1
|
Reed EC, Kim JD, Case AJ. Non-canonical hemoglobin: An updated review on its ubiquitous expression. Redox Biol 2025; 82:103602. [PMID: 40138914 DOI: 10.1016/j.redox.2025.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Hemoglobin, once thought to be exclusive to erythrocytes, has been identified to be expressed in various cell types over the past several decades. While hemoglobin's function within erythrocytes is primarily characterized as a gaseous transport molecule, its function within non-erythrocyte cells varies among different cell types, and in many cases, remains to be fully elucidated. Despite this variability, hemoglobin expression seems to broadly function as a redox modulator, whether it is involved in the hypoxic response, mitochondrial function, antioxidant balance or, like in erythrocytes, gas transport. This review provides an updated summary of the most recent discoveries of hemoglobin in non-erythrocyte cells. While discussing the function and regulation of this ubiquitous protein, we additionally compare these cell-specific details to identify commonalities throughout the diverse group of hemoglobin-expressing cells. Lastly, we discuss potential implications of non-canonical hemoglobin in various disease states such neurodegeneration, autoimmune disorders, psychological trauma, and hemoglobinopathies, while providing future directions for hemoglobin research.
Collapse
Affiliation(s)
- Emily C Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Jacob D Kim
- Prosper High School, Prosper, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
2
|
Reed EC, Silva VA, Giebel KR, Natour T, Lauten TH, Jojo CN, Schlieker AE, Case AJ. Hemoglobin alpha is a redox-sensitive mitochondrial-related protein in T-lymphocytes. Free Radic Biol Med 2025; 227:1-11. [PMID: 39586383 PMCID: PMC11757050 DOI: 10.1016/j.freeradbiomed.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.
Collapse
Affiliation(s)
- Emily C Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Valeria A Silva
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Kristen R Giebel
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Caroline N Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Abigail E Schlieker
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
3
|
Reed EC, Silva VA, Giebel KR, Natour T, Lauten TH, Jojo CN, Schleiker AE, Case AJ. Hemoglobin alpha is a redox-sensitive mitochondrial-related protein in T-lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613298. [PMID: 39345360 PMCID: PMC11429782 DOI: 10.1101/2024.09.16.613298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.
Collapse
Affiliation(s)
- Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Valeria A. Silva
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Kristen R. Giebel
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N. Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Abigail E. Schleiker
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
4
|
Park Y, Jeong EM. Glutathione Dynamics in the Tumor Microenvironment: A Potential Target of Cancer Stem Cells and T Cells. Int J Stem Cells 2024; 17:270-283. [PMID: 38919125 PMCID: PMC11361844 DOI: 10.15283/ijsc24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Glutathione (GSH), the main cellular antioxidant, dynamically influences tumor growth, metastasis, and resistance to therapy in the tumor microenvironment (TME), which comprises cancer cells, immune cells, stromal cells, and non-cellular components, including the extracellular matrix, metabolites, hypoxia, and acidity. Cancer stem cells (CSCs) and T cells are minor but significant cell subsets of the TME. GSH dynamics influences the fate of CSCs and T cells. Here, we explored GSH dynamics in CSCs and T cells within the TME, as well as therapeutic approaches that could target these dynamics.
Collapse
Affiliation(s)
- Youngjun Park
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, Korea
| | - Eui Man Jeong
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, Korea
| |
Collapse
|
5
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Gülow K, Tümen D, Heumann P, Schmid S, Kandulski A, Müller M, Kunst C. Unraveling the Role of Reactive Oxygen Species in T Lymphocyte Signaling. Int J Mol Sci 2024; 25:6114. [PMID: 38892300 PMCID: PMC11172744 DOI: 10.3390/ijms25116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Reactive oxygen species (ROS) are central to inter- and intracellular signaling. Their localized and transient effects are due to their short half-life, especially when generated in controlled amounts. Upon T cell receptor (TCR) activation, regulated ROS signaling is primarily initiated by complexes I and III of the electron transport chain (ETC). Subsequent ROS production triggers the activation of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2), prolonging the oxidative signal. This signal then engages kinase signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway and increases the activity of REDOX-sensitive transcription factors such as nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). To limit ROS overproduction and prevent oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant proteins such as superoxide dismutases (SODs) finely regulate signal intensity and are capable of terminating the oxidative signal when needed. Thus, oxidative signals, such as T cell activation, are well-controlled and critical for cellular communication.
Collapse
Affiliation(s)
- Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (P.H.); (S.S.); (A.K.); (M.M.); (C.K.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Petronek MS, Monga V, Bodeker KL, Kwofie M, Lee CY, Mapuskar KA, Stolwijk JM, Zaher A, Wagner BA, Smith MC, Vollstedt S, Brown H, Chandler ML, Lorack AC, Wulfekuhle JS, Sarkaria JN, Flynn RT, Greenlee JD, Howard MA, Smith BJ, Jones KA, Buettner GR, Cullen JJ, St-Aubin J, Buatti JM, Magnotta VA, Spitz DR, Allen BG. Magnetic Resonance Imaging of Iron Metabolism with T2* Mapping Predicts an Enhanced Clinical Response to Pharmacologic Ascorbate in Patients with GBM. Clin Cancer Res 2024; 30:283-293. [PMID: 37773633 PMCID: PMC10841843 DOI: 10.1158/1078-0432.ccr-22-3952] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.
Collapse
Affiliation(s)
| | - Varun Monga
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa; Iowa City, IA, USA
| | - Kellie L. Bodeker
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Michael Kwofie
- Department of Radiology, University of Iowa; Iowa City, IA, USA
| | - Chu-Yu Lee
- Department of Radiology, University of Iowa; Iowa City, IA, USA
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Amira Zaher
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Brett A. Wagner
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Mark C. Smith
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Sandy Vollstedt
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Heather Brown
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Meghan L. Chandler
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Amanda C. Lorack
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic; Rochester, MN, USA
| | - Ryan T. Flynn
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | | | - Brian J. Smith
- Department of Biostatistics, University of Iowa; Iowa City, IA, USA
| | - Karra A. Jones
- Department of Pathology, Division of Neuropathology, Duke University; Durham, NC, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Joel St-Aubin
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Douglas R. Spitz
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Bryan G. Allen
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| |
Collapse
|
8
|
Moshfegh CM, Elkhatib SK, Watson GF, Drake J, Taylor ZN, Reed EC, Lauten TH, Clopp AJ, Vladimirov VI, Case AJ. S100a9 Protects Against the Effects of Repeated Social Defeat Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:919-929. [PMID: 37881565 PMCID: PMC10593888 DOI: 10.1016/j.bpsgos.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Posttraumatic stress disorder, a consequence of psychological trauma, is associated with increased inflammation and an elevated risk of developing comorbid inflammatory diseases. However, the mechanistic link between this mental health disorder and inflammation remains elusive. We previously found that S100a8 and S100a9 messenger RNA, genes that encode the protein calprotectin, were significantly upregulated in T lymphocytes and positively correlated with inflammatory gene expression and the mitochondrial redox environment in these cells. Therefore, we hypothesized that genetic deletion of calprotectin would attenuate the inflammatory and redox phenotype displayed after psychological trauma. Methods We used a preclinical mouse model of posttraumatic stress disorder known as repeated social defeat stress (RSDS) combined with pharmacological and genetic manipulation of S100a9 (which functionally eliminates calprotectin). A total of 186 animals (93 control, 93 RSDS) were used in these studies. Results Unexpectedly, we observed worsening of behavioral pathology, inflammation, and the mitochondrial redox environment in mice after RSDS compared with wild-type animals. Furthermore, loss of calprotectin significantly enhanced the metabolic demand on T lymphocytes, suggesting that this protein may play an undescribed role in mitochondrial regulation. This was further supported by single-cell RNA sequencing analysis demonstrating that RSDS and loss of S100a9 primarily altered genes associated with mitochondrial function and oxidative phosphorylation. Conclusions These data demonstrate that the loss of calprotectin potentiates the RSDS-induced phenotype, which suggests that its observed upregulation after psychological trauma may provide previously unexplored protective functions.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Amelia J. Clopp
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Psychiatry, University of Arizona, Phoenix, Arizona
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| |
Collapse
|
9
|
Petronek MS, Bayanbold K, Amegble K, Tomanek-Chalkley AM, Allen BG, Spitz DR, Bailey CK. Evaluating the iron chelator function of sirtinol in non-small cell lung cancer. Front Oncol 2023; 13:1185715. [PMID: 37397370 PMCID: PMC10313412 DOI: 10.3389/fonc.2023.1185715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
A distinctive feature of cancer is the upregulation of sirtuin proteins. Sirtuins are class III NAD+-dependent deacetylases involved in cellular processes such as proliferation and protection against oxidative stress. SIRTs 1 and 2 are also overexpressed in several types of cancers including non-small cell lung cancer (NSCLC). Sirtinol, a sirtuin (SIRT) 1 and 2 specific inhibitor, is a recent anti-cancer agent that is cytotoxic against several types of cancers including NSCLC. Thus, sirtuins 1 and 2 represent valuable targets for cancer therapy. Recent studies show that sirtinol functions as a tridentate iron chelator by binding Fe3+ with 3:1 stoichiometry. However, the biological consequences of this function remain unexplored. Consistent with preliminary literature, we show that sirtinol can deplete intracellular labile iron pools in both A549 and H1299 non-small cell lung cancer cells acutely. Interestingly, a temporal adaptive response occurs in A549 cells as sirtinol enhances transferrin receptor stability and represses ferritin heavy chain translation through impaired aconitase activity and apparent IRP1 activation. This effect was not observed in H1299 cells. Holo-transferrin supplementation significantly enhanced colony formation in A549 cells while increasing sirtinol toxicity. This effect was not observed in H1299 cells. The results highlight the fundamental genetic differences that may exist between H1299 and A549 cells and offer a novel mechanism of how sirtinol kills NSCLC cells.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, United States
| | - Khaliunaa Bayanbold
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, United States
| | - Koffi Amegble
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Ann M. Tomanek-Chalkley
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
10
|
Acharya TK, Kumar S, Rokade TP, Chang YT, Goswami C. TRPV4 regulates mitochondrial Ca 2+-status and physiology in primary murine T cells based on their immunological state. Life Sci 2023; 318:121493. [PMID: 36764606 DOI: 10.1016/j.lfs.2023.121493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
T cell activation process is critically affected by temperature and intracellular Ca2+-signalling. Yet, the nature and the key molecules involved in such complex Ca2+-signalling is poorly understood. It is mostly assumed that ion channels present in the plasma membrane primarily regulate the cytosolic Ca2+-levels exclusively. TRPV4 is a non-selective Ca2+ channel which can be activated at physiological temperature. TRPV4 is involved in several physiological, pathophysiological process as well as different forms of pain. Here we demonstrate that TRPV4 is endogenously expressed in T cell and is present in the mitochondria of T cells. TRPV4 activation increases mitochondrial Ca2+-levels, and alters mitochondrial temperature as well as specific metabolisms. The TRPV4-dependent increment in the mitochondrial Ca2+ is context-dependent and not just passively due to the increment in the cytosolic Ca2+. Our work also indicates that mitochondrial Ca2+-level correlates positively with a series of essential factors, such as mitochondrial membrane potential, mitochondrial ATP production and negatively correlates with certain factors such as mitochondrial temperature. We propose that TRPV4-mediated mitochondrial Ca2+-signalling and other metabolisms has implications in the immune activation process including immune synapse formation. Our data also endorse the re-evaluation of Ca2+-signalling in T cell, especially in the light of mitochondrial Ca2+-buffering and in higher body temperature, such as in case of fever. Presence of TRPV4 in the mitochondria of T cell is relevant for proper and optimum immune response and may provide evolutionary adaptive benefit. These findings may also have broad implications in different pathophysiological process, neuro-immune cross-talks, and channelopathies involving TRPV4.
Collapse
Affiliation(s)
- Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tejas Pravin Rokade
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines (Basel) 2023; 11:218. [PMID: 36851096 PMCID: PMC9966263 DOI: 10.3390/vaccines11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Celia Andrés Juan
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
12
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
13
|
Grotle AK, Darling AM, Saunders EF, Fadel PJ, Trott DW, Greaney JL. Augmented T-cell mitochondrial reactive oxygen species in adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2022; 322:H568-H574. [PMID: 35179977 PMCID: PMC8917910 DOI: 10.1152/ajpheart.00019.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
The prevalence of major depressive disorder (MDD) is highest in young adulthood, an effect that has been magnified by the COVID-19 pandemic. Importantly, individuals with MDD are at a greater risk of developing cardiovascular disease (CVD). Accumulating evidence supports immune system dysregulation as a major contributor to the elevated CVD risk in older adults with MDD; however, whether this is present in young adults with MDD without comorbid disease remains unclear. Interestingly, recent data suggest augmented T-cell mitochondrial reactive oxygen species (T-cell mitoROS) as a potent driver of immune dysregulation in animal models of psychiatric disease. With this background in mind, we tested the hypothesis that young adults with MDD would have augmented T-cell mitoROS and circulating proinflammatory cytokines compared with healthy young adults without MDD (HA). Whole blood was drawn from 14 young adults with MDD (age: 23 ± 2 yr) and 11 HA (age: 22 ± 1 yr). T-cell mitoROS (MitoSOX red; total: CD3+, T-helper: CD4+, T cytotoxic: CD8+) and serum cytokines were assessed by flow cytometry. Total T-cell mitoROS was significantly greater in adults with MDD compared with HA [median: 14,089 arbitrary units (AU); median: 1,362 AU, P = 0.01]. Likewise, both T-helper and T-cytotoxic cell mitoROS were significantly greater in adults with MDD compared with HA (both: P < 0.05). There were no differences in circulating cytokines between groups (all cytokines: P > 0.05). Collectively, these findings suggest that elevated T-cell mitoROS may represent an early marker of immune system dysregulation in young, otherwise healthy, adults with MDD.NEW & NOTEWORTHY To our knowledge, we provide the first evidence of augmented T-cell mitochondrial reactive oxygen species (T-cell mitoROS) in young, otherwise healthy adults with MDD. Although the elevated T-cell mitoROS did not correspond to a proinflammatory profile, these findings suggest that elevated T-cell mitoROS may be an early marker of immune system dysregulation in young adults with MDD.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Erika F Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, and Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW In this article, we summarize the current literature supporting metabolic and redox signaling pathways as important mechanisms underlying T cell activation in the context of hypertension. RECENT FINDINGS T cell immunometabolism undergoes dramatic remodeling in order to meet the demands of T cell activation, differentiation, and proliferation. Recent evidence demonstrates that the T cell oxidation-reduction (redox) system also undergoes significant changes upon activation, which can itself modulate metabolic processes and T cell function. Dysregulation of these signaling pathways can lead to aberrant T cell activation and inappropriate ROS production, both of which are linked to pathological conditions like hypertension. While the contribution of T cells to the progression of hypertension has been thoroughly investigated, how T cell metabolism and redox signaling changes, both separately and together, is an area of study that remains largely untouched. This review presents evidence from our own laboratory as well as others to highlight the importance of these two mechanisms in the study of hypertension.
Collapse
|
15
|
Krueger PD, Osum KC, Jenkins MK. CD4 + Memory T-Cell Formation during Type 1 Immune Responses. Cold Spring Harb Perspect Biol 2021; 13:a038141. [PMID: 33903156 PMCID: PMC8635001 DOI: 10.1101/cshperspect.a038141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naive CD4+ T cells become memory cells after proliferating in response to their cognate major histocompatibility complex class II (MHCII)-bound peptide and passing through an effector cell stage. The process by which CD4+ memory T cells emerge from the effector cell pool, however, is less well understood than in the case of CD8+ T cells. During certain acute infections, naive CD4+ T cells proliferate and differentiate into various forms of type 1 (Th1) and follicular helper (Tfh) effector cells. We review the evidence that about 10% of the cells in each of these subsets survive to become memory cells that resemble their effector cell precursors. The roles that asymmetric cell division, the TCF-1 transcription factor, metabolic activity, reactive oxygen species, and the IL-7 receptor play in the effector to memory cell transition are discussed. We propose a speculative model in which the metabolic activity needed for rapid clonal expansion also generates toxic products that induce apoptosis in most effector cells. Memory cells then arise from the effector cells in each subset that are at the low end of the metabolic activity spectrum.
Collapse
Affiliation(s)
- Peter D Krueger
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin C Osum
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Exercise Cuts Both Ways with ROS in Remodifying Innate and Adaptive Responses: Rewiring the Redox Mechanism of the Immune System during Exercise. Antioxidants (Basel) 2021; 10:antiox10111846. [PMID: 34829717 PMCID: PMC8615250 DOI: 10.3390/antiox10111846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nearly all cellular functions depend on redox reactions, including those of immune cells. However, how redox reactions are rearranged to induce an immune response to the entry of pathogens into the host is a complex process. Understanding this scenario will facilitate identification of the roles of specific types of reactive oxygen species (ROS) in the immune system. Although the detrimental effect of ROS could support the innate immune system, the adaptive immune system also requires a low level of ROS in order to stimulate various molecular functions. The requirements and functions of ROS vary in different cells, including immune cells. Thus, it is difficult to understand the specific ROS types and their targeting functions. Incomplete transfer of electrons to a specific target, along with failure of the antioxidant response, could result in oxidative-damage-related diseases, and oxidative damage is a common phenomenon in most immune disorders. Exercise is a noninvasive means of regulating ROS levels and antioxidant responses. Several studies have shown that exercise alone boosts immune functions independent of redox reactions. Here, we summarize how ROS target various signaling pathways of the immune system and its functions, along with the possible role of exercise in interfering with immune system signaling.
Collapse
|
17
|
Siska PJ, Decking SM, Babl N, Matos C, Bruss C, Singer K, Klitzke J, Schön M, Simeth J, Köstler J, Siegmund H, Ugele I, Paulus M, Dietl A, Kolodova K, Steines L, Freitag K, Peuker A, Schönhammer G, Raithel J, Graf B, Geismann F, Lubnow M, Mack M, Hau P, Bohr C, Burkhardt R, Gessner A, Salzberger B, Wagner R, Hanses F, Hitzenbichler F, Heudobler D, Lüke F, Pukrop T, Herr W, Wolff D, Spang R, Poeck H, Hoffmann P, Jantsch J, Brochhausen C, Lunz D, Rehli M, Kreutz M, Renner K. Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. J Clin Invest 2021; 131:148225. [PMID: 34779418 DOI: 10.1172/jci148225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.
Collapse
Affiliation(s)
- Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Jana Klitzke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marian Schön
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jakob Simeth
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Josef Köstler
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Heiko Siegmund
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | | | - Kristina Kolodova
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | - Katharina Freitag
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology
| | - Christopher Bohr
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hanses
- Department of Infection Prevention and Infectious Diseases, and.,Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | | | - Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | | | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Che X, Qi X, Xu Y, Wang Q, Wu G. Using Genomic and Transcriptome Analyses to Identify the Role of the Oxidative Stress Pathway in Renal Clear Cell Carcinoma and Its Potential Therapeutic Significance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5561124. [PMID: 34721758 PMCID: PMC8550864 DOI: 10.1155/2021/5561124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress (OS) refers to endogenous and/or exogenous stimulation when the balance between oxidation and antioxidants in the body is disrupted, resulting in excessive production of free radicals. Excessive free radicals exert a series of negative effects on the body, which can result in the oxidation of and infliction of damage on biological molecules and further cause cell death and tissue damage, which are related to many pathological processes. Pathways related to OS have always been the focus of medical research. Several studies are being conducted to develop strategies to treat cancer by exploring the OS pathways. Therefore, this study is aimed at determining the correlation between the OS pathway and kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis, at proving the effect of common anticancer drugs on the OS pathway, and at constructing a prognosis model of patients with KIRC based on several genes with the strongest correlation between the OS pathway and KIRC. We first collected and analyzed gene expression and clinical information of related patients through TCGA database. Then, we divided the samples into three clusters according to their gene expression levels obtained through cluster analysis. Using these three clusters, we performed GDSC drug analysis and GSEA analysis and examined the correlation among the OS pathway, histone modification, and immune cell infiltration. We also analyzed the response of anti-PD-1 and anti-CTLA-4 to the OS pathway. Thereafter, we used LASSO regression to select the most suitable nine genes, combined with the clinicopathological characteristics to establish the prognosis model of patients with KIRC, and verified the scientific precision of the model. Finally, tumor mutational burden was calculated to verify whether patients would benefit from immunotherapy. The results of this study may provide a reference for the establishment of treatment strategies for patients with KIRC.
Collapse
Affiliation(s)
- Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
19
|
Huang LJ, Mao XT, Li YY, Liu DD, Fan KQ, Liu RB, Wu TT, Wang HL, Zhang Y, Yang B, Ye CQ, Zhong JY, Chai RJ, Cao Q, Jin J. Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn's disease. Immunity 2021; 54:1728-1744.e7. [PMID: 34343498 DOI: 10.1016/j.immuni.2021.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.
Collapse
Affiliation(s)
- Ling-Jie Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Xin-Tao Mao
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Dan-Dan Liu
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke-Qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Rong-Bei Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Bing Yang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Cun-Qi Ye
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiang-Yan Zhong
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ren-Jie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China.
| | - Jin Jin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Zheng C, Lu Z, Wu H, Cui L, Bi J, Wan X. Exogenous oxidative stress suppresses IL-33 -driven proliferation programming in group 2 innate lymphoid cells. Int Immunopharmacol 2021; 95:107541. [PMID: 33756232 DOI: 10.1016/j.intimp.2021.107541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Although exogenous oxidative stress has been suggested to promote the pathogenesis of airway inflammation, previous trials using conventional antioxidant therapy in asthma have been largely ineffective, suggesting the complex roles of oxidative stress in the regulation of airway inflammation and of its critical mediating lymphocyte populations. Group 2 innate lymphoid cells (ILC2s) proliferate and induce eosinophilia in response to tissue alarminsin the early phase of airway inflammation. We previously showed that IL-33 -induced endogenous reactive oxygen species is required for optimal metabolic activation of ILC2 functions, however, the role of exogenous oxidative stress in regulating ILC2 functions has not been investigated. Here, we found that exogenous oxidative stress induced by injection of ROS -generating reagent alleviated IL-33 -triggered ILC2 response and inflammation both in the airway and in the liver. Exogenous oxidative stress in ILC2s also compromised IL-33 -mediated accumulation of these cells, as well as subsequent recruitment of eosinophils, after adoptive transferring into ILC2 deficient hosts. Mechanistically, exogenous oxidative stress in ILC2s compromised the proliferation program, while preserving the expression levels of effector molecules in ILC2s. Impaired proliferation under exogenous oxidative stress led to reduced numbers of ILC2s, and an overall decrease in ILC2 response to IL-33 stimulation. Collectively, these data indicate that exogenous oxidative stress suppresses the proliferation program in ILC2s and alleviates IL-33 -triggered inflammation, suggesting that therapeutic induction of oxidative stress might alleviate ILC2 -mediated inflammation in the airway, and possibly also in other organs.
Collapse
Affiliation(s)
- Chaoyue Zheng
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhen Lu
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haisi Wu
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lulu Cui
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jiacheng Bi
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Xiaochun Wan
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Karthik Vasan
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
23
|
Moshfegh CM, Case AJ. The Redox-Metabolic Couple of T Lymphocytes: Potential Consequences for Hypertension. Antioxid Redox Signal 2021; 34:915-935. [PMID: 32237890 PMCID: PMC8035925 DOI: 10.1089/ars.2020.8042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
Significance: T lymphocytes, as part of the adaptive immune system, possess the ability to activate and function in extreme cellular microenvironments, which requires these cells to remain highly malleable. One mechanism in which T lymphocytes achieve this adaptability is by responding to cues from both reactive oxygen and nitrogen species, as well as metabolic flux, which together fine-tune the functional fate of these adaptive immune cells. Recent Advances: To date, examinations of the redox and metabolic effects on T lymphocytes have primarily investigated these biological processes as separate entities. Given that the redox and metabolic environments possess significant overlaps of pathways and molecular species, it is inevitable that perturbations in one environment affect the other. Recent consideration of this redox-metabolic couple has demonstrated the strong link and regulatory consequences of these two systems in T lymphocytes. Critical Issues: The redox and metabolic control of T lymphocytes is essential to prevent dysregulated inflammation, which has been observed in cardiovascular diseases such as hypertension. The role of the adaptive immune system in hypertension has been extensively investigated, but the understanding of how the redox and metabolic environments control T lymphocytes in this disease remains unclear. Future Directions: Herein, we provide a discussion of the redox and metabolic control of T lymphocytes as separate entities, as well as coupled to one another, to regulate adaptive immunity. While investigations examining this pair together in T lymphocytes are sparse, we speculate that T lymphocyte destiny is shaped by the redox-metabolic couple. In contrast, disrupting this duo may have inflammatory consequences such as hypertension.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Song J. Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Front Immunol 2021; 12:652687. [PMID: 33868291 PMCID: PMC8044852 DOI: 10.3389/fimmu.2021.652687] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
T cells undergo metabolic reprogramming and multiple biological processes to satisfy their energetic and biosynthetic demands throughout their lifespan. Several of these metabolic pathways result in the generation of reactive oxygen species (ROS). The imbalance between ROS generation and scavenging could result in severe damage to the cells and potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an essential role in T cell immunity. Here, we introduce the important connectivity between T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also discuss the generation and sources of ROS production within T cell immunity as well as highlight recent research concerning the effects of ROS on T cell activities.
Collapse
Affiliation(s)
- Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Lucavs
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Darby Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
25
|
Su FY, Huang SC, Wei PC, Hsu PH, Li JP, Su LW, Hsieh YL, Hu CM, Hsu JL, Yang CY, Chung CY, Shew JY, Lan JL, Sytwu HK, Lee EYH, Lee WH. Redox sensor NPGPx restrains ZAP70 activity and modulates T cell homeostasis. Free Radic Biol Med 2021; 165:368-384. [PMID: 33460768 DOI: 10.1016/j.freeradbiomed.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidences implicate the contribution of ROS to T cell activation and signaling. The tyrosine kinase, ζ-chain-associated protein of 70 kDa (ZAP70), is essential for T cell development and activation. However, it remains elusive whether a direct redox regulation affects ZAP70 activity upon TCR stimulation. Here, we show that deficiency of non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), a redox sensor, results in T cell hyperproliferation and elevated cytokine productions. T cell-specific NPGPx-knockout mice reveal enhanced T-dependent humoral responses and are susceptible to experimental autoimmune encephalomyelitis (EAE). Through proteomic approaches, ZAP70 is identified as the key interacting protein of NPGPx through disulfide bonding. NPGPx is activated by ROS generated from TCR stimulation, and modulates ZAP70 activity through redox switching to reduce ZAP70 recruitment to TCR/CD3 complex in membrane lipid raft, therefore subduing TCR responses. These results reveal a delicate redox mechanism that NPGPx serves as a modulator to curb ZAP70 functions in maintaining T cell homeostasis.
Collapse
Affiliation(s)
- Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Pei-Chi Wei
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Pi Li
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan
| | | | - Chen-Yen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Joung-Liang Lan
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Eva Y-Hp Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Integrative computational approach identifies drug targets in CD4 + T-cell-mediated immune disorders. NPJ Syst Biol Appl 2021; 7:4. [PMID: 33483502 PMCID: PMC7822845 DOI: 10.1038/s41540-020-00165-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.
Collapse
|
27
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
28
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
29
|
The immune response of bats differs between pre-migration and migration seasons. Sci Rep 2020; 10:17384. [PMID: 33060711 PMCID: PMC7562910 DOI: 10.1038/s41598-020-74473-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Maintaining a competent immune system is energetically costly and thus immunity may be traded against other costly traits such as seasonal migration. Here, we tested in long-distance migratory Nathusius’ pipistrelles (Pipistrellus nathusii), if selected branches of immunity are expressed differently in response to the energy demands and oxidative stress of aerial migration. During the migration period, we observed higher baseline lymphocyte and lower neutrophil levels than during the pre-migration period, but no stronger response of cellular effectors to an antigen challenge. Baseline plasma haptoglobin, as a component of the humoral innate immunity, remained similar during both seasons, yet baseline plasma haptoglobin levels increased by a factor of 7.8 in migratory bats during an immune challenge, whereas they did not change during the pre-migration period. Oxidative stress was higher during migration than during pre-migration, yet there was no association between blood oxidative status and immune parameters, and immune challenge did not trigger any changes in oxidative stress, irrespective of season. Our findings suggest that humoral effectors of the acute phase response may play a stronger role in the first-line defense against infections for migrating bats compared to non-migrating bats. We conclude that Nathusius’ pipistrelles allocate resources differently into the branches of their immune system, most likely following current demands resulting from tight energy budgets during migration.
Collapse
|
30
|
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, Wannemuehler M. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 + T Cell Memory and Delayed Tumor Progression. Int J Nanomedicine 2020; 15:6579-6592. [PMID: 32982219 PMCID: PMC7490050 DOI: 10.2147/ijn.s261041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8+ T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation. Methods Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8+ T cell memory in a model system where antigen-specific protection is restricted to CD8+ T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and phenotype of APC activation. Primary DCs, particularly those with described ability to activate CD8+ T cells, are also evaluated for their in vitro responses to polyanhydride nanoparticles. Results Herein, polyanhydride nanoparticles are shown to induce potent in vitro upregulation of costimulatory molecules on the cell surface of BMDCs. In contrast to the classically used TLR agonists, nanoparticles did not induce large amounts of pro-inflammatory cytokines, did not induce characteristic metabolic response of DCs, nor produce innate antimicrobial effector molecules, such as nitric oxide (NO). The polyanhydride nanovaccine results in protective CD8+ T cell responses as measured by inhibition of tumor progression and survival. Discussion Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Collapse
Affiliation(s)
- Ross Darling
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 2020; 32:701-714. [PMID: 31968997 PMCID: PMC7047081 DOI: 10.1089/ars.2019.7962] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.
Collapse
Affiliation(s)
- Flavio R Palma
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chenxia He
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeanne M Danes
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Veronica Paviani
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Diego R Coelho
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin N Gantner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Cramer-Morales KL, Heer CD, Mapuskar KA, Domann FE. Succinate Accumulation Links Mitochondrial MnSOD Depletion to Aberrant Nuclear DNA Methylation and Altered Cell Fate. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:60-70. [PMID: 33585836 PMCID: PMC7876477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that human cell line HEK293 lacking mitochondrial superoxide dismutase (MnSOD) exhibited decreased succinate dehydrogenase (SDH) activity, and mice lacking MnSOD displayed significant reductions in SDH and aconitase activities. Since MnSOD has significant effects on SDH activity, and succinate is a key regulator of TET enzymes needed for proper differentiation, we hypothesized that SOD2 loss would lead to succinate accumulation, inhibition of TET activity, and impaired erythroid precursor differentiation. To test this hypothesis, we genetically disrupted the SOD2 gene using the CRISPR/Cas9 genetic strategy in a human erythroleukemia cell line (HEL 92.1.7) capable of induced differentiation toward an erythroid phenotype. Cells obtained in this manner displayed significant inhibition of SDH activity and ~10-fold increases in cellular succinate levels compared to their parent cell controls. Furthermore, SOD2 -/- cells exhibited significantly reduced TET enzyme activity concomitant with decreases in genomic 5-hmC and corresponding increases in 5-mC. Finally, when stimulated with δ-aminolevulonic acid (δ-ALA), SOD2 -/- HEL cells failed to properly differentiate toward an erythroid phenotype, likely due to failure to complete the necessary global DNA demethylation program required for erythroid maturation. Together, our findings support the model of an SDH/succinate/TET axis and a role for succinate as a retrograde signaling molecule of mitochondrial origin that significantly perturbs nuclear epigenetic reprogramming and introduce MnSOD as a governor of the SDH/succinate/TET axis.
Collapse
Affiliation(s)
- Kimberly L. Cramer-Morales
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Surgery, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Collin D. Heer
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Frederick E. Domann
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Surgery, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Pathology, The University of Iowa, Iowa City, Iowa 52242, USA,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA,Correspondence should be addressed to Frederick E. Domann;
| |
Collapse
|
33
|
Waterman JT, McClendon CJ, Ranabhat RS, Barton KT. Profiling of cell stress proteins reveals decreased expression of enzymatic antioxidants in tracheal epithelial tissue of pigs raised indoors. Am J Transl Res 2019; 11:5716-5727. [PMID: 31632542 PMCID: PMC6789228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to indoor swine production facilities (SPF) environments causes airway inflammation and diseases including asthma, chronic bronchitis and chronic obstructive pulmonary disease (COPD) in facility workers. However, less is known about the impact of SPF exposures on the respiratory health of pigs. Respiratory symptoms are associated with repeat exposure to SPF, specifically inhalation of organic dust and other air pollutants therein. A thorough understanding of the molecular pathways regulated by SPF exposure is needed to understand airway inflammation and chronic inflammatory lung disease. The present study measured the expression of proteins associated with oxidative stress and antioxidant defenses in the tracheal epithelial tissues of pigs reared in SPF or on pasture. Proteome profiler cell stress arrays, western blotting and enzyme activity assays were utilized to measure protein expression and activity levels in tracheal epithelial tissue extracts of pigs. It was determined that pigs raised in SPF express significantly less enzymatic antioxidants, including superoxide dismutase (SOD), within their tracheal epithelial tissues compared to pasture raised pigs. Concomitantly, tracheal epithelial tissues of SPF raised pigs had lower SOD and catalase antioxidant activity levels compared to pasture raised pigs. The observations summarized herein provide evidence that exposure to swine production environments influence endogenous enzymatic antioxidant defenses within the tracheal epithelial tissues of pigs. This study offers insight for understanding the effect of continuous exposure to SPF pollutants on endogenous antioxidant defenses in the airway epithelial and may be helpful in understanding human airway responses to swine barn exposures.
Collapse
Affiliation(s)
- Jenora T Waterman
- Department of Animal Sciences, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
| | - Chakia J McClendon
- Department of Animal Sciences, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
- Energy and Environmental Systems, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
| | - Rohit S Ranabhat
- Department of Animal Sciences, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
- Energy and Environmental Systems, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
| | - KeYona T Barton
- Department of Animal Sciences, North Carolina Agricultural and Technical State UniversityGreensboro, NC, USA
| |
Collapse
|
34
|
van Bruggen JAC, Martens AWJ, Fraietta JA, Hofland T, Tonino SH, Eldering E, Levin MD, Siska PJ, Endstra S, Rathmell JC, June CH, Porter DL, Melenhorst JJ, Kater AP, van der Windt GJW. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8 + T cells and impede CAR T-cell efficacy. Blood 2019; 134:44-58. [PMID: 31076448 PMCID: PMC7022375 DOI: 10.1182/blood.2018885863] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/20/2019] [Indexed: 01/02/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mitochondrial metabolic profile as displayed by increased mitochondrial respiration, membrane potential, and levels of reactive oxygen species. This coincided with decreased levels of peroxisome proliferator-activated receptor γ coactivator 1-α, and in line with that, CLL-derived CD8+ T cells showed impaired mitochondrial biogenesis upon stimulation. In search of a therapeutic correlate of these findings, we analyzed mitochondrial biogenesis in CD19-directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients (who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). Interestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells had increased mitochondrial mass compared with nonresponders, which positively correlated with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves and mitochondrial fitness of CD8+ T cells are impaired in CLL. Therefore, boosting mitochondrial biogenesis in CAR T cells might improve the efficacy of CAR T-cell therapy and other emerging cellular immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Mitochondria/metabolism
- Organelle Biogenesis
- Receptors, Chimeric Antigen
Collapse
Affiliation(s)
- Jaco A C van Bruggen
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Anne W J Martens
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Joseph A Fraietta
- Department of Pathology and Laboratory Medicine
- Department of Microbiology
- Center for Cellular Immunotherapies, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tom Hofland
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; and
| | - Sanne Endstra
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Carl H June
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | | | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Gerritje J W van der Windt
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
35
|
Fiala GJ, Schaffer AM, Merches K, Morath A, Swann J, Herr LA, Hils M, Esser C, Minguet S, Schamel WWA. Proximal Lck Promoter–Driven Cre Function Is Limited in Neonatal and Ineffective in Adult γδ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:569-579. [DOI: 10.4049/jimmunol.1701521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
|
36
|
Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4 + and CD8 + T-lymphocytes. Redox Biol 2019; 27:101141. [PMID: 30819616 PMCID: PMC6859572 DOI: 10.1016/j.redox.2019.101141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
While the role of mitochondrial metabolism in controlling T-lymphocyte activation and function is becoming more clear, the specifics of how mitochondrial redox signaling contributes to T-lymphocyte regulation remains elusive. Here, we examined the global effects of elevated mitochondrial superoxide (O2-) on T-lymphocyte activation using a novel model of inducible manganese superoxide dismutase (MnSOD) knock-out. Loss of MnSOD led to specific increases in mitochondrial O2- with no evident changes in hydrogen peroxide (H2O2), peroxynitrite (ONOO-), or copper/zinc superoxide dismutase (CuZnSOD) levels. Unexpectedly, both mitochondrial and glycolytic metabolism showed significant reductions in baseline, maximal capacities, and ATP production with increased mitochondrial O2- levels. MnSOD knock-out T-lymphocytes demonstrated aberrant activation including widespread dysregulation in cytokine production and increased cellular apoptosis. Interestingly, an elevated proliferative signature defined by significant upregulation of cell cycle regulatory genes was also evident in MnSOD knock-out T-lymphocytes, but these cells did not show accelerated proliferative rates. Global disruption in T-lymphocyte DNA methylation and hydroxymethylation was also observed with increased mitochondrial O2-, which was correlated to alterations in intracellular metabolite pools linked to the methionine cycle. Together, these results demonstrate a mitochondrial redox and metabolic couple that when disrupted may alter cellular processes necessary for proper T-lymphocyte activation.
Collapse
|
37
|
Wert KJ, Velez G, Cross MR, Wagner BA, Teoh-Fitzgerald ML, Buettner GR, McAnany JJ, Olivier A, Tsang SH, Harper MM, Domann FE, Bassuk AG, Mahajan VB. Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 2018; 124:408-419. [PMID: 29940351 PMCID: PMC6233711 DOI: 10.1016/j.freeradbiomed.2018.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.
Collapse
Affiliation(s)
- Katherine J Wert
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Gabriel Velez
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Madeline R Cross
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Brett A Wagner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Melissa L Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Garry R Buettner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - J Jason McAnany
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alicia Olivier
- Division of Comparative Pathology, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, United States; Edward S. Harkness Eye Institute, Columbia University, New York, NY, United States; Departments of Ophthalmology, Pathology & Cell Biology, and Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Matthew M Harper
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
| | - Frederick E Domann
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States; Palo Alto Veterans Administration, Palo Alto, CA, United States.
| |
Collapse
|
38
|
Cabon L, Bertaux A, Brunelle-Navas MN, Nemazanyy I, Scourzic L, Delavallée L, Vela L, Baritaud M, Bouchet S, Lopez C, Quang Van V, Garbin K, Chateau D, Gilard F, Sarfati M, Mercher T, Bernard OA, Susin SA. AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes. Cell Death Differ 2018; 25:983-1001. [PMID: 29323266 PMCID: PMC5943248 DOI: 10.1038/s41418-017-0035-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is a tightly regulated process that plays a central role throughout the lifespan of hematopoietic cells. Herein, we analyze the consequences of the mitochondrial oxidative phosphorylation (OXPHOS)/metabolism disorder associated with the cell-specific hematopoietic ablation of apoptosis-inducing factor (AIF). AIF-null (AIF-/Y ) mice developed pancytopenia that was associated with hypocellular bone marrow (BM) and thymus atrophy. Although myeloid cells were relatively spared, the B-cell and erythroid lineages were altered with increased frequencies of precursor B cells, pro-erythroblasts I, and basophilic erythroblasts II. T-cell populations were dramatically reduced with a thymopoiesis blockade at a double negative (DN) immature state, with DN1 accumulation and delayed DN2/DN3 and DN3/DN4 transitions. In BM cells, the OXPHOS/metabolism dysfunction provoked by the loss of AIF was counterbalanced by the augmentation of the mitochondrial biogenesis and a shift towards anaerobic glycolysis. Nevertheless, in a caspase-independent process, the resulting excess of reactive oxygen species compromised the viability of the hematopoietic stem cells (HSC) and progenitors. This led to the progressive exhaustion of the HSC pool, a reduced capacity of the BM progenitors to differentiate into colonies in methylcellulose assays, and the absence of cell-autonomous HSC repopulating potential in vivo. In contrast to BM cells, AIF-/Y thymocytes compensated for the OXPHOS breakdown by enhancing fatty acid β-oxidation. By over-expressing CPT1, ACADL and PDK4, three key enzymes facilitating fatty acid β-oxidation (e.g., palmitic acid assimilation), the AIF-/Y thymocytes retrieved the ATP levels of the AIF +/Y cells. As a consequence, it was possible to significantly reestablish AIF-/Y thymopoiesis in vivo by feeding the animals with a high-fat diet complemented with an antioxidant. Overall, our data reveal that the mitochondrial signals regulated by AIF are critical to hematopoietic decision-making. Emerging as a link between mitochondrial metabolism and hematopoietic cell fate, AIF-mediated OXPHOS regulation represents a target for the development of new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Lauriane Cabon
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Audrey Bertaux
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Marie-Noëlle Brunelle-Navas
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Ivan Nemazanyy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurianne Scourzic
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Laure Delavallée
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Mathieu Baritaud
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Sandrine Bouchet
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Cécile Lopez
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Vu Quang Van
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Sud/Paris Saclay, Orsay, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Thomas Mercher
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Santos A Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France.
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
39
|
Kapnick SM, Pacheco SE, McGuire PJ. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism 2018; 81:97-112. [PMID: 29162500 PMCID: PMC5866745 DOI: 10.1016/j.metabol.2017.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Immunometabolism aims to define the role of intermediary metabolism in immune cell function, with bioenergetics and the mitochondria recently taking center stage. To date, the medical literature on mitochondria and immune function extols the virtues of mouse models in exploring this biologic intersection. While the laboratory mouse has become a standard for studying mammalian biology, this model comprises part of a comprehensive approach. Humans, with their broad array of inherited phenotypes, serve as a starting point for studying immunometabolism; specifically, patients with mitochondrial disease. Using this top-down approach, the mouse as a model organism facilitates further exploration of the consequences of mutations involved in mitochondrial maintenance and function. In this review, we will discuss the emerging phenotype of immune dysfunction in mitochondrial disease as a model for understanding the role of the mitochondria in immune function in available mouse models.
Collapse
Affiliation(s)
- Senta M Kapnick
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan E Pacheco
- Department of Pediatrics, The University of Texas Health Science Center, Houston, TX, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
41
|
On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) 2017; 6:antiox6040082. [PMID: 29084153 PMCID: PMC5745492 DOI: 10.3390/antiox6040082] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes have taken on new and different functional roles potentially in contrast to how they were originally derived. Herein, examination of the evolutionary history of these enzymes provides both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.
Collapse
|
42
|
Novel detection of post-translational modifications in human monocyte-derived dendritic cells after chronic alcohol exposure: Role of inflammation regulator H4K12ac. Sci Rep 2017; 7:11236. [PMID: 28894190 PMCID: PMC5593989 DOI: 10.1038/s41598-017-11172-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023] Open
Abstract
Previous reports on epigenetic mechanisms involved in alcohol abuse have focus on hepatic and neuronal regions, leaving the immune system and specifically monocyte-derived dendritic cells (MDDCs) understudied. Our lab has previously shown histone deacetylases are modulated in cells derived from alcohol users and after in vitro acute alcohol treatment of human MDDCs. In the current study, we developed a novel screening tool using matrix assisted laser desorption ionization-fourier transform-ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS) and single cell imaging flow cytometry to detect post-translational modifications (PTMs) in human MDDCs due to chronic alcohol exposure. Our results demonstrate, for the first time, in vitro chronic alcohol exposure of MDDCs modulates H3 and H4 and induces a significant increase in acetylation at H4K12 (H4K12ac). Moreover, the Tip60/HAT inhibitor, NU9056, was able to block EtOH-induced H4K12ac, enhancing the effect of EtOH on IL-15, RANTES, TGF-β1, and TNF-α cytokines while restoring MCP-2 levels, suggesting that H4K12ac may be playing a major role during inflammation and may serve as an inflammation regulator or a cellular stress response mechanism under chronic alcohol conditions.
Collapse
|
43
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Kauffman EPS, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Schultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. O 2⋅- and H 2O 2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 2017; 32:268. [PMID: 28810149 DOI: 10.1016/j.ccell.2017.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Shanahan Kauffman EP, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Schultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. O 2⋅- and H 2O 2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 2017; 31:487-500.e8. [PMID: 28366679 PMCID: PMC5497844 DOI: 10.1016/j.ccell.2017.02.018] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023]
Abstract
Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2⋅- and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly L Cramer-Morales
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sonia Sandhu
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thomas L Carlisle
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mark C Smith
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Taher Abu Hejleh
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Daniel J Berg
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jun Zhang
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John Keech
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kalpaj R Parekh
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sudershan Bhatia
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kellie L Bodeker
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Logan Ahmann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sandy Vollstedt
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Heather Brown
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Erin P Shanahan Kauffman
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mary E Schall
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Ray J Hohl
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Gerald H Clamon
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jeremy D Greenlee
- Department of Neurosurgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael K Schultz
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brian J Smith
- Departmet of Biostatistics, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Frederick E Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John M Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
Su ZJ, Yang J, Luo WJ, Wei YY, Shuai XH, Hu TJ. Inhibitory effect of Sophora subprosrate polysaccharide on mitochondria oxidative stress induced by PCV-2 infection in RAW264.7 cells. Int J Biol Macromol 2016; 95:608-617. [PMID: 27908718 DOI: 10.1016/j.ijbiomac.2016.11.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/19/2016] [Accepted: 11/26/2016] [Indexed: 01/29/2023]
Abstract
In the present study, the inhibitory effect of Sophora subprosrate polysaccharide (SSP) on PCV-2-induced mitochondrial respiratory burst in RAW264.7 cells was first investigated. The findings suggested that SOD activity and the anti-superoxide anion radical activity of the RAW264.7 cells were significantly decreased after PCV-2 infection, and MnSOD mRNA levels were significantly decreased, while NOX2 mRNA levels and protein expression were increased. Meanwhile, the O2•- levels and mitochondrial membrane potentials were significantly increased. After treatment with SSP, significant increases in the activities of SOD, anti-superoxide anion radical activities, and MnSOD mRNA levels in the PCV-2 infected cells were observed. Meanwhile, significant increases in NOX2 mRNA levels and protein expression, O2•- levels and mitochondrial membrane potentials were also observed. The results showed that PCV2 infection resulted in the mitochondria oxidative stress of RAW264.7 cells as indicated by an increasing mitochondrial membrane potential, which was then inhibited by SSP. It was concluded that RAW264.7 cells treated with SSP could suffer from mitochondrial damage, which may be mediated by the inhibition of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Zi-Jie Su
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China
| | - Wen-Juan Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China
| | - Xue-Hong Shuai
- Veterinary Department of Rongchang Campuses, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China.
| |
Collapse
|
46
|
Case AJ, Roessner CT, Tian J, Zimmerman MC. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS One 2016; 11:e0164609. [PMID: 27727316 PMCID: PMC5058488 DOI: 10.1371/journal.pone.0164609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) produces multifaceted regulatory patterns in T-lymphocytes. Recently, we have shown that NE utilizes redox signaling as evidenced by increased superoxide (O2●-) causally linked to the observed changes in these cells; however, the source of this reactive oxygen species (ROS) remains elusive. Herein, we hypothesized that the source of increased O2●- in NE-stimulated T-lymphocytes is due to disruption of mitochondrial bioenergetics. To address this hypothesis, we utilized purified mouse splenic CD4+ and CD8+ T-lymphocytes stimulated with NE and assessed O2●- levels, mitochondrial metabolism, cellular proliferation, and cytokine profiles. We demonstrate that the increase in O2●- levels in response to NE is time-dependent and occurs at later points of T-lymphocyte activation. Moreover, the source of O2●- was indeed the mitochondria as evidenced by enhanced MitoSOX Red oxidation as well as abrogation of this signal by the addition of the mitochondrial-targeted O2●--scavenging antioxidant MitoTempol. NE-stimulated T-lymphocytes also demonstrated decreased mitochondrial respiratory capacity, which suggests disruption of mitochondrial metabolism and the potential source of increased mitochondrial O2●-. The effects of NE in regards to redox signaling appear to be adrenergic receptor-dependent as specific receptor antagonists could reverse the increase in O2●-; however, differential receptors regulating these processes were observed in CD4+ versus CD8+ T-lymphocytes. Finally, mitochondrial O2●- was shown to be mechanistic to the NE-mediated T-lymphocyte phenotype as supplementation of MitoTempol could reverse specific changes in cytokine expression observed with NE treatment. Overall, these studies indicate that mitochondrial metabolism and O2●--mediated redox signaling play a regulatory role in the T-lymphocyte response to NE.
Collapse
Affiliation(s)
- Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Colton T. Roessner
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
47
|
Chen X, Song M, Zhang B, Zhang Y. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1580967. [PMID: 27547291 PMCID: PMC4980531 DOI: 10.1155/2016/1580967] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bin Zhang
- Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, IL 60201, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
48
|
Abstract
Mitochondria are unique dynamic organelles that evolved from free-living bacteria into endosymbionts of mammalian hosts (Sagan 1967; Hatefi 1985). They have a distinct ~16.6 kb closed circular DNA genome coding for 13 polypeptides (Taanman 1999). In addition, a majority of the ~1500 mitochondrial proteins are encoded in the nucleus and transported to the mitochondria (Bonawitz et al. 2006). Mitochondria have two membranes: an outer smooth membrane and a highly folded inner membrane called cristae, which encompasses the matrix that houses the enzymes of the tricarboxylic acid (TCA) cycle and lipid metabolism. The inner mitochondrial membrane houses the protein complexes comprising the electron transport chain (ETC) (Hatefi 1985).
Collapse
Affiliation(s)
- David M. Hockenbery
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
49
|
Petty RD, McCarthy NE, Le Dieu R, Kerr JR. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME). PLoS One 2016; 11:e0150904. [PMID: 26967895 PMCID: PMC4788442 DOI: 10.1371/journal.pone.0150904] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. Methods miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Results Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. Conclusion This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.
Collapse
Affiliation(s)
- Robert D. Petty
- CFS Group, St George´s University of London, Cranmer Terrace, London, United Kingdom
- Centre for Haemato-Oncology, Bart’s cancer institute, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizzard institute, Queen Mary University of London, London, United Kingdom
| | - Rifca Le Dieu
- Centre for Haemato-Oncology, Bart’s cancer institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan R. Kerr
- CFS Group, St George´s University of London, Cranmer Terrace, London, United Kingdom
- Grupo de Salud Publica, Escuela de Medicine y Ciencias de la Salud, Universidad del Rosario, Quinta de Mutis, Bogotá 111221, Colombia
| |
Collapse
|
50
|
Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5296271. [PMID: 26770655 PMCID: PMC4684878 DOI: 10.1155/2016/5296271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 12/05/2022]
Abstract
Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.
Collapse
|