1
|
Chakraborty A, Ghosh R, Barik S, Mohapatra SS, Biswas A, Chowdhuri S. Deciphering inhibitory activity of marine algae Ecklonia cava phlorotannins against SARS CoV-2 main protease: A coupled in-silico docking and molecular dynamics simulation study. Gene 2024; 926:148620. [PMID: 38821329 DOI: 10.1016/j.gene.2024.148620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The onset of COVID-19 due to the SARS CoV-2 virus has spurred an urgent need for potent therapeutics and vaccines to combat this global pandemic. The main protease (Mpro) of the virus, crucial in its replication, has become a focal point in developing anti-COVID-19 drugs. The cysteine protease Mpro in SARS CoV-2 bears a significant resemblance to the same protease found in SARS CoV-1. Previous research highlighted phlorotannins derived from Ecklonia cava, an edible marine algae, as inhibitors of SARS CoV-1 Mpro activity. However, it remains unclear whether these marine-derived phlorotannins also exert a similar inhibitory effect on SARS CoV-2 Mpro. To unravel this, our study utilized diverse in-silico methodologies. We explored the pharmacological potential of various phlorotannins (phloroglucinol, triphloretol-A, eckol, 2-phloroeckol, 7-phloroeckol, fucodiphloroethol G, dieckol, and phlorofucofuroeckol-A) and assessed their binding efficacies alongside established Mpro inhibitors (N3 and lopinavir) through molecular docking studies. Among these compounds, five phlorotannins (eckol, 2-phloroeckol, 7-phloroeckol, dieckol, and phlorofucofuroeckol-A) exhibited potent binding affinities comparable to or surpassing N3 and lopinavir, interacting especially with the catalytic residues His41 and Cys145 of Mpro. Moreover, molecular dynamics simulations revealed that these five Mpro-phlorotannin complexes displayed enhanced stability and maintained comparable or slightly reduced compactness. They exhibited reduced conformational changes and increased expansion relative to the Mpro-N3 and/or Mpro-lopinavir complex. Our MM-GBSA analysis further supported these findings. Overall, our investigation highlights the potential of these five phlorotannins in inhibiting the proteolytic function of SARS CoV-2 Mpro, offering promise for anti-COVID-19 drug development.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
2
|
Kim YS, Kim KA, Seo HY, Kim SH, Lee HM. Antioxidant and anti-hepatitis A virus activities of Ecklonia cava Kjellman extracts. Heliyon 2024; 10:e25600. [PMID: 38333821 PMCID: PMC10850589 DOI: 10.1016/j.heliyon.2024.e25600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Ecklonia cava is a nutrient-rich algae species that contains abundant physiological phytochemicals, including peptides, carotenoids, fucoidans, and phlorotannins. However, elucidation of the antiviral effects of this algae and identification of new functional ingredients warrant further investigation. This study was aimed at investigating the potential anti-hepatitis A virus activities of extracts of E. cava prepared in different solvents. E. cava extracts were prepared using hot water and 70 % ethanol. The antioxidant activities of the extracts were confirmed by analyzing the total phenolic content, as well as 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activities. The inhibitory effects of the extracts against hepatitis A virus were analyzed using real-time polymerase chain reaction. The E. cava extract yield was 22.5-27.2 % depending on the extraction solvent. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was 70.44 % and 91.05 % for hot water and ethanol extracts at a concentration of 1000 ppm. The 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity of the ethanol extract was the highest (93.57 %) at 1000 μg/mL. Fourier-transform infrared was used to identify the functional groups (phlorotannin and alginate) in the extraction solvents. Ultra-high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry analysis revealed a potential bioactive compound previously unidentified in E. cava. Finally, we identified the antiviral activity of E. cava extracts against hepatitis A virus replication. These findings demonstrate that E. cava could be used as an anti-hepatitis A virus functional food and biological material.
Collapse
Affiliation(s)
- Ye-Sol Kim
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju, 61755, South Korea
- Pulmuone Institute of Technology, Cheongju, 28164, South Korea
| | - Ki An Kim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Jeollanam-do, 59108, South Korea
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hye-Young Seo
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju, 61755, South Korea
| | - Sung Hyun Kim
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju, 61755, South Korea
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju, 61755, South Korea
| |
Collapse
|
3
|
Kim YM, Kim HY, Jang JT, Hong S. Preventive Effect of Ecklonia cava Extract on DSS-Induced Colitis by Elevating Intestinal Barrier Function and Improving Pathogenic Inflammation. Molecules 2023; 28:8099. [PMID: 38138587 PMCID: PMC10745772 DOI: 10.3390/molecules28248099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a complex gastrointestinal disorder with a multifactorial etiology, including environmental triggers, autoimmune mechanisms, and genetic predisposition. Despite advancements in therapeutic strategies for IBD, its associated mortality rate continues to rise, which is often attributed to unforeseen side effects of conventional treatments. In this context, we explored the potential of Ecklonia cava extract (ECE), derived from an edible marine alga known for its anti-inflammatory and antioxidant properties, in mitigating IBD. This study investigated the effectiveness of ECE as a preventive agent in a murine model of dextran sulfate sodium (DSS)-induced colitis. Our findings revealed that pretreatment with ECE significantly ameliorated colitis severity, as evidenced by increased colon length, reduced spleen weight, and histological improvements demonstrated by immunohistochemical analysis. Furthermore, ECE significantly attenuated the upregulation of inflammatory cytokines and mediators and the infiltration of immune cells known to be prominent features of colitis in mice. Notably, ECE alleviated dysbiosis of intestinal microflora and aided in the recovery of damaged intestinal mucosa. Mechanistically, ECE exhibited protective effects against pathogenic colitis by inhibiting the NLRP3/NF-κB pathways known to be pivotal regulators in the inflammatory signaling cascade. These compelling results suggest that ECE holds promise as a potential candidate for IBD prevention. It might be developed into a functional food for promoting gastrointestinal health. This research sheds light on the preventive potential of natural compounds like ECE in the management of IBD, offering a safer and more effective approach to combating this challenging disease.
Collapse
Affiliation(s)
- Young-Mi Kim
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (Y.-M.K.); (H.-Y.K.)
| | - Hye-Youn Kim
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (Y.-M.K.); (H.-Y.K.)
| | - Ji-Tae Jang
- Aqua Green Technology Co., Ltd., Smart Building, Jeju Science Park, Jeju 63309, Republic of Korea;
| | - Suntaek Hong
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (Y.-M.K.); (H.-Y.K.)
| |
Collapse
|
4
|
Lim JW, Seo JK, Jung SJ, Lee KY, Kang SY. An antiviral optimized extract from Sanguisorba officinalis L. roots using response surface methodology, and its efficacy in controlling viral hemorrhagic septicemia of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109066. [PMID: 37689225 DOI: 10.1016/j.fsi.2023.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Viral hemorrhagic septicemia causes considerable economic losses for Korea's olive flounder (Paralichthys olivaceus) aquaculture farms; therefore, effective antiviral agents for controlling viral hemorrhagic septicemia virus (VHSV) infection are imperative. The present study implemented a Box-Behnken design and cytopathic reduction assay to derive an optimized extract of Sanguisorba officinalis L. roots (OE-SOR) with maximum antiviral activity against VHSV. OE-SOR prepared under optimized extraction conditions (55% ethanol concentration at 50 °C for 5 h) exhibited potent antiviral activity against VHSV, with a 50% effective 0.21 μg/mL concentration and a 340 selective index. OE-SOR also showed direct virucidal activity in the plaque reduction assay. Administering OE-SOR to olive flounder exhibited substantial efficacies against VHSV infection. Fish receiving 100 mg/kg body weight/day of OE-SOR as a preventive (40.0%; p < 0.05) or therapeutic (44.4%; p < 0.05) exhibited a higher relative survival than the untreated VHSV-infected control group (mortalities of 100% and 90%, respectively). In addition, fish fed with OE-SOR (100 mg/kg body weight/day) for two weeks conveyed a significantly higher inflammatory cytokine expression (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], interleukin-1 beta [IL-1β], and tumor necrosis factor-alpha [TNF-α]) than the control group one to two days post-administration. Moreover, no hematological or histological changes were observed in olive flounder treated with OE-SOR over four weeks. Liquid chromatography-quadrupole-time of flight tandem mass spectrometry and -triple quadrupole tandem mass spectrometry analyses identified ziyuglycoside I as a prominent OE-SOR constituent and marker compound (content: 14.5%). This study verifies that OE-SOR is an effective alternative for controlling viral hemorrhagic septicemia in olive flounder farms as it exhibits efficient in vivo anti-VHSV activity and increases innate immune responses.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Joong-Kyeong Seo
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
5
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
6
|
Nagahawatta DP, Liyanage NM, Je JG, Jayawardhana HHACK, Jayawardena TU, Jeong SH, Kwon HJ, Choi CS, Jeon YJ. Polyphenolic Compounds Isolated from Marine Algae Attenuate the Replication of SARS-CoV-2 in the Host Cell through a Multi-Target Approach of 3CL pro and PL pro. Mar Drugs 2022; 20:786. [PMID: 36547933 PMCID: PMC9781010 DOI: 10.3390/md20120786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
A global health concern has emerged as a response to the recent SARS-CoV-2 pandemic. The identification and inhibition of drug targets of SARS-CoV-2 is a decisive obligation of scientists. In addition to the cell entry mechanism, SARS-CoV-2 expresses a complicated replication mechanism that provides excellent drug targets. Papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro) play a vital role in polyprotein processing, producing functional non-structural proteins essential for viral replication and survival in the host cell. Moreover, PLpro is employed by SARS-CoV-2 for reversing host immune responses. Therefore, if some particular compound has the potential to interfere with the proteolytic activities of 3CLpro and PLpro of SARS-CoV-2, it may be effective as a treatment or prophylaxis for COVID-19, reducing viral load, and reinstating innate immune responses. Thus, the present study aims to inhibit SARS-CoV-2 through 3CLpro and PLpro using marine natural products isolated from marine algae that contain numerous beneficial biological activities. Molecular docking analysis was utilized in the present study for the initial screening of selected natural products depending on their 3CLpro and PLpro structures. Based on this approach, Ishophloroglucin A (IPA), Dieckol, Eckmaxol, and Diphlorethohydroxycarmalol (DPHC) were isolated and used to perform in vitro evaluations. IPA presented remarkable inhibitory activity against interesting drug targets. Moreover, Dieckol, Eckmaxol, and DPHC also expressed significant potential as inhibitors. Finally, the results of the present study confirm the potential of IPA, Dieckol, Eckmaxol, and DPHC as inhibitors of SARS-CoV-2. To the best of our knowledge, this is the first study that assesses the use of marine natural products as a multifactorial approach against 3CLpro and PLpro of SARS-CoV-2.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jung-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 56212, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 56212, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
7
|
Maheswari V, Babu PAS. Phlorotannin and its Derivatives, a Potential Antiviral Molecule from Brown Seaweeds, an Overview. RUSSIAN JOURNAL OF MARINE BIOLOGY 2022; 48:309-324. [PMID: 36405241 PMCID: PMC9640822 DOI: 10.1134/s1063074022050169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 05/31/2023]
Abstract
Research on seaweeds provides a continual discovery of natural bioactive compounds. The review presents new information on studies of the potential and specific antiviral action of phlorotannin and their derivatives from marine brown algae. Phlorotannin is a polyphenolic derivative and a secondary metabolite from marine brown algae which exhibits a high quality of biological properties. Phlorotannin has a variety of biological activities that include antioxidant, anticancer, antiviral, anti-diabetic, anti-allergic, antibacterial, antihypertensive and immune modulating activities. These phlorotannin properties were revealed by various biochemical and cell-based assays in vitro. This distinctive polyphenol from the marine brown algae may be a potential pharmaceutical and nutraceutical compound. In this review, the extraction, quantification, characterization, purification, and biological applications of phlorotannin are discussed, and antiviral potential is described in detail.
Collapse
Affiliation(s)
- V. Maheswari
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| | - P. Azhagu Saravana Babu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| |
Collapse
|
8
|
Kim JY, Kim HJ, Park JS, Kwon SR. DNA vaccine dual-expressing viral hemorrhagic septicemia virus glycoprotein and C-C motif chemokine ligand 19 induces the expression of immune-related genes in zebrafish (Danio rerio). JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:1032-1038. [PMID: 35913595 DOI: 10.1007/s12275-022-2231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
Glycoprotein (G protein)-based DNA vaccines are effective in protecting aquaculture fish from rhabdoviruses but the degree of immune response they elicit depends on plasmid concentration and antigen cassette. Here, we developed a DNA vaccine using the viral hemorrhagic septicemia virus G (VG) gene and chemokine (C-C motif) ligand 19 (CCL19)a.2 regulated by the CMV promoter as the molecular adjuvant. After transfection of the prepared plasmid (pVG + CCL19) into epithelioma papulosum cyprini cells, mRNA expression was confirmed through quantitative real-time polymerase chain reaction. The vaccine was intramuscularly injected into zebrafish (Danio rerio), and 28 days after immunization, viral hemorrhagic septicemia virus (105 TCID50/10 µl/fish) was intraperitoneally injected. A survival rate of 68% was observed in the pVG + CCL19 group but this was not significantly different from the survival rate of fish treated with pVG alone, that is, without the adjuvant. However, the expression of interferon- and cytokine-related genes in the spleen and kidney tissues of zebrafish was significantly increased (p < 0.05) on days 1, 3, 7, and 14 after immunization. Thus, CCL19a.2 induced an initial immune response as a molecular adjuvant, which may provide initial protection against virus infection before vaccination-induced antibody formation. This study provides insights on the functions of CCL19a.2 adjuvant in DNA vaccines.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea.
| |
Collapse
|
9
|
Jung MH, Jung SJ, Kim T. Saponin and chitosan-based oral vaccine against viral haemorrhagic septicaemia virus (VHSV) provides protective immunity in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:336-346. [PMID: 35643353 DOI: 10.1016/j.fsi.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Production losses of olive flounder (Paralichthys olivaceus) have increased owing to viral haemorrhagic septicaemia virus (VHSV) infection. In this study, we determined safe concentrations of orally administered saponin and chitosan by analysing serum enzyme (AST/ALT) levels as biochemical markers of hepatic injury. Furthermore, we demonstrated the efficacy, duration of protection, and safety of saponin and chitosan-based vaccines with inactivated VHSV (IV). Oral administration of saponin, chitosan, and their combination did not induce fish mortality at all tested concentrations (0.29, 1.45, and 2.9 mg/g of fish body weight/day) 10 days after administration. However, AST level was high at a dose >0.29 mg/g of fish body weight/day. Both saponin and chitosan were found to be safe and acceptable for vaccination studies at a dose of 0.29 mg/g of fish body weight/day. Administration of IV alone did not induce protection at 2 and 4 weeks post vaccination (wpv). Olive flounders administered saponin + IV and chitosan + IV vaccines had higher immunity against VHSV with relative percentage survival (RPS) of 12.5-7.5% and 0-20.1%, respectively; however, additional immunisation with combination of saponin + chitosan + IV clearly enhanced the protection with RPS values of 10-15%, 26.7%, 42.9%, and 37.5% at 4, 8, 12, and 20 wpv, respectively. Although the RPS value of oral immunisation was not comparable to that of injectable vaccines, the manufacturing process is simple and oral administration causes less stress to juvenile fish. To investigate the development of a protective immune response, olive flounder were re-challenged with VHSV (107.8 TCID50/fish) at 70 days postinfection; 100% of the previously unexposed fish died, whereas 80-100% of the previously immunised fish survived. Our results showed the possibility of developing preventive measures against VHSV using saponin and chitosan-based oral vaccines with inactivated virus.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Taeho Kim
- Department of Marine Production Management, Chonnam National University, Republic of Korea
| |
Collapse
|
10
|
In Silico Virtual Screening of Marine Aldehyde Derivatives from Seaweeds against SARS-CoV-2. Mar Drugs 2022; 20:md20060399. [PMID: 35736202 PMCID: PMC9227357 DOI: 10.3390/md20060399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023] Open
Abstract
Coronavirus disease 2019, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global pandemic that poses an unprecedented threat to the global economy and human health. Several potent inhibitors targeting SARS-CoV-2 have been published; however, most of them have failed in clinical trials. This study aimed to assess the therapeutic compounds among aldehyde derivatives from seaweeds as potential SARS-CoV-2 inhibitors using a computer simulation protocol. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of the compounds were analyzed using a machine learning algorithm, and the docking simulation of these compounds to the 3C-like protease (Protein Data Bank (PDB) ID: 6LU7) was analyzed using a molecular docking protocol based on the CHARMm algorithm. These compounds exhibited good drug-like properties following the Lipinski and Veber rules. Among the marine aldehyde derivatives, 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and 5-bromoprotocatechualdehyde were predicted to have good absorption and solubility levels and non-hepatotoxicity in the ADME/Tox prediction. 3-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were predicted to be non-toxic in TOPKAT prediction. In addition, 3,4-dihydroxybenzaldehyde was predicted to exhibit interactions with the 3C-like protease, with binding energies of −71.9725 kcal/mol. The computational analyses indicated that 3,4-dihydroxybenzaldehyde could be regarded as potential a SARS-CoV-2 inhibitor.
Collapse
|
11
|
Huang L, Li M, Wei H, Yu Q, Huang S, Wang T, Liu M, Li P. Research on the indirect antiviral function of medicinal plant ingredient quercetin against grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:372-379. [PMID: 35430348 DOI: 10.1016/j.fsi.2022.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Grouper iridovirus is a devastating pathogen that belongs to the genus Ranavirus. Based on the previous results that natural ingredient quercetin isolated from Illicium verum Hook. f. could effectively inhibit Singapore grouper iridovirus (SGIV) replication, suggesting that quercetin could serve as potential antiviral agent against grouper iridovirus. To know about whether quercetin has indirect antiviral activity against SGIV, this study made the investigation in vitro and in vivo, and the potential mechanism was also explored. Pretreating the cells with quercetin (12.5 μg/mL) significantly inhibited the replication of SGIV, similar results were also confirmed in vivo. Importantly, quercetin pretreatment could induce the expression of genes involved in type I interferon (IFN) system (IFN, STAT1, PKR, MxI and ISG15) and TLR9. It suggested that quercetin exerted the indirect antiviral activity against SGIV infection through promoting the recognition of SGIV and activating the IFN pathway to establish the antiviral status of host cell. Taken together, our results shedded light on the indirect antiviral function of natural ingredient quercetin, and clearly demonstrated that natural ingredient quercetin will be an excellent potential agent against SGIV infection in grouper aquaculture.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Mengmeng Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Hongling Wei
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shuaishuai Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China
| | - Taixia Wang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Mingzhu Liu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China.
| | - Pengfei Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China.
| |
Collapse
|
12
|
Gunaseelan S, Arunkumar M, Aravind MK, Gayathri S, Rajkeerthana S, Mohankumar V, Ashokkumar B, Varalakshmi P. Probing marine brown macroalgal phlorotannins as antiviral candidate against SARS-CoV-2: molecular docking and dynamics simulation approach. Mol Divers 2022; 26:3205-3224. [PMID: 35152367 PMCID: PMC9636370 DOI: 10.1007/s11030-022-10383-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Abstract Over the past year, owing to the emergent demand for the search for potential COVID-19 therapeutics, identifying alternative candidates from biological sources is one of the sustainable ways to reinforce the drug discovery process. Marine macroalgae have numerous advantages because of the richest availability of underexploited bioactive compounds. Polyphenolic compounds like phlorotannins obtained from brown macroalgae are reported as proven antiviral and immunostimulatory agents. Thus, the present study evaluated the possibility of phlorotannins as antagonists to the multiple target proteins essential for SARS-CoV-2 replication. Twenty different types of potent phlorotannins were targeted against druggable target proteins, viz., 3CLpro, RdRp, and Spro using AutoDock molecular docking, drug-likeness were assessed by ADMET profiling (QikProp module). Further, validated with 200 ns molecular dynamics (MD) simulation (Desmond module) for the top-ranked phlorotannins based on docking binding affinities. Among the twenty phlorotannins studied, eckol hexacetate, phlorofucofuroeckol, fucofuroeckol, and bifuhalol-hexacetate showed significant binding affinities across the selected targets. Besides, MD simulations highlighted Glu166, Gln189, Cys145, and Thr190 tetrad as potential interaction sites to inhibit 3CLpro's activity. Moreover, phlorotannins were confirmed to be druglike, with no major deviation observed in ADMET-profiling. Hence, phlorotannins could be therapeutic candidates against SARS-CoV-2. However, further investigations are needed to prove its efficacy as an antiviral agent. Conclusively, this study may envisage that the novel finding could notably impact the advancement of antiviral interventions for COVID-19 in the near future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10383-y.
Collapse
Affiliation(s)
- Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Malaisamy Arunkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Senthil Rajkeerthana
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Verma Mohankumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| |
Collapse
|
13
|
Mondal H, Chandrasekaran N, Mukherjee A, Thomas J. Viral infections in cultured fish and shrimps: current status and treatment methods. AQUACULTURE INTERNATIONAL 2022; 30:227-262. [DOI: 10.1007/s10499-021-00795-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2023]
|
14
|
Kumar LRG, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Mathew S, Ravishankar CN. Phlorotannins-bioactivity and extraction perspectives. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2173-2185. [PMID: 35601997 PMCID: PMC9112266 DOI: 10.1007/s10811-022-02749-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Phlorotannins, a seaweed based class of polyphenolic compounds, have proven to possess potential bioactivities such as antioxidant, antimicrobial, anti-allergic, anti-diabetic, anti-inflammatory, anti-cancerous, neuroprotection etc. These bioactivities have further increased demand globally and sustainable techniques such as supercritical fluid extraction, microwave assisted extraction, enzyme assisted extraction, extraction using deep eutectic solvents etc. are being explored currently for production of phlorotannin-rich extracts. In spite of such well documented bioactivities, very few phlorotannin-based nutraceuticals are available commercially which highlights the significance of generating consumer awareness about their physiological benefits. However, for industry level commercialization accurate quantification of phlorotannins with respect to the different classes is vital requiring sophisticated analytical techniques such as mass spectrometry, 1H-NMR spectroscopy etc. owing to the wide structural diversity. This review summarizes the extraction and bioactivities of phlorotannins based on the findings of in vivo and in vitro studies.
Collapse
Affiliation(s)
- Lekshmi R. G. Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - Preethy Treesa Paul
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - K. K. Anas
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. S. Tejpal
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - N. S. Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - T. K. Anupama
- ICAR-Central Institute of Fisheries Technology (CIFT), Veraval Research Centre, Veraval, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. N. Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| |
Collapse
|
15
|
α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol Sin 2021; 36:1520-1531. [PMID: 34510367 PMCID: PMC8435143 DOI: 10.1007/s12250-021-00440-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus, Rhabdoviridae family, is a causative agent of high mortality in fish and has caused significant losses to the aquaculture industry. Currently, no effective vaccines, Food and Drug Administration-approved inhibitors, or other therapeutic intervention options are available against VHSV. α-Lipoic Acid (LA), a potent antioxidant, has been proposed to have antiviral effects against different viruses. In this study, LA (CC50 = 472.6 μmol/L) was repurposed to exhibit antiviral activity against VHSV. In fathead minnow cells, LA significantly increased the cell viability post-VHSV infection (EC50 = 42.7 μmol/L), and exerted a dose-dependent inhibitory effect on VHSV induced-plaque, cytopathic effects, and VHSV glycoprotein expression. The time-of-addition assay suggested that the antiviral activity of LA occurred at viral replication stage. Survival assay revealed that LA could significantly upregulated the survival rate of VHSV-infected largemouth bass in both co-injection (38.095% vs. 1.887%, P < 0.01) and post-injection manner (38.813% vs. 8.696%, P < 0.01) compared with the control group. Additional comparative transcriptome and qRT-PCR analysis revealed LA treatment upregulated the expression of several antiviral genes, such as IRF7, Viperin, and ISG15. Moreover, LA treatment reduced VHSV-induced reactive oxygen species production in addition to Nrf2 and SOD1 expression. Taken together, these data demonstrated that LA suppressed VHSV replication by inducing antiviral genes expression and reducing VHSV-induced oxidative stress. These results suggest a new direction in the development of potential antiviral candidate drugs against VHSV infection.
Collapse
|
16
|
Kim JY, Park JS, Jung TS, Kim HJ, Kwon SR. Molecular cloning and characterization of chemokine C-C motif ligand 34 (CCL34) genes from olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:42-51. [PMID: 34146672 DOI: 10.1016/j.fsi.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Chemokines are a superfamily of chemotactic cytokines that regulate the migration and immune responses of leukocytes. Depending on the arrangement of the first two cysteine residues, chemokines are divided into four groups: CXC (α), CC (β), C (γ), and CX3C (δ). Chemokine C-C motif ligand 34 (CCL34) is a member of the CC chemokine family and is known as a fish-specific CC chemokine. In this experiment, we analyzed the molecular cloning and characterization of the PoCCL34 gene in olive flounder (Paralichthys olivaceus), including CCL34a.3 (PoCCL34a.3) and CCL34b.3 (PoCCL34b.3). The amino acid sequence of PoCCL34 has four highly conserved cysteine residues and it has a C-C motif. Phylogenetic analysis revealed that PoCCL34 was phylogenetically clustered in the fish CCL34 subcluster. Recombinant PoCCL34 induced chemotaxis of head kidney leukocytes in a dose-dependent manner. Head kidney leukocytes stimulated with PoCCL34 also exhibited significant respiratory burst activity and increased expression of pro-inflammatory cytokines (IL-1β, IL-6, and CXCL8), but the overall expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15) did not increase. Olive flounder injected with recombinant PoCCL34 demonstrated increased expression of pro-inflammatory cytokines (IL-1β and IL-6) in the head kidney. However, there was no increase in the expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15). Additionally, recombinant PoCCL34 induced high lysozyme activity in the serum of the flounder. These results indicate that although PoCCL34 is not involved in the antiviral response, it may play a significant role in the overall immune response of the flounder, particularly in mediating the inflammatory response.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, South Korea.
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea; Genome-based BioIT Convergence Institute, Asan, 31460, South Korea.
| |
Collapse
|
17
|
Kuda T, Nishizawa M, Toshima D, Matsushima K, Yoshida S, Takahashi H, Kimura B, Yamagishi T. Antioxidant and anti-norovirus properties of aqueous acetic acid macromolecular extracts of edible brown macroalgae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Fedyanina LN, Kuznetsova TA, Zvyagintseva TN, Shchelkanov MY. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021; 9:200. [PMID: 33671278 PMCID: PMC7921925 DOI: 10.3390/biomedicines9020200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The disease-preventive and medicinal properties of plant polyphenolic compounds have long been known. As active ingredients, they are used to prevent and treat many noncommunicable diseases. In recent decades, marine macroalgae have attracted the attention of biotechnologists and pharmacologists as a promising and almost inexhaustible source of polyphenols. This heterogeneous group of compounds contains many biopolymers with unique structure and biological properties that exhibit high anti-infective activity. In the present review, the authors focus on the antiviral potential of polyphenolic compounds (phlorotannins) from marine algae and consider the mechanisms of their action as well as other biological properties of these compounds that have effects on the progress and outcome of viral infections. Effective nutraceuticals, to be potentially developed on the basis of algal polyphenols, can also be used in the complex therapy of viral diseases. It is necessary to extend in vivo studies on laboratory animals, which subsequently will allow proceeding to clinical tests. Polyphenolic compounds have a great potential as active ingredients to be used for the creation of new antiviral pharmaceutical substances.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | | | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
19
|
Bacillus subtilis Inhibits Viral Hemorrhagic Septicemia Virus Infection in Olive Flounder ( Paralichthys olivaceus) Intestinal Epithelial Cells. Viruses 2020; 13:v13010028. [PMID: 33375689 PMCID: PMC7823535 DOI: 10.3390/v13010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that infects a wide range of host fish species causing high economic losses in aquaculture. Epithelial cells in mucosal organs are target sites for VHSV entry into fish. To protect fish against VHSV infection, there is a need to develop antiviral compounds able to prevent establishment of infection at portals of virus entry into fish. Bacillus subtilis is a probiotic with excellent antiviral properties, of which one of its secretions, surfactin, has been shown to inhibit viral infections in mammals. Herein, we demonstrate its ability to prevent VHSV infection in olive flounder (Paralichthys olivaceus) intestinal epithelial cells (IECs) and infection in internal organs. Our findings show inhibition of VHSV infection in IECs by B. subtilis and surfactin. In addition, our findings showed inhibition of VHSV in Epithelioma Papulosum Cyprini (EPC) cells inoculated with intestinal homogenates from the fish pretreated with B. subtilis by oral exposure, while the untreated fish had cytopathic effects (CPE) caused by VHSV infection in the intestines at 48 h after the VHSV challenge. At 96 h post-challenge, samples from the untreated fish had CPE from head kidney and spleen homogenates and no CPE were observed in the intestinal homogenates, while the B. subtilis-pretreated fish had no CPE in all organs. These findings demonstrate that inhibition of VHSV infection at portals of virus entry in the intestines culminated in prevention of infection in internal organs. In summary, our results show that B. subtilis has the potential to prevent VHSV infection in fish and that its use as a probiotic in aquaculture has the potential to serve as an antiviral therapeutic agent against different viral infections.
Collapse
|
20
|
Liu M, Yu Q, Xiao H, Yi Y, Cheng H, Putra DF, Huang Y, Zhang Q, Li P. Antiviral activity of Illicium verum Hook. f. extracts against grouper iridovirus infection. JOURNAL OF FISH DISEASES 2020; 43:531-540. [PMID: 32100315 DOI: 10.1111/jfd.13146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Grouper iridovirus causes high mortality rates in cultured groupers, and effective treatment for grouper iridovirus infection is urgently required. Illicium verum Hook. f. is a well-known medicinal plant with a variety of biological activities. The aim of this study was to analyse the use of I. verum extracts to treat grouper iridovirus infection. The safe working concentration of each I. verum extract was identified both in vitro and in vivo as follows: I. verum aqueous extract (IVAE) ≤ 500 μg/ml; I. verum ethanol extract (IVEE) ≤ 250 μg/ml; shikimic acid (SKA) ≤ 250 μg/ml; trans-anethole (TAT) ≤ 800 μg/ml; 3,4-dihydroxybenzoic acid (DDBA) ≤ 400 μg/ml; and quercetin (QCE) ≤ 50 μg/ml. The inhibitory activity of each I. verum extract against grouper iridovirus infection was analysed using aptamer (Q2)-based fluorescent molecular probe (Q2-AFMP) and RT-qPCR. All of the I. verum extracts displayed dose-dependent antiviral activities against grouper iridovirus. Based on the achieved per cent inhibition, IVAE, IVEE, DDBA and QCE were associated with the greatest antiviral activity (all > 90%). Together, our results indicate that I. verum extracts have effective antiviral properties, making it an excellent potential source material for the development of effective treatment for grouper iridovirus infection.
Collapse
Affiliation(s)
- Mingzhu Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | | | - Yaming Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
21
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
22
|
Cho HM, Doan TP, Ha TKQ, Kim HW, Lee BW, Pham HTT, Cho TO, Oh WK. Dereplication by High-Performance Liquid Chromatography (HPLC) with Quadrupole-Time-of-Flight Mass Spectroscopy (qTOF-MS) and Antiviral Activities of Phlorotannins from Ecklonia cava. Mar Drugs 2019; 17:E149. [PMID: 30836593 PMCID: PMC6471242 DOI: 10.3390/md17030149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Ecklonia cava is edible seaweed that is found in Asian countries, such as Japan and Korea; and, its major components include fucoidan and phlorotannins. Phlorotannins that are isolated from E. cava are well-known to have an antioxidant effect and strong antiviral activity against porcine epidemic diarrhea virus (PEDV), which has a high mortality rate in piglets. In this study, the bioactive components were determined based on two different approaches: (i) bio-guided isolation using the antiviral activity against the H1N1 viral strain, which is a representative influenza virus that originates from swine and (ii) high-resolution mass spectrometry-based dereplication, including relative mass defects (RMDs) and HPLC-qTOFMS fragmentation analysis. The EC70 fraction showed the strongest antiviral activity and contained thirteen phlorotannins, which were predicted by dereplication. Ten compounds were directly isolated from E. cava extract and then identified. Moreover, the dereplication method allowed for the discovery of two new phlorotannins. The structures of these two isolated compounds were elucidated using NMR techniques and HPLC-qTOFMS fragmentation analysis. In addition, molecular modelling was applied to determine the absolute configurations of the two new compounds. The antiviral activities of seven major phlorotannins in active fraction were evaluated against two influenza A viral strains (H1N1 and H9N2). Six of the compounds showed moderate to strong effects on both of the viruses and phlorofucofuroeckol A (12), which showed an EC50 value of 13.48 ± 1.93 μM, is a potential active antiviral component of E. cava.
Collapse
Affiliation(s)
- Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Hyun Woo Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ba Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ha Thanh Tung Pham
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Tae Oh Cho
- Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759, Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|