1
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernadez SR, Bartels JL, Lapi SE, Mobley J, Pastukh VM, Gillespie M, Matalon S. Oxidative Injury to Lung Mitochondrial DNA is a Key Contributor for the Development of Chemical Lung Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624949. [PMID: 39651262 PMCID: PMC11623505 DOI: 10.1101/2024.11.22.624949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mechanisms and extent to which inhalation of oxidant gases damage the mitochondrial genome contributing to the development of acute and chronic lung injury have not been investigated. C57BL/6 mice exposed to chlorine (Cl 2 ) gas and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, significant oxidative injury to mtDNA, decreased intact lung mitochondrial (mt) DNA, generation of inflammatory pathway by DAMPs causing airway and alveolar injury with significant mortality. Global proteomics identified over 1400 lung proteins with alteration of key mitochondrial proteins at 24 h post Cl 2 exposure. Intranasal instillation of a recombinant protein containing mitochondrial targeted OGG1 (mitoOGG1) post exposure, decreased oxidative injury to mtDNA, lung mitochondrial proteome, severity of the acute and chronic lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury.
Collapse
|
2
|
Shafi H, Lora AJ, Donow HM, Aggarwal S, Fu P, Wang T, Mansour HM. Advanced Spray-Dried Inhalable Microparticles/Nanoparticles of an Innovative Mitophagy Activator for Targeted Lung Delivery: Design, Comprehensive Characterization, Human Lung Cell Culture, and In Vitro Aerosol Dispersion Performance. ACS Pharmacol Transl Sci 2024; 7:3540-3558. [PMID: 39539257 PMCID: PMC11555509 DOI: 10.1021/acsptsci.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Urolithin A (UA) has demonstrated the ability to stimulate mitophagy and enhance mitochondrial and cellular health in skeletal muscles in humans after oral administration. It is hypothesized that targeted delivery of UA as inhaled dry powders to the lungs will enhance mitochondrial health through mitochondrial biogenesis. This study aimed to engineer inhalable excipient-free powders of UA as dry powder inhalers (DPIs) for targeted pulmonary delivery. The particles were designed by particle engineering from dilute organic solutions of UA using the state-of-the-art spray drying technology in a closed mode. Comprehensive physicochemical characterization and advanced microscopy techniques were conducted to examine phase behavior, molecular properties, and particle properties, which are necessary for the rational design of advanced pulmonary inhalation aerosols. Molecular fingerprinting was conducted by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and Raman spectroscopy. Chemical imaging and mapping were conducted using confocal Raman microscopy (CRM) and IR microscopy. The advanced spray-dried (SD) excipient-free powders were successfully produced at different spraying pump feed rates and exhibited favorable molecular and particle properties. The excipient-free SD powders exhibited outstanding in vitro aerosol dispersion performance with an FDI-approved human DPI device (Neohaler) and correlated with the spray drying pump rate. In vitro, cell viability of various human pulmonary cells from different lung regions demonstrated biocompatibility and safety at different doses of UA. The transepithelial electrical resistance (TEER) assay shows that UA maintains cell membrane integrity and barrier tightness, indicating its potential for safe and effective localized drug delivery without long-term adverse effects. These results demonstrated that UA has favorable physicochemical and in vitro properties for inhalation and can be successfully engineered into excipient-free inhalable microparticles/nanoparticles as DPIs.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Andrea J. Lora
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Haley M. Donow
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Saurabh Aggarwal
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
| | - Panfeng Fu
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Ting Wang
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
- Dept.
of Biomedical Engineering, FIU College of
Engineering & Computing, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Li Y, Shimizu H, Nakamura R, Lu Y, Sakamoto R, Omori E, Takahashi T, Morimatsu H. The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats. PLoS One 2024; 19:e0309622. [PMID: 39441839 PMCID: PMC11498730 DOI: 10.1371/journal.pone.0309622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024] Open
Abstract
Hemorrhagic shock and resuscitation (HSR) enhances the risk of acute lung injury (ALI). This study investigated the protective effect of carbamazepine (CBZ) on HSR-induced ALI in rats. Male Sprague-Dawley rats were allocated into five distinct groups through randomization: control (SHAM), saline + HSR (HSR), CBZ + HSR (CBZ/HSR), dimethyl sulfoxide (DMSO) + HSR (DMSO/HSR), and CBZ + chloroquine (CQ) + HSR (CBZ/CQ/HSR). Subsequently, HSR models were established. To detect tissue damage, we measured lung histological changes, lung injury scores, and wet/dry weight ratios. We measured neutrophil counts as well as assessed the expression of inflammatory factors using RT-PCR to determine the inflammatory response. We detected autophagy-related proteins LC3II/LC3I, P62, Beclin-1, and Atg12-Atg5 using western blotting. Pretreatment with CBZ improved histopathological changes in the lungs and reduced lung injury scores. The CBZ pretreatment group exhibited significantly reduced lung wet/dry weight ratio, neutrophil aggregation and number, and inflammation factor (TNF-α and iNOS) expression. CBZ changed the expression levels of autophagy-related proteins (LC3II/LC3I, beclin-1, Atg12-Atg5, and P62), suggesting autophagy activation. However, after injecting CQ, an autophagy inhibitor, the beneficial effects of CBZ were reversed. Taken together, CBZ pretreatment improved HSR-induced ALI by suppressing inflammation, at least in part, through activating autophagy. Thus, our study offers a novel perspective for treating HSR-induced ALI.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama, Japan
| | - Ryu Nakamura
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama, Japan
| | - Yifu Lu
- Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Risa Sakamoto
- Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
An S, Anwar K, Ashraf M, Han KY, Djalilian AR. Chlorine-Induced Toxicity on Murine Cornea: Exploring the Potential Therapeutic Role of Antioxidants. Cells 2024; 13:458. [PMID: 38474422 PMCID: PMC10930774 DOI: 10.3390/cells13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic agents to counteract chlorine-induced damage. In vitro experiments using human corneal epithelial cells showed decreased cell viability by chlorine-induced ROS production, which was reversed by antioxidant incubation. The mitochondrial membrane potential decreased due to both low and high doses of Cl2 exposure; however, it was recovered through antioxidants. The wound scratch assay showed that antioxidants mitigated impaired wound healing after Cl2 exposure. In vivo and ex vivo, after Cl2 exposure, increased corneal fluorescein staining indicates damaged corneal epithelial and stromal layers of mice cornea. Likewise, Cl2 exposure in human ex vivo corneas led to corneal injury characterized by epithelial fluorescein staining and epithelial erosion. However, antioxidants protected Cl2-induced damage. These results highlight the effects of Cl2 on corneal cells using in vitro, ex vivo, and in vivo models while also underscoring the potential of antioxidants, such as vitamin A, vitamin C, resveratrol, and melatonin, as protective agents against acute chlorine toxicity-induced corneal injury. Further investigation is needed to confirm the antioxidants' capacity to alleviate oxidative stress and enhance the corneal healing process.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Khandaker Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| | - Mohammadjavad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| |
Collapse
|
5
|
Matalon S, Yu Z, Dubey S, Ahmad I, Stephens EM, Alishlash AS, Meyers A, Cossar D, Stewart D, Acosta EP, Kojima K, Jilling T, Mobley JA. Hemopexin Reverses Activation of Lung eIF2a and Decreases Mitochondrial Injury in Chlorine Exposed Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553717. [PMID: 37645744 PMCID: PMC10462122 DOI: 10.1101/2023.08.17.553717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We assessed the mechanisms by which non-encapsulated heme, released in the plasma of mice post exposure to chlorine (Cl 2 ) gas, resulted in the initiation and propagation of acute lung injury. We exposed adult C57BL/6 male and female to Cl 2 (500 ppm for 30 min) in environmental chambers and returned them to room air and injected them intramuscularly with a single dose of human hemopexin (hHPX; 5 µg/ g BW), the most efficient scavenger of heme, 30-60 min post exposure. Concentrations of hHPX in plasma of air and Cl 2 exposed mice were 9081±900 vs. 1879± 293 at 6 h and 2966±463 vs. 1555±250 at 50 h post injection (ng/ml; X±1 SEM=3; p<0.01). Cl 2 exposed mice developed progressive acute lung injury post exposure characterized by increased concentrations of plasma heme, marked inflammatory response, respiratory acidosis and increased concentrations of plasma proteins in the alveolar space. Injection of hHPX decreased the onset of acute lung injury at 24 h post exposure; mean survival, for the saline and hHPX groups were 40 vs. 80% (P<0.001) at 15 d post exposure. Non-supervised global proteomics analysis of mouse lungs at 24 h post exposure, revealed the upregulation of 92 and downregulation of 145 lung proteins. Injection of hHPX at one h post exposure moderated the Cl 2 induced changes in eighty-three of these 237 lung proteins. System biology analysis of the global proteomics data showed that hHPX reversed changes in mitochondrial dysfunction and elF2 and integrin signaling. Western blot analysis of lung tissue showed significant increase of phosphorylated elF2 at 24 h post exposure in vehicle treated mice but normal levels in those injected with hHPX. Similarly, RT-PCR analysis of lung tissue showed that hHPX reversed the onset of mtDNA lesions. A form of recombinant human hemopexin generated in tobacco plants was equally effective in reversing acute lung and mtDNA injury. The results of this study offer new insights as to the mechanisms by which exposure to Cl 2 results in acute lung injury and to the therapeutic effects of hemopexin.
Collapse
|
6
|
Tapak M, Sadeghi S, Ghazanfari T, Mosaffa N. Chemical exposure and alveolar macrophages responses: 'the role of pulmonary defense mechanism in inhalation injuries'. BMJ Open Respir Res 2023; 10:e001589. [PMID: 37479504 PMCID: PMC10364189 DOI: 10.1136/bmjresp-2022-001589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 07/23/2023] Open
Abstract
Epidemiological and clinical studies have indicated an association between particulate matter (PM) exposure and acute and chronic pulmonary inflammation, which may be registered as increased mortality and morbidity. Despite the increasing evidence, the pathophysiology mechanism of these PMs is still not fully characterised. Pulmonary alveolar macrophages (PAMs), as a predominant cell in the lung, play a critically important role in these pathological mechanisms. Toxin exposure triggers events associated with macrophage activation, including oxidative stress, acute damage, tissue disruption, remodelling and fibrosis. Targeting macrophage may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Biological toxins, their sources of exposure, physical and other properties, and their effects on the individuals are summarised in this article. Inhaled particulates from air pollution and toxic gases containing chemicals can interact with alveolar epithelial cells and immune cells in the airways. PAMs can sense ambient pollutants and be stimulated, triggering cellular signalling pathways. These cells are highly adaptable and can change their function and phenotype in response to inhaled agents. PAMs also have the ability to polarise and undergo plasticity in response to tissue damage, while maintaining resistance to exposure to inhaled agents.
Collapse
Affiliation(s)
- Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Alinasab Hospital, Labratory Department, Iranian Social Security Organization (ISSO), Tabriz, Iran
| | - Somaye Sadeghi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
- Department of Immunology, Shahed University, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chatterjee T, Lewis TL, Arora I, Gryshyna AE, Underwood L, Masjoan Juncos JX, Aggarwal S. Sex-Based Disparities in Leukocyte Migration and Activation in Response to Inhalation Lung Injury: Role of SDF-1/CXCR4 Signaling. Cells 2023; 12:1719. [PMID: 37443753 PMCID: PMC10340292 DOI: 10.3390/cells12131719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to determine whether sex-related differences exist in immune response to inhalation lung injury. C57BL/6 mice were exposed to Cl2 gas (500 ppm for 15, 20, or 30 min). Results showed that male mice have higher rates of mortality and lung injury than females. The binding of the chemokine ligand C-X-C motif chemokine 12 (CXCL12), also called stromal-derived-factor-1 (SDF-1), to the C-X-C chemokine receptor type 4 (CXCR4) on lung cells promotes the migration of leukocytes from circulation to lungs. Therefore, the hypothesis was that elevated SDF-1/CXCR4 signaling mediates exaggerated immune response in males. Plasma, blood leukocytes, and lung cells were collected from mice post-Cl2 exposure. Plasma levels of SDF-1 and peripheral levels of CXCR4 in lung cells were higher in male vs. female mice post-Cl2 exposure. Myeloperoxidase (MPO) and elastase activity was significantly increased in leukocytes of male mice exposed to Cl2. Lung cells were then ex vivo treated with SDF-1 (100 ng/mL) in the presence or absence of the CXCR4 inhibitor, AMD3100 (100 nM). SDF-1 significantly increased migration, MPO, and elastase activity in cells obtained from male vs. female mice post-Cl2 exposure. AMD3100 attenuated these effects, suggesting that differential SDF-1/CXCR4 signaling may be responsible for sex-based disparities in the immune response to inhalation lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA; (T.C.); (T.L.L.); (I.A.); (A.E.G.); (L.U.); (J.X.M.J.)
| |
Collapse
|
8
|
Al-Shami K, Almurabi S, Shatnawi J, Qasagsah K, Shatnawi G, Nashwan AJ. Ophthalmic Manifestations of Chlorine Gas Exposure: What Do We Know So Far? Cureus 2023; 15:e35590. [PMID: 37007383 PMCID: PMC10062433 DOI: 10.7759/cureus.35590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chlorine gas is a hazardous substance that can cause severe health effects when inhaled or exposed to the skin. It is an odorless, colorless gas in many industrial and manufacturing settings and conflict areas. While exposure to chlorine gas is generally limited to the workplace and public areas, there are instances in which people may be exposed to high levels of chlorine gas for a short period of time due to spills, mishaps on the road or railroads, or other tragedies. In addition to the general health effects of chlorine gas, this essay will focus on the effects of chlorine gas on the eyes. The eyes are particularly sensitive to chlorine gas, and exposure can cause various symptoms, ranging from mild irritation to severe damage. Symptoms of chlorine gas exposure to the eyes include redness, burning, tearing, and blurred vision. In more serious cases, exposure to chlorine gas can cause permanent damage to the eyes, including corneal ulcers, scarring, and blindness. It is important to be aware of the signs and symptoms of chlorine gas exposure and the potential long-term effects to take the necessary steps to protect oneself. In addition to the potential health effects, it is important to understand the properties of chlorine gas. Chlorine gas is heavier than air and tends to settle in low-lying areas. It is highly reactive and can react with other substances to form hazardous compounds. As such, it is important to be aware of the potential for chlorine gas to react with other environmental substances and accumulate in certain areas. Finally, it is important to understand the background of chlorine gas use in various conflict areas. Chlorine gas has been used as a chemical weapon for centuries, and its use in modern warfare has been documented in various conflicts. As such, it is important to be aware of the potential for chlorine gas to be used in war zones and to take the necessary precautions to protect oneself. In conclusion, chlorine gas is a hazardous substance that can cause severe health effects when inhaled or exposed to the skin. The eyes are particularly sensitive to chlorine gas, and exposure can cause various symptoms, ranging from mild irritation to severe damage. It is important to be aware of the signs and symptoms of chlorine gas exposure and the potential long-term effects to take the necessary steps to protect oneself. Additionally, it is important to understand chlorine gas's properties and its background use in various conflict areas.
Collapse
|
9
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
10
|
Sanches Santos Rizzo Zuttion M, Moore SKL, Chen P, Beppu AK, Hook JL. New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Biomolecules 2022; 12:biom12091273. [PMID: 36139112 PMCID: PMC9496395 DOI: 10.3390/biom12091273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The alveolar epithelium serves as a barrier between the body and the external environment. To maintain efficient gas exchange, the alveolar epithelium has evolved to withstand and rapidly respond to an assortment of inhaled, injury-inducing stimuli. However, alveolar damage can lead to loss of alveolar fluid barrier function and exuberant, non-resolving inflammation that manifests clinically as acute respiratory distress syndrome (ARDS). This review discusses recent discoveries related to mechanisms of alveolar homeostasis, injury, repair, and regeneration, with a contemporary emphasis on virus-induced lung injury. In addition, we address new insights into how the alveolar epithelium coordinates injury-induced lung inflammation and review maladaptive lung responses to alveolar damage that drive ARDS and pathologic lung remodeling.
Collapse
Affiliation(s)
- Marilia Sanches Santos Rizzo Zuttion
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah Kathryn Littlehale Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Kota Beppu
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaime Lynn Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
11
|
Ahmad I, Molyvdas A, Jian MY, Zhou T, Traylor AM, Cui H, Liu G, Song W, Agarwal A, Jilling T, Aggarwal S, Matalon S. AICAR decreases acute lung injury by phosphorylating AMPK and upregulating heme oxygenase-1. Eur Respir J 2021; 58:2003694. [PMID: 34049949 PMCID: PMC9144003 DOI: 10.1183/13993003.03694-2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 11/05/2022]
Abstract
AIM We investigated the mechanisms by which N1-(β-d-ribofuranosyl)-5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase (AMPK), decreases lung injury and mortality when administered to mice post exposure to bromine gas (Br2). METHODS We exposed male C57BL/6 mice and heme oxygenase-1 (HO-1)-deficient (HO-1-/-) and corresponding wild-type (WT) littermate mice to Br2 (600 ppm for 45 or 30 min, respectively) in environmental chambers and returned them to room air. AICAR was administered 6 h post exposure (10 mg·kg-1, intraperitoneal). We assessed survival, indices of lung injury, high mobility group box 1 (HMGB1) in the plasma, HO-1 levels in lung tissues and phosphorylation of AMPK and its upstream liver kinase B1 (LKB1). Rat alveolar type II epithelial (L2) cells and human club-like epithelial (H441) cells were also exposed to Br2 (100 ppm for 10 min). After 24 h we measured apoptosis and necrosis, AMPK and LKB1 phosphorylation, and HO-1 expression. RESULTS There was a marked downregulation of phosphorylated AMPK and LKB1 in lung tissues and in L2 and H441 cells post exposure. AICAR increased survival in C57BL/6 but not in HO-1-/- mice. In WT mice, AICAR decreased lung injury and restored phosphorylated AMPK and phosphorylated LKB1 to control levels and increased HO-1 levels in both lung tissues and cells exposed to Br2. Treatment of L2 and H441 cells with small interfering RNAs against nuclear factor erythroid 2-related factor 2 or HO-1 abrogated the protective effects of AICAR. CONCLUSIONS Our data indicate that the primary mechanism for the protective action of AICAR in toxic gas injury is the upregulation of lung HO-1 levels.
Collapse
Affiliation(s)
- Israr Ahmad
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
- These authors contributed equally to this study
| | - Adam Molyvdas
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
- These authors contributed equally to this study
| | - Ming-Yuan Jian
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ting Zhou
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amie M Traylor
- Division of Nephrology, Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Weifeng Song
- Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Division of Nephrology, Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tamas Jilling
- Division of Neonatology, Dept of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
- These authors contributed equally as senior authors
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Dept of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham, AL, USA
- These authors contributed equally as senior authors
| |
Collapse
|
12
|
Pan P, Chen J, Liu X, Fan J, Zhang D, Zhao W, Xie L, Su L. FUNDC1 Regulates Autophagy by Inhibiting ROS-NLRP3 Signaling to Avoid Apoptosis in the Lung in a Lipopolysaccharide-Induced Mouse Model. Shock 2021; 56:773-781. [PMID: 34238903 DOI: 10.1097/shk.0000000000001835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The incidence and mortality of acute respiratory distress syndrome (ARDS) are high, but the relevant mechanism for this disorder remains unclear. Autophagy plays an important role in the development of ARDS. The mitochondrial outer membrane protein FUNDC1 is involved in hypoxia-mediated mitochondrial autophagy, which may contribute to ARDS development. This study explored whether FUNDC1 regulates autophagy by inhibiting ROS-NLRP3 signaling to avoid apoptosis in the lung in a lipopolysaccharide-induced mouse model. In this study, FUNDC1 knockout mice were constructed, and a lipopolysaccharide-induced mouse model was generated. HE staining of pathological sections from the lung, wet/dry lung measurements, myeloperoxidase concentration/neutrophil counts in BALF and survival time of mice were examined to determine the effect of modeling. The release of cytokines (TNF-α, IL-1β, IL-6, and IL-10) in response to LPS in the BALF and plasma was assessed using ELISA. The effects of oxidative stress (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase) in lung tissue in response to LPS were detected by biochemical analysis. Oxidative stress damage was validated by iNOS staining, and apoptosis was assessed by TUNEL staining after LPS. Finally, the expression of autophagy-associated proteins and inflammasome-associated proteins in lung tissue after LPS intervention was analyzed by western blot. We found that wild-type control, FUNDC1 knockout control, lipopolysaccharide-induced wild-type, and FUNDC1 knockout mouse models were used to investigate whether FUNDC1-mediated autophagy is involved in lung injury and its possible molecular mechanisms. Compared with the normal control group, lung tissue FUNDC1 and LC3 II increased and p62/SQSTM1 decreased after LPS intervention, and increased ROS levels led to a decrease in corresponding antioxidant enzymes along with an increased inflammatory response and apoptosis. Levels of autophagy in lipopolysaccharide-induced mice deficient in FUNDC1 were significantly decreased, but the expression of ROS and inflammatory factors in lung tissue was more severe than in lipopolysaccharide-induced wild-type mice, and the survival rate was significantly decreased. Western blot analysis showed that autophagy was significantly inhibited in the FUNDC1 KO+LPS group, and there was a significant increase in NLRP3, caspase-1, IL-1β, and ASC compared with the lipopolysaccharide-induced wild-type group. In summary, lipopolysaccharide-induced wild-type mice exhibit ROS-dependent activation of autophagy, and knocking out FUNDC1 promotes inflammasome activation and exacerbates lung injury.
Collapse
Affiliation(s)
- Pan Pan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jie Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junping Fan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Zhang
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiguo Zhao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
The potential role of melatonin in retarding intervertebral disc ageing and degeneration: A systematic review. Ageing Res Rev 2021; 70:101394. [PMID: 34139338 DOI: 10.1016/j.arr.2021.101394] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative disease of the musculoskeletal system that develops with age. It is regarded as the main cause of chronic low back pain in the elderly. IDD has various causes, including ageing, mechanical overloading, and nutritional deficiency. Melatonin is a pleiotropic indole hormone secreted by the pineal gland and plays an important role in resisting various degenerative diseases. The serum levels of melatonin decline with age and are reported to be negatively correlated with the symptomatic and histopathological scores of IDD. In vivo studies have shown that exogenous administration of melatonin could maintain the structural integrity of the intervertebral disc and inhibit the development of IDD. Mechanistically, by interacting with its membrane or intracellular receptors, melatonin can promote autophagic flux, scavenge free radicals, inhibit the release of pro-inflammatory factors, and block apoptotic pathways, thereby enhancing anti-stress abilities and matrix anabolism in different types of disc cells. Therefore, melatonin supplementation may be a promising therapeutic strategy for IDD. This review aimed to summarize the latest findings regarding the therapeutic potential of melatonin in IDD.
Collapse
|
14
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Watkins R, Perrott R, Bate S, Auton P, Watts S, Stoll A, Rutter S, Jugg B. Development of chlorine-induced lung injury in the anesthetized, spontaneously breathing pig. Toxicol Mech Methods 2021; 31:257-271. [PMID: 33929275 DOI: 10.1080/15376516.2021.1906808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chlorine is a toxic industrial chemical produced in vast quantities globally, being used in a range of applications such as water purification, sanitation and industrial processes. Its use and transport cannot be restricted; exposure may occur following accidental or deliberate releases. The OPCW recently verified the use of chlorine gas against civilians in both Syria and Iraq. Chlorine inhalation produces damage to the lungs, which may result in the development of an acute lung injury, respiratory failure and death. Treatment remains an intractable problem. Our objective was to develop a clinically relevant pre-clinical model of a moderate to severe lung injury in the pig. This would enable future assessment of therapeutic drugs or interventions to be implemented in the pre-hospital phase after exposure. Due to the irritant nature of chlorine, a number of strategies for exposing terminally anesthetized pigs needed to be investigated. A number of challenges (inconsistent acute changes in respiratory parameters; early deaths), resulted in a moderate to severe lung injury not being achieved. However, most pigs developed a mild lung injury by 12 h. Further investigation is required to optimize the model and enable the assessment of therapeutic candidates. In this paper we describe the exposure strategies used and discuss the challenges encountered in establishing a model of chlorine-induced lung injury. A key aim is to assist researchers navigating the challenges of producing a clinically relevant model of higher dose chlorine exposure where animal welfare is protected by use of terminal anesthesia.
Collapse
Affiliation(s)
| | | | - Simon Bate
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | - Sarah Watts
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | | | | |
Collapse
|
16
|
Li YH, Yu KW, Sun NJ, Jin XD, Luo X, Yang J, He B, Li B. Pulmonary Nodules Developed Rapidly in Staffs in the Isolation Ward of a Chinese Hospital during the COVID-19 Epidemic. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2020; 33:930-934. [PMID: 33472733 PMCID: PMC7817461 DOI: 10.3967/bes2020.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Yu Hua Li
- Department of Imaging, Shandong University Central Hospital of Zibo, Zibo 255036, Shandong, China
| | - Ke Wen Yu
- Department of internal medicine, Maternal and Child Health Hospital of Zibo, Zibo 255000, Shandong, China
| | - Neng Jun Sun
- Department of medical administration, Shandong University Central Hospital of Zibo, Zibo 255036, Shandong, China
| | - Xiao Dong Jin
- Department of Geriatrics, Shandong University Central Hospital of Zibo, Zibo 255036, Shandong, China
| | - Xin Luo
- Department of Imaging, Shandong University Central Hospital of Zibo, Zibo 255036, Shandong, China
| | - Jing Yang
- Binzhou Medical University, Yantai 264003, Shandong, China
| | - Bing He
- Department of Imaging, Shandong University Central Hospital of Zibo, Zibo 255036, Shandong, China
| | - Bo Li
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo 255000, Shandong, China
| |
Collapse
|
17
|
Radbel J, Laskin DL, Laskin JD, Kipen HM. Disease-modifying treatment of chemical threat agent-induced acute lung injury. Ann N Y Acad Sci 2020; 1480:14-29. [PMID: 32726497 DOI: 10.1111/nyas.14438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid lung pathology induced by exposure to chemical warfare agents, including vesicants, phosgene, chlorine, and ricin. In this review, we describe the pathology associated with the development of ARDS in humans and experimental models of acute lung injury following animal exposure to these high-priority threat agents. Potential future approaches to disease-modifying treatment used in preclinical animal studies, including antioxidants, anti-inflammatories, biologics, and mesenchymal stem cells, are also described. As respiratory pathologies, including ARDS, are the major cause of morbidity and mortality following exposure to chemical threat agents, understanding mechanisms of disease pathogenesis is key to the development of efficacious therapeutics beyond the primary intervention principle, which remains mechanical ventilation.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Howard M Kipen
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
18
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Chen F, Liu H, Wang X, Li Z, Zhang J, Pei Y, Zheng Z, Wang J. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage 2020; 28:1121-1132. [PMID: 32470597 DOI: 10.1016/j.joca.2020.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated whether melatonin alleviates intervertebral disc degeneration (IVDD) by promoting autophagy through inhibiting the NF-κB signaling pathway. METHODS Magnetic resonance imaging (MRI), hematoxylin and eosin (H&E) staining and Safranin-O staining were used to measure disc degeneration in rat needle puncture IVDD models, and melatonin was injected intraperitoneally in the treated group to test its function. The expression of autophagy and extracellular matrix (ECM) degeneration related-markers were measured in the discs using immunohistochemistry. Transmission electron microscopy was used to evaluate the activation of autophagy in human nucleus pulposus (NP) tissues with different degenerated statuses. The expression of autophagy and disc degeneration related-markers were detected in NP cells by Western blot, RT-qPCR, and immunofluorescence analyses. NF-κB signaling pathway involvement was studied by lentivirus-mediated knockdown, Western blotting, and immunohistochemistry and immunofluorescence staining. RESULTS Melatonin prevented IVDD development in vivo and in vitro. Compared to non-degenerated disc tissues, degenerated human NP tissues showed a decrease in the autophagy-specific marker LC3B and the numbers of autophagosomes and autolysosomes, whereas the p62 level was increased; similar results were observed in rat IVDD models, indicating a negative correlation between autophagy and IVDD. Furthermore, both in vivo and in vitro studies found that melatonin application induced autophagy and reduced ECM disc degradation. Melatonin was also shown to regulate autophagy by inhibiting the NF-κB signaling pathway in vivo and vitro. CONCLUSION This study indicates that melatonin prevents IVDD by promoting autophagy, indicating its possible therapeutic potential for controlling the progression of IVDD.
Collapse
Affiliation(s)
- F Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - H Liu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - X Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - J Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Y Pei
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - J Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
20
|
Pesonen M, Vähäkangas K. Chloropicrin-induced toxicity in the respiratory system. Toxicol Lett 2020; 323:10-18. [DOI: 10.1016/j.toxlet.2020.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
21
|
Shi Q, Wang J, Yang Z, Liu Y. CircAGFG1modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:645. [PMID: 32566582 PMCID: PMC7290638 DOI: 10.21037/atm.2020-20-3048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Recent studies have revealed the involvement of circular RNAs (circRNAs) in the control and elimination of invading Mycobacterium tuberculosis (Mtb) by macrophages. However, the regulatory mechanism of circAGFG1 in macrophages infected by Mtb has not been fully explored. In this study, we sought to investigate the role of circAGFG1 on autophagy and apoptosis of Mtb-infected macrophages and reveal its the molecular mechanism. Methods The expression of circAGFG1 in macrophages from patients with active tuberculosis and in Mtb-treated macrophages in vitro was explored. Then, the effect of circAGFG1 on autophagy and apoptosis of Mtb-infected macrophages was evaluated by flow cytometry, electron microscope, immunofluorescence, and Western blotting. Bioinformatics analysis was used to identify and validate the downstream regulatory pathway of circAGFG1, miRNA-1257/Notch. For further analysis, the role of miRNA-1257 on autophagy and apoptosis was assessed. Results In vitro, ectopic expression of circAGFG1 upregulated autophagy and reduced apoptosis significantly in Mtb-infected cells. Notch levels were discovered to be increased by the silencing effect of circAGFG1 on miRNA-1257 expression. miRNA-1257 was found to noticeably reduce autophagy and promote macrophage apoptosis. Increased circAGFG1 expression, decreased monocyte apoptosis, and enhanced autophagy were found in macrophages from patients with active tuberculosis. Conclusions In active tuberculosis, circAGFG1 enhances autophagy and reduces apoptosis via the miRNA-1257/Notch axis; this provides new therapeutic targets for tuberculosis patients.
Collapse
Affiliation(s)
- Qinghong Shi
- Department of Clinical Laboratory, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jingying Wang
- Department of Clinical Laboratory, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhe Yang
- Department of Radiological, The Second hospital of Jilin University, Changchun 130021, China
| | - Yang Liu
- Department of Radiological, The Second hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Qian Q, Cao X, Wang B, Dong X, Pei J, Xue L, Feng F. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation. Cell Cycle 2020; 19:567-576. [PMID: 32057287 PMCID: PMC7100984 DOI: 10.1080/15384101.2020.1718851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a role in acute lung injury (ALI), yet the in-depth mechanism remains elusive. This study aims to investigate the effect of ER stress-induced autophagy of alveolar macrophage (AM) on acute lung injury (ALI) and airway inflammation using mouse models. ALI models were induced by intranasal instillation of lipopolysaccharide (LPS). The lung weight/body weight (LW/BW) ratio and excised lung gas volume (ELGV) in each group were measured. Mouse bronchoalveolar lavage fluid (BALF) was collected for cell sorting and protein concentration determination. Expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lung tissues and BALF was also detected. Mouse AMs were isolated to observe the autophagy. Expression of GRP78, PERK, LC3I, LC3II and Beclin1 was further determined. The results indicated that tunicamycin (TM) elevated GRP78 and PERK expression of AMs in ALI mice in a dose-dependent manner. Low dosage of TM abated LC3I expression, increased LC3II and Beclin1 expression, triggered ER stress and AM autophagy, and alleviated pathological changes of AMs in ALI mice. Also, in ALI mice, low dosage of TM attenuated goblet cell proliferation of tracheal wall, and declined LW/BW ratio, ELGV, total cells and neutrophils, protein concentrations in BALF, and IL-6 and TNF-α expression in lung tissues and BALF. Collectively, this study suggests that a low dosage of TM-induced ER stress can enhance the autophagy of AM in ALI mice models, thus attenuating the progression of ALI and airway inflammation.
Collapse
Affiliation(s)
- Qingzeng Qian
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Xiangke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan, P. R. China
| | - Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, P. R. China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, P. R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Worker's Hospital, Tangshan, P. R. China
| | - Ling Xue
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Fumin Feng
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| |
Collapse
|
23
|
Nosaka N, Martinon D, Moreira D, Crother TR, Arditi M, Shimada K. Autophagy Protects Against Developing Increased Lung Permeability and Hypoxemia by Down Regulating Inflammasome Activity and IL-1β in LPS Plus Mechanical Ventilation-Induced Acute Lung Injury. Front Immunol 2020; 11:207. [PMID: 32117318 PMCID: PMC7033480 DOI: 10.3389/fimmu.2020.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Targeting inflammasome activation to modulate interleukin (IL)-1β is a promising treatment strategy against acute respiratory distress syndrome and ventilator-induced lung injury (VILI). Autophagy is a key regulator of inflammasome activation in macrophages. Here, we investigated the role of autophagy in the development of acute lung injury (ALI) induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). Two hours before starting MV, 0.2 mg/kg LPS was administered to mice intratracheally. Mice were then placed on high-volume MV (30 ml/kg with 3 cmH2O positive end-expiratory pressure for 2.5 h without additional oxygen application). Mice with myeloid-specific deletion of the autophagic protein ATG16L1 (Atg16l1fl/flLysMCre) suffered severe hypoxemia (adjusted p < 0.05) and increased lung permeability (p < 0.05, albumin level in bronchoalveolar lavage fluid) with significantly higher IL-1β release into alveolar space (p < 0.05). Induction of autophagy by fasting-induced starvation led to improved arterial oxygenation (adjusted p < 0.0001) and lung permeability (p < 0.05), as well as significantly suppressed IL-1β production (p < 0.01). Intratracheal treatment with anti-mouse IL-1β monoclonal antibody (mAb; 2.5 mg/kg) significantly improved arterial oxygenation (adjusted p < 0.01) as well as lung permeability (p < 0.05). On the other hand, deletion of IL-1α gene or use of anti-mouse IL-1α mAb (2.5 mg/kg) provided no significant protection, suggesting that the LPS and MV-induced ALI is primarily dependent on IL-1β, but independent of IL-1α. These observations suggest that autophagy has a protective role in controlling inflammasome activation and production of IL-1β, which plays a critical role in developing hypoxemia and increased lung permeability in LPS plus MV-induced acute lung injury.
Collapse
Affiliation(s)
- Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daisy Martinon
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debbie Moreira
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R Crother
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
24
|
He X, Chen S, Li C, Ban J, Wei Y, He Y, Liu F, Chen Y, Chen J. Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages. Cells 2020; 9:cells9010122. [PMID: 31947943 PMCID: PMC7016807 DOI: 10.3390/cells9010122] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.
Collapse
Affiliation(s)
- Xiu He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Shi Chen
- School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yungeng Wei
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yangyang He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
- Correspondence: ; Tel.: +86-24-31939079
| |
Collapse
|
25
|
Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chin Med J (Engl) 2019; 132:1298-1304. [PMID: 30946071 PMCID: PMC6629347 DOI: 10.1097/cm9.0000000000000243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by an acute inflammatory process, and oxidative stress in the lung tissue leads to a lack of effective therapeutics. This study aimed to identify whether the overexpression of transcription factor EB (TFEB) regulates mitophagy to protect against lipopolysaccharide (LPS)-induced ALI. METHODS We detected the expression of inflammatory factors, cytochrome c (Cyt.c) and nicotinamide adenine dinucleotide phosphate (NADPH), and autophagy-related proteins and observed the changes in lung histopathology induced by ALI in rats and the changes in the cell ultrastructure of primary alveolar type II epithelial cells induced by changing the expression of TFEB in the context of ALI. RESULTS The overexpression of TFEB could reduce the expression of proinflammatory factors, such as IL-1 and IL-6, and increase the expression of anti-inflammatory factors, such as IL-10, both in vitro and in vivo. In addition, the overexpression of TFEB could reduce the Cyt.c and NADPH levels both in vivo and in vitro. The overexpression of TFEB could upregulate the expression of autophagy-related proteins, such as lysosomal-associated membrane protein 1 (LAMP1), microtubule-associated protein light chain 3B (LC3B), and Beclin both in vivo and in vitro, and promote mitochondrial autophagy. The overexpression of TFEB significantly improved the histopathologic changes induced by LPS-induced ALI in rats. However, low TFEB expression produced the opposite results. CONCLUSION TFEB overexpression can decrease inflammation and mitochondrial damage in the lung tissue and alveolar epithelial cells through regulating mitochondrial autophagy to protect against LPS-induced ALI. Therefore, TFEB is likely a potential therapeutic target in LPS-induced ALI.
Collapse
|
26
|
Dai P, Shen D, Shen J, Tang Q, Xi M, Li Y, Li C. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4 - NFκB in A549 cell exposed to layer house particulate matter 2.5 (PM 2.5). CHEMOSPHERE 2019; 235:1134-1145. [PMID: 31561304 DOI: 10.1016/j.chemosphere.2019.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) from layer house has adverse effect on people and chicken respiratory health, which can further influence animal performance and reduce production efficiency. However, little study focus on the respiratory inflammation induced by PM2.5 from layer house and the underlying mechanism also unclear. In this study, human adenocarcinoma alveolar basal epithelial cells (A549 cell) was subjected to the PM2.5 from layer house to evaluate the inflammation reaction caused by PM2.5 and explore the role of Nrf2 and autophagy in regulating the inflammation. Results showed that the viability of A549 cell decreased in a time - and concentration - dependent manner after PM2.5 treatment. TNFα, IL6, and IL8 increased significantly treated with PM2.5 at 12 h. RNA sequencing indicated differentially expressed genes were enriched in immune system process, oxidative stress (OS), endoplasmic reticulum stress (ERS), and autophagy. Further studies showed TLR4 - NFκB p65 signal pathway involved in the inflammation reaction caused by PM2.5. The overexpression of Nrf2 decreased the level of TNFα, IL6, IL8 markedly as well as the level of NFκB p65 and NFκB pp65. OS and ERS were also limited under overactivation of Nrf2 in PM2.5 treated cells. Autophagy induced by PM2.5 promoted the inflammation through increasing the level of NFκB p65 and NFκB pp65. Autophagy deficient strengthened the expression of Nrf2. Collectively, our study revealed Nrf2 prevents inflammation caused by layer house PM2.5 stimulation, however, autophagy exerts a promotive role in TLR4 - NFκB p65 mediating inflammation in A549 cell.
Collapse
Affiliation(s)
- Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Dan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Jiakun Shen
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Mengxue Xi
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
27
|
Achanta S, Jordt SE. Toxic effects of chlorine gas and potential treatments: a literature review. Toxicol Mech Methods 2019; 31:244-256. [PMID: 31532270 DOI: 10.1080/15376516.2019.1669244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.
Collapse
Affiliation(s)
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
28
|
Aggarwal S, Jilling T, Doran S, Ahmad I, Eagen JE, Gu S, Gillespie M, Albert CJ, Ford D, Oh JY, Patel RP, Matalon S. Phosgene inhalation causes hemolysis and acute lung injury. Toxicol Lett 2019; 312:204-213. [PMID: 31047999 DOI: 10.1016/j.toxlet.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Phosgene (Carbonyl Chloride, COCl2) remains an important chemical intermediate in many industrial processes such as combustion of chlorinated hydrocarbons and synthesis of solvents (degreasers, cleaners). It is a sweet smelling gas, and therefore does not prompt escape by the victim upon exposure. Supplemental oxygen and ventilation are the only available management strategies. This study was aimed to delineate the pathogenesis and identify novel biomarkers of acute lung injury post exposure to COCl2 gas. Adult male and female C57BL/6 mice (20-25 g), exposed to COCl2 gas (10 or 20 ppm) for 10 min in environmental chambers, had a dose dependent reduction in PaO2 and an increase in PaCO2, 1 day post exposure. However, mortality increased only in mice exposed to 20 ppm of COCl2 for 10 min. Correspondingly, these mice (20 ppm) also had severe acute lung injury as indicated by an increase in lung wet to dry weight ratio, extravasation of plasma proteins and neutrophils into the bronchoalveolar lavage fluid, and an increase in total lung resistance. The increase in acute lung injury parameters in COCl2 (20 ppm, 10 min) exposed mice correlated with simultaneous increase in oxidation of red blood cells (RBC) membrane, RBC fragility, and plasma levels of cell-free heme. In addition, these mice had decreased plasmalogen levels (plasmenylethanolamine) and elevated levels of their breakdown product, polyunsaturated lysophosphatidylethanolamine, in the circulation suggesting damage to cellular plasma membranes. This study highlights the importance of free heme in the pathogenesis of COCl2 lung injury and identifies plasma membrane breakdown product as potential biomarkers of COCl2 toxicity.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pediatrics, Division of Neonatology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Doran
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Jeannette E Eagen
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Gu
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Mark Gillespie
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; Department of Pharmacology, Mobile, AL, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Carolyn J Albert
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - David Ford
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States
| | - Joo-Yeun Oh
- Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Rakesh P Patel
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States.
| |
Collapse
|
29
|
Protective Features of Autophagy in Pulmonary Infection and Inflammatory Diseases. Cells 2019; 8:cells8020123. [PMID: 30717487 PMCID: PMC6406971 DOI: 10.3390/cells8020123] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process involving autolysosomal degradation of cellular components, including protein aggregates, damaged organelles (such as mitochondria, endoplasmic reticulum, and others), as well as various pathogens. Thus, the autophagy pathway represents a major adaptive response for the maintenance of cellular and tissue homeostasis in response to numerous cellular stressors. A growing body of evidence suggests that autophagy is closely associated with diverse human diseases. Specifically, acute lung injury (ALI) and inflammatory responses caused by bacterial infection or xenobiotic inhalation (e.g., chlorine and cigarette smoke) have been reported to involve a spectrum of alterations in autophagy phenotypes. The role of autophagy in pulmonary infection and inflammatory diseases could be protective or harmful dependent on the conditions. In this review, we describe recent advances regarding the protective features of autophagy in pulmonary diseases, with a focus on ALI, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), tuberculosis, pulmonary arterial hypertension (PAH) and cystic fibrosis.
Collapse
|
30
|
Chen G, Liu S, Pan R, Li G, Tang H, Jiang M, Xing Y, Jin F, Lin L, Dong J. Curcumin Attenuates gp120-Induced Microglial Inflammation by Inhibiting Autophagy via the PI3K Pathway. Cell Mol Neurobiol 2018; 38:1465-1477. [PMID: 30155758 DOI: 10.1007/s10571-018-0616-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.
Collapse
Affiliation(s)
- Guiling Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Sisi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Rui Pan
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guangming Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Haijie Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mingliang Jiang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yanyan Xing
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fujun Jin
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liqing Lin
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Laboratory of Pathophysiology, State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
31
|
Ahmad S, Masjoan Juncos JX, Ahmad A, Zaky A, Wei CC, Bradley WE, Zafar I, Powell P, Mariappan N, Vetal N, Louch WE, Ford DA, Doran SF, Matalon S, Dell'Italia LJ. Bromine inhalation mimics ischemia-reperfusion cardiomyocyte injury and calpain activation in rats. Am J Physiol Heart Circ Physiol 2018; 316:H212-H223. [PMID: 30379573 DOI: 10.1152/ajpheart.00652.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Halogens are widely used, highly toxic chemicals that pose a potential threat to humans because of their abundance. Halogens such as bromine (Br2) cause severe pulmonary and systemic injuries; however, the mechanisms of their toxicity are largely unknown. Here, we demonstrated that Br2 and reactive brominated species produced in the lung and released in blood reach the heart and cause acute cardiac ultrastructural damage and dysfunction in rats. Br2-induced cardiac damage was demonstrated by acute (3-24 h) increases in circulating troponin I, heart-type fatty acid-binding protein, and NH2-terminal pro-brain natriuretic peptide. Transmission electron microscopy demonstrated acute (3-24 h) cardiac contraction band necrosis, disruption of z-disks, and mitochondrial swelling and disorganization. Echocardiography and hemodynamic analysis revealed left ventricular (LV) systolic and diastolic dysfunction at 7 days. Plasma and LV tissue had increased levels of brominated fatty acids. 2-Bromohexadecanal (Br-HDA) injected into the LV cavity of a normal rat caused acute LV enlargement with extensive disruption of the sarcomeric architecture and mitochondrial damage. There was extensive infiltration of neutrophils and increased myeloperoxidase levels in the hearts of Br2- or Br2 reactant-exposed rats. Increased bromination of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and increased phosphalamban after Br2 inhalation decreased cardiac SERCA activity by 70%. SERCA inactivation was accompanied by increased Ca2+-sensitive LV calpain activity. The calpain-specific inhibitor MDL28170 administered within 1 h after exposure significantly decreased calpain activity and acute mortality. Bromine inhalation and formation of reactive brominated species caused acute cardiac injury and myocardial damage that can lead to heart failure. NEW & NOTEWORTHY The present study defines left ventricular systolic and diastolic dysfunction due to cardiac injury after bromine (Br2) inhalation. A calpain-dependent mechanism was identified as a potential mediator of cardiac ultrastructure damage. This study not only highlights the importance of monitoring acute cardiac symptoms in victims of Br2 exposure but also defines calpains as a potential target to treat Br2-induced toxicity.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chih-Chang Wei
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Pamela Powell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nilam Vetal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo , Oslo , Norway.,KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - David A Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University , St. Louis, Missouri
| | - Stephen F Doran
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
32
|
Zhou T, Song WF, Shang Y, Yao SL, Matalon S. Halogen Inhalation-Induced Lung Injury and Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:1214-1219. [PMID: 29722341 PMCID: PMC5956773 DOI: 10.4103/0366-6999.231515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Exposure to halogens, such as chlorine or bromine, results in environmental and occupational hazard to the lung and other organs. Chlorine is highly toxic by inhalation, leading to dyspnea, hypoxemia, airway obstruction, pneumonitis, pulmonary edema, and acute respiratory distress syndrome (ARDS). Although bromine is less reactive and oxidative than chlorine, inhalation also results in bronchospasm, airway hyperresponsiveness, ARDS, and even death. Both halogens have been shown to damage the systemic circulation and result in cardiac injury as well. There is no specific antidote for these injuries since the mechanisms are largely unknown. DATA SOURCES This review was based on articles published in PubMed databases up to January, 2018, with the following keywords: "chlorine," "bromine," "lung injury," and "ARDS." STUDY SELECTION The original articles and reviews including the topics were the primary references. RESULTS Based on animal studies, it is found that inhaled chlorine will form chlorine-derived oxidative products that mediate postexposure toxicity; thus, potential treatments will target the oxidative stress and inflammation induced by chlorine. Antioxidants, cAMP-elevating agents, anti-inflammatory agents, nitric oxide-modulating agents, and high-molecular-weight hyaluronan have shown promising effects in treating acute chlorine injury. Elevated free heme level is involved in acute lung injury caused by bromine inhalation. Hemopexin, a heme-scavenging protein, when administered postexposure, decreases lung injury and improves survival. CONCLUSIONS At present, there is an urgent need for additional research to develop specific therapies that target the basic mechanisms by which halogens damage the lungs and systemic organs.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei-Feng Song
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Gao Y, Wang N, Li RH, Xiao YZ. The Role of Autophagy and the Chemokine (C-X-C Motif) Ligand 16 During Acute Lung Injury in Mice. Med Sci Monit 2018; 24:2404-2412. [PMID: 29677174 PMCID: PMC5928852 DOI: 10.12659/msm.906016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Acute lung injury (ALI) is responsible for mortality in hospitalized patients. Autophagy can negatively regulate inflammatory response, and CXCL16 (chemokine (C-X-C motif) ligand 16) is a kind of chemokine, which is closely related to the inflammatory response. However, the relationship between autophagy and CXCL16 in ALI is still unclear. This study aimed to investigate the role of autophagy and chemokine CXCL16 in ALI in mice. Material/Methods Thirty-two male C57BL/6 mice were divided into four groups. The control group (C group) was given normal saline through intraperitoneal injection. The L group was given LPS (lipopolysaccharide) at 30 mg/kg to construct an ALI model. The 3-MA group received an intraperitoneal injection of inhibitor of autophagy 3-methyladenine at 15 mg/kg, 30 minutes before LPS injection. The anti-CXCL16 group was given 20 mg/kg of CXCL16 monoclonal antibody 30 minutes before the LPS injection. Results In the 3-MA Group, the level of histological analysis, lung wet/dry ratio, total protein of BAL (bronchoalveolar lavage fluid) and TNF-α level were higher than the L group (p<0.05), the level of autophagy was lower than the L group (p<0.05), and the level of CXCL16 was higher than the L group (p<0.05). In the anti-CXCL16 group, the level of histological analysis, lung wet/dry ratio, BAL protein, and TNF-α level were declined compared to the L group (p<0.05), but there was no statistically significant difference in expression of CXCL16 detected by ELISA between the anti-CXCL16 group and the L group (p>0.05). Conclusions Autophagy played a protective role in ALI induced by LPS in mice. Autophagy could regulate the level of CXCL16. The chemokine CXCL16 could exacerbate ALI.
Collapse
Affiliation(s)
- Ye Gao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Ni Wang
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Rui H Li
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yang Z Xiao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
34
|
Li ZY, Wu YF, Xu XC, Zhou JS, Wang Y, Shen HH, Chen ZH. Autophagy as a double-edged sword in pulmonary epithelial injury: a review and perspective. Am J Physiol Lung Cell Mol Physiol 2017; 313:L207-L217. [DOI: 10.1152/ajplung.00562.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/11/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023] Open
Abstract
Pulmonary epithelial cells form the first line of defense of human airways against foreign irritants and also represent as the primary injury target of these pathogenic assaults. Autophagy is a revolutionary conserved ubiquitous process by which cytoplasmic materials are delivered to lysosomes for degradation when facing environmental and/or developmental changes, and emerging evidence suggests that autophagy plays pivotal but controversial roles in pulmonary epithelial injury. Here we review recent studies focusing on the roles of autophagy in regulating airway epithelial injury induced by various stimuli. Articles eligible for this purpose are divided into two groups according to the eventual roles of autophagy, either protective or deleterious. From the evidence summarized in this review, we draw several conclusions as follows: 1) in all cases when autophagy is decreased from its basal level, autophagy is protective; 2) when autophagy is deleterious, it is generally upregulated by stimulation; and 3) a plausible conclusion is that the endosomal/exosomal pathways may be associated with the deleterious function of autophagy in airway epithelial injury, although this needs to be clarified in future investigations.
Collapse
Affiliation(s)
- Zhou-Yang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| | - Yin-Fang Wu
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| | - Xu-Chen Xu
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| | - Jie-Sen Zhou
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
- State Key Lab of Respiratory Disease, Guangzhou, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang; and
| |
Collapse
|
35
|
Summerhill EM, Hoyle GW, Jordt SE, Jugg BJ, Martin JG, Matalon S, Patterson SE, Prezant DJ, Sciuto AM, Svendsen ER, White CW, Veress LA. An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Ann Am Thorac Soc 2017; 14:1060-1072. [PMID: 28418689 PMCID: PMC5529138 DOI: 10.1513/annalsats.201704-297ws] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.
Collapse
|
36
|
Lam A, Prabhu R, Gross CM, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L218-L229. [PMID: 28495854 DOI: 10.1152/ajplung.00162.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest known human diseases and is transmitted by the bacteria Mycobacterium tuberculosis (Mtb). TB has a rich history with evidence of TB infections dating back to 5,800 bc TB is unique in its ability to remain latent in an individual for decades, with the possibility of later reactivation, causing widespread systemic symptoms. Currently, it is estimated that more than one-third of the world's population (~2 billion people) are infected with Mtb. Prolonged periods of therapy and complexity of treatment regimens, especially in active infection, have led to poor compliance in patients being treated for TB. Therefore, it is vitally important to have a thorough knowledge of the pathophysiology of Mtb to understand the disease progression, as well as to develop novel diagnostic tests and treatments. Alveolar macrophages represent both the primary host cell and the first line of defense against the Mtb infection. Apoptosis and autophagy of macrophages play a vital role in the pathogenesis and also in the host defense against Mtb. This review will outline the role of these two cellular processes in defense against Mtb with particular emphasis on innate immunity and explore developing therapies aimed at altering host responses to the disease.
Collapse
Affiliation(s)
- Adam Lam
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rohan Prabhu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Lee Ann Riesenberg
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Vinodkumar Singh
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
37
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
38
|
Aggarwal S, Mannam P, Zhang J. Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L433-52. [PMID: 27402690 PMCID: PMC5504426 DOI: 10.1152/ajplung.00128.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
Lysosomal-mediated degradation of intracellular lipids, proteins and organelles, known as autophagy, represents a inducible adaptive response to lung injury resulting from exposure to insults, such as hypoxia, microbes, inflammation, ischemia-reperfusion, pharmaceuticals (e.g., bleomycin), or inhaled xenobiotics (i.e., air pollution, cigarette smoke). This process clears damaged or toxic cellular constituents and facilitates cell survival in stressful environments. Autophagic degradation of dysfunctional or damaged mitochondria is termed mitophagy. Enhanced mitophagy is usually an early response to promote survival. However, overwhelming or prolonged mitochondrial damage can induce excessive/pathological levels of mitophagy, thereby promoting cell death and tissue injury. Autophagy/mitophagy is therefore an important modulator in human pulmonary diseases and a potential therapeutic target. This review article will summarize the most recent studies highlighting the role of autophagy/mitophagy and its molecular pathways involved in stress response in pulmonary pathologies.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Praveen Mannam
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Carlisle M, Lam A, Svendsen ER, Aggarwal S, Matalon S. Chlorine-induced cardiopulmonary injury. Ann N Y Acad Sci 2016; 1374:159-67. [PMID: 27303906 DOI: 10.1111/nyas.13091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chlorine (Cl2 ) is utilized worldwide for a diverse range of industrial applications, including pulp bleaching, sanitation, and pharmaceutical development. Though Cl2 has widespread use, little is known regarding the mechanisms of toxicity associated with Cl2 exposure, which occurs during industrial accidents or acts of terrorism. Previous instances of Cl2 exposure have led to reported episodes of respiratory distress that result in high morbidity and mortality. Furthermore, studies suggest that acute Cl2 exposure also results in systemic vascular injury and subsequent myocardial contractile dysfunction. Here, we review both lung and cardiac pathology associated with acute Cl2 inhalation and discuss recently published data that suggest that mitochondrial dysfunction underlies the pathogenesis of Cl2 -induced toxicity. Last, we discuss our findings that suggest that upregulation of autophagy protects against Cl2 -induced lung inflammation and can be a potential therapeutic target for ameliorating the toxic effects of Cl2 exposure.
Collapse
Affiliation(s)
- Matthew Carlisle
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam Lam
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erik R Svendsen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina.,Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Rojo de la Vega M, Dodson M, Gross C, Mansour HM, Lantz RC, Chapman E, Wang T, Black SM, Garcia JGN, Zhang DD. Role of Nrf2 and Autophagy in Acute Lung Injury. ACTA ACUST UNITED AC 2016; 2:91-101. [PMID: 27313980 DOI: 10.1007/s40495-016-0053-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS.
Collapse
Affiliation(s)
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Christine Gross
- Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, University of Arizona, Tucson, AZ, USA
| | - R Clark Lantz
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ting Wang
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Joe G N Garcia
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
41
|
Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WWY, Bay BH, Yen PM. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology 2016; 157:23-38. [PMID: 26562261 DOI: 10.1210/en.2015-1632] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/chemistry
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/drug effects
- Autophagy-Related Protein 5
- Autophagy-Related Protein-1 Homolog
- Cell Line
- Gene Expression Regulation/drug effects
- Kinetics
- Male
- Mice, Inbred C57BL
- Microtubule-Associated Proteins/antagonists & inhibitors
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Dynamics/drug effects
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/ultrastructure
- Oxygen Consumption/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Thyroxine/metabolism
- Thyroxine/pharmacology
- Transcription Factors/agonists
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triiodothyronine/metabolism
- Triiodothyronine/pharmacology
Collapse
Affiliation(s)
- Ronny Lesmana
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Rohit A Sinha
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brijesh K Singh
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jin Zhou
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kenji Ohba
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yajun Wu
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Winifred W Y Yau
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Boon-Huat Bay
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Paul M Yen
- Laboratory of Hormonal Regulation (R.L., R.A.S., B.K.S., J.Z., K.O., W.WY.Y., P.M.Y.), Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Anatomy (Y.W., B.-H.B.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599; and Duke Molecular Physiology Institute and Department of Medicine (P.M.Y.), Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Mao S, Zhang J. Role of autophagy in chronic kidney diseases. Int J Clin Exp Med 2015; 8:22022-9. [PMID: 26885176 PMCID: PMC4729962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Chronic kidney diseases (CKD), a common pathway of various glomerular diseases, which carries great morbidity and mortality to people. CKD is characterized by progressive kidney fibrosis and remodeling. CKD is also associated with the depletion of glomerular and tubular cells. Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. It plays an important role in both normal and disease states, including immunity, inflammation, and adaptation to stress. Evidence has indicated that impaired autophagic activity is involved in the development of CKD. Here, we review the progress in our understanding of the role of autophagy in the development and progression of CKD. Targeting the autophagic signaling pathways may be a therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Jianhua Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
43
|
Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB, Carter AB, Rowe SM, Matalon S, Thannickal VJ, Agarwal A, Antony VB. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L280-92. [PMID: 26071551 DOI: 10.1152/ajplung.00097.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Suman Karki
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Sergey B Mirov
- Department of Physics, University of Alabama at Birmingham, Alabama
| | - A Brent Carter
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama; Veterans Affairs Medical Center, University of Alabama at Birmingham, Alabama
| | - Steven M Rowe
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama; Department of Pediatrics, University of Alabama at Birmingham, Alabama; Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology Department of Medicine, University of Alabama at Birmingham, Alabama; Veterans Affairs Medical Center, University of Alabama at Birmingham, Alabama
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Alabama;
| |
Collapse
|