1
|
Suo K, Yang Z, Wu L, Zhang Y, Feng Y, Xu B, Zhou C, Shi L, Chen W. Enhancing drying characteristics and quality of fruits and vegetables using biochemical drying improvers: A comprehensive review. Compr Rev Food Sci Food Saf 2025; 24:e70094. [PMID: 39746864 DOI: 10.1111/1541-4337.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables. Additionally, it introduces physical drying improvers (including ultrasonic, pulsed electric field, vacuum, and others) to enhance the effects of biochemical drying improvers. Pretreatment with biochemical agents not only significantly enhances drying characteristics but also preserves or enhances the color, texture, and bioactive compound content of the dried products. Meanwhile, physical drying improvers reduce moisture diffusion resistance through physical modifications of the food materials, thus complementing biochemical drying improvers. This integrated approach mitigates the energy consumption and quality degradation typically associated with traditional drying methods. Overall, this review examines the role of biochemical agents in enhancing the drying characteristics and quality of fruits and vegetables, offering a comprehensive strategy for energy conservation and quality improvement.
Collapse
Affiliation(s)
- Kui Suo
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lili Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yang Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yabin Feng
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
2
|
Yu W, Xu Y. Advancements on Single-Atom Catalysts-Mediated Persulfate Activation: Generating Reactive Species for Contaminants Elimination in Water. Molecules 2024; 29:5696. [PMID: 39683855 DOI: 10.3390/molecules29235696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The single-atom catalyst (SAC) activated persulfate process has emerged as a highly efficient technology for eliminating refractory organic compounds in aqueous environments. This review delves into the intricacies of utilizing SACs for the effective removal of various contaminants in water. The common supports and the preparation procedures of SACs are summarized at first. The synthesis methods of SACs (i.e., wet chemical method, one-pot hydrothermal method, and high-temperature pyrolysis method) are also described. Then, a comprehensive overview of the diverse reaction mechanisms in SAC-activated persulfate systems is presented, including a radical oxidation process via sulfate or hydroxyl radicals and superoxide radicals, or a nonradical process via single oxygen, surface active complex, and high-valent metal-oxo species oxidation. The impact of key factors such as peroxides concentration, SAC dosage, reaction pH, inorganic anions, organic matter, operando stability, and real water is also delved. The removal of various pollutants (i.e., azo dyes, phenolic compounds, pharmaceuticals, and bacteria) by this process is further summarized. Finally, the challenges and perspectives in the field of water treatment utilizing SACs are discussed.
Collapse
Affiliation(s)
- Wan Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yin Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Liang M, Chen J, Dong Y, Guo G, Wu X, Zan F. Feasibility assessment and underlying mechanisms of metabisulfite pretreatment for enhanced volatile fatty acids production from anaerobic sludge fermentation. WATER RESEARCH 2024; 265:122286. [PMID: 39190952 DOI: 10.1016/j.watres.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Employing chemical pretreatment for waste activated sludge (WAS) fermentation is crucial to achieving sustainable sludge management. This study investigated the feasibility of metabisulfite (MS) pretreatment for enhancing volatile fatty acids (VFAs) production from WAS. The results show that after 24-h MS pretreatment, the content of soluble organic matter and loosely bound extracellular polymeric substances (LB-EPS), especially proteins, increased significantly. During the fermentation, MS pretreatment under alkaline conditions was more efficient, with VFA peaking on the fifth day, showing a 140 % increase compared to the alkaline control group. Correlation analysis suggests that the dosage of MS, rather than pH, is closely related to the levels of soluble protein, polysaccharides, LB-EPS, and subsequential VFAs production, while alkaline conditions facilitate the dissolution of total organic carbon. Furthermore, sulfite radicals (SO3•-) are attributed to cell inactivation and lysis, while alkaline conditions initially reduce the size of the flocs, further promoting MS for attacking flocs, thereby improving the performance of fermentation. The study also found that MS pretreatment reduced microbial community diversity, enriched hydrolytic and fermentation bacteria (Actinobacteriota and Firmicutes), and suppressed methanogens (Methanobacteriaceae and Methanosaetaceae), making it a safe, viable, and cost-effective chemical agent for sustainable sludge management.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongrui Dong
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Zhang M, Wu J, Tang W, Mei J, Zhang Q, Wu J, Xu D, Liu Z, Hao F, Sheng L, Xu H. Inverted loading strategy regulates the Mn-O V-Ce sites for efficient fenton-like catalysis. J Colloid Interface Sci 2024; 668:303-318. [PMID: 38678886 DOI: 10.1016/j.jcis.2024.04.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Regulating interfacial active sites to improve peroxymonosulfate (PMS) activation efficiency is a hot topic in the heterogeneous catalysis field. In this study, we develop an inverted loading strategy to engineer asymmetric Mn-OV-Ce sites for PMS activation. Mn3O4@CeO2 prepared by loading CeO2 nanoparticles onto Mn3O4 nanorods exhibits the highest catalytic activity and stability, which is due to the formation of more oxygen vacancies (OV) at the Mn-OV-Ce sites, and the surface CeO2 layer effectively inhibits corrosion by preventing the loss of manganese ion active species into the solution. In situ characterizations and density functional theory (DFT) studies have revealed effective bimetallic redox cycles at asymmetric Mn-OV-Ce active sites, which promote surface charge transfer, enhance the adsorption reaction activity of active species toward pollutants, and favor PMS activation to generate (•OH, SO4•-, O2•- and 1O2) active species. This study provides a brand-new perspective for engineering the interfacial behavior of PMS activation.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Jing Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Wen Tang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Jinfei Mei
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Qian Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Junrong Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Deyun Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| |
Collapse
|
5
|
Tu X, Bai Y, Fu Q, Chang S, Zhang K, Pan Y, Xiao R, Fu Y, Zhang Q. Degradation behaviors of Nabumetone and its metabolite during UV/monochloramine process: Experimental and theoretical study. J Environ Sci (China) 2024; 142:103-114. [PMID: 38527876 DOI: 10.1016/j.jes.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 03/27/2024]
Abstract
This study investigated degradation behaviors of a nonsteroidal anti-inflammatory drug Nabumetone (NMT) and its major metabolite 6-methoxy-2-naphthylacetic acid (MNA) in the coupling process of ultraviolet and monochloramine (UV/NH2Cl). The second-order rate constants of the contaminants reacting with reactive radicals (HO•, Cl•, Cl2•⁻, and CO3•⁻) were determined by laser flash photolysis experiments. HO• and Cl• contributed predominantly with 52.3% and 21.7% for NMT degradation and 60.8% and 22.3% for MNA degradation. The presence of chlorides retarded the degradation of NMT, while promoted the destruction of MNA, which was ascribed to the photosensitization effects of MNA under UV irradiation. Density functional theory (DFT) calculations revealed that radical adduct formation (RAF) was dominant pathway for both HO• and Cl• reacting with the contaminants, and hydrogen atom transfer (HAT) preferred to occur on side chains of NMT and MNA. NMT reacted with NO2• through single electron transfer (SET) with the second-order rate constant calculated to be 5.35 × 107 (mol/L)-1 sec-1, and the contribution of NO2• was predicted to be 13.0% of the total rate constant of NMT in pure water, which indicated that NO2• played a non-negligible role in the degradation of NMT. The acute toxicity and developmental toxicity of NMT were enhanced after UV/NH2Cl treatment, while those of MNA were alleviated. The transformation products of both NMT and MNA exhibited higher mutagenicity than their parent compounds. This study provides a deep understanding of the mechanism of radical degradation of NMT and MNA in the treatment of UV/NH2Cl.
Collapse
Affiliation(s)
- Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunsong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yifu Fu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
7
|
Liang J, Huang W, Wei S, Tian C, Zhang X, Nong G, Wang S, Song H. Photodegradation performance and mechanism of sulfadiazine in Fe(III)-EDDS-activated persulfate system. ENVIRONMENTAL TECHNOLOGY 2023; 44:3518-3531. [PMID: 35389823 DOI: 10.1080/09593330.2022.2064238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
In order to overcome the shortcomings in the traditional Fenton process, Fe(III)-EDDS-activated persulfate advanced oxidation process under irradiation is carried out as a promising technology. The photodegradation of sulfadiazine (SD) in Fe(III)-EDDS-activated persulfate system was investigated in this paper. The results showed that SD could be effectively degraded in Fe(III)-EDDS/S 2 O 8 2 - /hv system. The effects of Fe(III):EDDS molar ratio, the concentration of Fe(III)-EDDS, and the concentration of S 2 O 8 2 - on SD degradation were explored. At neutral pH, when Fe(III):EDDS = 1:1, Fe(III)-EDDS = 0.1 mM, S 2 O 8 2 - = 1.5 mM, the best SD degradation was achieved. The experiment of external influence factors showed that the degradation of SD could be obviously inhibited by the presence of C O 3 2 - , S O 4 2 - , whereas the degradation of SD was almost unaffected by the addition ofCl-. The degradation of SD could be slightly inhibited by the presence of humic acid and NO3-. The effect of pH on SD degradation was investigated, and SD could be degraded effectively in the pH range of 3-9. ESR proved that 1O2, ·OH, S O 4 - , and O2- were produced in the process. S O 4 - and ·OH were identified as the main radicals while O2·- also played non-ignorable role. Eleven intermediate products of SD were analysed. The C = N, S-N, and S-C bonds of SD were attacked by radicals firstly, leading to a series of reactions that eventually resulted in the destruction of SD molecules and the formation of small organic molecules.
Collapse
Affiliation(s)
- Jianwei Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Shiping Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Chengyue Tian
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Xinyun Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Shuangfei Wang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, People's Republic of China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| |
Collapse
|
8
|
Liang W, Wang X, Xie N, Yan H, Ma H, Liu M, Kong W, Zhu Z, Bai W, Xiang H. Short-term associations of PM 2.5 and PM 2.5 constituents with immune biomarkers: A panel study in people living with HIV/AIDS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120743. [PMID: 36442818 DOI: 10.1016/j.envpol.2022.120743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Studies on associations of fine particulate matter (PM2.5) with immunity in people living with HIV/AIDS (PLWHA) were absent. We aimed to explore whether changes of immune biomarkers were associated with short-term exposure to PM2.5 in PLWHA. Based on a panel study in Wuhan, we selected 163 PLWHA as participants with up to 4 repeated visits from March 2020 to January 2021. Immune biomarkers, including CD4+T cell count, CD8+T cell count, HIV viral load (VL) and CD4+T/CD8+T ratio were tested for all participants at each visit. Residential exposures of PM2.5 and PM2.5 constituents for each participant were assessed using spatial-temporal models. Linear mixed-effect models and general linear mixed models were applied to evaluate the associations between PM2.5 and immune biomarkers. To estimate the combined effect of PM2.5 constituents, weighted quantile sum regression and Bayesian kernel machine regression were employed. Each 10 μg/m3 increase of 7-day average PM2.5 concentrations was associated with an 8.75 cells/mm3 (95%CI: -15.55, -1.98) decrease in CD4+T cell count and a 92% (OR: 1.92, 95%CI: 1.43, 2.58) increased odds ratio of detectable HIV VL. However, the odds ratio of inverted CD4+T/CD8+T was only positively associated with PM2.5 concentrations at lag2 day (OR:1.27, 95%CI:1.02, 1.57). CD4+T may be a potential mediator between PM2.5 and detectable HIV VL with 3.83% mediated proportion. Besides, the combined effect of PM2.5 chemical constituents indicated that NO3- and SO42- were the main constituents in reducing CD4+T cell count and increasing odds ratio of detectable HIV VL. Our finding revealed that short-term exposure to PM2.5 was negatively associated with CD4+T cell count but positively related to the odds ratio of detectable HIV VL in PLWHA. This research may provide new evidence in associations between PM2.5 and immune biomarkers as well as improving prognosis of PLWHA.
Collapse
Affiliation(s)
- Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Han Yan
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Manqing Liu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenhua Kong
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Zerong Zhu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenjuan Bai
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
9
|
Ye S, Feng W, Li J, Zhong H, Weng J, Li H. Assessing the role of sulfite in photoelectrocatalytic oxidation of glucose on Pt/TiO2 for hydrogen production. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Wei J, Yi J, Wu X. A self-driven fuel cell to recycle (NH4)2SO4 fertilizer and energy from desulfurization solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wang H, Zou Y, Luo T, Benouahmane M, Zhou D, Wu F. Mechanism of thermal activation of sulfite and its application in the heat–electro-S(IV) system for As(III) oxidation in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zeng H, Cheng Y, Repo E, Yu X, Xing X, Zhang T, Zhao X. Trace Iron as single-electron shuttle for interdependent activation of peroxydisulfate and HSO 3-/O 2 enables accelerated generation of radicals. WATER RESEARCH 2022; 223:118935. [PMID: 35994783 DOI: 10.1016/j.watres.2022.118935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The generation of reactive oxygen species generally requires initiators in various environmental remediation processes, which necessitates high dosage of activators and downstream treatment for eliminating the accumulation of deactivated catalysts. Herein, a coupled process was constructed using trace iron for simultaneously activating HSO3-/O2 system and peroxydisulfate (PDS) oxidation system, where the iron ions (2 mg/L) transferred single-electron from the former system to the latter due to the moderate redox potential (Fe3+/Fe2+, +0.77 V) between the potentials of SO3·-/HSO3- (+0.63 V) and PDS/SO4·- (+2.01 V). Hence, the phenol degradation quickly occurred at a first-order kinetic constant of k1=0.223 min-1 due to the accelerated generation of sulfate radical (SO4·-) and hydroxyl radical (·OH) in the process. The k1 value was almost 6-fold of that in the deoxygenated condition (0.040 min-1). Density function theory reveals that the single electron shuttle spatially separates the electron-donating activation of HSO3- and electron-accepting activation of PDS, while avoiding the "mutual-annihilation" of HSO3- and S2O82- via direct two-electron transfer. Finally, utilizing the in-situ generated electron-shuttle (dissolved iron from cast iron pipe), the HSO3-/PDS reagent could efficiently inactivate the chlorine-resistant pathogens and inhibits biofilm regrowth inside the distribution systems at regular intervals or infectious disease outbreak in a neighborhood.
Collapse
Affiliation(s)
- Huabin Zeng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, FI 50130, Finland
| | - Yue Cheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, FI 50130, Finland
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Tao Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Song W, Zhou Y, Wang Z, Li J, Zhang X, Fu C, Du X, Wang Z, Qiu W. Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe 2+&dithionite: Experiments and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129254. [PMID: 35739773 DOI: 10.1016/j.jhazmat.2022.129254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation process (AOPs) is one of the most effective technologies for organic pollutants removal. In this study, diverse reactive species generation and enhanced sulfamethoxazole (SMX) degradation were investigated based on persulfate (PDS) activated by Fe2+&dithionite (DTN). When involving Fe2+&dithionite in PDS, SMX degradation efficiency reached 84 % within 30 min following a pseudo-first-order kinetic, which was higher than those in Fe2+/PDS (50.4 %) and Fe2+/O2/DTN (41.3 %). SO4•- and •OH were identified as dominant reactive species with a crucial role of FeSO3+ based on quenching experiment and electron spin resonance (ESR). The contributions of SO4·-, ·OH, and other species to SMX degradation were 60.1 %, 33.9 %, and 6 %, respectively. In Fe2+/DTN/PDS system, SMX was effectively degraded under nearly neutral pH (5.0-9.0), with activation energy of 96.04 kJ·mol-1. The experiments and density functional theory (DFT) calculation demonstrated that three functional groups (benzenesulfonamido, benzene ring, and oxazole ring) were attacked for SMX degradation. Moreover, acute toxicity to Vibrio fischeri has enhanced in the earlier degradation process due to the intermediates and weaken with the continuous reaction. This work not only provides a high-activity SO4·--AOP for refractory pollutant treatment with possible dual radical generation resources, but elucidated diverse reactive species formation with Fe2+&dithionite.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Zhou
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
15
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
16
|
Synthesis of bimetallic NbCo-piperazine catalyst and study on its advanced redox treatment of pharmaceuticals and personal care products by activation of permonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Abstract
![]()
We
report a computational study of the little-studied neutral bisulfite,
bisulfate, dihydro-phosphite, and dihydro-phosphate radicals (HSOx•, H2POx•, x =
3,4), calling special attention to their various tautomeric structures
together with pKa values estimated from
the Gibbs free energies of their dissociations (at the G4 and CAM-B3LYP
levels of density functional theory). The energetics of microhydration
clusters with up to four water molecules for the S-based species and
up to eight water molecules for the P-based species were investigated.
The number of microhydrating water molecules needed to induce spontaneous
de-protonation is found to correlate the acid strength of each radical.
According to the computed Gibbs free reaction and activation energies,
S- and P-centered radicals preferentially add to the double bond of
propene (a lipid model), whereas the O-centered radical tautomers
prefer H-abstraction. The likely downstream reactions of these radicals
in biological media are discussed.
Collapse
Affiliation(s)
- Michael Bühl
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - Tallulah Hutson
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - Alice Missio
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - John C Walton
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
18
|
Wang X, Ao X, Zhang T, Li Z, Cai R, Chen Z, Wang Y, Sun W. Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151372. [PMID: 34728210 DOI: 10.1016/j.scitotenv.2021.151372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Monochloramine (NH2Cl) oxidant combined with a Ultraviolet (UV)-Light-emitting-diode (LED) light source forms a new advanced oxidation process (AOP), which can achieve high-efficiency degradation of carbamazepine (CBZ). The degradation of CBZ displayed pseudo-first-order reaction kinetics (R2 > 0.98, kCBZ = 0.0043 cm2 mJ-1 at pH 7). The degradation of CBZ was dependent on UV-LED wavelength, with maximum degradation efficiency observed at 265 nm since it was the lowest wavelength studied among UV-LEDs. Variation in pH across the range, which might be expected under normal environmental conditions (pH 6-8), and the presence of Cl- had no significant effect on the degradation efficiency of CBZ, while the presence of HCO3- and natural organic matter (NOM) inhibited degradation. Electron paramagnetic resonance (EPR) experiments detected OH in the system. Probe compounds were used to distinguish the contribution of reactive chlorine species (RCS). It was proved that OH and Cl played major roles and OH was responsible for around 50% of the observed degradation of CBZ. Eight transformative products (TPs) in the degradation process of CBZ were identified, with a generally decreasing toxicity. The concentration of disinfection by-products (DBPs) formed during CBZ degradation was all within limits of WHO and China standard for drinking water. Although the concentration of nitrogen-containing DBPs (N-DBPs) was the lowest, N-DBPs were the main contributors to toxicity, and these would require more attention in practical applications. UV-LED/NH2Cl AOP was identified as an effective way to degrade pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Environment, Tsinghua University, Beijing 100084, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Tianyang Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Ran Cai
- Beijing Capital Co., Ltd., Beijing 100032, China
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
19
|
Yuan X, Leng Y, Fang C, Gao K, Liu C, Song J, Guo Y. The synergistic effect of PMS activation by LaCoO 3/g-C 3N 4 for degradation of tetracycline hydrochloride: performance, mechanism and phytotoxicity evaluation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01848a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A LaCoO3/g-C3N4 catalyst with high stability was designed and used for PMS activation to degrade TC.
Collapse
Affiliation(s)
- Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yue Leng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Changlong Fang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
20
|
Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021; 61:5871-5882. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Lu
- Scientific Computing Department, UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Chen CY, Cho YC, Lin YP. Activation of peroxydisulfate by carbon nanotube for the degradation of 2,4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer. CHEMOSPHERE 2021; 283:131282. [PMID: 34467952 DOI: 10.1016/j.chemosphere.2021.131282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Carbon materials have been used to activate peroxydisulfate (PDS) for the degradation of organic pollutants. The mechanism involved, especially whether radicals are formed in these processes, is still under debate. In this research, multi-walled carbon nanotube (MWCNT) was employed to activate PDS for the removal of 2,4-dichlorophenol (2,4-DCP). The effects of solution pH, PDS concentration, 2,4-DCP concentration, and MWCNT loading on the degradation of 2,4-DCP were investigated. The mechanism was explored via radical scavenging experiments, electron paramagnetic resonance (EPR) and MWCNT surface characterization. The results showed that the rate of 2,4-DCP degradation increased with the increasing solution pH, PDS concentration and MWCNT loading. The presence of OH and SO4- signals in EPR studies, no inhibitory effect in radical scavenging experiments, and the chlorination of MWCNT observed by X-ray photoelectron spectroscopy (XPS) suggested that surface reactions involving both surface-bound radicals and direct electron transfer were responsible for 2,4-DCP degradation. Reusability tests showed that the surface sites responsible for surface-bound radical formation were poisoned after PDS activation, while those responsible for direct electron transfer remained active after five cycles. This research provided the first in-depth insights for the dual roles of MWCNT in the PDS activation process.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Chin Cho
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Xu Q, Zhang H, Leng H, You H, Jia Y, Wang S. Ultrasonic role to activate persulfate/chlorite with foamed zero-valent-iron: Sonochemical applications and induced mechanisms. ULTRASONICS SONOCHEMISTRY 2021; 78:105750. [PMID: 34544014 PMCID: PMC8455865 DOI: 10.1016/j.ultsonch.2021.105750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The novel system, consisting of composite oxidants (persulfate/chlorite, S2O82-/ClO2-) and stationary phase activator (zero-valent-iron foam, Fe0f) driven by ultrasonic (US) field, was applied to treat the triphenylmethane derivative effectively even at low temperature (≈ 289 K). By comparisons of sub-systems, the US roles to S2O82-, ClO2-, and Fe0f were seriatim analyzed. US made the reaction order of multi-component system tend to within 1 (leading to de-order reaction), and widened pH activating range of the Fe0f by sonicate-polishing during the process of ClO2- co-activating S2O82-. US and Fe0f were affected by fluid eddy on activating S2O82-/ClO2-. The Fe0f had slight effect on the temperature of US bubble-water interface but the addition of ClO2- lowered it. The partitioning capacity of the above US reactive zone increased during the reaction. US and ClO2- could enrich the kinds of degradation intermediates. The contributions of free radicals (ClOx-based radicals, sulfate radicals (SO4-), and hydroxyl radicals (OH)) and non-free radicals (ClO2, and O = FeIV/V from ionic Fe under "-O-O-" of S2O82- and cyclic adjustment reaction of ClO2-) processes by sonochemical induction were equally important by corresponding detection means. Especially, real-time and online high-resolution mass spectrum by self-developing further confirmed the chain transfers of different free radicals due to US role. The findings expanded the application of sono-persulfate-based systems and improved understanding on activation mechanism.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Haoran Leng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Foster RT, Ranguelova K. Discovery of Bisulfite and an Uncharacterized Carbon-Centered Radical Systems in Non-Dry-Hopped and Dry-Hopped Beers Using a Different Spin Trap, 5, 5-Dimethyl-1-Pyrroline-N-Oxide, and a New Electron Paramagnetic Resonance Method. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1864699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Robert T. Foster
- Technical Innovation and Quality G&A-Global, Molson Coors (retired), Golden, CO, U.S.A.
| | | |
Collapse
|
24
|
Nie Y, Wang X, Dai J, Wang C, He D, Mei Y. Mutual promotion effect of
SO
2
and
NOx
during yellow phosphorus and phosphate rock slurry adsorption process. AIChE J 2021. [DOI: 10.1002/aic.17236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yunxiang Nie
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| | - Xujun Wang
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| | - Jinfeng Dai
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| | - Chi Wang
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| | - Dedong He
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| | - Yi Mei
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province Kunming China
| |
Collapse
|
25
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
26
|
Seid MG, Cho K, Hong SW. UV/sulfite chemistry to reduce N-nitrosodimethylamine formation in chlor(am)inated water. WATER RESEARCH 2020; 185:116243. [PMID: 32750569 DOI: 10.1016/j.watres.2020.116243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The disinfection by-product N-nitrosodimethylamine (NDMA) is a major concern in water quality management due to its carcinogenicity. Thus, a proper pretreatment is necessary to mitigate NDMA formation upon periodic chloramination by removing precursors, such as ranitidine (RNT). This study investigated the effect of UV/sulfite pretreatment on NDMA formation from an RNT-spiked tap and chloraminated synthetic swimming pool (SSP) water. At UVC intensity of 2.1 mW cm-2 and 0.5 mM of sulfite, UV/sulfite chemistry showed complete degradation of 20 µM RNT within 30 min. It was found that SO4•- primarily reduced the NDMA formation potential (FP) of RNT, while hydrated electrons effectively mitigated the pre-formed NDMA in the SSP water. The UV/sulfite pretreatment alleviated NDMA formation during post-chloramination (24 h) by up to 82%, outperforming the commonly employed advanced oxidation processes such as UV/H2O2. However, in the presence of bromide ions, the effectiveness of UV/sulfite pretreatment was seriously deteriorated, although the bromide ion itself was found to inhibit the NDMA formation from RNT especially at pH < 8 during chloramination. Mass spectrometric analysis indicated that the NDMA-FP of RNT could be removed by UV/sulfite principally via N-methylation, dealkylation, and oxygen transfer pathways. Consequently, UV/sulfite could be used as an alternative unit process for water treatment with reduced NDMA formation.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Hwarangro 14 gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea.
| | - Seok Won Hong
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Hwarangro 14 gil, Seongbuk-gu, Seoul 136-791, Republic of Korea.
| |
Collapse
|
27
|
Li S, Ao X, Li C, Lu Z, Cao W, Wu F, Liu S, Sun W. Insight into PPCP degradation by UV/NH 2Cl and comparison with UV/NaClO: Kinetics, reaction mechanism, and DBP formation. WATER RESEARCH 2020; 182:115967. [PMID: 32721700 DOI: 10.1016/j.watres.2020.115967] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The UV/NH2Cl process is an emerging advanced oxidation process (AOP) that is greatly effective in degrading pharmaceuticals and personal care products (PPCPs). However, detailed information regarding the process is lacking. The degradation of ibuprofen (IBP, an electron-withdrawing PPCP) and naproxen (NPX, an electron-donating PPCP) in UV/NH2Cl and UV/NaClO processes was performed to investigate the applicability and security of the UV/NH2Cl process and compare with those of UV/NaClO. UV/NH2Cl was effective in degrading both IBP and NPX and the degradation followed pseudo-first order kinetics (kIBP = 0.0037 cm2/mJ and kNPX = 0.0044 cm2/mJ). This indicated the broad applicability of UV/NH2Cl to different kinds of PPCPs. Ranges of values of UV intensity (0.3-1.0 mW/cm2) and pH (6.0-8.0) showed little effect on the degradation of PPCPs by UV/NH2Cl based on UV Dose but HCO3- (2-8 mM), natural organic matter (NOM, 2-8 mg/L), and the natural water matrixes were inhibitory. Increasing the dosage of NH2Cl from 0.15 mM to 0.75 mM, resulted in an even increase of kIBP; however, kNPX increased slowly after 0.3 mM NH2Cl. Mechanism experiments involving nitrobenzene showed that •OH was the major radical involved in degrading IBP and NPX via UV/NH2Cl. The electron spin resonance spectroscopy and kinetic modeling results also indicated the larger amount of •OH and weaker reactive chlorine species (mainly ClO• and ClO2•) in UV/NH2Cl compared with UV/NaClO. Compared to UV/NaClO in synthetic and natural water, UV/NH2Cl was a more stable degrader with little pH- and substrate-dependence, while UV/NaClO preferred degrading the electron-donating PPCP and at low pH. The UV/NH2Cl produced less halogenated disinfection byproducts (DBPs) (even nitrogenous DBPs) and was less cytotoxic theoretically than UV/NaClO based on the DBPs included in this study. Thus UV/NH2Cl process may be an effective AOP for water treatment.
Collapse
Affiliation(s)
- Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenfeng Cao
- Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fangfang Wu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Sanzhaeva U, Poncelet M, Tseytlin O, Tseytlin M, Gencheva M, Eubank TD, Khramtsov VV, Driesschaert B. Synthesis, Characterization, and Application of a Highly Hydrophilic Triarylmethyl Radical for Biomedical EPR. J Org Chem 2020; 85:10388-10398. [PMID: 32698583 PMCID: PMC7814971 DOI: 10.1021/acs.joc.0c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
| | - Oxana Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
| |
Collapse
|
29
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
30
|
A Comparative Study on Oxidation of Acidic Red 18 by Persulfate with Ferrous and Ferric Ions. Catalysts 2020. [DOI: 10.3390/catal10060698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ferrous and ferric salts were tested for the persulfate activation (PS/Fe2+ and PS/Fe3+) and the oxidation of Acid Red 18 (AR18). A complete removal was attained after 90 min in both PS/Fe2+ and PS/Fe3+ processes with the persulfate concentration of 6 mM. High concentrations of PS, Fe2+, and Fe3+ promoted the AR18 degradation in both processes and the optimized pH were 3 and 3.3 for PS/Fe2+ and PS/Fe3+ processes, respectively. The mechanism of PS activation by Fe3+ was also investigated. It was found that hydroxyl radical (HO•) and sulfate radical (SO4−•) were formed and acted as dominating radicals in both processes. It is also deduced that Fe recycle offers Fe2+ for PS activation in PS/Fe3+ process to produce HO• and SO4−•. The less radical side reactions lead to a higher contribution of HO• and SO4−• on AR18 degradation in PS/Fe3+ process.
Collapse
|
31
|
Zhao X, Wu W, Jing G, Zhou Z. Activation of sulfite autoxidation with CuFe 2O 4 prepared by MOF-templated method for abatement of organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114038. [PMID: 31995773 DOI: 10.1016/j.envpol.2020.114038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Copper ferrite (denoted as CuFe2O4MOF), prepared via a complexation reaction to obtain bimetal-organic frameworks (Cu/Fe bi-MOFs), followed by a combustion process to remove the MOF template, is employed as a heterogeneous activator to promote sulfite autoxidation for the removal of organic contaminants. At pH 8.0, more than 80% of the recalcitrant organic contaminant iohexol (10 μM) can be removed within 2 min by the activation of sulfite (500 μM) with CuFe2O4MOF (0.1 g L-1). CuFe2O4MOF exhibits more pronounced catalytic activity in accelerating sulfite autoxidation for iohexol abatement compared to that fabricated by hydrothermal and sol-gel combustion methods. Radical quenching studies suggest that the sulfate radical (SO4•-) is the main reactive species responsible for iohexol abatement. The performance of CuFe2O4MOF/sulfite for iohexol abatement can be affected by several critical influencing factors, including the solution pH and the presence of humic acid, Cl-, and HCO3-. The effect of the ionic strength and the results of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis indicate that sulfite autoxidation in the presence of CuFe2O4MOF involves an inner-sphere interaction with the surface Cu(II) sites of CuFe2O4MOF. X-ray photoelectron spectroscopy (XPS) characterization suggests that the surface Cu(II)-Cu(I)-Cu(II) redox cycle is responsible for efficient SO4•- production from sulfite. Overall, CuFe2O4MOF can be considered an alternative activator for sulfite autoxidation for potential application in the treatment of organic-contaminated water.
Collapse
Affiliation(s)
- Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Wenjing Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
32
|
Ni Q, Cheng H, Ma J, Kong Y, Komarneni S. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1907-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Zhang Q, He D, Li X, Feng W, Lyu C, Zhang Y. Mechanism and performance of singlet oxygen dominated peroxymonosulfate activation on CoOOH nanoparticles for 2,4-dichlorophenol degradation in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121350. [PMID: 31606705 DOI: 10.1016/j.jhazmat.2019.121350] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Peroxymonosulfate (PMS) has gained attention as oxidant for SR-AOPs. It is essential to develop a stable heterogeneous catalyst with strong hydrophilicity and high electron transfer capability for PMS activating. In this study, cobalt oxyhydroxide (CoOOH) was synthesized and activated PMS for degradation of 2,4-dichlorophenol (2,4-DCP) aiming to assess the feasibility of CoOOH/PMS system. 50 mg/L of 2,4-DCP could be 100% degraded within 120 min with 0.20 g/L CoOOH and 6 mM PMS. CoOOH/PMS system possessed a high degradation efficiency (0.0462 min-1), which was about 10 and 4 times higher than Co3O4/PMS and CoFe2O4/PMS system, respectively. Furthermore, it was found that CoOOH/PMS system displayed effective catalytic performance over broad pH range (e.g. 3-9). Importantly, the quenching tests revealed that 1O2 was identified as dominant reactive oxygen species (ROS). Co (Ⅲ) was rapidly reduced to Co (Ⅱ) owing to the efficient electron transfer rate performance of CoOOH in the catalytic reaction. Then, the regeneration of Co (Ⅱ) facilitated CoOH+ owing to the surface of CoOOH with sufficient hydroxyl group, which is crucial for PMS activation and reactive oxygen species-ROS generation. This study proposed an alternative technology based on peroxymonosulfate catalyzed by cobalt-based hydroxide for waste water treatment.
Collapse
Affiliation(s)
- Qihui Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Dan He
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Xinran Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Wei Feng
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Mechanistic studies on peroxymonosulfate activation by g-C3N4 under visible light for enhanced oxidation of light-inert dimethyl phthalate. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63447-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Shekarforoush S, Ebrahimi P, Fathabad AA, Farzanfar E. Effect of Sodium Metabisulfite on Oxidative Stress and Lipid Peroxidation Biomarkers. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666181024130333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background:
Sulfites are widely used as preservatives in the foods and pharmaceutical
agents. It has been demonstrated that sulfites can react with a variety of cellular components and
cause toxicity.
Objective:
The present study was designed to investigate the effects of ingested sodium metabisulfite
(SMB) on serum antioxidant status in rats.
Methods:
Thirty-two male Wistar rats were randomly divided into control and treated groups. Treated
groups received 10, 100, and 260 mg/kg body weight of SMB for 28 days. After 28 days, serum
was assayed for measuring superoxide dismtase (SOD), glutathione peroxidase (GPx), glutathione
reductase (GR), catalase (CAT) activities, glutathion (GSH) level and lipid peroxidation.
Results:
The results showed that the activities of GPx, GR, CAT and GSH levels were significantly
decreased in 100 and 260 mg/kg SMB treated rats, while malondialdehyde (MDA) level was significantly
increased in 260 mg/kg treated group when compared with the control group.
Conclusion:
It is concluded that SMB administration as dose-dependent is associated with decreased
serum antioxidant enzyme activities and increased lipid peroxidation.
Collapse
Affiliation(s)
| | - Parisa Ebrahimi
- Department of Physiology, Arsanjan Branch, Islamic Azad University, Fars, Iran
| | | | - Elaheh Farzanfar
- Department of Physiology, Arsanjan Branch, Islamic Azad University, Fars, Iran
| |
Collapse
|
36
|
Wu W, Zhao X, Jing G, Zhou Z. Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133836. [PMID: 31756865 DOI: 10.1016/j.scitotenv.2019.133836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/20/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Sulfite has been recently emerging as an appealing sulfate radical (SO4•-) precursor for efficient treatment of organic contaminants. Due to the negligible autoxidation of sulfite, activators are often introduced to accelerate sulfite autoxidation and the concomitant generation of SO4•-. Present heterogeneous activators are mostly not very effective under mild conditions (pH 7.0-8.0). In this work, efficient activation of sulfite with copper oxides including Cu2O and CuO for iohexol degradation under mild pH conditions is proposed. In a comparison of iohexol degradation efficiency by sulfite autoxidation activated with different metal oxides (Co3O4, CoO, α-Fe2O3, γ-Fe2O3, CuO and Cu2O), CuO and Cu2O with lower toxicity are efficient activators and removal efficiencies of ~95% can be obtained at pH 8.0. SO4•- is identified to be the major species contributing to the removal of iohexol by electron paramagnetic resonance (EPR) spectroscopy and quenching experiment. Based on the effect of ionic strength and copper leaching, sulfite is proposed to interact with copper oxides via inner-sphere coordination. Effect of critical influencing parameters and efficacy of copper oxides in real water matrixes are investigated. The results suggest that using copper oxides as activators is a new alternative to promote sulfite autoxidation process for rapid contaminants degradation.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
37
|
Li H, Zhang J, Yao Y, Miao X, Chen J, Tang J. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113337. [PMID: 31610507 DOI: 10.1016/j.envpol.2019.113337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In this work, we report on the synthesis and characterization of nanoporous bimetallic metal-organic frameworks (FeCo-BDC). Effects of synthesis time and temperature on the structures, morphology, and catalytic performance of FeCo-BDC were investigated. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were used to reveal the morphological and textural characteristics. The crystal structure and chemical composition of FeCo-BDC were determined by means of X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements. Interestingly, FeCo-BDC grew into the same crystal structure with different morphology in the temperature of 110-150 °C with 12-48 h. The heterogeneous catalytic activity of FeCo-BDC was tested to activate peroxydisulfate (PDS) and peroxymonosulfate (PMS) for removal of methylene blue (MB). The results found that FeCo-BDC synthesized at 150 °C with 24 h exhibited the best catalytic performance for PMS and obtained 100% of MB removal within 15 min. The abundant unsaturated metal active sites of Fe(II) and Co(II) in the skeleton of FeCo-BDC made a great contribution to the generation of sulfate () and hydroxyl radicals (OH), which resulted in the excellent performance for MB degradation.
Collapse
Affiliation(s)
- Huanxuan Li
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Jian Zhang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Yuze Yao
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Xiangrui Miao
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Jiale Chen
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Junhong Tang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China.
| |
Collapse
|
38
|
Liu Y, Zhang Y, Zhou A. A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133635. [PMID: 31377376 DOI: 10.1016/j.scitotenv.2019.133635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Although persulfate (PS) activation has been commonly applied to remove organic contaminants on the subsurface, it is valuable to further explore PS activation methods. In this study, a novel combined process based on PS coupled with dithionite was investigated using trichloroethene (TCE) as a typical organic contaminant. PS/dithionite was demonstrated to be an effective system for TCE degradation depending on the operating parameters such as the initial PS and dithionite dosages. The optimal molar ratio of PS/dithionite/TCE was 5/5/1. Sulfate radicals (SO4•-) were the dominant reactive species responsible for TCE degradation in the PS/dithionite system. Two pathways for SO4•- generation were proposed in the PS/dithionite system. The generation of SO4•- increased in the presence of oxygen but was still effective in an anaerobic environment. This study is the first to report a novel combined process based on PS coupled with dithionite, which is expected to be an efficient and environmentally friendly approach for in situ chemical oxidation (ISCO) remediation of contaminated soil and groundwater, whether in aerobic or anaerobic environments.
Collapse
Affiliation(s)
- Yunde Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yuanzheng Zhang
- Geological Survey Institute, China University of Geosciences, Wuhan 430074, China
| | - Aiguo Zhou
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Geological Survey Institute, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
39
|
Bacha AUR, Cheng H, Han J, Nabi I, Li K, Wang T, Yang Y, Ajmal S, Liu Y, Zhang L. Significantly accelerated PEC degradation of organic pollutant with addition of sulfite and mechanism study. APPLIED CATALYSIS B: ENVIRONMENTAL 2019; 248:441-449. [DOI: 10.1016/j.apcatb.2019.02.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
40
|
|
41
|
Fast Degradation of Monochloroacetic Acid by BiOI-Enhanced UV/S(IV) Process: Efficiency and Mechanism. Catalysts 2019. [DOI: 10.3390/catal9050460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iodide ( I − ) could promote ultraviolet-activated S(IV) processes (UV/S(IV)) and degrade aqueous halogenated organic compounds and hazardous oxoanions. With the interest of promoting use of this technology, this study investigated the feasibility of using bismuth oxyiodide (BiOI) as an I − source to enhance UV/S(IV) where monochloroacetic acid (MCAA) was selected as a testing model compound. Degradation of MCAA by UV/S(IV) increased by 50% in presence of BiOI. Results of competitive kinetics indicated that the promotion effect brought by BiOI mainly originated from its sustainable release of I − , and subsequent enhanced generation of hydrated electrons. Electron spin resonance detection and fluorescence characterization proved increased formation of sulfite radical, resulting from sulfite oxidation by UV-excited BiOI. However, the sulfite radical only made a small contribution (9%) to MCAA degradation due to its moderate reactivity toward MCAA (4.2 × 105 M−1·s−1). UV/S(IV) combined with BiOI significantly decreasing the biotoxicity of MCAA solution. BiOI can be regenerated using I − -containing solution. Our findings provide evidence that BiOI is a promising I − source and photocatalyst, which progresses the I − -assisted UV/S(IV) process towards practical application.
Collapse
|
42
|
Hao R, Mao X, Wang Z, Zhao Y, Wang T, Sun Z, Yuan B, Li Y. A novel method of ultraviolet/NaClO 2-NH 4OH for NO removal: Mechanism and kinetics. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:234-242. [PMID: 30684761 DOI: 10.1016/j.jhazmat.2019.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 05/26/2023]
Abstract
The key step for nitric oxide (NO) removal using oxidation method is to efficiently oxidize NO. This study developed a novel advanced oxidation process (AOP) of ultraviolet light (UV) catalysis of chlorite (NaClO2) to oxidize NO. The production of nitric dioxide (NO2) and photo-production of chlorine dioxide (ClO2) were suppressed by adding ammonium hydroxide (NH4OH). The NO conversion efficiency was 98.1% using UV/NaClO2-NH4OH. Electron spin resonance (ESR) tests confirmed the roles of hydroxyl radical (HO) and oxychloride radical (ClO/Cl2O2) in the oxidation of NO. Kinetics analyses showed that NO flux was significantly enhanced by radical-induced (HO/ClO) oxidation of NO. In the presence of UV, the overall reaction rates (kov1*) were 3-8 times higher than those without UV. The Hatta number, namely the enhanced factor, was calculated in the range of 229-403 and 730-780 corresponding to without and with UV light, suggesting that NO oxidation belonged to fast and/or instantaneous reaction. Thus, the gas-film mass transfer resistance was the rate-determining step. N-containing product was determined as NH4+ and NO3- according to X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Runlong Hao
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China.
| | - Xingzhou Mao
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China
| | - Zheng Wang
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Yi Zhao
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China.
| | - Tianhao Wang
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China
| | - Zhonghao Sun
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China
| | - Bo Yuan
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China
| | - Yankun Li
- School of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, PR China; The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, PR China
| |
Collapse
|
43
|
Li S, Xu Z, Xia J, Qin G, Sang N. Sulfur dioxide induces apoptosis via reactive oxygen species generation in rat cardiomyocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8758-8767. [PMID: 30712210 DOI: 10.1007/s11356-019-04319-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological evidence suggests that the incidence and mortality of cardiovascular diseases are closely related to sulfur dioxide (SO2). In the present study, H9C2 cells were incubated with 100 μM NaHSO3 with or without pretreatment of an antioxidant, N-acetyl-L-cysteine (NAC). The changes of apoptosis rate, mitochondrial membrane potential (MMP), ATP content, caspase-3 activity, and reactive oxygen species (ROS) were detected. Rats were inhaled 7 mg/m3 SO2 and/or intraperitoneal injected with 50 mg/kg (bw) of NAC for 30 days. RT-PCR and Western blot were used to detect the mRNA and protein levels of apoptosis-related genes. We found that the apoptosis of H9C2 cells was induced by NaHSO3, which decreased the content of MMP and ATP, and induced the expression of caspase-3. NAC can inhibit the apoptosis induced by NaHSO3 treatment. SO2 and NaHSO3 decreased the expression of Bcl-2 and the ratio of Bcl-2/Bax, increased the expression of Bax and P53 accumulation and phosphorylation, and activated caspase-9 and caspase-3. Whereas NAC can reduce the changes of apoptosis-related proteins in rat heart. Our results suggest that SO2 induces ROS-mediated P53 and caspase-dependent mitochondrial signaling pathways in H9C2 cells and rat hearts. Antioxidant therapy can reduce the adverse reactions of SO2 and lead to a decline in the cardiovascular disease induced by SO2.
Collapse
Affiliation(s)
- Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Zhifang Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
- Shan Xi Academy for Environmental Planning, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jin Xia
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China.
| |
Collapse
|
44
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
45
|
Pan M, Chen Z, Shan C, Wang Y, Pan B, Gao G. Photochemical activation of seemingly inert SO 42- in specific water environments. CHEMOSPHERE 2019; 214:399-407. [PMID: 30267912 DOI: 10.1016/j.chemosphere.2018.09.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Sulfate ions (SO42-) are ubiquitous in aqueous environments and are generally considered to be inert due to their chemical stability. For the first time, we found that SO42- can be activated into SO42--type radicals (e.g., SO3-, SO5-, SO4-) in the presence of phenolic compounds under simulated or natural solar irradiation. In turn, the radicals promoted the transformation and mineralization of phenolic compounds compared to that in the absence of SO42- with reaction rate constants ranging from 0.008 h-1 to 0.021 h-1. In addition, the activation mechanisms of inert SO42- in the photochemical transformation of phenolic compounds were elucidated. A hydrated electron (eaq-) is first generated during the photolysis of phenolic compounds and is the most important step in the activation of SO42-. Then, the eaq- reduces SO42- to SO32-, and SO32- is further photochemical activated to become a reactive species (e.g., eaq- and SO3-), which can evolve into strong oxidants (e.g., SO5- and SO4-), via a series of radical chain reactions. These oxidants are responsible for the enhanced phenolic compound degradation. The photochemical activation of seemingly inert SO42- sheds new light on studies on the transport, transformation and environmental impact of matter (e.g., phenolic compounds) in specific water environments and provides a novel strategy for the generation of SO4- and photochemical removal of phenolic pollutants.
Collapse
Affiliation(s)
- Meilan Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yanfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Roveda AC, Santos WG, Souza ML, Adelson CN, Gonçalves FS, Castellano EE, Garino C, Franco DW, Cardoso DR. Light-activated generation of nitric oxide (NO) and sulfite anion radicals (SO3˙−) from a ruthenium(ii) nitrosylsulphito complex. Dalton Trans 2019; 48:10812-10823. [DOI: 10.1039/c9dt01432b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This manuscript describes the preparation of a new Ru(ii) nitrosylsulphito complex,trans-[Ru(NH3)4(isn)(N(O)SO3)]+(complex1), its spectroscopic and structural characterization, photochemistry, and thermal reactivity.
Collapse
Affiliation(s)
- Antonio C. Roveda
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Willy G. Santos
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Maykon L. Souza
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | | | | | | - Claudio Garino
- Dept. of Chemistry and NIS Interdepartmental Centre
- University of Turin
- Italy
| | - Douglas W. Franco
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Daniel R. Cardoso
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| |
Collapse
|
47
|
Suryadinata RV. Pengaruh Radikal Bebas Terhadap Proses Inflamasi pada Penyakit Paru Obstruktif Kronis (PPOK). AMERTA NUTRITION 2018. [DOI: 10.20473/amnt.v2i4.2018.317-324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease is diseases caused by exposure to cigarette smoke. Cigarette smoke carries free radicals into the airways which can lead to acute exacerbations in patients.Objectives: explanation of inflammatory processes in the airways in patients with PPOK due to an increase in free radicals.Discusion: In the human body, free radicals are metabolic products from normal cells and function as one of the body's defense systems. Free radicals can be Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), both of which can be obtained from the inside (endogenous) or from outside the body (exogenous). In the pathological, exposure to cigarette smoke causes an imbalance between the amount of free radicals produced in the body so that it can lead to oxidative stress.Conclusion: An increase in the number of free radicals will directly affect inflammatory mediators in the body. Increased free radicals will trigger the inflammatory process locally in the airways and systemically, so increasing the rate of exacerbations in COPD patients.ABSTRAKLatar Belakang : Penyakit PPOK ditimbulkan akibat paparan asap rokok yang terus menerus. Radikal bebas yang dibawa oleh asap rokok terhirup masuk kedalam saluran napas dapat menimbulkan eksaserbasi.Tujuan : Menjelaskan proses eksaserbasi yang dipengaruhi oleh proses inflamasi pada penderita PPOK akibat peningkatan radikal bebas.Ulasan : Pada tubuh manusia, radikal bebas merupakan produk hasil metabolisme dari sel normal. Pada keadaan normal, Radikal bebas berfungsi sebagai salah satu sistem pertahanan tubuh. Radikal bebas dapat berupa Reactive Oxygen Spesies (ROS) dan Reactive Nitrogen Spesies (RNS), keduanya dapat diperoleh melalui dari dalam (endogen) maupun dari luar tubuh (eksogen). Pada keadaan patologis akibat paparan asap rokok menimbulkan ketidakseimbangan antara jumlah radikal bebas yang dihasilkan dalam tubuh sehingga dapat mengakibatkan terjadinya stress oksidatif.Kesimpulan:Peningkatan jumlah radikal bebas secara langsung akan berpengaruh pada mediator inflamasi pada tubuh. Peningkatan radikal bebas akan memicu proses inflamasi secara lokal pada saluran napas dan sistemik sehingga meningkatkan angka kejadian eksaserbasi pada penderita PPOK.
Collapse
|
48
|
Liu R, Zhang Y. Mechanism of UV-driven Photoelectrocatalytic Degradation of Berberine Chloride Form Using the ESR Spin-trapping Method. Photochem Photobiol 2018; 94:650-658. [PMID: 29437228 DOI: 10.1111/php.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
Photoelectrocatalytic (PEC) system greatly improves the migration of photoexcited charges, retards the fast recombination of electron-hole and increases the lifetime of photogenerated holes. In this article, we constructed a novel PEC system to degrade berberine chloride form (BCF). XRD patterns indicated aging time was an important condition for the crystal type of TiO2, and the best proportion of anatase/rutile was 80/20. The band gap energy of the TiO2 was 3.01 eV. We demonstrated that a synergistic effect existed between photocatalysis (PC) and electrocatalysis (EC). Besides, we discussed the influence of pH, current density, the amount of catalyst and initial BCF concentration on the degradation of BCF. Electron spin resonance (ESR) through spin trap 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) and the scavenging experiments suggested that the reactive oxygen species (ROS) were superoxide radicals (O2·-), hydroxyl radicals (·OH) and sulfate radical (SO4·-) in PEC system. Furthermore, we compared the two pathway of formation DMPO-SO4 adducts and found that SO4·- was the most major oxidized species in degrading BCF. We proposed a plausible reaction mechanism. Intriguingly, even under lower current and weaker light conditions, the PEC process maintained its effectiveness, demonstrating the feasibility of the PEC approach.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Yonggang Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|
49
|
Jiang B, Xin S, Liu Y, He H, Li L, Tang Y, Luo S, Bi X. The role of thiocyanate in enhancing the process of sulfite reducing Cr(VI) by inhibiting the formation of reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:1-9. [PMID: 28934687 DOI: 10.1016/j.jhazmat.2017.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/03/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The reductive detoxification of Cr(VI) by sulfite is known as the prevailing strategy and can be successfully implemented for the treatment of Cr(VI)-contaminated waters. However, this method inevitably faces the challenges of excessive consumption of sulfite due to the generations of highly oxidative OH and SO4- during the process of sulfite reducing Cr(VI). In this study, we find that a small quantity of thiocyanate (SCN) can catalytically enhance the process efficiency of Cr(VI) reduction by sulfite and effectively prevent the excessive consumption of sulfite. Specifically, when adding 5μM SCN into 100μM Cr(VI) + 600μM sulfite reaction system at pH 3.5, Cr(VI) reduction amount and [sulfite]oxidation/[Cr(VI)]reduction ratio value were approximately 2 and 0.45, respectively, times those in the SCN-free case. The maximum Cr(VI) reduction amount can be achieved at an initial [SCN]/[Cr(VI)] molar ratio of 2.0. Electron spin resonance measurement, combined with the fluorescence spectrum detection, verified that the process of sulfite reducing Cr(VI) mediated by SCN probably proceeds via the non-radical pathway, avoiding the formation of OH and SO4- under aerobic condition.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Shuaishuai Xin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Science, Qingdao University of Technology, Qingdao 266033, PR China
| | - Haihong He
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| |
Collapse
|
50
|
Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease. Redox Biol 2017; 15:327-334. [PMID: 29306790 PMCID: PMC5756054 DOI: 10.1016/j.redox.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/09/2023] Open
Abstract
Exposure to (bi)sulfite (HSO3–) and sulfite (SO32–) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–), peroxymonosulfate (–O3SOO.), and especially the sulfate (SO4. –) anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO), which has been shown to form protein radicals. Although formation of (bi)sulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bi)sulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bi)sulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bi)sulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX) pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bi)sulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bi)sulfite-derived protein radical formation and show the involvement of protein radicals in a mouse model of human lung disease.
Collapse
|