1
|
Rivera Antonio A, Padilla Martínez I, Márquez-Flores Y, Juárez Solano A, Torres Ramos M, Rosales Hernández M. Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. Biosci Rep 2024; 44:BSR20240797. [PMID: 39268608 PMCID: PMC11461179 DOI: 10.1042/bsr20240797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.
Collapse
Affiliation(s)
- Astrid Mayleth Rivera Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México 07340, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, México
| | - Alan Hipólito Juárez Solano
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Mónica A. Torres Ramos
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| |
Collapse
|
2
|
Ye W, Xu S, Liu Y, Ye Z. Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data. Rev Neurosci 2024; 0:revneuro-2024-0039. [PMID: 39034663 DOI: 10.1515/revneuro-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024]
Abstract
Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.
Collapse
Affiliation(s)
- Weihao Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shang Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
3
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Zhou Y, Wang T, Fan H, Liu S, Teng X, Shao L, Shen Z. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Curr Probl Cardiol 2024; 49:102040. [PMID: 37595858 DOI: 10.1016/j.cpcardiol.2023.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Pírek P, Kryštofová K, Kováčová I, Kromerová A, Zachová D, Helia O, Panzarová K, Fajkus J, Zdráhal Z, Lochmanová G, Fojtová M. Unraveling Epigenetic Changes in A. thaliana Calli: Impact of HDAC Inhibitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:4177. [PMID: 38140504 PMCID: PMC10747063 DOI: 10.3390/plants12244177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The ability for plant regeneration from dedifferentiated cells opens up the possibility for molecular bioengineering to produce crops with desirable traits. Developmental and environmental signals that control cell totipotency are regulated by gene expression via dynamic chromatin remodeling. Using a mass spectrometry-based approach, we investigated epigenetic changes to the histone proteins during callus formation from roots and shoots of Arabidopsis thaliana seedlings. Increased levels of the histone H3.3 variant were found to be the major and most prominent feature of 20-day calli, associated with chromatin relaxation. The methylation status in root- and shoot-derived calli reached the same level during long-term propagation, whereas differences in acetylation levels provided a long-lasting imprint of root and shoot origin. On the other hand, epigenetic signs of origin completely disappeared during 20 days of calli propagation in the presence of histone deacetylase inhibitors (HDACi), sodium butyrate, and trichostatin A. Each HDACi affected the state of post-translational histone modifications in a specific manner; NaB-treated calli were epigenetically more similar to root-derived calli, and TSA-treated calli resembled shoot-derived calli.
Collapse
Affiliation(s)
- Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Karolína Kryštofová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Ingrid Kováčová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Anna Kromerová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s.r.o., 66424 Drásov, Czech Republic;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
6
|
Kelly EJ, Oliver MA, Carney BC, Kolachana S, Moffatt LT, Shupp JW. Neutrophil Extracellular Traps Are Induced by Coronavirus 2019 Disease-Positive Patient Plasma and Persist Longitudinally: A Possible Link to Endothelial Dysfunction as Measured by Syndecan-1. Surg Infect (Larchmt) 2023; 24:887-896. [PMID: 38011327 DOI: 10.1089/sur.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Neutrophil extracellular trap (NET) formation is a mechanism that neutrophils possess to respond to host infection or inflammation. However, dysregulation of NETosis has been implicated in many disease processes. Although the exact mechanisms of their involvement remain largely unknown, this study aimed to elucidate NET formation over the time course of coronavirus disease 2019 (COVID-19) infection and their possible role in endothelial injury. Patients and Methods: Plasma samples from COVID-19-positive patients were obtained at six timepoints during hospitalization. Neutrophils were extracted from healthy donors and treated with COVID-19-positive patient plasma. Myeloperoxidase (MPO) assay was used to assess for NETosis. Syndecan-1 (SDC-1) enzyme-linked immunosorbent assay (ELISA) was run using the same samples. Immunocytochemistry allowed for further quantification of NETosis byproducts MPO and citrullinated histone 3 (CitH3). The receiver operating characteristic (ROC) curve discriminated between admission levels of SDC-1 and MPO in predicting 30-day mortality and need for ventilator support. Results: Sixty-three patients with COVID-19 were analyzed. Myeloperoxidase was upregulated at day 3, 7, and 14 (p = 0.0087, p = 0.0144, p = 0.0421). Syndecan-1 levels were elevated at day 7 and 14 (p = 0.0188, p = 0.0026). Neutrophils treated with day 3, 7, and 14 plasma expressed increased levels of MPO (p < 0.001). Immunocytochemistry showed neutrophils treated with day 3, 7, and 14 plasma expressed higher levels of MPO (p < 0.001) and higher levels of CitH3 when treated with day 7 and 14 plasma (p < 0.01 and p < 0.05). Admission SDC-1 and MPO levels were found to be independent predictors of 30-day mortality and need for ventilator support. Conclusions: Neutrophil dysregulation can be detrimental to the host. Our study shows that COVID-19 plasma induces substantial amounts of NET formation that persists over the course of the disease. Patients also exhibit increased SDC-1 levels that implicate endothelial injury in the pathogenesis of COVID-19 infection. Furthermore, MPO and SDC-1 plasma levels are predictive of poor outcomes.
Collapse
Affiliation(s)
- Edward J Kelly
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Sindhura Kolachana
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
7
|
Mihalic ZN, Kloimböck T, Cosic-Mujkanovic N, Valadez-Cosmes P, Maitz K, Kindler O, Wadsack C, Heinemann A, Marsche G, Gauster M, Pollheimer J, Kargl J. Myeloperoxidase enhances the migration and invasion of human choriocarcinoma JEG-3 cells. Redox Biol 2023; 67:102885. [PMID: 37776707 PMCID: PMC10556814 DOI: 10.1016/j.redox.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophil granules. It catalyzes the production of reactive oxygen species, which are important in inflammation and immune defense. MPO also binds to several proteins, lipids, and DNA to alter their function. MPO is present at the feto-maternal interface during pregnancy, where neutrophils are abundant. In this study, we determined the effect of MPO on JEG-3 human choriocarcinoma cells as a model of extravillous trophoblasts (EVTs) during early pregnancy. We found that MPO was internalized by JEG-3 cells and localized to the cytoplasm and nuclei. MPO internalization and activity enhanced JEG-3 cell migration and invasion, whereas this effect was impaired by pre-treating cells with heparin, to block cellular uptake, and MPO-activity inhibitor 4-ABAH. This study identifies a novel mechanism for the effect of MPO on EVT function during normal pregnancy and suggests a potential role of MPO in abnormal pregnancies.
Collapse
Affiliation(s)
- Z N Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - T Kloimböck
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - N Cosic-Mujkanovic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - P Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - K Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - O Kindler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - C Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - A Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - G Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - M Gauster
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-Fetal Immunology Group, Medical University of Vienna, Austria
| | - J Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
8
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Cosic-Mujkanovic N, Valadez-Cosmes P, Maitz K, Lueger A, Mihalic ZN, Runtsch MC, Kienzl M, Davies MJ, Chuang CY, Heinemann A, Schicho R, Marsche G, Kargl J. Myeloperoxidase Alters Lung Cancer Cell Function to Benefit Their Survival. Antioxidants (Basel) 2023; 12:1587. [PMID: 37627581 PMCID: PMC10451743 DOI: 10.3390/antiox12081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Myeloperoxidase (MPO) is a neutrophil-derived enzyme that has been recently associated with tumour development. However, the mechanisms by which this enzyme exerts its functions remain unclear. In this study, we investigated whether myeloperoxidase can alter the function of A549 human lung cancer cells. We observed that MPO promoted the proliferation of cancer cells and inhibited their apoptosis. Additionally, it increased the phosphorylation of AKT and ERK. MPO was rapidly bound to and internalized by A549 cells, retaining its enzymatic activity. Furthermore, MPO partially translocated into the nucleus and was detected in the chromatin-enriched fraction. Effects of MPO on cancer cell function could be reduced when MPO uptake was blocked with heparin or upon inhibition of the enzymatic activity with the MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH). Lastly, we have shown that tumour-bearing mice treated with 4-ABAH had reduced tumour burden when compared to control mice. Our results highlight the role of MPO as a neutrophil-derived enzyme that can alter the function of lung cancer cells.
Collapse
Affiliation(s)
- Nejra Cosic-Mujkanovic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Anna Lueger
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Zala N. Mihalic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Marah C. Runtsch
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
11
|
Harding IC, O'Hare NR, Vigliotti M, Caraballo A, Lee CI, Millican K, Herman IM, Ebong EE. Developing a transwell millifluidic device for studying blood-brain barrier endothelium. LAB ON A CHIP 2022; 22:4603-4620. [PMID: 36326069 PMCID: PMC11416711 DOI: 10.1039/d2lc00657j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Blood-brain barrier (BBB) endothelial cell (EC) function depends on flow conditions and on supportive cells, like pericytes and astrocytes, which have been shown to be both beneficial and detrimental for brain EC function. Most studies investigating BBB EC function lack physiological relevance, using sub-physiological shear stress magnitudes and/or omitting pericytes and astrocytes. In this study, we developed a millifluidic device compatible with standard transwell inserts to investigate BBB function. In contrast to standard polydimethylsiloxane (PDMS) microfluidic devices, this model allows for easy, reproducible shear stress exposure without common limitations of PDMS devices such as inadequate nutrient diffusion and air bubble formation. In no-flow conditions, we first used the device to examine the impact of primary human pericytes and astrocytes on human brain microvascular EC (HBMEC) barrier integrity. Astrocytes, pericytes, and a 1-to-1 ratio of both cell types increased HBMEC barrier integrity via reduced 3 and 40 kDa fluorescent dextran permeability and increased claudin-5 expression. There were differing levels of low 3 kDa permeability in HBMEC-pericyte, HBMEC-astrocyte, and HBMEC-astrocyte-pericyte co-cultures, while levels of low 40 kDa permeability were consistent across co-cultures. The 3 kDa findings suggest that pericytes provide more barrier support to the BBB model compared to astrocytes, although both supportive cell types are permeability reducers. Incorporation of 24-hour 12 dynes per cm2 flow significantly reduced dextran permeability in HBMEC monolayers, but not in the tri-culture model. These results indicate that tri-culture may exert more pronounced impact on overall BBB permeability than flow exposure. In both cases, monolayer and tri-culture, flow exposure interestingly reduced HBMEC expression of both claudin-5 and occludin. ZO-1 expression, and localization at cell-cell junctions increased in the tri-culture but exhibited no apparent change in the HBMEC monolayer. Under flow conditions, we also observed HBMEC alignment in the tri-culture but not in HBMEC monolayers, indicating supportive cells and flow are both essential to observe brain EC alignment in vitro. Collectively, these results support the necessity of physiologically relevant, multicellular BBB models when investigating BBB EC function. Consideration of the roles of shear stress and supportive cells within the BBB is critical for elucidating the physiology of the neurovascular unit.
Collapse
Affiliation(s)
- Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nicholas R O'Hare
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Mark Vigliotti
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Alex Caraballo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Claire I Lee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ira M Herman
- Department of Developmental, Molecular, and Chemical Biology, Tufts School of Graduate Biomedical Sciences, Boston, MA, USA
- Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
13
|
Kremserová S, Kocurková A, Chorvátová M, Klinke A, Kubala L. Myeloperoxidase Deficiency Alters the Process of the Regulated Cell Death of Polymorphonuclear Neutrophils. Front Immunol 2022; 13:707085. [PMID: 35211113 PMCID: PMC8860816 DOI: 10.3389/fimmu.2022.707085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/18/2022] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a key role in host defense. However, their massive accumulation at the site of inflammation can delay regenerative healing processes and can initiate pathological inflammatory processes. Thus, the efficient clearance of PMNs mediated by the induction of regulated cell death is a key process preventing the development of these pathological conditions. Myeloperoxidase (MPO), a highly abundant enzyme in PMN granules, primarily connected with PMN defense machinery, is suggested to play a role in PMN-regulated cell death. However, the contribution of MPO to the mechanisms of PMN cell death remains incompletely characterized. Herein, the process of the cell death of mouse PMNs induced by three different stimuli – phorbol 12-myristate 13-acetate (PMA), opsonized streptococcus (OST), and N-formyl-met-leu-phe (fMLP) – was investigated. MPO-deficient PMNs revealed a significantly decreased rate of cell death characterized by phosphatidylserine surface exposure and cell membrane permeabilization. An inhibitor of MPO activity, 4-aminobenzoic acid hydrazide, did not exhibit a significant effect on PMA-induced cell death compared to MPO deficiency. Interestingly, only the limited activation of markers related to apoptotic cell death was observed (e.g. caspase 8 activation, Bax expression) and they mostly did not correspond to phosphatidylserine surface exposure. Furthermore, a marker characterizing autophagy, cleavage of LC3 protein, as well as histone H3 citrullination and its surface expression was observed. Collectively, the data show the ability of MPO to modulate the life span of PMNs primarily through the potentiation of cell membrane permeabilization and phosphatidylserine surface exposure.
Collapse
Affiliation(s)
- Silvie Kremserová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Anna Kocurková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Michaela Chorvátová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Klinke
- Clinic of General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute of Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Lukáš Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
14
|
Understanding Myeloperoxidase-Induced Damage to HDL Structure and Function in the Vessel Wall: Implications for HDL-Based Therapies. Antioxidants (Basel) 2022; 11:antiox11030556. [PMID: 35326206 PMCID: PMC8944857 DOI: 10.3390/antiox11030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid modifications in the vessel wall. One important oxidative pathway involves reactive intermediates generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes. Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein (HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I), paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues. In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal, a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity. Here we provide a current update of the pathophysiological consequences of MPO-induced changes in the structure and function of HDL and discuss possible therapeutic implications and options. Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships between pathophysiological processes that affect the molecular composition and function of HDL and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately disease management.
Collapse
|
15
|
Connelly AN, Huijbregts RPH, Pal HC, Kuznetsova V, Davis MD, Ong KL, Fay CX, Greene ME, Overton ET, Hel Z. Optimization of methods for the accurate characterization of whole blood neutrophils. Sci Rep 2022; 12:3667. [PMID: 35256648 PMCID: PMC8901620 DOI: 10.1038/s41598-022-07455-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocyte population with critical roles in immune defense, regulation of innate and adaptive immune systems, and disease pathogenesis. Our progress in understanding precise mechanisms of neutrophil activation, recruitment, and function has been hampered by the lack of optimized and standardized methods for the characterization and phenotyping of this readily activated population. By comparing eight methods of neutrophil characterization, we demonstrate that the level of neutrophil activation and degranulation is associated with specific experimental conditions and the number and type of manipulation steps employed. Staining whole blood at 4 °C and removal of remaining unbound antibodies prior to one-step fixation and red blood cell lysis minimizes neutrophil activation, decreases phenotypic alterations during processing, and prevents nonspecific antibody binding. The effects of anticoagulants used for collection, processing delays, and time and temperature during sample analysis on neutrophil phenotype are addressed. The presented data provide a foundation for higher quality standards of neutrophil characterization improving consistency and reproducibility among studies.
Collapse
Affiliation(s)
- Ashley N. Connelly
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard P. H. Huijbregts
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Harish C. Pal
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Valeriya Kuznetsova
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Marcus D. Davis
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Krystle L. Ong
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Christian X. Fay
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Morgan E. Greene
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Edgar T. Overton
- grid.265892.20000000106344187Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL USA
| | - Zdenek Hel
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
16
|
Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, Chen J. The Structure and Function of the Glycocalyx and Its Connection With Blood-Brain Barrier. Front Cell Neurosci 2021; 15:739699. [PMID: 34690703 PMCID: PMC8529036 DOI: 10.3389/fncel.2021.739699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
The vascular endothelial glycocalyx is a dense, bush-like structure that is synthesized and secreted by endothelial cells and evenly distributed on the surface of vascular endothelial cells. The blood-brain barrier (BBB) is mainly composed of pericytes endothelial cells, glycocalyx, basement membranes, and astrocytes. The glycocalyx in the BBB plays an indispensable role in many important physiological functions, including vascular permeability, inflammation, blood coagulation, and the synthesis of nitric oxide. Damage to the fragile glycocalyx can lead to increased permeability of the BBB, tissue edema, glial cell activation, up-regulation of inflammatory chemokines expression, and ultimately brain tissue damage, leading to increased mortality. This article reviews the important role that glycocalyx plays in the physiological function of the BBB. The review may provide some basis for the research direction of neurological diseases and a theoretical basis for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Jing Jin
- Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Gao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehua Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junfa Chen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|