1
|
Xue S, Luo Z, Mao Y, Liu S. A comprehensive analysis of the pyruvate kinase M1/2 (PKM) in human cancer. Gene 2025; 937:149155. [PMID: 39653090 DOI: 10.1016/j.gene.2024.149155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Pyruvate Kinase Muscle Isozyme (PKM), as a member of the pyruvate kinase, is a key enzyme in glycolysis. Numerous tumors have demonstrated its oncogenic properties. There is, however, no pan-carcinogenic analysis for PKM. METHODS A thorough analysis of PKM across various types of cancer was carried out using bioinformatics resources like The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) database. This study involved analyzing the role of PKM in 33 various types of cancers, along with investigating gene expressions, survival rates, clinical importance, genetic changes, immune system presence, and related signaling pathways. Furthermore, we evaluated the effects of PKM knockdown on human colon carcinoma, and glioblastoma cell lines by in vitro experimentation. RESULTS In most tumors, PKM expression was markedly increased and was associated with unfavorable overall survival (OS) in certain individuals. In addition, infiltration of macrophages was associated with PKM expression in various tumors. PKM was linked to glycolysis/gluconeogenesis, HIF-1 signaling, carbon metabolism, and NADPH regeneration in a mechanistic manner. Additionally, cell experiments showed that the knockdown of PKM could reduce the proliferation and migration abilities while promoting the apoptosis of Caco-2, and U-87 MG cells. CONCLUSION PKM controls immune cell infiltration, impacts patient outcomes in various types of cancer, and plays an essential role in proliferation and migration in some tumor cells by affecting glycometabolism. The PKM molecule may serve as a potential prognostic biomarker and therapeutic target for human cancers.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Ziyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yangqi Mao
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Siyuan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
3
|
Chen X, Jiang B, Gu Y, Yue Z, Liu Y, Lei Z, Yang G, Deng M, Zhang X, Luo Z, Li Y, Zhang Q, Zhang X, Wu J, Huang C, Pan P, Zhou F, Wang N. SARS-CoV-2 nucleocapsid protein interaction with YBX1 displays oncolytic properties through PKM mRNA destabilization. Mol Cancer 2024; 23:248. [PMID: 39506849 PMCID: PMC11539619 DOI: 10.1186/s12943-024-02153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND SARS-CoV-2, a highly contagious coronavirus, is responsible for the global pandemic of COVID-19 in 2019. Currently, it remains uncertain whether SARS-CoV-2 possesses oncogenic or oncolytic potential in influencing tumor progression. Therefore, it is important to evaluate the clinical and functional role of SARS-CoV-2 on tumor progression. METHODS Here, we integrated bioinformatic analysis of COVID-19 RNA-seq data from the GEO database and performed functional studies to explore the regulatory role of SARS-CoV-2 in solid tumor progression, including lung, colon, kidney and liver cancer. RESULTS Our results demonstrate that infection with SARS-CoV-2 is associated with a decreased expression of genes associated with cancer proliferation and metastasis in lung tissues from patients diagnosed with COVID-19. Several cancer proliferation or metastasis related genes were frequently downregulated in SARS-CoV-2 infected intestinal organoids and human colon carcinoma cells. In vivo and in vitro studies revealed that SARS-CoV-2 nucleocapsid (N) protein inhibits colon and kidney tumor growth and metastasis through the N-terminal (NTD) and the C-terminal domain (CTD). The molecular mechanism indicates that the N protein of SARS-CoV-2 interacts with YBX1, resulting in the recruitment of PKM mRNA into stress granules mediated by G3BP1. This process ultimately destabilizes PKM expression and suppresses glycolysis. CONCLUSION Our study reveals a new function of SARS-CoV-2 nucleocapsid protein on tumor progression.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yu Gu
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Ying Liu
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Zhiwei Lei
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, 528315, China
- Section of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Minhua Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Zhen Luo
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Yongkui Li
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Qiwei Zhang
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jianguo Wu
- Institute of Medical Microbiology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| | - Chunyu Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Pan Pan
- School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Fangjian Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Ning Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Beikbaghban T, Proietti L, Ebner J, Sango R, Rattei T, Weichhart T, Grebien F, Sternberg F, Pohl EE. Differential regulation of mitochondrial uncoupling protein 2 in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149486. [PMID: 38986826 DOI: 10.1016/j.bbabio.2024.149486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The persistent growth of cancer cells is underscored by complex metabolic reprogramming, with mitochondria playing a key role in the transition to aerobic glycolysis and representing new therapeutic targets. Mitochondrial uncoupling protein 2 (UCP2) has attracted interest because of its abundance in rapidly proliferating cells, including cancer cells, and its involvement in cellular metabolism. However, the specific contributions of UCP2 to cancer biology remain poorly defined. Our investigation of UCP2 expression in various human and mouse cancer cell lines aimed to elucidate its links to metabolic states, proliferation, and adaptation to environmental stresses such as hypoxia and nutrient deprivation. We observed significant variability in UCP2 expression across cancer types, with no direct correlation to their metabolic activity or proliferation rates. UCP2 abundance was also differentially affected by nutrient availability in different cancer cells, but UCP2 was generally downregulated under hypoxia. These findings challenge the notion that UCP2 is a marker of malignant potential and suggest its more complex involvement in the metabolic landscape of cancer.
Collapse
Affiliation(s)
- Taraneh Beikbaghban
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Roko Sango
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Austria.
| | - Elena E Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
5
|
Sun L, Xiao M, Chen L, Ni L, Chen X, Zhang L, Yao J, Shao Z, Zhao B, Chen X, Liu Y. Enhanced Tissue Regeneration Through Immunomodulatory Extracellular Vesicles Encapsulated in Diversified Silk-Based Injectable Hydrogels. Adv Healthc Mater 2024; 13:e2401460. [PMID: 39011805 DOI: 10.1002/adhm.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Mesenchymal stem cells (MSCs) immunologically trained using lipopolysaccharide (LPS) display enhanced immunomodulatory capabilities. Extracellular vesicles (EVs) derived from MSCs are widely used in regenerative medicine owing to their bioactive properties without the drawbacks of cell therapy. However, it remains unclear whether EVs derived from LPS-stimulated (trained) MSCs (L-EVs) inherit the enhanced reparative potential from their parent cells. Thus, this study first aims to explore the effect of immunological training on the bioactivity of L-EVs. LPS-trained bone marrow-derived MSCs (BMSCs) secrete more EVs, and these EVs significantly promote M2 macrophage polarization. Subsequently, hydrogel systems based on thixotropic injectable silk fibroin are prepared for in vivo EV delivery. These hydrogels have controllable gelation time and exhibit outstanding reparative effects on rat skin wounds and alveolar bone defects. Finally, it is revealed that L-EVs promote M2 macrophage polarization by inhibiting the nuclear translocation of PKM2. Overall, this study shows that the immunological training of BMSCs effectively improves the therapeutic effects of their EVs and provides a convenient and diversified EV delivery strategy using an injectable silk fibroin hydrogel. This strategy has broad clinical application prospects for tissue regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Menglin Xiao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Ling Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Lingyue Ni
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xiaoxuan Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Lina Zhang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinrong Yao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xin Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Yuehua Liu
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
6
|
Liu F, Li C. SIRT1-driven mechanism: sevoflurane's interference with mESC neural differentiation via PRRX1/DRD2 cascade. Hum Mol Genet 2024; 33:1758-1770. [PMID: 39087769 DOI: 10.1093/hmg/ddae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| | - Chenguang Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| |
Collapse
|
7
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024; 58:606-629. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
8
|
Hu Y, Tang J, Xu Q, Fang Z, Li R, Yang M, Zhao J, Chen X. Role of pyruvate kinase M2 in regulating sepsis (Review). Mol Med Rep 2024; 30:185. [PMID: 39155878 DOI: 10.3892/mmr.2024.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Glycolysis occurs in all living organisms as a form of energy supply. Pyruvate kinase M2 (PKM2) is one of the rate‑limiting enzymes in the glycolytic process. PKM2 is considered to serve an important role in several terminal diseases, including sepsis. However, to the best of our knowledge, the specific mechanistic role of PKM2 in sepsis remains to be systematically summarised. Therefore, the present review aims to summarise the roles of PKM2 in sepsis progression. In addition, potential treatment strategies for patients with sepsis are discussed. The present review hopes to lay the groundwork for studying the role of PKM2 and developing therapeutic strategies against metabolic disorders that occur during sepsis.
Collapse
Affiliation(s)
- Yifei Hu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jing Tang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Qiao Xu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Zenghui Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Rongqing Li
- Department of Clinical Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Mengxuan Yang
- Department of Clinical Laboratory, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jie Zhao
- Department of Clinical Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Xin Chen
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
9
|
Iacopini D, Santi M, Santangelo MC, Sardelli G, Piazza L, Mosca R, Comparini LM, Granchi C, Pineschi M, Di Pietro S, Signore G, Di Bussolo V. Glycoconjugate coumarins exploiting metabolism-enhanced fluorescence and preferential uptake: New optical tools for tumor cell staining. Bioorg Chem 2024; 153:107836. [PMID: 39326338 DOI: 10.1016/j.bioorg.2024.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The possibility to visually discriminate cells based on their metabolism and capability to uptake exogenous molecules is an important topic with exciting fallback on translational and precision medicine. To this end, probes that combine several complementary features are necessary. The ideal probe is selectively uptaken and activated in tumor cells compared with control ones and is not fluorescent in the extracellular medium. Fluorogenic compounds that combine enzyme-activated pH sensitivity and good cell uptake can be an ideal solution, provided that the sensed enzymes are dysregulated in tumor cells. Here, we present synthesis and in vitro evaluation of a new class of glyco-coumarin based probes that merge all these features. These probes show uptake ratio in tumor vs. control cells up to 3:1, with a cell to background ratio upon administration of the probe up to 5:1. These features make this new family of fluorogenic targeted probes a promising tool in life science.
Collapse
Affiliation(s)
- Dalila Iacopini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Melissa Santi
- Istituto Nanoscienze-CNR, NEST Laboratory, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Rossella Mosca
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Sebastiano Di Pietro
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy.
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy.
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| |
Collapse
|
10
|
Rossi V, Hochkoeppler A, Govoni M, Di Stefano G. Lactate-Induced HBEGF Shedding and EGFR Activation: Paving the Way to a New Anticancer Therapeutic Opportunity. Cells 2024; 13:1533. [PMID: 39329717 PMCID: PMC11430493 DOI: 10.3390/cells13181533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed that the increased lactate levels characterizing neoplastic tissues can induce the release of uPA, a protease promoting HBEGF shedding. This effect led to EGFR activation and increased ERK1/2 phosphorylation. Since EGFR-mediated signaling potentiates glycolytic metabolism, this phenomenon can induce a self-sustaining deleterious loop, favoring tumor growth. A well characterized HBEGF inhibitor is CRM197, a single-site variant of diphtheria toxin. We observed that, when administered individually, CRM197 did not trigger evident antineoplastic effects. However, its association with a uPA inhibitor caused dampening of EGFR-mediated signaling and apoptosis induction. Overall, our study highlights that the increased glycolytic metabolism and lactate production can foster the activated state of EGFR receptor and suggests that the inhibition of EGFR-mediated signaling can be attempted by means of CRM197 administered with an appropriate protease inhibitor. This attempt could help in overcoming the problem of the acquired resistance to the conventionally used EGFR inhibitors.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| |
Collapse
|
11
|
Jiajun W, Kaifeng G, Jing Z. Urinary PKM2, a marker predicating acute kidney injury in patients with sepsis. Int Urol Nephrol 2024; 56:3039-3045. [PMID: 38635124 DOI: 10.1007/s11255-024-04054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Acute kidney injury (AKI) is a complication commonly occurred in patients with sepsis, and AKI has become the leading cause associated with mortality. PKM2, as a rate-limiting enzyme of glycolysis, was considered to be involved in AKI in vitro and animal models. However, there have been no studies reported on the expression of PKM2 in humans and its association with AKI. METHODS A retrospective study including 57 patients (35 males and 22 females) that were admitted into hospital in 2019 was carried out in our research. The basic characteristics and clinical parameters of each patient were collected from patients' medical records. We assessed changes in the expression of serum and urinary PKM2 using ELISA and its association with clinical manifestations in patients with sepsis through correlation analysis. Besides, ROC analysis was applied for evaluating the role of PKM2 in predicting AKI and death rate. RESULTS Urinary PKM2 is obviously increased in patients with sepsis-associated AKI (P < 0.05), while no significant change was found in the expression of serum PKM2. Moreover, the expression of urinary PKM2 is positively correlated with serum creatinine (r=0.577, P < 0.01) and blood-urea-nitrogen (r=0.531, P<0.01). In addition, it is negatively correlated with glomerular filtration rate (r=-0.583, P<0.01). Besides, ROC analysis indicated that urinary PKM2 could be a predictor of AKI in patients with sepsis (AUC-ROC, 0.819; SE, 0.086, P = 0.004, 95% CI 0.651-0.986). CONCLUSIONS Urinary PKM2 could be a marker predicting acute kidney injury in patients with sepsis.
Collapse
Affiliation(s)
- Wu Jiajun
- Department of Emergency, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo Kaifeng
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhou Jing
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai, 200080, China.
| |
Collapse
|
12
|
Zhu H, Zhang H, Zhao XJ, Zhang L, Liu X, Zhang ZY, Ren YZ, Feng Y. Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia. J Neuroimmune Pharmacol 2024; 19:48. [PMID: 39196455 DOI: 10.1007/s11481-024-10138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/27/2024] [Indexed: 08/29/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial activation and neuroinflammation are key cellular events that determine the outcome of TBI, especially neuronal and cognitive function. Studies have suggested that the metabolic characteristics of microglia dictate their inflammatory response. The pyruvate kinase isoform M2 (PKM2), a key glycolytic enzyme, is involved in the regulation of various cellular metabolic processes, including mitochondrial metabolism. This suggests that PKM2 may also participate in the regulation of microglial activation during TBI. Therefore, the present study aimed to evaluate the role of PKM2 in regulating microglial activation and neuroinflammation and its effects on cognitive function following TBI. A controlled cortical impact (CCI) mouse model and inflammation-induced primary mouse microglial cells in vitro were used to investigate the potential effects of PKM2 inhibition and regulation. PKM2 was significantly increased during the acute and subacute phases of TBI and was predominantly detected in microglia rather than in neurons. Our results demonstrate that shikonin and TEPP-46 can inhibit microglial inflammation, improving mitochondria, improving mouse behavior, reducing brain defect volume, and alleviating pathological changes after TBI. There is a difference in the intervention of shikonin and TEPP-46 on PKM2. Shikonin directly inhibits General PKM2; TEPP-46 can promote the expression of PKM2 tetramer. In vitro experiments, TEPP-46 can promote the expression of PKM2 tetramer, enhance the interaction between PKM2 and MFN2, improve mitochondria, alleviate neuroinflammation. General inhibition and tetramerization activation of PKM2 attenuated cognitive function caused by TBI, whereas PKM2 tetramerization exhibited a better treatment effect. Our experiments demonstrated the non-metabolic role of PKM2 in the regulation of microglial activation following TBI. Both shikonin and TEPP-46 can inhibit pro-inflammatory factors, but only TEPP-46 can promote PKM2 tetramerization and upregulate the release of anti-inflammatory factors from microglia.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Jing Zhao
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Lingyuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yi-Zhi Ren
- Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China, 262 North Zhongshan Road.
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210009, China, Baiziting 42.
| |
Collapse
|
13
|
Ren Y, Wang J, Guo WW, Chen JW, Xu LZ, Wu ZW, Wang YP. PKM2/Hif-1α signal suppression involved in therapeutics of pulmonary fibrosis with microcystin-RR but not with pirfenidone. Toxicon 2024; 247:107822. [PMID: 38908528 DOI: 10.1016/j.toxicon.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.
Collapse
Affiliation(s)
- Yan Ren
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Jie Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Wen-Wen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Wen Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Li-Zhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China
| | - Zhi-Wei Wu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Center for Public Health Research, Nanjing University School of Medicine, Nanjing, China.
| | - Ya-Ping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Hankou Road 22, Nanjing, 210009, China.
| |
Collapse
|
14
|
Jembrek MJ. Inhibition of Oxidative Stress and Related Signaling Pathways in Neuroprotection. Antioxidants (Basel) 2024; 13:1033. [PMID: 39334692 PMCID: PMC11428803 DOI: 10.3390/antiox13091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress, characterized by increased production of reactive oxygen species (ROS) and disturbed redox homeostasis, is one of the key mechanisms underlying synaptic loss and neuronal death in various neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Zhu LS, Lai C, Zhou CW, Chen HY, Liu ZQ, Guo Z, Man H, Du HY, Lu Y, Hu F, Chen Z, Shu K, Zhu LQ, Liu D. Postsynaptic lncRNA Sera/Pkm2 pathway orchestrates the transition from social competition to rank by remodeling the neural ensemble in mPFC. Cell Discov 2024; 10:87. [PMID: 39160208 PMCID: PMC11333582 DOI: 10.1038/s41421-024-00706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.
Collapse
Affiliation(s)
- Ling-Shuang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Yang Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Wu J, Ding Z, Zhong M, Xi J, He Y, Zhang B, Fang J. Polyphyllin II Induces Apoptosis in Fibrosarcoma Cells via Activating Pyruvate Kinase M2. Chem Res Toxicol 2024; 37:1394-1403. [PMID: 39066737 DOI: 10.1021/acs.chemrestox.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aerobic glycolysis is a metabolic reprogramming of tumor cells that is essential for sustaining their phenotype of fast multiplication by continuously supplying energy and mass. Pyruvate kinase M2 (PKM2) has a vital role in this process, which has given it high interest as a target for anticancer drug development. With potent toxicity to many types of cancer cells, polyphyllin II (PP2), a steroidal saponin isolated from the herbaceous plant Rhizoma paridis, brought to our attention that it might interfere with the PKM2 activity. In this study, we discovered that PP2 was a novel agonist of PKM2. PP2 activated recombinant PKM2 and changed the protein's oligomeric state to activate intracellular PKM2. At the same time, PP2 suppressed its protein kinase function by decreasing the content of nuclear PKM2. The mRNA levels of its downstream genes, such as Glut1, LDHA, and MYC, were inhibited. In addition, PP2 induced oxidative stress by downregulating the expression and activity of antioxidant proteins such as NQO1, TrxR, and Trx in HT-1080 cells, which in turn led to mitochondrial dysfunction and ultimately induced apoptosis. Moreover, PP2 reduced the proliferation and migration of HT-1080 cells. Thus, targeting the glycolysis pathway offers an unprecedented mode of action for comprehending PP2's pharmacological impacts and advances PP2's further development in fibrosarcoma therapy.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ying He
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 , Jiangsu, China
| |
Collapse
|
17
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
18
|
Singla P, Jain A. Deciphering the complex landscape of post-translational modifications on PKM2: Implications in head and neck cancer pathogenesis. Life Sci 2024; 349:122719. [PMID: 38759866 DOI: 10.1016/j.lfs.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.
Collapse
Affiliation(s)
- Palak Singla
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
19
|
Wu XY, Zhao MJ, Liao W, Liu T, Liu JY, Gong JH, Lai X, Xu XS. Oridonin attenuates liver ischemia-reperfusion injury by suppressing PKM2/NLRP3-mediated macrophage pyroptosis. Cell Immunol 2024; 401-402:104838. [PMID: 38810591 DOI: 10.1016/j.cellimm.2024.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The NOD-like receptor protein 3 (NLRP3) mediated pyroptosis of macrophages is closely associated with liver ischemia reperfusion injury (IRI). As a covalent inhibitor of NLRP3, Oridonin (Ori), has strong anti-inflammasome effect, but its effect and mechanisms for liver IRI are still unknown. METHODS Mice and liver macrophages were treated with Ori, respectively. Co-IP and LC-MS/MS analysis of the interaction between PKM2 and NLRP3 in macrophages. Liver damage was detected using H&E staining. Pyroptosis was detected by WB, TEM, and ELISA. RESULTS Ori ameliorated liver macrophage pyroptosis and liver IRI. Mechanistically, Ori inhibited the interaction between pyruvate kinase M2 isoform (PKM2) and NLRP3 in hypoxia/reoxygenation(H/R)-induced macrophages, while the inhibition of PKM2/NLRP3 reduced liver macrophage pyroptosis and liver IRI. CONCLUSION Ori exerted protective effects on liver IRI via suppressing PKM2/NLRP3-mediated liver macrophage pyroptosis, which might become a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Min-Jie Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Wei Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jun-Yan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jun-Hua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Xing Lai
- Department of Hepatobiliary Surgery, the People's Hospital of Tongnan District Chongqing City, China.
| | - Xue-Song Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
20
|
Peng C, Yang P, Zhang D, Jin C, Peng W, Wang T, Sun Q, Chen Z, Feng Y, Sun Y. KHK-A promotes fructose-dependent colorectal cancer liver metastasis by facilitating the phosphorylation and translocation of PKM2. Acta Pharm Sin B 2024; 14:2959-2976. [PMID: 39027256 PMCID: PMC11252482 DOI: 10.1016/j.apsb.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 07/20/2024] Open
Abstract
Excessive fructose diet is closely associated with colorectal cancer (CRC) progression. Nevertheless, fructose's specific function and precise mechanism in colorectal cancer liver metastasis (CRLM) is rarely known. Here, this study reported that the fructose absorbed by primary colorectal cancer could accelerate CRLM, and the expression of KHK-A, not KHK-C, in liver metastasis was higher than in paired primary tumors. Furthermore, KHK-A facilitated fructose-dependent CRLM in vitro and in vivo by phosphorylating PKM2 at Ser37. PKM2 phosphorylated by KHK-A inhibited its tetramer formation and pyruvic acid kinase activity but promoted the nuclear accumulation of PKM2. EMT and aerobic glycolysis activated by nuclear PKM2 enhance CRC cells' migration ability and anoikis resistance during CRLM progression. TEPP-46 treatment, targeting the phosphorylation of PKM2, inhibited the pro-metastatic effect of KHK-A. Besides, c-myc activated by nuclear PKM2 promotes alternative splicing of KHK-A, forming a positive feedback loop.
Collapse
Affiliation(s)
- Chaofan Peng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Peng Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Dongsheng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chi Jin
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wen Peng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Tuo Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qingyang Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhihao Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yifei Feng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing 210029, China
| | - Yueming Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing 210029, China
| |
Collapse
|
21
|
Chen DQ, Han J, Liu H, Feng K, Li P. Targeting pyruvate kinase M2 for the treatment of kidney disease. Front Pharmacol 2024; 15:1376252. [PMID: 38910890 PMCID: PMC11190346 DOI: 10.3389/fphar.2024.1376252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 06/25/2024] Open
Abstract
Pyruvate kinase M2 (PKM2), a rate limiting enzyme in glycolysis, is a cellular regulator that has received extensive attention and regards as a metabolic regulator of cellular metabolism and energy. Kidney is a highly metabolically active organ, and glycolysis is the important energy resource for kidney. The accumulated evidences indicates that the enzymatic activity of PKM2 is disturbed in kidney disease progression and treatment, especially diabetic kidney disease and acute kidney injury. Modulating PKM2 post-translational modification determines its enzymatic activity and nuclear translocation that serves as an important interventional approach to regulate PKM2. Emerging evidences show that PKM2 and its post-translational modification participate in kidney disease progression and treatment through modulating metabolism regulation, podocyte injury, fibroblast activation and proliferation, macrophage polarization, and T cell regulation. Interestingly, PKM2 activators (TEPP-46, DASA-58, mitapivat, and TP-1454) and PKM2 inhibitors (shikonin, alkannin, compound 3k and compound 3h) have exhibited potential therapeutic property in kidney disease, which indicates the pleiotropic effects of PKM2 in kidney. In the future, the deep investigation of PKM2 pleiotropic effects in kidney is urgently needed to determine the therapeutic effect of PKM2 activator/inhibitor to benefit patients. The information in this review highlights that PKM2 functions as a potential biomarker and therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Dan-Qian Chen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jin Han
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Xi’an Chang’an District Hospital, Xi’an, Shaanxi, China
| | - Hui Liu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Kai Feng
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Hu Y, Xing Y, Fan G, Xie H, Zhao Q, Liu L. L-arginine combination with 5-fluorouracil inhibit hepatocellular carcinoma cells through suppressing iNOS/NO/AKT-mediated glycolysis. Front Pharmacol 2024; 15:1391636. [PMID: 38841361 PMCID: PMC11150577 DOI: 10.3389/fphar.2024.1391636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
L-arginine can produce nitric oxide (NO) under the action of inducible nitric oxide synthase (iNOS), while 5-fluorouracil (5-FU) can induce the increase of iNOS expression. The present study was to investigate the mechanism of L-arginine combined with 5-FU regulating glucose metabolism of hepatocellular carcinoma (HCC) through iNOS/NO/AKT pathway. The combination of L-arginine and 5-FU resulted in decreased cell survival and exhibited synergistic cytotoxic effects in HepG2 and SMMC7721 cells. Meanwhile, L-arginine increased 5-FU inhibitory effect on HepG2 and SMMC7721 cells by increasing NO production. Co-treatment with L-arginine and 5-FU resulted in a significant decrease in both G6PDH and LDH enzymatic activities, as well as reduced levels of ATP and LD compared to treatment with L-arginine or 5-FU alone. Moreover, the combination of L-arginine and 5-FU resulted in a decrease in the expression of GLUT1, PKM2, LDHA, p-PI3K and p-AKT. Furthermore, the combination demonstrated a synergistic effect in downregulating the expression of HIF-1α and β-catenin, which were further diminished upon the addition of shikonin, a specific inhibitor of PKM2. LY294002 treatment further reduced the expression of GLUT1, PKM2, and LDHA proteins induced by combined L-arginine and 5-FU treatment compared to the combined group. However, the reduction in p-PI3K, p-AKT, and GLUT1 expression caused by L-arginine and 5-FU combination was also reversed in HepG2 and SMMC7721 cells with iNOS knockdown, respectively. Additionally, the combination of L-arginine and 5-FU led to a greater reduction in the enzymatic activity of ALT, AST, G6PDH and LDH, as well as a significant reduction in hepatic index, AFP, AFP-L3, ATP and LD levels in a rat model of HCC. Moreover, the simultaneous administration of L-arginine and 5-FU significantly improved the gross morphology of the liver, reduced nuclear atypia, inhibited the proliferation of cancer cells, and decreased the expression levels of p-PI3K, p-AKT, GLUT1, PKM2, and LDHA, while iNOS expression was increased in the combination group. Taking together, L-arginine and 5-FU combination resulted in the inhibition of enzymes in aerobic glycolysis via the iNOS/NO/AKT pathway, which led to the suppression of glucose metabolism and downregulation of nuclear transcription factors, thereby impeding the proliferation of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yile Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yihao Xing
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Gaolu Fan
- Department of Pharmacy, Luoyang Third People’ Hospital, Luoyang, China
| | - Huaxia Xie
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qingzan Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
24
|
Wu B, Liang Z, Lan H, Teng X, Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 2024; 80:261-275. [PMID: 38329688 DOI: 10.1007/s13105-024-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Fan L, Du P, Li Y, Chen X, Liu F, Liu Y, Petrov AM, Li X, Wang Z, Zhao Y. Targeted Liposomes Sensitize Plastic Melanoma to Ferroptosis via Senescence Induction and Coenzyme Depletion. ACS NANO 2024; 18:7011-7023. [PMID: 38390865 DOI: 10.1021/acsnano.3c10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ferroptotic cancer therapy has been extensively investigated since the genesis of the ferroptosis concept. However, the therapeutic efficacy of ferroptosis induction in heterogeneous and plastic melanoma has been compromised, because the melanocytic and transitory cell subpopulation is resistant to iron-dependent oxidative stress. Here, we report a phenotype-altering liposomal nanomedicine to enable the ferroptosis-resistant subtypes of melanoma cells vulnerable to lipid peroxidation via senescence induction. The strategy involves the ratiometric coencapsulation of a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor (palbociclib) and a ferroptosis inducer (auranofin) within cRGD peptide-modified targeted liposomes. The two drugs showed a synergistic anticancer effect in the model B16F10 melanoma cells, as evidenced by the combination index analysis (<1). The liposomes could efficiently deliver both drugs into B16F10 cells in a targeted manner. Afterward, the liposomes potently induced the intracellular redox imbalance and lipid peroxidation. Palbociclib significantly provoked cell cycle arrest at the G0/G1 phase, which sensitized auranofin-caused ferroptosis through senescence induction. Meanwhile, palbociclib depleted intracellular glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), further boosting ferroptosis. The proof-of-concept was also demonstrated in the B16F10 tumor-bearing mice model. The current work offers a promising ferroptosis-targeting strategy for effectively treating heterogeneous melanoma by manipulating the cellular plasticity.
Collapse
Affiliation(s)
- Lanlan Fan
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Panyu Du
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Xuefei Chen
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Fang Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yuning Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova Street, Kazan, RT 420012, Russia
| | - Xin Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Qian GQ, Wang XC, Zhang X, Shen B, Liu Q. Pyruvate kinase M in germ cells is essential for sperm motility and male fertility but not spermatogenesis. Asian J Androl 2024; 26:212-219. [PMID: 37902871 PMCID: PMC10919421 DOI: 10.4103/aja202350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 11/01/2023] Open
Abstract
Male germ cells employ specific metabolic pathways throughout their developmental stages. In a previous study, we discovered heightened expression of pyruvate kinase M (PKM), a pivotal glycolytic enzyme, in spermatogonia and spermatids. To gain deeper insights into PKM's roles in spermatogenesis, sperm function, and male fertility, we engineered a conditional-knockout mouse model ( Pkm -vKO mice) to selectively disrupt the Pkm gene within germ cells. Despite maintaining regular testicular histology and sperm morphology, the male Pkm -vKO mice were infertility, characterized by significant impairments in sperm motility and adenosine triphosphate (ATP) generation. In addition, Pkm -null spermatozoa exhibited similar deficits in protein tyrosine phosphorylation linked to capacitation, as well as compromised performance in in vitro fertilization experiments. To conclude, PKM's presence is not obligatory for the entirety of spermatogenesis in male germ cells; however, it emerges as a critical factor influencing sperm motility and overall male fertility.
Collapse
Affiliation(s)
- Gao-Qing Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Chen Wang
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
27
|
Wu H, Jiao Y, Guo X, Wu Z, Lv Q. METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination. J Cell Mol Med 2024; 28:e18112. [PMID: 38263865 PMCID: PMC10844685 DOI: 10.1111/jcmm.18112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hao Wu
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Yile Jiao
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Xinyi Guo
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of Pathology, West China HospitalSichuan UniversityChengduChina
| | - Qing Lv
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
28
|
Chen Y, Bai X, Chen J, Huang M, Hong Q, Ouyang Q, Sun X, Zhang Y, Liu J, Wang X, Wu L, Chen X. Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease. Cell Prolif 2024; 57:e13548. [PMID: 37749923 PMCID: PMC10849781 DOI: 10.1111/cpr.13548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to investigate the role of renal pericyte pyruvate kinase M2 (PKM2) in the progression of acute kidney injury (AKI) to chronic kidney disease (CKD). The role of PKM2 in renal pericyte-myofibroblast transdifferentiation was investigated in an AKI-CKD mouse model. Platelet growth factor receptor beta (PDGFRβ)-iCreERT2; tdTomato mice were used for renal pericyte tracing. Western blotting and immunofluorescence staining were used to examine protein expression. An 5-ethynyl-2'-deoxyuridine assay was used to measure renal pericyte proliferation. A scratch cell migration assay was used to analyse cell migration. Seahorse experiments were used to examine glycolytic rates. Enzyme-linked immunoassay was used to measure pyruvate kinase enzymatic activity and lactate concentrations. The PKM2 nuclear translocation inhibitors Shikonin and TEPP-46 were used to alter pericyte transdifferentiation. In AKI-CKD, renal pericytes proliferated and transdifferentiated into myofibroblasts and PKM2 is highly expressed in renal pericytes. Shikonin and TEPP-46 inhibited pericyte proliferation, migration, and pericyte-myofibroblast transdifferentiation by reducing nuclear PKM2 entry. In the nucleus, PKM2 promoted downstream lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1) transcription, which are critical for glycolysis. Therefore, PKM2 regulates pericyte glycolytic and lactate production, which regulates renal pericyte-myofibroblast transdifferentiation. PKM2-regulated renal pericyte-myofibroblast transdifferentiation by regulating downstream LDHA and GLUT1 transcription and lactate production. Reducing nuclear PKM2 import can reduce renal pericytes-myofibroblasts transdifferentiation, providing new ideas for AKI-CKD treatment.
Collapse
Affiliation(s)
- Yulan Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xueyuan Bai
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Jianwen Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Mengjie Huang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Quan Hong
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Qing Ouyang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xuefeng Sun
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yan Zhang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Jiaona Liu
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xu Wang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Lingling Wu
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xiangmei Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| |
Collapse
|
29
|
Liu X, Wang Y, Shao P, Chen Y, Yang C, Wang J, Cui S. Sargentodoxa cuneata and Patrinia villosa extract inhibits LPS-induced inflammation by shifting macrophages polarization through FAK/PI3K/Akt pathway regulation and glucose metabolism reprogramming. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116855. [PMID: 37390878 DOI: 10.1016/j.jep.2023.116855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargentodoxa cuneata and Patrinia villosa (S&P) are two natural herbal medicine widely used for treatment of various inflammatory diseases in Traditional Chinese Medicine, whereas the mode of action needs to be further investigated. AIM OF THE STUDY This study aimed to explore the anti-inflammatory effects and unravel the involved mechanism of S&P extract. MATERIALS AND METHODS The components of S&P extract were first detected using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of S&P extract on the viability and migration ability of macrophages were detected using CCK8, LDH, adhesion and transwell assays. Cytokine release and macrophage phenotype transition were measured using a cytometric bead array and flow cytometry. The potential mechanism was uncovered using an integrative approach combining RNA sequencing and LC-MS/MS-based metabolic analysis. The expression of related proteins was further validated using western blotting. RESULTS S&P extract inhibited the proliferation and migration of LPS-induced macrophages, changed the morphology of macrophages, and inhibited the production of NO and the expression of iNOS. Furthermore, the extract inhibited tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production and the expression of the M1 phenotype markers CD11c and CD16/32, whereas it promoted interleukin-10 (IL-10) production and the expression of the M2 phenotype markers CD206 and arginase 1 (Arg1). RNA sequencing analysis demonstrated that the upregulated genes by S&P extract treatment were involved in M2 macrophages: Il10, Ccl17, Ccl22, Cd68. The downregulated genes were involved in M1 macrophages and glycolysis processes: Stat1, Il18, Cd80, Cd86, Nos2, Il6, Pik3ap1, Raf1, Pdhb, etc. Metabolomics results showed that the S&P extract strongly ameliorated lipopolysaccharide (LPS)-induced metabolic disturbances. KEGG analysis indicated that most of these metabolites were involved in glucose metabolism, which is involved in the tumor necrosis factor (TNF), phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt), Glycolysis, and mitogen-activated protein kinase (MAPK) pathways. In vitro experiments further confirmed that the extract significantly inhibited the phosphorylation of focal adhesion kinase (FAK), PI3K and Akt, and the expression of glucose metabolism-related proteins. Adding a FAK inhibitor (defactinib) further inhibited the expression of M1/M2 phenotypic markers and the phosphorylation of FAK, PI3K, and Akt. CONCLUSIONS S&P extract can induce M2 polarization and shift macrophages from M1 to M2 tissue repair in LPS-induced inflammation by regulating glucose metabolism and the FAK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Ying Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Puwei Shao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Changshui Yang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Junsong Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei No. 200, Nanjing, 210094, China.
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China; Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
31
|
He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X, Zheng S. Positioning determines function: Wandering PKM2 performs different roles in tumor cells. Cell Biol Int 2024; 48:20-30. [PMID: 37975488 DOI: 10.1002/cbin.12103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Collapse
Affiliation(s)
- Shuo He
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
32
|
Weng W, Zhang Y, Gui L, Chen J, Zhu W, Liang Z, Wu Z, Liang Y, Xie J, Wei Q, Liao Z, Gu J, Pan Y, Jiang Y. PKM2 promotes proinflammatory macrophage activation in ankylosing spondylitis. J Leukoc Biol 2023; 114:595-603. [PMID: 37192369 DOI: 10.1093/jleuko/qiad054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Macrophages play a critical role in ankylosing spondylitis by promoting autoimmune tissue inflammation through various effector functions. The inflammatory potential of macrophages is highly influenced by their metabolic environment. Here, we demonstrate that glycolysis is linked to the proinflammatory activation of human blood monocyte-derived macrophages in ankylosing spondylitis. Specifically, ankylosing spondylitis macrophages produced excessive inflammation, including TNFα, IL1β, and IL23, and displayed an overactive status by exhibiting stronger costimulatory signals, such as CD80, CD86, and HLA-DR. Moreover, we found that patient-derived monocyte-derived M1-type macrophages (M1 macrophages) exhibited intensified glycolysis, as evidenced by a higher extracellular acidification rate. Upregulation of PKM2 and GLUT1 was observed in ankylosing spondylitis-derived monocytes and monocyte-derived macrophages, especially in M1 macrophages, indicating glucose metabolic alteration in ankylosing spondylitis macrophages. To investigate the impact of glycolysis on macrophage inflammatory ability, we treated ankylosing spondylitis M1 macrophages with 2 inhibitors: 2-deoxy-D-glucose, a glycolysis inhibitor, and shikonin, a PKM2 inhibitor. Both inhibitors reduced proinflammatory function and reversed the overactive status of ankylosing spondylitis macrophages, suggesting their potential utility in treating the disease. These data place PKM2 at the crosstalk between glucose metabolic changes and the activation of inflammatory macrophages in patients with ankylosing spondylitis.
Collapse
Affiliation(s)
- Weizhen Weng
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Lian Gui
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jingrong Chen
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Weihang Zhu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhenguo Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhongming Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yao Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jiewen Xie
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yunfeng Pan
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| |
Collapse
|
33
|
Huang PC, Chang CW, Lin YC, Chen CY, Chen TY, Chuang LT, Liu CJ, Huang CL, Li WC. Pyruvate Kinase Differentially Alters Metabolic Signatures during Head and Neck Carcinogenesis. Int J Mol Sci 2023; 24:16639. [PMID: 38068962 PMCID: PMC10706023 DOI: 10.3390/ijms242316639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
During glycolysis, the muscle isoform of pyruvate kinase PKM2 produces ATP in exchange for dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate. PKM2 has been considered as a tumor-promoting factor in most cancers, whereas the regulatory role of PKM2 during head and neck carcinogenesis remained to be delineated. PKM2 mRNA and protein expression was examined in head and neck tumorous specimens. The role of PKM2 in controlling cellular malignancy was determined in shRNA-mediated PKM2-deficient head and neck squamous cell carcinoma (HNSC) cells. In agreement with the results in other cancers, PKM2 expression is enriched in both mouse and human HNSC tissues. Nevertheless, PKM2 mRNA expression reversely correlated with tumor stage, and greater recurrence-free survival rates are evident in the PKM2high HNSC population, arguing that PKM2 may be tumor-suppressive. Multifaceted analyses showed a greater in vivo xenografic tumor growth and an enhanced cisplatin resistance in response to PKM2 loss, whereas PKM2 silencing led to reduced cell motility. At the molecular level, metabolic shifts towards mitochondrial metabolism and activation of oncogenic Protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK) signals were detected in PKM2-silencing HNSC cells. In sum, our findings demonstrated that PKM2 differentially modulated head and neck tumorigenicity via metabolic reprogramming.
Collapse
Affiliation(s)
- Pei-Chun Huang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Ching-Wen Chang
- Graduate Institute of Metabolism and Obesity Sciences (GIMOS), College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Tsai-Ying Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan;
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Hung Hom, Kowloon, Hong Kong SAR, China;
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
34
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
35
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
36
|
Xie W, He Q, Zhang Y, Xu X, Wen P, Cao H, Zhou Y, Luo J, Yang J, Jiang L. Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury. Cell Death Dis 2023; 14:663. [PMID: 37816709 PMCID: PMC10564883 DOI: 10.1038/s41419-023-06195-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.
Collapse
Affiliation(s)
- Wenjia Xie
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qingyun He
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinxin Xu
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Wen
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongdi Cao
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Jing Luo
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Wang L, Tang D, Zhang P. Changes of Serum Pyruvate Kinase M2 Level in Patients with Sepsis and Its Clinical Value. Infect Drug Resist 2023; 16:6437-6449. [PMID: 37795205 PMCID: PMC10545902 DOI: 10.2147/idr.s429314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose The glucose metabolic reprogramming is an important pathological mechanism in sepsis, which involves a series of enzymes including Pyruvate kinase M2 (PKM2). The purpose of this study is to explore the diagnostic and prognostic value of serum PKM2 in sepsis patients. Patients and Methods This study recruited 143 sepsis patients, 91 non-sepsis patients, and 65 physical examiners, divided into sepsis group, non-sepsis group, and control group. Measure the serum PKM2 concentration of subjects, collect and analyze clinical and laboratory indicators of all subjects. Independent risk factors were selected by Logistic regression analysis. The area under curve (AUC) was calculated by plotting the receiver operating characteristic (ROC) curve to determine the diagnostic and prognostic value of biomarkers. Results Compared with non-sepsis and control groups, the serum PKM2 levels in the sepsis group were significantly increased (both P<0.001). PKM2 was an independent risk factor for sepsis and had the best diagnostic efficacy when combined with procalcitonin, with the AUC value of 0.9352. Patients with high levels of PKM2 were more likely to experience organ damage and had a higher incidence of septic shock. On the 1st and 3rd days of admission, the serum PKM2 levels in the septic shock group were higher than those in the sepsis group (both P<0.05), with AUC values of 0.7296 and 0.6247, respectively. On the 3rd and 7th days of admission, the serum PKM2 levels in the non-survival group were significantly higher than those in the survival group (both P<0.001), with AUC values of 0.7033 and 0.8732, respectively. Conclusion The serum PKM2 levels in sepsis patients are significantly increased and correlated with disease severity and clinical outcomes. PKM2 may be a new diagnostic and prognostic biomarker for sepsis.
Collapse
Affiliation(s)
- Li Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Dongling Tang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| |
Collapse
|
38
|
Lu Y, Chen Y, Hu W, Wang M, Wen X, Yang J. Inhibition of ACSS2 attenuates alcoholic liver steatosis via epigenetically regulating de novo lipogenesis. Liver Int 2023; 43:1729-1740. [PMID: 37183518 DOI: 10.1111/liv.15600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Steatosis is the early pathological change in alcohol-associated liver disease. However, its precise mechanism is still unclear. The present study is aimed to explore the role and mechanism of acetyl-CoA synthetase 2 (ACSS2) in acute alcohol-induced lipogenesis. METHODS The increase in ACSS2 nuclear import and histone H3 acetylation were observed in mice after intraperitoneally injected with 2 g/kg ethanol or oral administration of 5 g/kg ethanol and also validated in hepatocytes stimulated with ethanol or acetate. The role of ACSS2 was further explored in liver-specific ACSS2 knockdown mice fed with ethanol-containing diet. RESULTS Alcohol challenge induced hepatic lipid deposition and upregulated lipogenic genes in mice. It also promoted ACSS2 nuclear import and increased histone H3 acetylation. In hepatocytes, ethanol induced similar phenomena whereas ACSS2 knockdown blocked histone acetylation and lipogenic gene induction. P300/CBP associated factor (PCAF), but not general control nonderepressible 5, CREB-binding protein (CBP) and p300, facilitated H3K9 acetylation responding to ethanol challenge. CUT&RUN assay showed the enrichment of acetylated histone H3K9 surrounding Fasn and Acaca promoters. These results indicated that ethanol metabolism promoted ACSS2 nuclear import to support lipogenesis via H3K9 acetylation. In alcohol-feeding mice, liver-specific ACSS2 knockdown blocked the interaction between PCAF and H3K9 and suppressed lipogenic gene induction in the liver, demonstrating the critical role of ACSS2 in lipogenesis. CONCLUSIONS Our study demonstrated that alcohol metabolism generated acetyl-CoA in the nucleus dependently on nuclear ACSS2, contributing to epigenetic regulation of lipogenesis in hepatic steatosis. Targeting ACSS2 may be a potential therapeutical strategy for acute alcoholic liver steatosis.
Collapse
Affiliation(s)
- Yawen Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yimeng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxin Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Wang
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Ranade AV, Hegde PS, Bhat MA, Rai P, Vinodini NA, Aravind A, Prasad TSK, Damodara Gowda KM. Astaxanthin and DHA supplementation ameliorates the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life. Sci Rep 2023; 13:12312. [PMID: 37516743 PMCID: PMC10387058 DOI: 10.1038/s41598-023-38506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Maternal diet is an essential factor that directly and indirectly regulates fetal growth. Exposure to certain environmental conditions substantially impacts an individual's short- and long-term health. Adipose tissue dysfunction is a worldwide chronic disease caused by improper lipid build-up in adipose tissue leading to obesity. Therefore, it is the need of the hour to invent anti-obesity agents. As a keto-carotenoid, Astaxanthin (AsX) has been shown to have preventive effects against problems associated with obesity. A crucial role in the pathogenesis of obesity has been attributed to dietary polyunsaturated fatty acids. Adipose tissue plays a vital role in maintaining overall body homeostasis. Metabolic dysfunction of white adipocytes forms a critical step in the emergence of insulin resistance and related diseases. Here we aim to investigate the effect of AsX and Docosahexaenoic acid (DHA) supplementation on the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life using a rat model. The LC-MS/MS quantitative proteomics enabled us to identify differentially expressed proteins in perinatal undernourished but AsX and DHA-supplemented animal models. Data are available via ProteomeXchange with identifier PXD041772.This study explored biological roles, molecular functions of differentially expressed proteins, and pathways related to adipose tissue dysfunction induced by undernutrition and its effective modulation by AsX and DHA.
Collapse
Affiliation(s)
- Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Pramukh Subrahmanya Hegde
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Megha Agni Bhat
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Praveen Rai
- Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - N A Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - K M Damodara Gowda
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
40
|
Qu H, Liu J, Zhang D, Xie R, Wang L, Hong J. Glycolysis in Chronic Liver Diseases: Mechanistic Insights and Therapeutic Opportunities. Cells 2023; 12:1930. [PMID: 37566009 PMCID: PMC10417805 DOI: 10.3390/cells12151930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyruvate and sustains cells with the energy and intermediate products required for diverse biological activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational potential of a glycolysis-centric therapeutic approach in combating CLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China; (H.Q.)
| |
Collapse
|
41
|
Wu Y, Li A, Chen C, Fang Z, Chen L, Zheng X. Biological function and research progress of N6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers. Front Oncol 2023; 13:1229168. [PMID: 37546413 PMCID: PMC10399595 DOI: 10.3389/fonc.2023.1229168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in both mRNA and lncRNA. It exerts reversible regulation over RNA function and affects RNA processing and metabolism in various diseases, especially tumors. The m6A binding protein, hnRNPA2B1, is extensively studied as a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. It is frequently dysregulated and holds significant importance in multiple types of tumors. By recognizing m6A sites for variable splicing, maintaining RNA stability, and regulating translation and transport, hnRNPA2B1 plays a vital role in various aspects of tumor development, metabolism, and regulation of the immune microenvironment. In this review, we summarized the latest research on the functional roles and underlying molecular mechanisms of hnRNPA2B1. Moreover, we discussed its potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
42
|
Dai ZQ, Gao F, Zhang ZJ, Lu MJ, Luo YJ, Zhang T, Shang BX, Gu YH, Zeng Q, Gao S, Guo ZQ, Xu B, Lei HM. Anti-tumor effects of novel alkannin derivatives with potent selectivity on comprehensive analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154912. [PMID: 37295023 DOI: 10.1016/j.phymed.2023.154912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 μM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 μM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 μM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zi-Jie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ming-Jun Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Jin Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing-Xian Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
43
|
Liu X, Shao P, Wang Y, Chen Y, Cui S. Anti-inflammatory mechanism of the optimized active ingredients of Sargentodoxa cuneata and Patrinia villosa. Int Immunopharmacol 2023; 120:110337. [PMID: 37244114 DOI: 10.1016/j.intimp.2023.110337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Pelvic inflammatory disease (PID) is a common gynecological infection. The combined use of Sargentodoxa cuneata (da xue teng) and Patrinia villosa (bai jiang cao) has been shown to inhibit PID progression. The active components of S. cuneata (emodin, Emo) and P. villosa (acacetin, Aca; oleanolic acid, OA; sinoacutine, Sin) have been identified but the mode of action of this combination of compounds against PID has not been clarified. Therefore, this study aims to investigate the mechanism of these active components against PID through network pharmacological, molecular docking and experimental validation. The results showed the optimal combination of components was 40 µM Emo + 40 µM OA, 40 µM Emo + 40 µM Aca, and 40 µM Emo + 150 µM Sin by cell proliferation and NO release. The potential key targets of this combination in the treatment of PID include SRC, GRB2, PIK3R1, PIK3CA, PTPN11, and SOS1, which act on signaling pathways such as EGFR, PI3K/Akt, TNF, and IL-17. Emo, Aca, OA, and their optimal combination inhibited the expression of IL-6, TNF-α, MCP-1, IL-12p70, IFN-γ, and the M1 phenotype markers CD11c and CD16/32, and promoted the expression of the M2 phenotype markers CD206 and arginase 1 (Arg1). Western blotting confirmed that Emo, Aca, OA, and their optimal combination significantly inhibited the expression of glucose metabolism-related proteins PKM2, PD, HK I, and HK II. This study proved the advantage of combination use of active components from S. cuneata and P. villosa, and clarified that they exert the anti-inflammatory effect by regulation of M1/M2 phenotype transition and regulation of glucose metabolism. The results provide a theoretical basis for the clinical treatment of PID.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Puwei Shao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Ying Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China; Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Buneeva O, Kopylov A, Gnedenko O, Medvedeva M, Veselovsky A, Ivanov A, Zgoda V, Medvedev A. Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? Int J Mol Sci 2023; 24:ijms24087634. [PMID: 37108803 PMCID: PMC10143413 DOI: 10.3390/ijms24087634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell. Pyruvate kinase (PK), a classical glycolytic enzyme catalyzing the last step of glycolysis, exists in four isoforms: PKM1, PKM2, PKL, and PKR. The enzyme isoform expressed in actively dividing cells, PKM2, exhibits many moonlighting (noncanonical) functions. In contrast to PKM2, PKM1, predominantly expressed in adult differentiated tissues, lacks well-documented moonlighting functions. However, certain evidence exists that it can also perform some functions unrelated to glycolysis. In order to evaluate protein partners, bound to PKM1, in this study we have combined affinity-based separation of mouse brain proteins with mass spectrometry identification. The highly purified PKM1 and a 32-mer synthetic peptide (PK peptide), sharing high sequence homology with the interface contact region of all PK isoforms, were used as the affinity ligands. This proteomic profiling resulted in the identification of specific and common proteins bound to both affinity ligands. Quantitative affinity binding to the affinity ligands of selected identified proteins was validated using a surface plasmon resonance (SPR) biosensor. Bioinformatic analysis has shown that the identified proteins, bound to both full-length PKM1 and the PK peptide, form a protein network (interactome). Some of these interactions are relevant for the moonlighting functions of PKM1. The proteomic dataset is available via ProteomeXchange with the identifier PXD041321.
Collapse
Affiliation(s)
- Olga Buneeva
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Arthur Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Marina Medvedeva
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russia
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| |
Collapse
|
45
|
Chen W, Li X, Du B, Cui Y, Ma Y, Li Y. The long noncoding RNA HOXA11-AS promotes lung adenocarcinoma proliferation and glycolysis via the microRNA-148b-3p/PKM2 axis. Cancer Med 2023; 12:4421-4433. [PMID: 35924724 PMCID: PMC9972162 DOI: 10.1002/cam4.5103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer is the most common malignancy in the world and a growing number of researches have focused on its metabolic characteristics. Studies have shown that the long non-coding RNA (lncRNA) HOXA11-AS is aberrantly expressed in many tumors. However, the role of HOXA11-AS in lung adenocarcinoma (LUAD) glycolysis and other energy metabolism pathways has not been characterized. METHOD The mRNA levels of HOXA11-AS, microRNA-148b-3p (miR-148b-3p), and pyruvate kinase M2 (PKM2) were detected using qRT-PCR. The expression levels of proteins were measured using immunohistochemistry and western blot. The CCK-8, EdU, and colony formation assays were used to assess proliferation. Glycolytic changes were assessed by measuring lactate production, ATP production, and 18 F-FDG uptake. Bioinformatics analysis and dual-luciferase reporter assays were used to characterize the relationship between HOXA11-AS, miR-148b-3p, and PKM2. Proliferation and glycolytic changes were analyzed in xenograft tumor experiments using Micro-PET imaging after downregulation of HOXA11-AS in vivo. RESULTS The expression of HOXA11-AS was markedly increased in LUAD, and was strongly associated with a poor prognosis. In addition, HOXA11-AS promoted proliferation and glycolysis in LUAD, and miR-148b-3p inhibited proliferation and glycolysis in LUAD. Mechanistically, HOXA11-AS positively regulated PKM2 expression by binding to miR-148b-3p, thereby promoting LUAD proliferation and glycolysis. In addition, HOXA11-AS inhibited LUAD xenograft growth and glycolysis via upregulation of miR-148b-3p expression and downregulation of PKM2 expression in vivo. CONCLUSIONS These results showed that HOXA11-AS enhanced LUAD proliferation and glycolysis via the miR-148b-3p/PKM2 axis. The findings in this paper expanded our understanding of the molecular mechanisms of LUAD tumorigenesis and glycolysis and showed that HOXA11-AS could be useful as a diagnostic and prognostic marker for LUAD. 18 F-FDG PET/CT can be used to visually evaluate the therapeutic effect of targeting HOXA11-AS.
Collapse
Affiliation(s)
- Wenkun Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yu Ma
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Vadlamani S, Karmakar R, Kumar A, Rajala MS. Non-metabolic role of alpha-enolase in virus replication. Mol Biol Rep 2023; 50:1677-1686. [PMID: 36402937 DOI: 10.1007/s11033-022-08067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022]
Abstract
Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.
Collapse
Affiliation(s)
- Satya Vadlamani
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Ruma Karmakar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Alok Kumar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | | |
Collapse
|
47
|
Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci 2023; 24:ijms24032683. [PMID: 36769016 PMCID: PMC9916947 DOI: 10.3390/ijms24032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. DN progresses to end-stage renal disease, which has a high mortality rate. Current research is focused on identifying non-invasive potential biomarkers in the early stage of DN. We previously indicated that pyruvate kinase M2 (PKM2) is excreted in the urine of rats after cisplatin-induced acute kidney injury (AKI). However, it has not been reported whether PKM2 can be used as a biomarker to diagnose DN. Therefore, we try to compare whether the protein PKM2 can be detected in the urine samples from diabetic patients as shown in the results of DN models. In this study, high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats were used for DN phenotyping. After 19 weeks of receiving a HFD, the DN model's blood glucose, blood urea nitrogen, and serum creatinine levels were significantly increased; severe tubular and glomerular damages were also noted. The following protein-based biomarkers were increased in the urine of these models: kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and PKM2. PKM2 had the earliest detection rate. In the urine samples of patients, PKM2 protein was highly detected in the urine of diabetic patients but was not excreted in the urine of normal subjects. Therefore, PKM2 was selected as the new biomarker for the early diagnosis of DN. Our results reflect current knowledge on the role of PKM2 in DN.
Collapse
Affiliation(s)
- Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hyeon Kim
- St. Mark’s School, 25 Marlboro Rd, Southborough, MA 01772, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: ; Tel.:+82-31-290-7789
| |
Collapse
|
48
|
Chan CY, Hong SC, Chang CM, Chen YH, Liao PC, Huang CY. Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2). Cells 2023; 12:cells12010179. [PMID: 36611972 PMCID: PMC9818869 DOI: 10.3390/cells12010179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) frequently carries high epidermal growth factor receptor (EGFR) expression. Erlotinib, a small molecule tyrosine kinase inhibitor (TKI), is an effective inhibitor of EGFR activity; however, resistance to this drug can occur, limiting therapeutic outcomes. Therefore, in the current study, we aimed to unveil key intracellular molecules and adjuvant reagents to overcome erlotinib resistance. First, two HSC-3-derived erlotinib-resistant cell lines, ERL-R5 and ERL-R10, were established; both exhibited relatively higher growth rates, glucose utilization, epithelial-mesenchymal transition (EMT), and invasiveness compared with parental cells. Cancer aggressiveness-related proteins, such as N-cadherin, Vimentin, Twist, MMP-2, MMP-9, and MMP-13, and the glycolytic enzymes PKM2 and GLUT1 were upregulated in ERL-R cells. Notably, ERL-R cells were sensitive to quercetin, a naturally-existing flavonol phytochemical with anti-cancer properties against various cancer cells. At a concentration of 5 μM, quercetin effectively arrested cell growth, reduced glucose utilization, and inhibited cellular invasiveness. An ERL-R5-derived xenograft mouse model confirmed the growth-inhibitory efficacy of quercetin. Additionally, knock-down of PKM2 by siRNA mimicked the effect of quercetin and re-sensitized ERL-R cells to erlotinib. Furthermore, adding quercetin blocked the development of erlotinib-mediated resistance by enhancing apoptosis. In conclusion, our data support the application of quercetin in anti-erlotinib-resistant OSCC and indicate that PKM2 is a determinant factor in erlotinib resistance and quercetin sensitivity.
Collapse
Affiliation(s)
- Chien-Yi Chan
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Shih-Cing Hong
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chin-Ming Chang
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Hong Chen
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Pin-Chen Liao
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 7515)
| |
Collapse
|
49
|
Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm Sin B 2023; 13:113-127. [PMID: 36815040 PMCID: PMC9939318 DOI: 10.1016/j.apsb.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) is a potential intervention known to protect the heart against ischemia/reperfusion injury, but its role in the no-reflow phenomenon that follows reperfusion is unclear. Dihydrotanshinone I (DT) is a natural compound and this study illustrates its role in cardiac ischemic injury from the aspect of IPC. Pretreatment with DT induced modest ROS production and protected cardiomyocytes against oxygen and glucose deprivation (OGD), but the protection was prevented by a ROS scavenger. In addition, DT administration protected the heart against isoprenaline challenge. Mechanistically, PKM2 reacted to transient ROS via oxidization at Cys423/Cys424, leading to glutathionylation and nuclear translocation in dimer form. In the nucleus, PKM2 served as a co-factor to promote HIF-1α-dependent gene induction, contributing to adaptive responses. In mice subjected to permanent coronary ligation, cardiac-specific knockdown of Pkm2 blocked DT-mediated preconditioning protection, which was rescued by overexpression of wild-type Pkm2, rather than Cys423/424-mutated Pkm2. In conclusion, PKM2 is sensitive to oxidation, and subsequent glutathionylation promotes its nuclear translocation. Although IPC has been viewed as a protective means against reperfusion injury, our study reveals its potential role in protection of the heart from no-reflow ischemia.
Collapse
|
50
|
Liu Z, Guo Y, Liu X, Cao P, Liu H, Dong X, Ding K, Fu R. Pim-2 Kinase Regulates Energy Metabolism in Multiple Myeloma. Cancers (Basel) 2022; 15:cancers15010067. [PMID: 36612063 PMCID: PMC9817993 DOI: 10.3390/cancers15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Pim-2 kinase is overexpressed in multiple myeloma (MM) and is associated with poor prognosis in patients with MM. Changes in quantitative metabolism, glycolysis, and oxidative phosphorylation pathways are reportedly markers of all tumor cells. However, the relationship between Pim-2 and glycolysis in MM cells remains unclear. In the present study, we explored the relationship between Pim-2 and glycolysis. We found that Pim-2 inhibitors inhibited glycolysis and energy production in MM cells. Inhibition of Pim-2 decreased the proliferation of MM tumor cells and increased their susceptibility to apoptosis. Our data suggest that reduced Pim-2 expression inhibits the energy metabolism process in MM, thereby inhibiting tumor progression. Hence, Pim-2 is a potential metabolic target for MM treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Fu
- Correspondence: ; Tel.: +86-022-60817181
| |
Collapse
|