1
|
Niu X, Yu J, Sun J, Zhang X, Zhou L, Liu X, He K, Peng Z, Niu X, Xu H, Cao J, Ho KF, Liu P, Shen Z. New mechanisms of PM 2.5 induced atherosclerosis: Source dependent toxicity and pathogenesis. ENVIRONMENTAL RESEARCH 2024; 266:120535. [PMID: 39643260 DOI: 10.1016/j.envres.2024.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) is recognized to induce atherosclerosis, but the underlying mechanisms are not fully understood. This study used ambient PM2.5 samples collected in one of the highly polluted regions of Guanzhong Plain in China (2017-2020) and an ApoE-/- mouse model to investigate the association between exposure to PM2.5 and atherosclerosis. Despite a substantial decrease in the ambient concentration of PM2.5 from 266.7 ± 63.9 to 124.4 ± 37.7 μg m-3 due to the execution of a series of emission controls, cardiovascular toxicity due to exposure to PM2.5 remained at a significantly high level compared with the Control group. Moreover, the result highlighted that biomass burning (BB) showed an increased contribution to PM2.5 while most anthropogenic sources decreased. This study found that PM2.5 exposure led to vascular oxidative stress and inflammation, accelerated atherosclerotic plaque growth, and altered vascular proliferation pathways. The latter two mechanisms provide new insights into how PM2.5 enhanced the processes of atherosclerosis, promoted lipoprotein cholesterol (LDL-C) absorption in vascular cells, and directed stimulation of cell function factors (VEGF and MCP-1), which are highly associated by PI3K/AKT signaling pathway. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and certain biomarkers showed strong correlations with bio-reactivity, while BB was identified as a major contributor to toxicity of PM2.5. The findings offer new insights into the role of PM2.5 promoting atherosclerosis and provide recommendations for controlling PM2.5 pollution to prevent and treat the disease particularly for susceptible populations.
Collapse
Affiliation(s)
- Xinyi Niu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jinjin Yu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xinya Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lili Zhou
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xinyao Liu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zezhi Peng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Niu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, China
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, USA.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
3
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
4
|
Balunathan N, Rani G U, Perumal V, Kumarasamy P. Single nucleotide polymorphisms of Interleukin - 4, Interleukin-18, FCRL3 and sPLA2IIa genes and their association in pathogenesis of endometriosis. Mol Biol Rep 2023; 50:4239-4252. [PMID: 36905404 DOI: 10.1007/s11033-023-08316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Endometriosis is a complex gynaecological disorder that contributes to infertility, dysmenorrhea, dyspareunia, and other chronic issues. It is a multifactorial disease involving genetic, hormonal, immunological and environmental components. Endometriosis's pathogenesis remains unclear. AIM OF THE STUDY was to analyse the polymorphisms in Interleukin 4, Interleukin 18, FCRL3 and sPLA2IIa genes to identify any significant association with the risk of endometriosis. MATERIAL AND METHODS This study evaluated the polymorphism of -590 C/T in interleukin- 4(IL-4) gene, C607A in Interleukin - 18(IL-18) gene, -169T > C in FCRL3 gene and 763 C > G in sPLA2IIa gene in women with endometriosis. The case-control study included 150 women with endometriosis and 150 apparently healthy women as control subjects. DNA was extracted from peripheral blood leukocytes and endometriotic tissue of cases and blood samples for controls and further analysed by PCR amplification and then sequencing was carried out to find the allele and genotypes of the subjects and then to analyse the relationship between the gene polymorphisms and endometriosis. To evaluate the association of the different genotypes, 95% confidence intervals (CI) were calculated. RESULTS Interleukin - 18 and FCRL3 gene polymorphisms of endometriotic tissue and blood samples of endometriosis (cases) showed significantly associated (OR = 4.88 [95% CI = 2.31-10.30], P > 0.0001) and (OR = 4.00 [95% CI = 2.2-7.33], P > 0.0001) when compared with normal blood samples. However, there was no significant difference in Interleukin - 4 and sPLA2IIa gene polymorphisms between control women and patients with endometriosis. CONCLUSIONS The present study suggests that the IL-18 and FCRL3 gene polymorphisms are associated with a higher risk for endometriosis, which delivers valuable knowledge of endometriosis's pathogenesis. However, a larger sample size of patients from various ethnic backgrounds is necessary to evaluate whether these alleles have a direct effect on disease susceptibility.
Collapse
Affiliation(s)
- Nandhini Balunathan
- Department of Human Genetics, Faculty of Biomedical sciences & technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University, Porur, Chennai, India.
| | - Usha Rani G
- Department of Obstetrics & Gynaecology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University, Porur, Chennai, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Faculty of Biomedical sciences & technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University, Porur, Chennai, India
| | - P Kumarasamy
- Controller of examinations, Tamilnadu Veterinary and Animal sciences university, Chennai, India
| |
Collapse
|
5
|
Bekibele GE, Anacletus FC, Patrick-Iwuanyanwu KC, Nwaogazie IL. The protective effect of red cabbage on water-soluble fractions of spent crankcase oil-induced alterations in lipid function biomarkers and atherogenic indices in male Albino rats. Toxicol Res (Camb) 2023; 12:39-48. [PMID: 36866218 PMCID: PMC9972813 DOI: 10.1093/toxres/tfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/18/2022] [Accepted: 11/10/2022] [Indexed: 12/27/2022] Open
Abstract
Spent crankcase oil (SCO) contains a cocktail of metals and polycyclic aromatic hydrocarbons (PAHs), transferred to the associated water-soluble fractions (WSF); and low-dose heavy metals exposures could increase the triglycerides (TG), total cholesterol (TC), low-density lipoproteins (LDL), and very-low-density lipoproteins (VLDL) concentrations. Hence, this study estimated the changes in the lipid profile and atherogenic indices (AI) of male Wistar albino rats exposed to the WSF of SCO and treated with aqueous extracts (AE) of red cabbage (RC) for 60 and 90 days. Sixty-four male Wistar rats divided into 8 groups (8 animals each) were orally administered 1 mL of deionized water, 500 mg/kg AE of RC, 1 mL of 25%, 50%, and 100% WSF of SCO daily for 60 and 90 days, whereas alternate groups were given the stated percentages of the WSF and the AE. Serum TG, TC, LDL, and VLDL concentrations were then analyzed using appropriate kits and the AI estimated thereafter. Although the 60 days study presented a nonsignificant (P < 0.05) difference in the TG, VLDL, and high density lipoprotein (HDL)-C levels in all the exposed and treated groups, a significantly (P < 0.05) elevated TC and non-HDL was recorded for the 100% exposed group alone. Also, the LDL concentration of all exposed groups was higher than all treated groups. The findings at the 90th day was different, such that the 100% and 25% exposed only groups had elevated lipid profile (except HDL-C) concentrations and AI compared with other groups. RC extracts can act as good hypolipidemic agents in WSF of SCO hyperlipidemia potentiating events.
Collapse
Affiliation(s)
- G E Bekibele
- Africa Centre of Excellence in Public Health and Toxicological Research, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria.,Department of Biochemistry, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria
| | - F C Anacletus
- Africa Centre of Excellence in Public Health and Toxicological Research, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria.,Department of Biochemistry, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria
| | - K C Patrick-Iwuanyanwu
- Africa Centre of Excellence in Public Health and Toxicological Research, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria.,Department of Biochemistry, University of Port Harcourt, P.M.B. 5323, Choba 500004, Rivers State, Nigeria
| | - I L Nwaogazie
- African Centre of Excellence for Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Port Harcourt, Choba 500004, Nigeria
| |
Collapse
|
6
|
Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int J Mol Sci 2022; 23:ijms231912054. [PMID: 36233355 PMCID: PMC9569699 DOI: 10.3390/ijms231912054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Classical risk factors play a major role in the initiation and development of atherosclerosis. However, the estimation of risk for cardiovascular events based only on risk factors is often insufficient. Efforts have been made to identify biomarkers that indicate ongoing atherosclerosis. Among important circulating biomarkers associated with peripheral arterial disease (PAD) are inflammatory markers which are determined by the expression of different genes and epigenetic processes. Among these proinflammatory molecules, interleukin-6, C-reactive protein, several adhesion molecules, CD40 ligand, osteoprotegerin and others are associated with the presence and progression of PAD. Additionally, several circulating prothrombotic markers have a predictive value in PAD. Genetic polymorphisms significantly, albeit moderately, affect risk factors for PAD via altered lipoprotein metabolism, diabetes, arterial hypertension, smoking, inflammation and thrombosis. However, most of the risk variants for PAD are located in noncoding regions of the genome and their influence on gene expression remains to be explored. MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that modulate gene expression at the post-transcriptional level. Patterns of miRNA expression, to some extent, vary in different atherosclerotic cardiovascular diseases. miRNAs appear to be useful in the detection of PAD and the prediction of progression and revascularization outcomes. In conclusion, taking into account one’s predisposition to PAD, i.e., DNA polymorphisms and miRNAs, together with circulating inflammatory and coagulation markers, holds promise for more accurate prediction models and personalized therapeutic options.
Collapse
|
7
|
Essone PN, Adegbite BR, Mbadinga MJM, Mbouna AV, Lotola-Mougeni F, Alabi A, Edoa JR, Lell B, Alabi AS, Adegnika AA, Ramharter M, Siawaya JFD, Grobusch MP, Kremsner PG, Agnandji ST. Creatine kinase-(MB) and hepcidin as candidate biomarkers for early diagnosis of pulmonary tuberculosis: a proof-of-concept study in Lambaréné, Gabon. Infection 2022; 50:897-905. [PMID: 35133607 PMCID: PMC9338130 DOI: 10.1007/s15010-022-01760-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/15/2022] [Indexed: 12/05/2022]
Abstract
Background The present study aimed to evaluate the diagnostic utility of creatine kinase-MB (CK-MB), hepcidin (HEPC), phospholipase A2 group IIA (PLa2G2A), and myosin-binding protein C (MYBPC1) for tuberculosis (TB). These four biomarkers are differentially regulated between quiescent Mycobacterium tuberculosis (Mtb) infected individuals (non-progressors to TB disease) and Mtb-infected TB disease progressors 6 months before the onset of symptoms.
Methods We enrolled samples from patients experiencing moderate-to-severe pulmonary infections diseases including 23 TB cases confirmed by smear microscopy and culture, and 34 TB-negative cases. For each participant, the serum levels of the four biomarkers were measured using ELISA. Results The levels of CK-MB and HEPC were significantly reduced in patients with active TB disease. CK-MB median level was 2045 pg/ml (1455–4000 pg/ml) in active TB cases and 3245 pg/ml (1645–4000 pg/ml) in non-TB pulmonary diseases. Using the receiver operating characteristic curve (ROC) analysis, HEPC and CK-MB had the Area Under the Curve (AUC) of 79% (95% CI 67–91%) and 81% (95% CI 69–93%), respectively. Both markers correlated with TB diagnosis as a single marker. PLa2G2A and MYBPC1 with AUCs of 48% (95% CI 36–65%) and 62% (95% CI 48–76%) did not performed well as single biomarkers. The three markers’model (CK-MB-HEPC-PLa2G2A) had the highest diagnostic accuracy at 82% (95% CI 56–82%) after cross-validation. Conclusion CK-MB and HEPC levels were statistically different between confirmed TB cases and non-TB cases. This study yields promising results for the rapid diagnosis of TB disease using a single marker or three biomarkers model. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-022-01760-8.
Collapse
Affiliation(s)
- Paulin N Essone
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany.
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Libreville, Gabon.
| | - Bayode R Adegbite
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Armel V Mbouna
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Ayodele Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean R Edoa
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
| | - Ayola A Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and Department of Internal Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joel F D Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Libreville, Gabon
| | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany.
- The African Society of Clinical Trials and the African Congress for Clinical Trials, Lambaréné, Gabon.
| |
Collapse
|
8
|
Williams L, Bagley J, Iacomini J. The role of IL-6 in hyperlipidemia-induced accelerated rejection. Am J Transplant 2022; 22:427-437. [PMID: 34551194 PMCID: PMC8813896 DOI: 10.1111/ajt.16852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 02/03/2023]
Abstract
Hyperlipidemia induces accelerated rejection of cardiac allografts and resistance to tolerance induction using costimulatory molecule blockade in mice due in part to anti-donor Th17 responses and reduced regulatory T cell function. Accelerated rejection in hyperlipidemic mice is also associated with increased serum levels of IL-6. Here, we examined the role of IL-6 in hyperlipidemia-induced accelerated rejection and resistance to tolerance. Genetic ablation of IL-6 prevented hyperlipidemia-induced accelerated cardiac allograft rejection. Using Th17-lineage fate tracking mice, we observed that IL-6 is required to promote the development of anti-donor Th17 lineage cells independently of antigen challenge. In contrast, the frequency of alloreactive T cells producing IL-2 or IFN-γ remained increased in hyperlipidemic IL-6-deficient mice. Ablation of IL-6 overcame hyperlipidemia-induced changes in Tregs, but was not sufficient to overcome resistance to costimulatory molecule blockade induced tolerance. We suggest that accelerated rejection in hyperlipidemic mice results from IL-6 driven anti-donor Th17 responses. While alterations in Tregs were overcome by ablation of IL-6, the reversal of hyperlipidemia-induced changes in Tregs was not sufficient to overcome increased Th1-type anti-donor T cell responses, suggesting that hyperlipidemia induced IL-6-independent effects on recipient immunity prevent tolerance induction.
Collapse
Affiliation(s)
- Linus Williams
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences, Boston, MA, USA.,Department of Immunology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.,Immunology Graduate Program, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Jessamyn Bagley
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences, Boston, MA, USA.,Department of Immunology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - John Iacomini
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences, Boston, MA, USA.,Department of Immunology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.,Immunology Graduate Program, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, Liu J, Liang B, Jiao X, Cao J, Wang Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 2021; 284:119935. [PMID: 34508760 DOI: 10.1016/j.lfs.2021.119935] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Atherosclerotic vascular disease remains the principal cause of death and disability among patients with type 2 diabetes. Unfortunately, the problem is not adequately resolved by therapeutic strategies with currently available drugs or approaches that solely focus on optimal glycemic control. To identify the key contributors and better understand the mechanism of diabetic atherosclerotic vascular disease, we aimed to elucidate the key genetic characteristics and pathological pathways in atherosclerotic vascular disease through nonbiased bioinformatics analysis and subsequent experimental demonstration and exploration in diabetic atherosclerotic vascular disease. METHODS AND RESULTS Sixty-eight upregulated and 23 downregulated genes were identified from the analysis of gene expression profiles (GSE30169 and GSE6584). A comprehensive bioinformatic assay further identified that ferroptosis, a new type of programmed cell death and HMOX1 (a gene that encodes heme oxygenase), were vital factors in atherosclerotic vascular disease. We further demonstrated that diabetes significantly increased ferroptosis and HMOX1 levels compared to normal controls. Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated diabetic atherosclerosis, suggesting the causative role of ferroptosis in diabetic atherosclerosis development. At the cellular level, Fer-1 ameliorated high glucose high lipid-induced lipid peroxidation and downregulated ROS production. More importantly, HMOX1 knockdown attenuated Fe2+ overload, reduced iron content and ROS, and alleviated lipid peroxidation, which led to a reduction in ferroptosis in diabetic human endothelial cells. CONCLUSIONS We demonstrated that HMOX1 upregulation is responsible for the increased ferroptosis in diabetic atherosclerosis development, suggesting that HMOX1 may serve as a potential therapeutic or drug development target for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China; Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Jia Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Jing Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
10
|
Gorzelak-Pabis P, Broncel M, Wojdan K, Gajewski A, Chalubinski M, Gawrysiak M, Wozniak E. Rivaroxaban protects from the oxysterol-induced damage and inflammatory activation of the vascular endothelium. Tissue Barriers 2021; 9:1956284. [PMID: 34323663 PMCID: PMC8794498 DOI: 10.1080/21688370.2021.1956284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Rivaroxaban is one of the direct factor Xa inhibitors. Its function in the inactivated coagulation cascade is unclear. The aim of the study was to assess the effect of rivaroxaban on the endothelial integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC). METHODS HUVECs were stimulated with 25-OHC, rivaroxaban and 25-OHC+ rivaroxaban. HUVEC integrity and permeability were measured using the xCELLigence system and paracellular flux assay. The mRNA expression of tissue factor, ICAM-1, VEGF, IL-33, MCP-1, TNF-α was analyzed in the real-time PCR. Apoptosis and viability were measured by flow cytometry. The VEGF protein concentration was assessed by ELISA. The confocal microscope was used to evaluate the expression of VE-cadherin in endothelial cells. RESULTS 25-OHC decreased endothelial cell integrity and increased the mRNA expression of IL-33, tissue factor, ICAM-1, MCP-1, VEGF, TNF-α as compared to unstimulated controls. Following the stimulation with rivaroxaban, HUVEC restored integrity disrupted by 25-OHC (p < .01). In HUVECs pre-stimulated with oxysterol, rivaroxaban decreased mRNA expression of IL-33, TNF-α, chemokines MCP-1, ICAM-1, VEGF and tissue factor (p < .01). Rivaroxaban 100 mg/ml+25-OHC increased the VE-cadherin expression in endothelium as compared to 25-OHC (p < .05). CONCLUSION Our finding suggests that rivaroxaban may restore the endothelial barrier and inhibit the inflammatory activation caused by oxysterol in vitro.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabis
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
Kavak E, Algso M, Konus M, Yılmaz C, Lazoğlu A, Karaağaç SU, Kivrak A. Synthesis, Optimization, ADME Analysis, and Antioxidant Activity
of 2-(Arylethynyl)-3-ethynylthiophenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
14
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
15
|
Gouaref I, Bouazza A, Abderrhmane SA, Koceir EA. Lipid Profile Modulates Cardiometabolic Risk Biomarkers Including Hypertension in People with Type-2 Diabetes: A Focus on Unbalanced Ratio of Plasma Polyunsaturated/Saturated Fatty Acids. Molecules 2020; 25:E4315. [PMID: 32962299 PMCID: PMC7570813 DOI: 10.3390/molecules25184315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with lipid metabolism disorder, particularly elevated plasma levels of non-esterified free fatty acids (NEFFA) and an increased cardiovascular disease risk, such as essential hypertension (H). The plasma unbalance of saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio is a likely contributor, but the mechanisms involved are not clearly elucidated. The aim of this study is to explore the association between plasma SFA/PUFA ratio and the clusters of cardiometabolic syndrome (CMS), including the atherogenic biomarkers, inflammatory status, feeding patterns, and physical activity in people with T2DM with or without essential hypertension. The study was conducted on 784 adult male and female participants, aged between 30 and 50 years, and divided into 3 groups: 100 T2DM without hypertension (D); 368 T2DM with hypertension (DM); and 316 hypertensive participants without T2DM (H). All Participants were phenotyped regarding CMS clusters according to the NCEP/ATPIII criteria. Insulin resistance was assessed by Homeostasis model assessment (HOMA model). Metabolic, atherogenic, and inflammatory parameters were analyzed by biochemical methods; NEFFA by microfluorimetry; SFA, PUFA-n6 and PUFA-n3 by gas phase chromatography. Dietary lipids and physical activity were analyzed through the use of validated questionnaires. The clusters of CMS were found in all groups. Dyslipidemia was correlated with accretion NEFFA levels in all groups, but more accentuated in the DH group (r = +0.77; p < 0.001). Similarly, plasma PUFA/SFA ratio and PUFA-3 level was lower, concomitantly with a higher plasma ApoB100/ApoA1 (p < 0.001), lipoprotein (a), homocysteine (p < 0.001), and pro-inflammatory cytokines (TNFα, IL-6, IL1-β) in the DH group. Likewise, the depletion of PUFA-n3/PUFA-n6 ratio is associated with the decrease of omega 3-DHA (docosahexaenoic acid) and omega 3-EPA (eicosapentaenoic acid) (p < 0.001). It appears that the PUFAs-n3 ratio modulates cardiometabolic risk, inflammatory state and atherogenic biomarkers. The plasma unbalanced ratio of SFA/PUFA reflects dietary fatty acids intake. The contribution of dietary lipids is undisputed. Nutritional recommendations are required to determine the fatty acids ratio (saturated and unsaturated) provided in the diet.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| | - Asma Bouazza
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache, 244 (16208-Kouba) Algiers, Algeria;
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16123 Algiers, Algeria; (I.G.); (A.B.)
| |
Collapse
|
16
|
Liu Y, Li J, Liu Y. Effects of epoxy stearic acid on lipid metabolism in HepG2 cells. J Food Sci 2020; 85:3644-3652. [PMID: 32885409 DOI: 10.1111/1750-3841.15405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
In the present study, effects of cis-9,10-epoxystearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including intracellular lipid accumulation, fatty acid composition, and lipid metabolism, were investigated. Our results revealed that ESA increased the number and size of cellular lipid droplets. Intracellular triacylglycerol and total cholesterol content demonstrated that ESA induced lipid accumulation in HepG2 cells in a dose- and time-dependent manner. Results of fatty acid composition further indicated that ESA could lead to intracellular lipid accumulation. Our results also revealed that ESA may suppress the fatty acid oxidation in peroxisomes and mitochondria, including PPARα, Cpt1α, and Acox1, whereas the expression of genes involved in lipid synthesis, including Srebp-1c and Scd1, was enhanced. These findings provide critical information on the effects of ESA on HepG2 cells, particularly lipid accumulation and metabolism, which is important for evaluating the biosafety of the oxidative product of oleic acid. PRACTICAL APPLICATION: The administration of cis-9,10-epoxystearic acid to HepG2 cells could lead to disorder of lipid metabolism of cells by enhancing the intracellular lipid content, as well as suppressing the fatty acid oxidation in peroxisomes and mitochondria. These findings could provide information for the evaluation of the biosafety of the oxidative product of oleic acid.
Collapse
Affiliation(s)
- Ying Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | - Jinwei Li
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, People's Republic of China
| |
Collapse
|
17
|
Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants (Basel) 2020; 9:antiox9070619. [PMID: 32679751 PMCID: PMC7402177 DOI: 10.3390/antiox9070619] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Garlic is a polyphenolic and organosulfur enriched nutraceutical spice consumed since ancient times. Garlic and its secondary metabolites have shown excellent health-promoting and disease-preventing effects on many human common diseases, such as cancer, cardiovascular and metabolic disorders, blood pressure, and diabetes, through its antioxidant, anti-inflammatory, and lipid-lowering properties, as demonstrated in several in vitro, in vivo, and clinical studies. The present review aims to provide a comprehensive overview on the consumption of garlic, garlic preparation, garlic extract, and garlic extract-derived bioactive constituents on oxidative stress, inflammation, cancer, cardiovascular and metabolic disorders, skin, bone, and other common diseases. Among the 83 human interventional trials considered, the consumption of garlic has been reported to modulate multiple biomarkers of different diseases; in addition, its combination with drugs or other food matrices has been shown to be safe and to prolong their therapeutic effects. The rapid metabolism and poor bioavailability that have limited the therapeutic use of garlic in the last years are also discussed.
Collapse
|
18
|
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep 2020; 22:9-19. [PMID: 32377709 PMCID: PMC7248467 DOI: 10.3892/mmr.2020.11127] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are a group of viruses that cause infections in the human respiratory tract, which can be characterized clinically from mild to fatal. The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is the virus responsible. The global spread of COVID‑19 can be described as the worst pandemic in humanity in the last century. To date, COVID‑19 has infected more than 3,000,000 people worldwide and killed more than 200,000 people. All age groups can be infected from the virus, but more serious symptoms that can possibly result in death are observed in older people and those with underlying medical conditions such as cardiovascular and pulmonary disease. Novel data report more severe symptoms and even a negative prognosis for the obese patients. A growing body of evidence connects obesity with COVID‑19 and a number of mechanisms from immune system activity attenuation to chronic inflammation are implicated. Lipid peroxidation creates reactive lipid aldehydes which in a patient with metabolic disorder and COVID‑19 will affect its prognosis. Finally, pregnancy‑associated obesity needs to be studied further in connection to COVID‑19 as this infection could pose high risk both to pregnant women and the fetus.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Denisa Margină
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 020956 Bucharest, Romania
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Miriana Stan
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, 020956 Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
19
|
Yang AM, Lo K, Zheng TZ, Yang JL, Bai YN, Feng YQ, Cheng N, Liu SM. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis Transl Med 2020; 6:251-259. [PMID: 33336170 PMCID: PMC7729107 DOI: 10.1016/j.cdtm.2020.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) and environmental degradation are leading global health problems of our time. Recent studies have linked exposure to heavy metals to the risks of CVD and diabetes, particularly in populations from low- and middle-income countries, where concomitant rapid development occurs. In this review, we 1) assessed the totality, quantity, and consistency of the available epidemiological studies, linking heavy metal exposures to the risk of CVD (including stroke and coronary heart disease); 2) discussed the potential biological mechanisms underlying some tantalizing observations in humans; and 3) identified gaps in our knowledge base that must be investigated in future work. An accumulating body of evidence from both experimental and observational studies implicates exposure to heavy metals, in a dose-response manner, in the increased risk of CVD. The limitations of most existing studies include insufficient statistical power, lack of comprehensive assessment of exposure, and cross-sectional design. Given the widespread exposure to heavy metals, an urgent need has emerged to investigate these putative associations of environmental exposures, either independently or jointly, with incident CVD outcomes prospectively in well-characterized cohorts of diverse populations, and to determine potential strategies to prevent and control the impacts of heavy metal exposure on the cardiometabolic health outcomes of individuals and populations.
Collapse
Affiliation(s)
- Ai-Min Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Kenneth Lo
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Jing-Li Yang
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Na Bai
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying-Qing Feng
- Department of Cardiology and Endocrinology, Guangdong Provincial People's Hospital, Guandong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ning Cheng
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Si-Min Liu
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA
| |
Collapse
|
20
|
Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic Biol Med 2020; 149:8-22. [PMID: 31669759 DOI: 10.1016/j.freeradbiomed.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression. Reactive oxygen species (ROS) (which include both free radical and non-free radical oxygen intermediates), play a key-role at each step of atherogenesis, in endothelial dysfunction, LDL oxidation, and inflammatory events involved in the initiation and development of atherosclerosis lesions. Most advanced knowledge supporting the "oxidative theory of atherosclerosis" i.e. the nature and the cellular sources of ROS and antioxidant defences, as well as the mechanisms involved in the redox balance, is based on the use of genetically engineered animals, i.e. transgenic, genetically modified, or altered for systems producing or neutralizing ROS in the vessels. This review summarizes the results obtained from animals genetically manipulated for various sources of ROS or antioxidant defences in the vascular wall, and their relevance (advance or limitation), for understanding the place and role of ROS in atherosclerosis.
Collapse
Affiliation(s)
| | - Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | | |
Collapse
|
21
|
Civra A, Colzani M, Cagno V, Francese R, Leoni V, Aldini G, Lembo D, Poli G. Modulation of cell proteome by 25-hydroxycholesterol and 27-hydroxycholesterol: A link between cholesterol metabolism and antiviral defense. Free Radic Biol Med 2020; 149:30-36. [PMID: 31525455 PMCID: PMC7126780 DOI: 10.1016/j.freeradbiomed.2019.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Physiological cholesterol metabolism implies the generation of a series of oxidized derivatives, whose oxysterols are by far the most investigated ones for their potential multifaceted involvement in human pathophysiology. In this regard, noteworthy is the broad antiviral activity displayed by defined side chain oxysterols, in particular 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol (27HC). Although their antiviral mechanism(s) may vary depending on virus/host interaction, these oxysterols share the common feature to hamper viral replication by interacting with cellular proteins. Here reported is the first analysis of the modulation of a cell proteome by these two oxysterols, that, besides yielding additional clues about their potential involvement in the regulation of sterol metabolism, provides novelinsights about the mechanism underlying the inhibition of virus entry and trafficking within infected cells. We show here that both 25HC and 27HC can down-regulate the junction adhesion molecule-A (JAM-A) and the cation independent isoform of mannose-6-phosphate receptor (MPRci), two crucial molecules for the replication of all those viruses that exploit adhesion molecules and the endosomal pathway to enter and diffuse within target cells.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Mara Colzani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Valeria Cagno
- Department of Molecular Microbiology, University of Geneva, Geneva, Switzerland.
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Milano, Italy.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| |
Collapse
|
22
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
23
|
Baradaran S, Hajizadeh Moghaddam A, Khanjani Jelodar S, Moradi-Kor N. Protective Effects of Curcumin and its Nano-Phytosome on Carrageenan-Induced Inflammation in Mice Model: Behavioral and Biochemical Responses. J Inflamm Res 2020; 13:45-51. [PMID: 32021378 PMCID: PMC6982451 DOI: 10.2147/jir.s232462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background and purpose Natural compounds are used for prevention of inflammation. Curcumin has antioxidant and anti-inflammatory properties, and loading it into nano-phytosomes may improve its efficiency. The present study investigates the effects of curcumin and its nano-phytosome on behavioral and biochemical responses in carrageenan-induced inflammation in the mice model. Methods The mice were divided into six groups and received oral administration of curcumin or its nano-phytosome at a dose of 15 mg/kg for seven days before the administration of carrageenan. Acute inflammation in the mice was induced by administration of carrageenan (1%) into the subplantar region of the left paw. Antioxidant activity and behavioral responses were then evaluated. Results The results showed that the serum concentrations of antioxidant enzymes were significantly higher in the sal+sal group compared to the cara+sal group (P<0.05). Using nanophytosome, separately and in combination with indomethacin, increased the levels of antioxidant enzymes compared to the cara+sal group (P<0.05). Latency was significantly lower in the cara+sal group compared to the cara+sal group (P<0.05), but it was considerably higher in other groups, especially in the cara+nano.ph.cur+indo group (P<0.05). Conclusion It can be stated that the nano-phytosome of curcumin could improve antioxidant and behavioral responses in inflamed mice.
Collapse
Affiliation(s)
- Saeideh Baradaran
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | | | | |
Collapse
|
24
|
Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4978018. [PMID: 31737665 PMCID: PMC6815581 DOI: 10.1155/2019/4978018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lysophospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen's disease, and kidney, liver, bladder, and lung cancer).
Collapse
|
25
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
26
|
Cintra LTA, Estrela C, Azuma MM, Queiroz ÍODA, Kawai T, Gomes-Filho JE. Endodontic medicine: interrelationships among apical periodontitis, systemic disorders, and tissue responses of dental materials. Braz Oral Res 2018; 32:e68. [DOI: 10.1590/1807-3107bor-2018.vol32.0068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
|
27
|
Testa G, Rossin D, Poli G, Biasi F, Leonarduzzi G. Implication of oxysterols in chronic inflammatory human diseases. Biochimie 2018; 153:220-231. [DOI: 10.1016/j.biochi.2018.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
|
28
|
Implications of plasma thiol redox in disease. Clin Sci (Lond) 2018; 132:1257-1280. [DOI: 10.1042/cs20180157] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.
Collapse
|
29
|
Taleb A, Ahmad KA, Ihsan AU, Qu J, Lin N, Hezam K, Koju N, Hui L, Qilong D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother 2018; 102:689-698. [DOI: 10.1016/j.biopha.2018.03.140] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
|
30
|
Liu Y, Cheng Y, Li J, Wang Y, Liu Y. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5237-5246. [PMID: 29730927 DOI: 10.1021/acs.jafc.8b01954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.
Collapse
Affiliation(s)
- Ying Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yajun Cheng
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Jinwei Li
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yuanpeng Wang
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
31
|
Abstract
Vascular diseases refer to medical conditions that narrow blood vessels. Narrowed cardiac or cerebral arteries can lead to myocardial infarction or ischemic stroke. Risk factors including atherosclerosis, hypertension, and diabetes may induce either cardiovascular or cerebral complications. Based on current research, garlic favorably affects atherosclerosis, hypertension and diabetes, and helps decrease the risk of myocardial infarction and ischemic stroke. Garlic has been utilized for hundreds of years as a natural health remedy. New research is emerging regarding its effectiveness in treating common diseases, including atherosclerosis, hypertension, and diabetes. The underlying mechanisms by which garlic, and its byproducts, can alter pathophysiology have begun to be elucidated by these studies. Garlic is a prominent topic for future research regarding its potential as an adjuvant to conventional pharmacotherapy for these common health conditions. In this mini-review, we discuss the current state of the literature regarding garlic and its effects in patients with vascular disease. Specifically, we decided to briefly discuss the key points regarding the mechanisms underlying garlic's anti-hypertensive, anti-hyperlipidemic, and hypoglycemic effects. This allows the readers to understand each process while keeping the paper concise. These mechanisms can be further explored in the original articles, at the reader's discretion.
Collapse
Affiliation(s)
- Yuequan Zhu
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Raja Anand
- b Department of Neurosurgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China.,b Department of Neurosurgery , Wayne State University School of Medicine , Detroit , MI , USA.,c Department of Neurology , Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China.,b Department of Neurosurgery , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
32
|
Zhang TT, Zheng CY, Hu T, Jiang JG, Zhao JW, Zhu W. Polyphenols from Ilex latifolia Thunb. (a Chinese bitter tea) exert anti-atherosclerotic activity through suppressing NF-κB activation and phosphorylation of ERK1/2 in macrophages. MEDCHEMCOMM 2018; 9:254-263. [PMID: 30108919 PMCID: PMC6083792 DOI: 10.1039/c7md00477j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Ilex latifolia Thunb is a kind of herbal tea and widely consumed as a functional tea beverage in Asian countries. In this study, polyphenols were extracted from I. latifolia and the major compounds were identified by liquid chromatography-mass spectrometry (LC-MS), then the effect on oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation was investigated. Results showed that the polyphenols could significantly inhibit ox-LDL-induced macrophage foam cell formation and suppress lipid droplet accumulation and cholesterol uptake in RAW 264.7 cells. Additionally, the secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6 and inducible nitric oxide synthase (iNOS), was significantly inhibited. Moreover, the polyphenols could suppress the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and clusters of differentiation 36 (CD 36), which were receptors for ox-LDL. Mechanistically, I. latifolia polyphenols could inhibit macrophage foam cell formation by suppressing NF-κB activation and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Department of Food Science and Technology , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +8620 87113849
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Chao-Yang Zheng
- The Second Institute of Clinical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| | - Ting Hu
- Department of Food Science and Technology , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +8620 87113849
| | - Jian-Guo Jiang
- Department of Food Science and Technology , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +8620 87113849
| | - Jing-Wen Zhao
- The Second Institute of Clinical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| | - Wei Zhu
- The Second Institute of Clinical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| |
Collapse
|
33
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
34
|
Serra G, Deiana M, Spencer JPE, Corona G. Olive Oil Phenolics Prevent Oxysterol-Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways. Mol Nutr Food Res 2017; 61. [PMID: 28815947 PMCID: PMC5765427 DOI: 10.1002/mnfr.201700283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes.
Collapse
Affiliation(s)
- Gessica Serra
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Giulia Corona
- Health Sciences Research Centre, University of Roehampton, London, UK
| |
Collapse
|
35
|
Villalpando DM, Rojas MM, García HS, Ferrer M. Dietary docosahexaenoic acid supplementation prevents the formation of cholesterol oxidation products in arteries from orchidectomized rats. PLoS One 2017; 12:e0185805. [PMID: 28968462 PMCID: PMC5624632 DOI: 10.1371/journal.pone.0185805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Testosterone deficiency has been correlated with increased cardiovascular diseases, which in turn has been associated with increased oxidative stress. Several studies have considered cholesterol oxidation products (COPs) as oxidative stress biomarkers, since some of them play pro-oxidant and pro-inflammatory roles. We have previously described the cardioprotective effects of a dosahexaenoic acid (DHA) supplemented diet on the aortic and mesenteric artery function of orchidectomized rats. The aim of this study was to investigate whether impaired gonadal function alters the formation of COPs, as well as the potential preventive role of a DHA-supplemented diet on that effect. For this purpose, aortic and mesenteric artery segments obtained from control and orchidectomized rats, fed with a standard or supplemented with DHA, were used. The content of the following COPs: 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol and 25-hydroxycholesterol, were analyzed by gas chromatography. The results showed that orchidectomy increased the formation of COPs in arteries from orchidectomized rats, which may participate in the orchidectomy-induced structural and functional vascular alterations already reported. The fact that the DHA-supplemented diet prevented the orchidectomy-induced COPs increase confirms the cardiovascular protective actions of DHA, which could be of special relevance in mesenteric arterial bed, since it importantly controls the systemic vascular resistance.
Collapse
Affiliation(s)
- Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mibsam M. Rojas
- Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, Veracruz, México
| | - Hugo S. García
- Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, Veracruz, México
- * E-mail: (MF); (HSG)
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (MF); (HSG)
| |
Collapse
|
36
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
37
|
Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR, De Leon M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 2017; 12:e0176793. [PMID: 28463985 PMCID: PMC5413048 DOI: 10.1371/journal.pone.0176793] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1β. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Hung
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Shane Glasgow
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Aruni Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Juli Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Anatomy and Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Basic Sciences, Division of Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| |
Collapse
|
38
|
Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydroxycholesterol. Redox Biol 2017; 12:522-527. [PMID: 28359048 PMCID: PMC5374874 DOI: 10.1016/j.redox.2017.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 11/23/2022] Open
Abstract
Oxysterols are known pleiotropic molecules whose antiviral action has been recently discovered. Here reported is the activity of a panel of oxysterols against HSV-1 with the identification of a new mechanism of action. A marked antiviral activity not only of 25HC but also of 27HC against HSV-1 was observed either if the oxysterols were added before or after infection, suggesting an activity unrelated to the viral entry inhibition as proposed by previous literature. Therefore, the relation between the pro-inflammatory activity of oxysterols and the activation of NF-kB and IL-6 induced by HSV-1 in the host cell was investigated. Indeed, cell pre-incubation with oxysterols further potentiated IL-6 production as induced by HSV-1 infection with a consequent boost of the interleukin's total cell secretion. Further, a direct antiviral effect of IL-6 administration to HSV-1 infected cells was demonstrated, disclosing an additional mechanism of antiviral action by both 25HC and 27HC. 25HC and 27HC markedly inhibit HSV-1 replication in a standard cell culture system. Cell pre-incubation with oxysterols potentiates IL-6 production as induced by HSV-1. The concentration of IL-6 induced by oxysterols actually inhibits HSV-1 replication.
Collapse
|
39
|
Quintanilla MA, Andrés M, Pascual E, Pallarés V, Fácila L, Morillas P. Inflammatory status and uricaemia determine HDL-cholesterol levels in hypertensive adults over 65: an analysis of the FAPRES register. Rheumatol Int 2017; 37:941-948. [PMID: 28293775 DOI: 10.1007/s00296-017-3683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
Abstract
In inflammatory disease, the levels of high-density lipoprotein cholesterol (HDL-C) decrease, and the composition of HLD-C changes. Data from the "non-inflammatory" general population indicate the presence of the same phenomenon, albeit to a smaller extent. Levels of uricaemia contribute to the overall inflammatory state of patients. The aim of this study was to analyse the association between inflammatory state, levels of uricaemia, and levels of HLD-C in a hypertensive Spanish population aged 65 or older. This was a retrospective analysis of the FAPRES database. We compared lipid levels [HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, and triglycerides] in terciles of patients according to their leukocyte counts and uricaemia. When we observed statistically significant differences at a 95% confidence level, we constructed a multivariable linear regression model to adjust for possible confounders. We analysed 860 patients (52.7% women) with a mean age of 72.9 years (±5.8). Participants in the highest tercile for leukocytes or uricaemia presented with significantly lower levels of HDL-C and higher levels of triglycerides, but there was no difference in total cholesterol or LDL-C. The multivariable analysis confirmed an independent and inverse association between HDL-C and both leukocytes (β = -0.001, p = 0.025) and uricaemia (β = -1.054, p = 0037) as well as an independent, direct association between triglycerides and both leukocytes (β = 0.004, p = 0.049), and uricaemia (β = 8.411, p = 0.003). In hypertensive adults aged 65 or older, inflammatory state, and uricaemia independently operate to decrease HDL-C-these findings confirm those described in studies in people with inflammatory disease. This phenomenon could help to define a proatherogenic profile in people without inflammatory disease.
Collapse
Affiliation(s)
- María Amparo Quintanilla
- Cardiology Service, General University Hospital of Elche, Camí de l'Almazara 11, 03203, Elche (Alicante), Spain.
| | - Mariano Andrés
- Rheumatology Unit, General University Hospital of Alicante, Alicante, Spain.,Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
| | - Eliseo Pascual
- Rheumatology Unit, General University Hospital of Alicante, Alicante, Spain.,Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
| | - Vicente Pallarés
- Unidad de Vigilancia de la Salud, Unión de Mutuas, Castellón, Spain
| | - Lorenzo Fácila
- Servicio de Cardiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Pedro Morillas
- Cardiology Service, General University Hospital of Elche, Camí de l'Almazara 11, 03203, Elche (Alicante), Spain
| | | |
Collapse
|
40
|
Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques - Tampere Vascular Study. Sci Rep 2017; 7:41483. [PMID: 28128285 PMCID: PMC5270243 DOI: 10.1038/srep41483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds.
Collapse
|
41
|
Lamas GA, Issa OM. Edetate Disodium-Based Treatment for Secondary Prevention in Post-Myocardial Infarction Patients. Curr Cardiol Rep 2016; 18:20. [PMID: 26797807 DOI: 10.1007/s11886-015-0690-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An abundance of data, known for decades, is available linking metals, such as lead and cadmium, with cardiovascular disease. However, the idea that these toxic metals could be a modifiable risk factor for atherosclerosis did not become apparent clinically until the completion of the Trial to Assess Chelation Therapy in 2012. This pivotal study was the first double-blind, randomized, controlled trial of its kind to demonstrate a clear improvement in cardiovascular outcomes with edetate disodium therapy in a secondary prevention, post-myocardial infarction population. This effect size was most striking in diabetic patients, where the efficacy of edetate disodium was comparable, if not superior, to that of current guideline-based therapies. Given the economic burden of diabetes and cardiovascular disease, the potential impact of this therapy could be enormous if the results of this study are replicated.
Collapse
Affiliation(s)
- Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach FL, 4300 Alton Road, Miami Beach, FL, 33140, USA.
| | - Omar M Issa
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach FL, 4300 Alton Road, Miami Beach, FL, 33140, USA
| |
Collapse
|
42
|
Zhang C, Zhang NN, Li ZY, Tian YT, Zhang LT, Zheng BD. Antioxidant Efficacy of Protein Hydrolysates from Large Yellow Croaker (Pseudosciaena crocea) in D-galactose-Induced Aging Mice. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1082525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Ning Ning Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Zhi Yu Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yu Ting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Long Tao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Bao Dong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
43
|
Matthews AT, Lee JH, Borazjani A, Mangum LC, Hou X, Ross MK. Oxyradical stress increases the biosynthesis of 2-arachidonoylglycerol: involvement of NADPH oxidase. Am J Physiol Cell Physiol 2016; 311:C960-C974. [PMID: 27784678 DOI: 10.1152/ajpcell.00251.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Abstract
NADPH oxidase (Nox)-derived oxyradicals contribute to atherosclerosis by oxidizing low-density lipoproteins (LDL), leading to their phagocytosis by vascular macrophages. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG), might be an important link between oxidative stress and atherosclerosis. We hypothesized that 2-AG biosynthesis in macrophages is enhanced following ligation of oxidized LDL by scavenger receptors via a signal transduction pathway involving Nox-derived ROS that activates diacylglycerol lipase-β (DAGL-β), the 2-AG biosynthetic enzyme. To test this idea, we challenged macrophage cell lines and murine primary macrophages with a xanthine oxidase system or with nonphysiological and physiological Nox stimulants [phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA)]. Each stressor increased cellular superoxide levels and enhanced 2-AG biosynthetic activity in a Nox-dependent manner. Levels of cytosolic phospholipase A2-dependent AA metabolites (eicosanoids) in primary macrophages were also dependent on Nox-mediated ROS. In addition, 2-AG levels in DAGL-β-overexpressing COS7 cells were attenuated by inhibitors of Nox and DAGL-β. Furthermore, ROS induced by menadione (a redox cycling agent) or PMA could be partially attenuated by the cannabinoid 1/2 receptor agonist (WIN 55,212-2). Finally, cells that overexpress Nox2 components (Phox-COS7) synthesized larger amounts of 2-AG compared with the parental COS7 cells. Together, the results suggest a positive correlation between heightened oxygen radical flux and 2-AG biosynthesis in macrophage cell lines and primary macrophages. Because of the antioxidant and anti-inflammatory effects associated with 2-AG, the increased levels of this bioactive lipid might be an adaptive response to oxidative stress. Thus oxyradical stress may be counteracted by the enhanced endocannabinoid tone.
Collapse
Affiliation(s)
- Anberitha T Matthews
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Lee C Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| | - Xiang Hou
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and.,Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi; and
| |
Collapse
|
44
|
Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch Toxicol 2016; 91:1709-1725. [PMID: 27696135 DOI: 10.1007/s00204-016-1859-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023]
Abstract
The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE-/-) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.
Collapse
|
45
|
Bi X, Song J, Gao J, Zhao J, Wang M, Scipione CA, Koschinsky ML, Wang ZV, Xu S, Fu G. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation. J Cell Mol Med 2016; 20:2249-2258. [PMID: 27489081 PMCID: PMC5134410 DOI: 10.1111/jcmm.12903] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
The liver X receptor (LXR) is a cholesterol‐sensing nuclear receptor that has an established function in lipid metabolism; however, its role in inflammation is elusive. In this study, we showed that the LXR agonist GW3965 exhibited potent anti‐inflammatory activity by suppressing the firm adhesion of monocytes to endothelial cells. To further address the mechanisms underlying the inhibition of inflammatory cell infiltration, we evaluated the effects of LXR agonist on interleukin‐8 (IL‐8) secretion and nuclear factor‐kappa B (NF‐κB) activation in human umbilical vein endothelial cells (HUVECs). The LXR agonist significantly inhibited lysophosphatidylcholine (LPC)‐induced IL‐8 production in a dose‐dependent manner without appreciable cytotoxicity. Western blotting and the NF‐κB transcription activity assay showed that the LXR agonist inhibited p65 binding to the IL‐8 promoter in LPC‐stimulated HUVECs. Interestingly, knockdown of the indispensable small ubiquitin‐like modifier (SUMO) ligases Ubc9 and Histone deacetylase 4 (HDAC4) reversed the increase in IL‐8 induced by LPC. Furthermore, the LPC‐induced degradation of inhibitory κBα was delayed under the conditions of deficient SUMOylation or the treatment of LXR agonist. After enhancing SUMOylation by knockdown SUMO‐specific protease Sentrin‐specific protease 1 (SENP1), the inhibition of GW3965 was rescued on LPC‐mediated IL‐8 expression. These findings indicate that LXR‐mediated inflammatory gene repression correlates to the suppression of NF‐κB pathway and SUMOylation. Our results suggest that LXR agonist exerts the anti‐atherosclerotic role by attenuation of the NF‐κB pathway in endothelial cells.
Collapse
Affiliation(s)
- Xukun Bi
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiale Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Gao
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Juanjuan Zhao
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiming Xu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Guosheng Fu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Hajjar DP, Hajjar KA. Alterations of Cholesterol Metabolism in Inflammation-Induced Atherogenesis. JOURNAL OF ENZYMOLOGY AND METABOLISM 2016; 1:104. [PMID: 28868527 PMCID: PMC5575901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular inflammation is central to the pathogenesis of the atherosclerotic lesion. In the setting of hypercholesterolemia, vascular inflammation accelerates the accumulation of cholesterol within arterial smooth muscle cells, macrophages, and other immune cells. In disorders such as obesity, diabetes, and thrombosis, a myriad of interactions between sterol metabolites and inflammatory mediators exacerbate cholesterol deposition in the vessel wall, leading to the well-known consequences of stroke, transient ischemic attack, myocardial infarction, and peripheral vascular insufficiency. This review highlights emerging concepts in the regulation of cholesterol synthesis, the lipolytic enzymes involved in cholesterol utilization, and the therapies that successfully modulate vascular inflammation. In addition, developments relating to the role of inflammasomes in the management of cholesterol-mediated inflammation are discussed.
Collapse
Affiliation(s)
- David P. Hajjar
- Department of Biochemistry and Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Katherine A. Hajjar
- Department of Pediatrics and Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, USA
| |
Collapse
|
47
|
Tanaka R, Nakazawa N, Maeda T, Fukushima H, Wada R, Sugiura Y, Matsushita T, Hatate H, Fukuda Y. Effects of Chilled Storage, Freezing Rates, and Frozen Storage Temperature on Lipid Oxidation in Meat Blocks from Cultured Bluefin TunaThunnus thynnus. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1010679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Guina T, Deiana M, Calfapietra S, Cabboi B, Maina M, Tuberoso CI, Leonarduzzi G, Gamba P, Gargiulo S, Testa G, Poli G, Biasi F. The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food Funct 2016; 6:1218-28. [PMID: 25736858 DOI: 10.1039/c4fo01116c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary oxysterols are cholesterol auto-oxidation products widely present in cholesterol-rich foods. They are thought to affect the intestinal barrier function, playing a role in gut inflammation. This study has characterized specific cell signals that are up-regulated in differentiated CaCo-2 colonic epithelial cells by a mixture of oxysterols representative of a hyper-cholesterolemic diet. p38 MAPK activation plays a major role, while other signal branches, i.e. the JNK and ERK pathways, make minor contributions to the intestinal inflammation induced by dietary oxysterols. p38 transduction might be the missing link connecting the known NADPH oxidase activation, and the induction of NF-κB-dependent inflammatory events related to oxysterols' action in the intestine. A NOX1/p38 MAPK/NF-κB signaling axis was demonstrated by the quenched inflammation observed on blocking individual branches of this signal with specific chemical inhibitors. Furthermore, all these signaling sites were prevented when CaCo-2 cells were pre-incubated with phenolic compounds extracted from selected wines made of typical Sardinian grape varieties: red Cannonau and white Vermentino. Notably, Cannonau was more effective than Vermentino. The effect of Sardinian wine extracts on intestinal inflammation induced by dietary oxysterols might mainly be due to their phenolic content, more abundant in Cannonau than in Vermentino. Furthermore, among different phenolic components of both wines, epicatechin and caffeic acid exerted the strongest effects. These findings show a major role of the NOX1/p38 MAPK/NF-κB signaling axis in the activation of oxysterol-dependent intestinal inflammation, and confirm the concept that phenolics act as modulators at different sites of pro-oxidant and pro-inflammatory cell signals.
Collapse
Affiliation(s)
- Tina Guina
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gargiulo S, Gamba P, Testa G, Leonarduzzi G, Poli G. The role of oxysterols in vascular ageing. J Physiol 2016; 594:2095-113. [PMID: 26648329 DOI: 10.1113/jp271168] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
The ageing endothelium progressively loses its remarkable and crucial ability to maintain homeostasis of the vasculature, as it acquires a proinflammatory phenotype. Cellular and structural changes gradually accumulate in the blood vessels, and markedly in artery walls. Most changes in aged arteries are comparable to those occurring during the atherogenic process, the latter being more marked: pro-oxidant and proinflammatory molecules, mainly deriving from or triggered by oxidized low density lipoproteins (oxLDLs), are undoubtedly a major driving force of this process. Oxysterols, quantitatively relevant components of oxLDLs, are likely candidate molecules in the pathogenesis of vascular ageing, because of their marked pro-oxidant, proinflammatory and proapoptotic properties. An increasing bulk of experimental data point to the contribution of a variety of oxysterols of pathophysiological interest, also in the age-related genesis of endothelium dysfunction, intimal thickening due to lipid accumulation, and smooth muscle cell migration and arterial stiffness due to increasing collagen deposition and calcification. This review provides an updated analysis of the molecular mechanisms whereby oxysterols accumulating in the wall of ageing blood vessels may 'activate' endothelial and monocytic cells, through expression of an inflammatory phenotype, and 'convince' smooth muscle cells to proliferate, migrate and, above all, to act as fibroblast-like cells.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| |
Collapse
|
50
|
Laparra JM, Alfonso-García A, Alegría A, Barberá R, Cilla A. 7keto-stigmasterol and 7keto-cholesterol induce differential proteome changes to intestinal epitelial (Caco-2) cells. Food Chem Toxicol 2015; 84:29-36. [PMID: 26140950 DOI: 10.1016/j.fct.2015.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022]
Abstract
Recent studies have expanded the appreciation of the roles of oxysterols triggering inflammatory, immune cytotoxic and apoptotic processes, but have not been considered for proteome analysis. A comparative proteomic study in intestinal epithelial cell cultures incubated (60 μM/24 h) with 7keto-cholesterol or 7keto-stigmasterol was performed. The influence of both compounds was studied following the nLC-TripleTOF analysis. Findings were compared to results for control cultures. In the principal component analysis (PCA) of proteome patterns, two components were extracted accounting for 99.8% of the variance in the protein expression. PCA analysis clearly discriminated between the perturbations in the proteome of cell cultures incubated with 7keto-cholesterol and 7keto-stigmasterol. These proteins participate in mitochondrial function, lipid homeostasis, inflammation and immunity and cell proliferation. Remarkable differences between proteome patterns in cell cultures exposed to 7keto-cholesterol and 7keto-stigmasterol affect macrophage migration inhibitory factor, apolipoprotein E, Bcl-2-associated transcription factor and cellular retinoic acid-binding protein. Besides, exposure to 7keto-stigmasterol increased the concentration of ubiquitin-conjugating enzyme E2 and the mitochondrial superoxide dismutase protein. Such findings raise new questions about safety studies and the regulatory potential of oxysterols in the differentiation and function of intestinal and associated immune cells, their response to environmental stimuli and impairment of absorption processes.
Collapse
Affiliation(s)
- J M Laparra
- Institute of Food Engineering for Development, Politechnical University of Valencia, Avda. Cami de Vera s/n, 46022 Valencia, Spain.
| | - A Alfonso-García
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - A Alegría
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - R Barberá
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - A Cilla
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|