1
|
Kong Y, Ji J, Zhan X, Yan W, Liu F, Ye P, Wang S, Tai J. Tet1-mediated 5hmC regulates hippocampal neuroinflammation via wnt signaling as a novel mechanism in obstructive sleep apnoea leads to cognitive deficit. J Neuroinflammation 2024; 21:208. [PMID: 39169375 PMCID: PMC11340128 DOI: 10.1186/s12974-024-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a sleep-disordered breathing characterized by intermittent hypoxia (IH) that may cause cognitive dysfunction. However, the impact of IH on molecular processes involved in cognitive function remains unclear. METHODS C57BL / 6 J mice were exposed to either normoxia (control) or IH for 6 weeks. DNA hydroxymethylation was quantified by hydroxymethylated DNA immunoprecipitation (hMeDIP) sequencing. ten-eleven translocation 1 (Tet1) was knocked down by lentivirus. Specifically, cognitive function was assessed by behavioral experiments, pathological features were assessed by HE staining, the hippocampal DNA hydroxymethylation was examined by DNA dot blot and immunohistochemical staining, while the Wnt signaling pathway and its downstream effects were studied using qRT-PCR, immunofluorescence staining, and Luminex liquid suspension chip analysis. RESULTS IH mice showed pathological changes and cognitive dysfunction in the hippocampus. Compared with the control group, IH mice exhibited global DNA hydroxylmethylation in the hippocampus, and the expression of three hydroxylmethylases increased significantly. The Wnt signaling pathway was activated, and the mRNA and 5hmC levels of Wnt3a, Ccnd2, and Prickle2 were significantly up-regulated. Further caused downstream neurogenesis abnormalities and neuroinflammatory activation, manifested as increased expression of IBA1 (a marker of microglia), GFAP (a marker of astrocytes), and DCX (a marker of immature neurons), as well as a range of inflammatory cytokines (e.g. TNFa, IL3, IL9, and IL17A). After Tet1 knocked down, the above indicators return to normal. CONCLUSION Activation of Wnt signaling pathway by hippocampal Tet1 is associated with cognitive dysfunction induced by IH.
Collapse
Affiliation(s)
- Yaru Kong
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Jie Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Fan Liu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pengfei Ye
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Tai
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China.
| |
Collapse
|
2
|
Liu W, Wang Q, Luo H, Luo B, Zhao F, Kang Y, Zhang Y, Shao L. Nanographene Oxide Promotes Angiogenesis by Regulating Osteoclast Differentiation and Platelet-Derived Growth Factor Secretion. ACS NANO 2024; 18:22390-22403. [PMID: 39105734 DOI: 10.1021/acsnano.4c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
An imbalanced system of angiogenesis-osteoblasts-osteoclasts is regarded as the main factor in bone remodeling dysfunction diseases or osseointegration loss. Osteoclast precursors are the key cells that accelerate bone-specific angiogenesis and maintain normal osteoblast and osteoclast function. Graphene oxide is an effective scaffold surface modification agent with broad application prospects in bone tissue engineering. However, the effect of graphene oxide on the interaction between osteoclasts and angiogenesis has not yet been elucidated. In this study, a rat calvarial defect model was established and treated with an electrochemically derived nanographene oxide (ENGO) hydrogel. Higher angiogenesis and platelet-derived growth factor (PDGF) B in preosteoclasts were observed in the ENGO group compared with that in the control group. Moreover, in vitro experiments demonstrate the efficacy of ENGO in substantially reducing the expression of the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast-associated markers and inhibiting bone resorption activity. Additionally, ENGO enhances the secretion of the osteoclast-derived coupling factor PDGF-BB and promotes angiogenesis. Our investigation revealed the crucial role of isocitrate dehydrogenase 1 (IDH1) in the ENGO-mediated regulation of osteoclast differentiation and PDGF-BB secretion. The decreased expression of IDH1 reduces the level of histone lysine demethylase 7A (KDM7A) and subsequently increases the H3K9me2 level in the cathepsin K promoter region. In summary, we found that ENGO promotes angiogenesis by inhibiting the maturity of RANKL-induced osteoclasts and enhancing PDGF-BB secretion. These results indicate that ENGO holds promise for the application in fostering osteoclast-endothelial cell crosstalk, providing an effective strategy for treating bone resorption and osteoclast-related bone loss diseases.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Haiyun Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Bichong Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Tian Q, Yan Z, Guo Y, Chen Z, Li M. Inflammatory Role of CCR1 in the Central Nervous System. Neuroimmunomodulation 2024; 31:173-182. [PMID: 39116843 DOI: 10.1159/000540460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemokine ligands and their corresponding receptors are essential for regulating inflammatory responses. Chemokine receptors can stimulate immune activation or inhibit/promote signaling pathways by binding to specific chemokine ligands. Among these receptors, CC chemokine receptor 1 (CCR1) is extensively studied as a G protein-linked receptor target, predominantly expressed in various leukocytes, and is considered a promising target for anti-inflammatory therapy. Furthermore, CCR1 is essential for monocyte extravasation and transportation in inflammatory conditions. Its involvement in inflammatory diseases of the central nervous system (CNS), including multiple sclerosis, Alzheimer's disease, and stroke, has been extensively studied along with its ligands. Animal models have demonstrated the beneficial effects resulting from inhibiting CCR1 or its ligands. SUMMARY This review demonstrates the significance of CCR1 in CNS inflammatory diseases, the molecules implicated in the inflammatory pathway, and potential drugs or molecules for treating CNS diseases. This evidence may offer new targets or strategies for treating inflammatory CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
5
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
6
|
Huang F, Luo X, Ou Y, Gao Z, Tang Q, Chu Z, Zhu X, He Y. Control of histone demethylation by nuclear-localized α-ketoglutarate dehydrogenase. Science 2023; 381:eadf8822. [PMID: 37440635 DOI: 10.1126/science.adf8822] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023]
Abstract
Methylations on nucleosomal histones play fundamental roles in regulating eukaryotic transcription. Jumonji C domain-containing histone demethylases (JMJs) dynamically control the level of histone methylations. However, how JMJ activity is generally regulated is unknown. We found that the tricarboxylic acid cycle-associated enzyme α-ketoglutarate (α-KG) dehydrogenase (KGDH) entered the nucleus, where it interacted with various JMJs to regulate α-KG-dependent histone demethylations by JMJs, and thus controlled genome-wide gene expression in plants. We show that nuclear targeting is regulated by environmental signals and that KGDH is enriched at thousands of loci in Arabidopsis thaliana. Chromatin-bound KGDH catalyzes α-KG decarboxylation and thus may limit its local availability to KGDH-coupled JMJs, inhibiting histone demethylation. Thus, our results uncover a regulatory mechanism for histone demethylations by JMJs.
Collapse
Affiliation(s)
- Fei Huang
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Xiao Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yang Ou
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Zhaoxu Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiming Tang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Zhenzhen Chu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Xinguang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
7
|
Reflections on the Biology of Cell Culture Models: Living on the Edge of Oxidative Metabolism in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032717. [PMID: 36769044 PMCID: PMC9916950 DOI: 10.3390/ijms24032717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of cell metabolism is a hot topic in cancer research. Many studies have used 2D conventional cell cultures for their simplicity and the facility to infer mechanisms. However, the limitations of bidimensional cell cultures to recreate architecture, mechanics, and cell communication between tumor cells and their environment, have forced the development of other more realistic in vitro methodologies. Therefore, the explosion of 3D culture techniques and the necessity to reduce animal experimentation to a minimum has attracted the attention of researchers in the field of cancer metabolism. Here, we revise the limitations of actual culture models and discuss the utility of several 3D culture techniques to resolve those limitations.
Collapse
|
8
|
Hu L, Hu J, Huang Y, Zheng S, Yin J, Li X, Li D, Lv C, Li S, Hu W. Hypoxia-mediated activation of hypoxia-inducible factor-1α in head and neck squamous cell carcinoma: A review. Medicine (Baltimore) 2023; 102:e32533. [PMID: 36607847 PMCID: PMC9829281 DOI: 10.1097/md.0000000000032533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the 1950s, hypoxia has been recognized as a crucial characteristic of cancer cells and their microenvironment. Indeed, hypoxia promotes the growth, survival, and metastasis of cancer cells. In the early 1990s, we found that as many phenomena in hypoxia can occur through hypoxia-inducible factor-1α (HIF1α). HIF1α is known as an angiogenesis converter in hypoxia, which promotes tumorigenesis, development, immune escape, recurrence, etc; This page goes into great detail on how HIF1α is activated during hypoxia and how the 2 signaling channels interact. It specifically emphasizes the significance of reactive oxygen species, the function of the PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade, and outlines the similarities between the 2 important factors (reactive oxygen species and PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade), nuclear factor κB, for HIF1α Important implications, in an effort to offer fresh views for the treatment of head and neck squamous cell carcinoma and HIF1α research.
Collapse
Affiliation(s)
- Lanxin Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Hu
- Clinical Medicine, Nanchang University Queen Mary School, Nanchang, China
| | - Yanlin Huang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sihan Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Daiying Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Caifeng Lv
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenjian Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- * Correspondence: Wenjian Hu, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, O.182 Chunhui Road Longmatan District Luzhou Sichuan 646000, China (e-mail: )
| |
Collapse
|
9
|
Montella L, Cuomo M, Del Gaudio N, Buonaiuto M, Costabile D, Visconti R, Di Risi T, Vinciguerra R, Trio F, Ferraro S, Bove G, Facchini G, Altucci L, Chiariotti L, Della Monica R. Epigenetic alterations in glioblastomas: Diagnostic, prognostic and therapeutic relevance. Int J Cancer 2022. [PMID: 36479695 DOI: 10.1002/ijc.34381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples "Federico II", Naples, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Institute for the Experimental Endocrinology and Oncology, Italian National Council of Research, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Naples, Italy
| | | | | | - Sara Ferraro
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
CCL18 Expression Is Higher in a Glioblastoma Multiforme Tumor than in the Peritumoral Area and Causes the Migration of Tumor Cells Sensitized by Hypoxia. Int J Mol Sci 2022; 23:ijms23158536. [PMID: 35955670 PMCID: PMC9369326 DOI: 10.3390/ijms23158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a very poor prognosis. For this reason, researchers worldwide study the impact of the tumor microenvironment in GBM, such as the effect of chemokines. In the present study, we focus on the role of the chemokine CCL18 and its receptors in the GBM tumor. We measured the expression of CCL18, CCR8 and PITPNM3 in the GMB tumor from patients (16 men and 12 women) using quantitative real-time polymerase chain reaction. To investigate the effect of CCL18 on the proliferation and migration of GBM cells, experiments were performed using U-87 MG cells. The results showed that CCL18 expression was higher in the GBM tumor than in the peritumoral area. The women had a decreased expression of PITPNM3 receptor in the GBM tumor, while in the men a lower expression of CCR8 was observed. The hypoxia-mimetic agent, cobalt chloride (CoCl2), increased the expression of CCL18 and PITPNM3 and thereby sensitized U-87 MG cells to CCL18, which did not affect the proliferation of U-87 MG cells but increased the migration of the test cells. The results indicate that GBM cells migrate from hypoxic areas, which may be important in understanding the mechanisms of tumorigenesis.
Collapse
|
11
|
Song YP, Lv JW, Zhao Y, Chen X, Zhang ZC, Fan YJ, Zhang C, Gao L, Huang Y, Wang H, Xu DX. DNA hydroxymethylation reprogramming of β-oxidation genes mediates early-life arsenic-evoked hepatic lipid accumulation in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128511. [PMID: 35739688 DOI: 10.1016/j.jhazmat.2022.128511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The metabolic disorders are becoming an epidemic disease endangering public health in countries. Environmental factors are mainly reason for the growth of metabolic disorders. Previous research suggests that DNA methylation is a potential mechanism. Recently, it has been reported that DNA hydroxymethylation is also a stable marker of epigenetic reprogramming. Hence, the study aims to investigate whether DNA hydroxymehylation mediates early-life environmental stress-evoked metabolic disorder in adulthood. Mice were orally administered with arsenic (As), an environmental stressor, throughout pregnancy. We show that early-life As exposure induces glucose intolerance and hepatic lipid accumulation in adulthood. Early-life As exposure alters epigenetic reprogramming and expression of lipid metabolism-related genes including β-oxidation-specific genes in adulthood. Of interest, early-life As exposure alters epigenetic reprogramming of hepatic lipid metabolism partially through reducing DNA hydroxymethylation modification of β-oxidation-related genes in developing liver. Mechanistically, early-life As exposure suppresses ten-eleven translocation (TET) activity through downregulating isocitrate dehydrogenases (Idh) and reducing alpha-ketoglutarate (α-KG) content in the developing liver. In addition, early-life As exposure inhibits TET1 binding to CpG-rich fragments of β-oxidation-related genes in developing liver. This study provide novel evidence that early-life environmental stress leads to later life metabolic disorders by altering hepatic DNA hydroxymethylation reprogramming.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ying Zhao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Wang K, Yang C, Li H, Liu X, Zheng M, Xuan Z, Mei Z, Wang H. Role of the Epigenetic Modifier JMJD6 in Tumor Development and Regulation of Immune Response. Front Immunol 2022; 13:859893. [PMID: 35359945 PMCID: PMC8963961 DOI: 10.3389/fimmu.2022.859893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
JMJD6 is a member of the Jumonji (JMJC) domain family of histone demethylases that contributes to catalyzing the demethylation of H3R2me2 and/or H4R3me2 and regulating the expression of specific genes. JMJD6-mediated demethylation modifications are involved in the regulation of transcription, chromatin structure, epigenetics, and genome integrity. The abnormal expression of JMJD6 is associated with the occurrence and development of a variety of tumors, including breast carcinoma, lung carcinoma, colon carcinoma, glioma, prostate carcinoma, melanoma, liver carcinoma, etc. Besides, JMJD6 regulates the innate immune response and affects many biological functions, as well as may play key roles in the regulation of immune response in tumors. Given the importance of epigenetic function in tumors, targeting JMJD6 gene by modulating the role of immune components in tumorigenesis and its development will contribute to the development of a promising strategy for cancer therapy. In this article, we introduce the structure and biological activities of JMJD6, followed by summarizing its roles in tumorigenesis and tumor development. Importantly, we highlight the potential functions of JMJD6 in the regulation of tumor immune response, as well as the development of JMJD6 targeted small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Haibin Li
- Department of Pharmacy, 908th Hospital of Chinese PLA Joint Logistic Support Force, Yingtan, China
| | - Xiaoyan Liu
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Zhiqiang Mei
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| |
Collapse
|
13
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Air Pollution and Perinatal Health in the Eastern Mediterranean Region: Challenges, Limitations, and the Potential of Epigenetics. Curr Environ Health Rep 2022; 9:1-10. [PMID: 35080743 DOI: 10.1007/s40572-022-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Even though the burden of disease attributable to air pollution is high in the Eastern Mediterranean Region (EMR), the number of studies linking environmental exposures to negative health outcomes remains scarce and limited in scope. This review aims to assess the literature on exposure to air pollutants and perinatal health in the EMR and to explain the potential of epigenetics in exploring the processes behind adverse birth outcomes. RECENT FINDINGS In the last three decades, hundreds of studies and publications tackled the health effects of air pollution on birth outcomes and early life development, but only a small number of these studies was conducted in the EMR. The existing literature is concentrated in specific geographic locations and is focused on a limited number of exposures and outcomes. Main limitations include inconsistent and poorly funded air quality monitoring, inappropriate study designs, imprecise and/or unreliable assessments of exposures, and outcomes. Even though the studies establish associations between air pollutants and adverse birth outcomes, the mechanisms through which these processes take place are yet to be fully understood. A likely candidate to explain these processes is epigenetics; however, epigenetics research on the impact of air pollution in EMR is still in its infancy. This review highlights the need for future research examining perinatal health and air pollutants, especially the epigenetic processes that underlie the adverse birth outcomes, to better understand them and to develop effective recommendations and intervention strategies.
Collapse
|
15
|
Epigenetics is Promising Direction in Modern Science. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.
Collapse
|
16
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol 2021; 12:786038. [PMID: 34950057 PMCID: PMC8688922 DOI: 10.3389/fphys.2021.786038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
19
|
Shao J, Shi T, Yu H, Ding Y, Li L, Wang X, Wang X. Cytosolic GDH1 degradation restricts protein synthesis to sustain tumor cell survival following amino acid deprivation. EMBO J 2021; 40:e107480. [PMID: 34269483 PMCID: PMC8521317 DOI: 10.15252/embj.2020107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023] Open
Abstract
The mTORC1 pathway plays key roles in regulating various biological processes, including sensing amino acid deprivation and driving expression of ribosomal protein (RP)-coding genes. In this study, we observed that depletion of glutamate dehydrogenase 1 (GDH1), an enzyme that converts glutamate to α-ketoglutarate (αKG), confers resistance to amino acid deprivation on kidney renal clear cell carcinoma (KIRC) cells. Mechanistically, under conditions of adequate nutrition, GDH1 maintains RP gene expression in a manner dependent on its enzymatic activity. Following amino acid deprivation or mTORC1 inhibition, GDH1 translocates from mitochondria to the cytoplasm, where it becomes ubiquitinated and degraded via the E3 ligase RNF213. GDH1 degradation reduces intracellular αKG levels by more than half and decreases the activity of αKG-dependent lysine demethylases (KDMs). Reduced KDM activity in turn leads to increased histone H3 lysine 9 and 27 methylation, further suppressing RP gene expression and preserving nutrition to support cell survival. In summary, our study exemplifies an economical and efficient strategy of solid tumor cells for coping with amino acid deficiency, which might in the future be targeted to block renal carcinoma progression.
Collapse
Affiliation(s)
- Jialiang Shao
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Tiezhu Shi
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Hua Yu
- CAS Key Laboratory of Tissue Microenvironment and TumorInstitute of Nutrition and Health SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yufeng Ding
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Liping Li
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiang Wang
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Xiongjun Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorInstitute of Nutrition and Health SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
20
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
21
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
22
|
Bagyi J, Sripada V, Aidone AM, Lin HY, Ruder EH, Crawford DR. Dietary rational targeting of redox-regulated genes. Free Radic Biol Med 2021; 173:19-28. [PMID: 34274490 DOI: 10.1016/j.freeradbiomed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Nutrigenomics is the study of how food and associated nutrients affect gene expression. This field sits at the intersection of diet, the genome and health with the ultimate goal of exploiting its understanding to design a precision nutrition strategy for humans. We have studied diet and nutrigenomics in the context of something we call "dietary rational gene targeting." Here, healthy diet is used to alter disease-causing gene expression back toward the normal to treat various diseases and conditions while lowering treatment cost and toxicity. In this paper, we discuss the use of this strategy to modulate the expression of redox-associated genes to improve human health. Most human disorders are associated, at least to some extent, with oxidative stress and so treatments (including diet) that target redox-related genes have major potential clinical significance. Healthy dietary options here are wide-ranging and include whole foods and botanical-based beverages. In some cases, botanical supplements may also be useful gene modulators although their health benefits are less clear. Key redox gene targets for these dietary agents include antioxidant genes, related transcription factors, detoxification genes, and DNA repair genes. Other important considerations include bioavailability, the contribution of the microbiome, and advancing technologies. In this review, specific examples of redox associated genes and pathologies and their potential treatment with healthy diet are presented to illustrate our approach. This will also serve as a foundation for the design of future clinical studies to improve diet-related health.
Collapse
Affiliation(s)
- Joyce Bagyi
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Andrea M Aidone
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - H-Y Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Wan Fang Hospital, Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Elizabeth H Ruder
- Wegmans School of Health and Nutrition, College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, 14620, USA
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
23
|
Brewer AC. Physiological interrelationships between NADPH oxidases and chromatin remodelling. Free Radic Biol Med 2021; 170:109-115. [PMID: 33556461 DOI: 10.1016/j.freeradbiomed.2021.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The epigenetic landscape describes the chromatin structure of the eukaryotic genome and is therefore the major determinant of gene transcription and hence cellular phenotype. The molecular processes which act to shape the epigenetic landscape through cellular differentiation are thus central to cellular determination and specification. In addition, cellular adaptation to (patho)-physiological stress requires dynamic and reversible chromatin remodelling. It is becoming clear that redox-dependent molecular mechanisms are important determinants of this epigenetic regulation. NADPH oxidases generate reactive oxygen species (ROS) to activate redox-dependent signalling pathways in response to extracellular and intracellular environmental cues. This mini review aims to summarise the current knowledge of the role of NADPH oxidases in redox-dependent chromatin remodelling, and how epigenetic changes might feedback and impact upon the transcriptional expression of these ROS-producing enzymes themselves. The potential physiological significance of this relationship in the control of cellular differentiation and homeostasis by Nox4, specifically, is discussed.
Collapse
Affiliation(s)
- Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
24
|
Morellato AE, Umansky C, Pontel LB. The toxic side of one-carbon metabolism and epigenetics. Redox Biol 2021; 40:101850. [PMID: 33418141 PMCID: PMC7804977 DOI: 10.1016/j.redox.2020.101850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
One-carbon metabolism is a central metabolic hub that provides one-carbon units for essential biosynthetic reactions and for writing epigenetics marks. The leading role in this hub is performed by the one-carbon carrier tetrahydrofolate (THF), which accepts formaldehyde usually from serine generating one-carbon THF intermediates in a set of reactions known as the folate or one-carbon cycle. THF derivatives can feed one-carbon units into purine and thymidine synthesis, and into the methionine cycle that produces the universal methyl-donor S-adenosylmethionine (AdoMet). AdoMet delivers methyl groups for epigenetic methylations and it is metabolized to homocysteine (Hcy), which can enter the transsulfuration pathway for the production of cysteine and lastly glutathione (GSH), the main cellular antioxidant. This vital role of THF comes to an expense. THF and other folate derivatives are susceptible to oxidative breakdown releasing formaldehyde, which can damage DNA -a consequence prevented by the Fanconi Anaemia DNA repair pathway. Epigenetic demethylations catalysed by lysine-specific demethylases (LSD) and Jumonji histone demethylases can also release formaldehyde, constituting a potential threat for genome integrity. In mammals, the toxicity of formaldehyde is limited by a metabolic route centred on the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which oxidizes formaldehyde conjugated to GSH, lastly generating formate. Remarkably, this formate can be a significant source of one-carbon units, thus defining a formaldehyde cycle that likely restricts the toxicity of one-carbon metabolism and epigenetic demethylations. This work describes recent advances in one-carbon metabolism and epigenetics, focusing on the steps that involve formaldehyde flux and that might lead to cytotoxicity affecting human health.
Collapse
Affiliation(s)
- Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
26
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Weidinger A, Poženel L, Wolbank S, Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front Bioeng Biotechnol 2021; 8:613804. [PMID: 33520964 PMCID: PMC7839410 DOI: 10.3389/fbioe.2020.613804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
For more than 100 years, the human amniotic membrane (hAM) has been used in multiple tissue regeneration applications. The hAM consists of cells with stem cell characteristics and a rich layer of extracellular matrix. Undoubtedly, the hAM with viable cells has remarkable properties such as the differentiation potential into all three germ layers, immuno-modulatory, and anti-fibrotic properties. At first sight, the hAM seems to be one structural entity. However, by integrating its anatomical location, the hAM can be divided into placental, reflected, and umbilical amniotic membrane. Recent studies show that cells of these amniotic sub-regions differ considerably in their properties such as morphology, structure, and content/release of certain bioactive factors. The aim of this review is to summarize these findings and discuss the relevance of these different properties for tissue regeneration. In summary, reflected amnion seems to be more immuno-modulatory and could have a higher reprogramming efficiency, whereas placental amnion seems to be pro-inflammatory, pro-angiogenic, with higher proliferation and differentiation capacity (e.g., chondrogenic and osteogenic), and could be more suitable for certain graft constructions. Therefore, we suggest that the respective hAM sub-region should be selected in consideration of its desired outcome. This will help to optimize and fine-tune the clinical application of the hAM.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Laura Poženel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
28
|
Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020; 9:E1006. [PMID: 33266135 PMCID: PMC7760189 DOI: 10.3390/pathogens9121006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The extended and diverse interference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in multiple host functions and the diverse associated symptoms implicate its involvement in fundamental cellular regulatory processes. The activity of ten-eleven translocase 2 (TET2) responsible for selective DNA demethylation, has been recently identified as a regulator of endogenous virus inactivation and viral invasion, possibly by proteasomal deregulation of the TET2/TET3 activities. In a recent report, we presented a detailed list of factors that can be affected by TET activity, including recognition of zinc finger protein binding sites and bimodal promoters, by enhancing the flexibility of adjacent sequences. In this review, we summarize the TET-associated processes and factors that could account for SARS-CoV-2 diverse symptoms. Moreover, we provide a correlation for the observed virus-induced symptoms that have been previously associated with TET activities by in vitro and in vitro studies. These include early hypoxia, neuronal regulation, smell and taste development, liver, intestinal, and cardiomyocyte differentiation. Finally, we propose that the high mortality of SARS-CoV-2 among adult patients, the different clinical symptoms of adults compared to children, the higher risk of patients with metabolic deregulation, and the low mortality rates among women can all be accounted for by the complex balance of the three enzymes with TET activity, which is developmentally regulated. This activity is age-dependent, related to telomere homeostasis and integrity, and associated with X chromosome inactivation via (de)regulation of the responsible XIST gene expression.
Collapse
Affiliation(s)
- Sofia Kouidou
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Andigoni Malousi
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | |
Collapse
|
29
|
Zhao Q, Zhang Z, Rong W, Jin W, Yan L, Jin W, Xu Y, Cui X, Tang QQ, Pan D. KMT5c modulates adipocyte thermogenesis by regulating Trp53 expression. Proc Natl Acad Sci U S A 2020; 117:22413-22422. [PMID: 32839323 PMCID: PMC7486735 DOI: 10.1073/pnas.1922548117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brown and beige adipocytes harbor the thermogenic capacity to adapt to environmental thermal or nutritional changes. Histone methylation is an essential epigenetic modification involved in the modulation of nonshivering thermogenesis in adipocytes. Here, we describe a molecular network leading by KMT5c, a H4K20 methyltransferase, that regulates adipocyte thermogenesis and systemic energy expenditure. The expression of Kmt5c is dramatically induced by a β3-adrenergic signaling cascade in both brown and beige fat cells. Depleting Kmt5c in adipocytes in vivo leads to a decreased expression of thermogenic genes in both brown and subcutaneous (s.c.) fat tissues. These mice are prone to high-fat-diet-induced obesity and develop glucose intolerance. Enhanced transformation related protein 53 (Trp53) expression in Kmt5c knockout (KO) mice, that is due to the decreased repressive mark H4K20me3 on its proximal promoter, is responsible for the metabolic phenotypes. Together, these findings reveal the physiological role for KMT5c-mediated H4K20 methylation in the maintenance and activation of the thermogenic program in adipocytes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Weiqiong Rong
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Weiwei Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| |
Collapse
|
30
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
31
|
Florentino D, Della Giustina A, de Souza Goldim MP, Danielski LG, de Oliveira Junior AN, Joaquim L, Bonfante S, Biehl E, da Rosa N, Fernandes D, Gava FF, Michels M, Fortunato JJ, Réus GZ, S Valvassori S, Quevedo J, Dal-Pizzol F, Barichello T, Petronilho F. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135:104712. [DOI: 10.1016/j.neuint.2020.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
|
32
|
Green HLH, Brewer AC. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics 2020; 12:59. [PMID: 32345373 PMCID: PMC7189706 DOI: 10.1186/s13148-020-00848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical, social and economic burden of cardiovascular disease (CVD) associated with diabetes underscores an urgency for understanding the disease aetiology. Evidence suggests that the hyperglycaemia associated with diabetes is, of itself, causal in the development of endothelial dysfunction (ED) which is recognised to be the critical determinant in the development of CVD. It is further recognised that epigenetic modifications associated with changes in gene expression are causal in both the initiation of ED and the progression to CVD. Understanding whether and how hyperglycaemia induces epigenetic modifications therefore seems crucial in the development of preventative treatments. A mechanistic link between energy metabolism and epigenetic regulation is increasingly becoming explored as key energy metabolites typically serve as substrates or co-factors for epigenetic modifying enzymes. Intriguing examples are the ten-eleven translocation and Jumonji C proteins which facilitate the demethylation of DNA and histones respectively. These are members of the 2-oxoglutarate-dependent dioxygenase superfamily which require the tricarboxylic acid metabolite, α-ketoglutarate and molecular oxygen (O2) as substrates and Fe (II) as a co-factor. An understanding of precisely how the biochemical effects of high glucose exposure impact upon cellular metabolism, O2 availability and cellular redox in endothelial cells (ECs) may therefore elucidate (in part) the mechanistic link between hyperglycaemia and epigenetic modifications causal in ED and CVD. It would also provide significant proof of concept that dysregulation of the epigenetic landscape may be causal rather than consequential in the development of pathology.
Collapse
Affiliation(s)
- Hannah L H Green
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
33
|
Wang Y, Qin N, Zhao C, Yuan J, Lu S, Li W, Xiang H, Hao H. The correlation between the methylation of PTEN gene and the apoptosis of osteosarcoma cells mediated by SeHA nanoparticles. Colloids Surf B Biointerfaces 2019; 184:110499. [PMID: 31541893 DOI: 10.1016/j.colsurfb.2019.110499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
The invasive spreading of residual osteosarcoma cells becomes a serious threat to human health, urgently needing new bone regenerative biomaterials for orthopedic therapy. Thus, in this work, selenite-substituted hydroxyapatite (SeHA) nanoparticles were prepared for both inhibiting the recurrence of the tumor and accelerating the regenerative repair of bone defect. Physicochemical characterization showed these synthetic nanoparticles were spherical poly-crystals with the shape of snowflakes. Such structure benefited them to inhibit the cellular viability of osteosarcoma cells by about (58.90 ± 14.37)% during 24 h co-culturing. The expression level of cell growth-related genes such as PTEN, MMP-9, Cyclin D1, Cyclin A2, Annexin A2 and CDC2 decreased. Bisulfite Sequence PCR of PTEN gene exhibited about (22.40 ± 5.39)%, (45.91 ± 6.36)% and (25.90 ± 5.36)% promoter methylation in control, HA and SeHA group. Animal experiment also proved the similar effects. Almost no recurrence were observed in SeHA group. Oppositely, the slowly recurrent growth of the remnant tumor appeared in purely surgical group. The overall survival and toxicity analysis showed that, in the usage dose of 0-0.1 g, the SeHA-0.01 exhibited higher inhibitory recurrence and metastasis potentials, lower renal toxicity and better anti-inflammation function. Immunohistochemistry stain showed the reduced expression of PTEN, MMP-9, Ki-67 and Annexin A2, but slightly increased expression of DNMT1 and BMP-2. Compared the methylation status of PTEN gene in each group, it was confirming that SeHA nanoparticles hardly possessed the de-methylation effect, but the pure HA strikingly increased the methylation level of such gene. It seemed the dopant selenite ions possessed de-methylation effect onto PTEN gene. Therefore, from the viewpoint of inhibiting metastatic potentials, the SeHA-0.01 might be a feasible biomaterial to inhibit the relapse of the tumor post-surgery.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China.
| | - Na Qin
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Caifa Zhao
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Jiehua Yuan
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Shiqi Lu
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Wenjing Li
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Huiyao Xiang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Parsanathan R, Jain SK. Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci Rep 2019; 9:14784. [PMID: 31616013 PMCID: PMC6794254 DOI: 10.1038/s41598-019-51377-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity has been correlating with low levels of glutathione (GSH) and 25-hydroxyvitamin D3 (25(OH)VD3). The liver is the principal site for the 25(OH)VD3 biosynthesis. This study investigated whether GSH deficiency induces epigenetic alterations that impair Vitamin D (VD) metabolism genes in the livers of HFD-fed mice. The expression of the VD metabolism genes CYP2R1 and CYP27A1 (25-hydroxylase), CYP27B1 (1-α-hydroxylase), and vitamin D receptor (VDR) were downregulated in the livers of mice fed an HFD (GSH- deficient) compared with control diet-fed group. The expression of CYP24A1 (24-hydroxylase) was significantly increased, which catabolizes both 25(OH)VD3 and 1α,25-hydroxyvitaminD3. Gene-specific hypermethylation of 25-hydroxylase, 1-α-hydroxylase, and VDR, and hypomethylation of CYP24A1 was observed in HFD-fed mice. GSH deficiency induced in cultured hepatocytes caused an increase in oxidative stress and alterations in VD regulatory genes. Similarly, elevated global DNA methylation, Dnmt activity, and 5-methylcytosine but decreased Tet activity and 5-hydroxymethylcytosine were observed in the GSH-deficient hepatocytes and the liver of HFD-fed mice. Replenishment of GSH by its prodrugs treatment beneficially altered epigenetic enzymes, and VD-metabolism genes in hepatocytes. HFD-induces GSH deficiency and epigenetically alters VD-biosynthesis pathway genes. This provides a biochemical mechanism for the VD-deficiency and potential benefits of GSH treatment in reducing 25(OH)VD3-deficiency.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
35
|
Harvey A, Caretti G, Moresi V, Renzini A, Adamo S. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports 2019; 13:573-589. [PMID: 31597110 PMCID: PMC6830055 DOI: 10.1016/j.stemcr.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Collapse
Affiliation(s)
- Alexandra Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 2010, Australia
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy.
| | - Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
36
|
Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142:61-72. [PMID: 30954546 PMCID: PMC6791125 DOI: 10.1016/j.freeradbiomed.2019.03.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Thirty years ago, there was an emerging appreciation for the significance of oxidative stress in newborn disease. This prompted a renewed interest in the impact of oxygen therapy for the newborn in the delivery room and beyond, especially in premature infants. Today, the complexity of oxidative stress both in normal regulation and pathology is better understood, especially as it relates to neonatal mitochondrial oxidative stress responses to hyperoxia. Mitochondria are recipients of oxidative damage and have a propensity for oxidative self-injury that has been implicated in the pathogenesis of neonatal lung diseases. Similarly, both intrauterine growth restriction (IUGR) and macrosomia are associated with mitochondrial dysfunction and oxidative stress. Additionally, reoxygenation with 100% O2 in a hypoxic-ischemic newborn lamb model increased the production of pro-inflammatory cytokines in the brain. Moreover, the interplay between inflammation and oxidative stress in the newborn is better understood because of animal studies. Transcriptomic analyses have found a number of genes to be differentially expressed in murine models of bronchopulmonary dysplasia (BPD). Epigenetic changes have also been detected both in animal models of BPD and premature infants exposed to oxygen. Antioxidant therapy to prevent newborn disease has not been very successful; however, new therapeutic principles, like melatonin, are under investigation.
Collapse
Affiliation(s)
- Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Mary E Robbins
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway
| | - Ola D Saugstad
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
37
|
Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenetics 2019; 11:131. [PMID: 31481107 PMCID: PMC6724236 DOI: 10.1186/s13148-019-0713-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Air pollution exposure is estimated to contribute to approximately seven million early deaths every year worldwide and more than 3% of disability-adjusted life years lost. Air pollution has numerous harmful effects on health and contributes to the development and morbidity of cardiovascular disease, metabolic disorders, and a number of lung pathologies, including asthma and chronic obstructive pulmonary disease (COPD). Emerging data indicate that air pollution exposure modulates the epigenetic mark, DNA methylation (DNAm), and that these changes might in turn influence inflammation, disease development, and exacerbation risk. Several traffic-related air pollution (TRAP) components, including particulate matter (PM), black carbon (BC), ozone (O3), nitrogen oxides (NOx), and polyaromatic hydrocarbons (PAHs), have been associated with changes in DNAm; typically lowering DNAm after exposure. Effects of air pollution on DNAm have been observed across the human lifespan, but it is not yet clear whether early life developmental sensitivity or the accumulation of exposures have the most significant effects on health. Air pollution exposure-associated DNAm patterns are often correlated with long-term negative respiratory health outcomes, including the development of lung diseases, a focus in this review. Recently, interventions such as exercise and B vitamins have been proposed to reduce the impact of air pollution on DNAm and health. Ultimately, improved knowledge of how exposure-induced change in DNAm impacts health, both acutely and chronically, may enable preventative and remedial strategies to reduce morbidity in polluted environments.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada. .,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada.,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.,Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status. Front Neurosci 2019; 13:237. [PMID: 30930741 PMCID: PMC6428769 DOI: 10.3389/fnins.2019.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Histone methylation/demethylation plays an important modulatory role in chromatin restructuring, RNA transcription and is essential for controlling a plethora of biological processes. Due to many human diseases have been related to histone methylation/demethylation, several compounds such as 3-deazaneplanocin A (DZNep) or 3-((6-(4,5-Dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid; N-[2-(2-pyridinyl)-6-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-4-pyrimidinyl]-β-Alanine (GSK-J1), have been designed to inhibit histone methylase or suppress histone demethylase, respectively. In the present study, we investigated the effects on the sleep-wake cycle and sleep-related neurochemical levels after systemic injections of DZNep or GSK-J1 given during the light or dark phase in rats. DZNep dose-dependently (0.1, 1.0, or 10 mg/kg, i.p.) prolonged wakefulness (W) duration while decreased slow wave sleep (SWS) and rapid eye movement sleep (REMS) time spent during the lights-on period with no changes observed in dark phase. In opposite direction, GSK-J1 (0.1, 1.0, or 10 mg/kg, i.p.) injected at the beginning of the lights-on period induced no statistical changes in W, SWS, or REMS whereas if administered at darkness, we found a diminution in W and an enhancement in SWS and REMS. Finally, brain microdialysis experiments in freely moving animals were used to evaluate the effects of DZNep or GSK-J1 treatments on contents of sleep-related neurochemicals. The results showed that DZNep boosted extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, adenosine, and acetylcholine if injected at the beginning of the lights-on period whereas GSK-J1 exerted similar outcomes but when administered at darkness. In summary, DZNep and GSK-J1 may control the sleep-wake cycle and sleep-related neurochemicals through histone methylation/demethylation activity.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jorge Aparecido Barros
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| |
Collapse
|