline silica. It is particularly common among those who work in construction-related sectors. Therefore, present study has been undertaken to investigate impact of intranasal curcumin on silica induced lung damage in mice model of silicosis. MATERIALS AND METHODS Mice model of silicosis was developed by intranasal silica instillation (2.5 mg/mice) for different durations mainly 7, 14 and 21 days, where the longest duration of silica exposure (21 days) mimics chronic occupational exposure of silica dust leading to silicosis. Curcumin (5 mg/kg,i.n) and /or dexamethasone, a known corticosteroid (10 mg/kg,i.p) was administered an hour prior to silica administration. RESULTS Present study revealed silica induced lung damage in the mice model of silicosis characterized by airway inflammation, collagen deposition and enhanced expression of fibrosis markers (MMP-9, α-SMA, Hydroxyproline), which were significantly reduced in curcumin treatment groups. Inhibitory effects of curcumin were compared with standard drug, dexamethasone, a corticosteroid and was found better in protecting structural alterations in the lung. Damaged and abnormal mitochondria (enlarged and irregular shapes) were observed in silicosis group which were reduced in curcumin and dexamethasone treatment groups as revealed in transmission electron microscopic studies. CONCLUSIONS Present study shows protective effects of intranasal curcumin on silica-induced airway inflammation and structural changes thereby lung damage. Hence, it can be considered as an alternative and complementary medication for silicosis.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|