1
|
Singh RD, Krishnani KK, Arambam K, Chadha NK, Sukhdhane K, Pathak M, Verma AK, Sarma D. Biomitigation of ammonical stress in aquaculture using luffa sponge coupled with medicinal and aromatic plants for potential application in aquaponics. ENVIRONMENTAL TECHNOLOGY 2025:1-14. [PMID: 39756052 DOI: 10.1080/09593330.2024.2447626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Ammonia, a major stress-inducing factor in aquaculture, contributes a significant challenge in maintaining sustainable fish production. Addressing this issue requires environmentally and economically sustainable solutions. This study explores the use of readily available and environmentally friendly porous lignocellulosic luffa sponge as a biostimulator, with a combination of three medicinal and aromatic plants(MAPs) viz. Asparagus racemosses(satavari) roots, Cammiphora wightii(guggal) stems, and Vitex negundo(nirgundi) stem for alleviating ammoniacal stress by biotransforming ammonia in aquaponics water/ aquaculture. A 45-day experiment was conducted using Pangasianodon hypophthalmus in tanks containing aquaponics water. The study consists of a control (C) and four treatments: L(Luffa), LS(Luffa + shatavari roots), LG(Luffa + guggal stem) and LN(Luffa + nirgundi stem). Ammonia was spiked weekly at different concentrations(2, 2.5, 3, 5, and 10 mgL-1). The L group showed significantly(p < 0.05) higher ammonia removal of 86.06% ± 9.62(spiked 3 mgL-1) in 24 hrs, and 73.98%±2.6 and 86.35%±4.47(spiked 5 mgL-1) in 24 and 48 hrs, respectively, which may be attributed to a higher surface area of the substrate for microbial attachment. The MAPs upregulated fish's hematological and serum biochemical parameters under elevated ammonia, indicating ammonical stress mitigation. Treatment groups showed significantly (p < 0.05) higher fish yield than the control (165.66 ± 0.50 g), with L, LS, LG, and LN giving a yield of 174.76 ± 2.07, 175.41 ± 0.59, 179.07 ± 4.29, and 181.57 ± 0.45 g respectively, with no significant difference detected among them. Promising outcomes in ammonia removal and stress mitigation were demonstrated by incorporating the lignocellulosic biomass and MAPs in this study, which is beneficial in commercial aquaculture with prospects in aquaponics systems.
Collapse
Affiliation(s)
| | | | - Kalpana Arambam
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - Kapil Sukhdhane
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Madhuri Pathak
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - Debajit Sarma
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
2
|
Li Z, Luo W, Zhou Q, Sun C, Zheng X, Liu B, Mpange K, Zhu A, Wang A. Investigation of the Fermentation Process of Moringa oleifera Leaves and Its Effects on the Growth Performance, Antioxidant Capacity, and Intestinal Microbiome of Procambarus clarkii. Antioxidants (Basel) 2024; 13:1355. [PMID: 39594497 PMCID: PMC11590930 DOI: 10.3390/antiox13111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Moringa oleifera is renowned for its high antioxidant activity. However, few studies have been conducted on its effects on aquatic animals. The aim of this experiment was to investigate the optimal fermentation process of M. oleifera leaves and to evaluate the effects of fermented M. oleifera leaves on crayfish (9.11 ± 0.3 g) in terms of growth performance, antioxidant capacity, and gut microbiological parameters. By optimizing the fermenting material/water ratio, fermentation time, temperature, and strain, the optimal fermentation conditions of a 10% water ratio + 48 h + 30 °C + inoculation with 2% B. amyloliquefaciens (107 CFU mL-1) were obtained. These conditions resulted in notable increases in the contents of the total protein, total phenols, flavonoids, and amino acids (p < 0.05) while also leading to a notable decrease in the content of tannins in contrast to those of unfermented M. oleifera leaves (p < 0.05). The fermented M. oleifera (FMO) leaves were incorporated at five concentrations, including 0% (control (CT)), 0.25% (0.25FMO), 0.5% (0.5FMO), 1% (1FMO), and 2% (2FMO). The results showed that the 1FMO group performed better in terms of the final body weight (FBW), weight gain rate (WGR), and specific weight gain rate (SGR) compared with the CT group (p < 0.05). In addition, amylase and lipase activities were significantly higher in the 1FMO and 2FMO groups compared with the other groups (p < 0.05). The fermented M. oleifera leaves significantly increased the catalase (CAT) activity in the crayfish (p < 0.05). The superoxide dismutase (SOD) activity was significantly increased in the 0.25FMO, 1FMO, and 2FMO groups, and the malondialdehyde (MDA) content was significantly decreased while the glutathione peroxidase (GSH-Px) content was significantly increased in the 0.5FMO, 1FMO, and 2FMO groups (p < 0.05). Furthermore, the 1FMO group was observed to significantly increase the abundance of Firmicutes while simultaneously reducing the abundance of Aeromonas (p < 0.05) and adjusting the structure of the intestinal microbiome. In conclusion, this study established the optimal fermentation conditions for M. oleifera and obtained a product with high nutrient and low tannin contents. Furthermore, the incorporation of 1% FMO was demonstrated to facilitate growth, enhance the antioxidant capacity, and optimize the gut microbiology in crayfish.
Collapse
Affiliation(s)
- Zhengzhong Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
| | - Weizhu Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (W.L.); (Q.Z.); (C.S.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Kaunda Mpange
- Department of Fisheries, Ministry of Fisheries and Livestock, Lusaka 10101, Zambia;
| | - Aimin Zhu
- Yancheng Academy of Fishery Sciences, Yancheng 224051, China; zam--
| | - Aimin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224007, China;
| |
Collapse
|
3
|
Xue X, Chen Y, Yu Z, Feng Y, Zhang L, Han C, Yin X, Lu B, Shu H. Effects of Diet Supplemented With Hydrolyzable Tannin on the Growth Performance, Antioxidant Capacity, and Muscle Nutritional Quality of Juvenile Mastacembelus armatus. AQUACULTURE NUTRITION 2024; 2024:8266189. [PMID: 39555515 PMCID: PMC11554411 DOI: 10.1155/2024/8266189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
In this study, four groups of diet were prepared, with eel commercial diet without hydrolyzable tannin (HT) as the control group (H0), and the other three groups were fed with diet containing 0.05% (H1), 0.1% (H2), and 0.2% (H3) doses of HT to juvenile Mastacembelus armatus with an initial body weight of (0.40 ± 0.005) g. Juvenile fish in all groups were fed continuously for 60 days. Growth indices, hepatopancreatic antioxidant enzymes, biochemical indices (including total superoxide dismutase [T-SOD], catalase [CAT], malondialdehyde [MDA], total antioxidant capacity [T-AOC], alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [AKP], and triglyceride [TG]), the content of muscle amino acids and fatty acids, stomach and intestine enzyme activities (pepsin, amylase, lipase), and genes expressions were evaluated. The results showed that 0.1% HT significantly improved the growth performance, hepatopancreatic antioxidant capacity, as well as muscle quality and lipase activity of juvenile M. armatus. In summary, the optimal addition level of HT in the diet of juvenile M. armatus is 0.1%, which helps to improve aquaculture efficiency and improve the muscle quality of M. armatus. However, the long-term effects of feeding HT on M. armatus and its physiological reaction mechanism need to be further explored.
Collapse
Affiliation(s)
- Xiaowen Xue
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yiman Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhide Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuwei Feng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Linan Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoli Yin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Seong Wei L, Mohamad Sukri SA, Tahiluddin AB, Abdul Kari Z, Wee W, Kabir MA. Exploring beneficial effects of phytobiotics in marine shrimp farming: A review. Heliyon 2024; 10:e31074. [PMID: 39113972 PMCID: PMC11304020 DOI: 10.1016/j.heliyon.2024.e31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/10/2024] Open
Abstract
Marine shrimp farming, mainly Penaeus monodon and Litopenaeus vannamei, is an important component of the aquaculture industry. Marine shrimp farming helps produce a protein source for humans, provides job opportunities, and generates lucrative profits for investors. Intensification farming practices can lead to poor water quality, stress, and malnutrition among the farmed marine shrimp, resulting in disease outbreaks and poor production, impeding the development of marine shrimp farming. Antibiotics are the common short-term solution to treat diseases in marine shrimp farming. Moreover, the negative impacts of using antibiotics on public health and the environment erode consumer confidence in aquaculture products. Recently, research on using phytobiotics as a prophylactic agent in aquaculture has become a hot topic. Various phytobiotics have been explored to reveal their beneficial effects on aquaculture species. In this review paper, the sources and modes of action of phytobiotics are presented. The roles of phytobiotics in improving growth performance, increasing antioxidant capacity, enhancing the immune system, stimulating disease resistance, and mitigating stress due to abiotic factors in marine shrimp culture are recapitulated and discussed.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao, Tawi-Tawi, 7500, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Turkey
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
5
|
Ghosh AK, Islam HMR, Banu GR, Panda SK, Schoofs L, Luyten W. Effects of Piper betle and Phyllanthus emblica leaf extracts on the growth and resistance of black tiger shrimp, Penaeus monodon, against pathogenic Vibrio parahaemolyticus. AQUACULTURE INTERNATIONAL 2024; 32:3689-3708. [DOI: 10.1007/s10499-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2025]
|
6
|
Moh JHZ, Okomoda VT, Mohamad N, Waiho K, Noorbaiduri S, Sung YY, Manan H, Fazhan H, Ma H, Abualreesh MH, Ikhwanuddin M. Morinda citrifolia fruit extract enhances the resistance of Penaeus vannamei to Vibrio parahaemolyticus infection. Sci Rep 2024; 14:5668. [PMID: 38454039 PMCID: PMC10920830 DOI: 10.1038/s41598-024-56173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
Vibrio parahaemolyticus is a gram-negative facultative anaerobic bacterium implicated as the causative agent of several shrimp diseases. As part of the effort to provide biocontrol and cost-effective treatments, this research was designed to elucidate the effect of Morinda citrifolia fruit extract on the immunity of Penaeus vannamei postlarvae (PL) to V. parahaemolyticus. The methanol extract of M. citrifolia was vacuum evaporated, and the bioactive compounds were detected using gas chromatography‒mass spectrometry (GC‒MS). Thereafter, P. vannamei PL diets were supplemented with M. citrifolia at different concentrations (0, 10, 20, 30, 40, and 50 mg/g) and administered for 30 days before 24 h of exposure to the bacterium V. parahaemolyticus. A total of 45 bioactive compounds were detected in the methanol extract of M. citrifolia, with cyclononasiloxane and octadecamethyl being the most abundant. The survival of P. vannamei PLs fed the extract supplement was better than that of the control group (7.1-26.7% survival greater than that of the control group) following V. parahaemolyticus infection. Shrimp fed 50 mg/g M. citrifolia had the highest recorded survival. The activities of digestive and antioxidant enzymes as well as hepatopancreatic cells were significantly reduced, except for those of lipase and hepatopancreatic E-cells, which increased following challenge with V. parahaemolyticus. Histological assessment of the hepatopancreas cells revealed reduced cell degeneration following the administration of the plant extracts (expecially those fed 50 mg/g M. citrifolia) compared to that in the control group. Therefore, the enhanced immunity against V. parahaemolyticus infection in P. vannamei could be associated with the improved hepatopancreas health associated with M. citrifolia fruit extract supplementation.
Collapse
Affiliation(s)
- Julia Hwei Zhong Moh
- Curtin Aquaculture Research Lab, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Victor Tosin Okomoda
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Fisheries and Aquaculture, College of Forestry and Fisheries, Joseph Sarwuan Tarka University (Formerly Federal University of Agriculture Makurdi), P.M.B. 2373, Makurdi, Nigeria.
| | - Nurshahieda Mohamad
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, Guangdong, China
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Minden, Penang, Malaysia
| | - Shaibani Noorbaiduri
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hidayah Manan
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hanafiah Fazhan
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, Guangdong, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, Guangdong, China
| | - Muyassar H Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, Guangdong, China.
- Faculty of Fisheries and Marine, Campus C, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
7
|
Dadras F, Velisek J, Zuskova E. An update about beneficial effects of medicinal plants in aquaculture: A review. VET MED-CZECH 2023; 68:449-463. [PMID: 38303995 PMCID: PMC10828785 DOI: 10.17221/96/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024] Open
Abstract
Aquaculture is an essential and growing component of agricultural and global ecosystems worldwide. Aquaculture provides more than 25% of the total aquatic food consumption by humans. The development of the aquaculture industry should be followed in successive industrial years, and therefore it is necessary to pay attention to the management and type of farming system that is compatible with the environment. The use of antibiotics for disease control has been criticised for their negative effects, including the emergence of antibiotic-resistant bacteria, the suppression of the immune system and the environment, and the accumulation of residue in aquatic tissues. The use of these products reduces the need for treatments, enhances the effect of vaccines, and, in turn, improves production indicators. Medicinal plants have increasingly been used in recent years as a disease control strategy in aquaculture, boosting the immune system of aquatic animals and helping to develop strong resistance to a wide range of pathogens. Therefore, this review aims to provide an overview of the recent evidence on the beneficial use of medicinal plants to promote growth and strengthen the immune system in farmed aquatic animals.
Collapse
Affiliation(s)
- Faranak Dadras
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Josef Velisek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eliska Zuskova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
van Muilekom DR, Collet B, Rebl H, Zlatina K, Sarais F, Goldammer T, Rebl A. Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish. Int J Mol Sci 2023; 24:10229. [PMID: 37373375 DOI: 10.3390/ijms241210229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.
Collapse
Affiliation(s)
- Doret R van Muilekom
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Bertrand Collet
- VIM, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
9
|
Ghosh AK, Ahmmed SS, Islam HMR, Hasan MA, Banu GR, Panda SK, Schoofs L, Luyten W. Oral administration of Zingiber officinale and Aegle marmelos extracts enhances growth and immune functions of the shrimp Penaeus monodon against the white spot syndrome virus (WSSV). AQUACULTURE INTERNATIONAL 2023. [DOI: 10.1007/s10499-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
|
10
|
Sun S, Bian C, Zhou N, Shen Z, Yu M. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: Insights from the brain-gut axis. Int J Biol Macromol 2023:125158. [PMID: 37276896 DOI: 10.1016/j.ijbiomac.2023.125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Supplementation with Astragalus polysaccharides (APS) has beneficial effects on aquatic animals. Herein, we aimed to investigate the effects of different doses of APS on the growth, innate immune response, and brain-gut axis of Macrobrachium rosenbergii. The molecular weight and the monosaccharide composition of APS were analyzed. APS were added at concentration of 0 (control), 0.05, 0.10, 0.15, and 0.20 % in practical diets. Growth performance increased significantly under 0.05 to 0.20 % APS, with enhanced lipase and protease activities in intestinal tissues. Prawns receiving APS supplementation had significantly lower amounts of pathogenic intestinal bacteria (Vibrio and Aeromonas) and a markedly different microbial community structure compared with those of the control group. The fecal short chain fatty acid (SCFA) and neurotransmitters γ-aminobutyric acid contents increased in the brains of prawns receiving APS, which was potentially associated with increased Lactobacillus and Bacillus levels. Prawns receiving APS supplementation displayed a significantly enhanced immune function (such as total hemocyte count, total protein concentration, phenoloxidase activity, serum agglutination titer, and lysozyme activity) and improved disease resistance to Vibrio anguillarum compared those in the control group. Thus, dietary APS positively affected the gut-brain axis by altering the microbiota composition, increasing the fecal SCFA content, and enhancing prawn immunity.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau
| | - Zhixin Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Ming Yu
- Hainan Huixin Breeding Co., Ltd., Haikou 571126, China
| |
Collapse
|
11
|
Sun L, Lin F, Sun B, Qin Z, Chen K, Zhao L, Li J, Zhang Y, Lin L. Scutellaria polysaccharide mediates the immunity and antioxidant capacity of giant freshwater prawn (Macrobrachium rosenbergii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104678. [PMID: 36907337 DOI: 10.1016/j.dci.2023.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) is a commercially valuable freshwater crustacean species that frequently appears a death affected by various diseases, resulting in substantial economic losses. Improving the survival rate of M. rosenbergii is a hot and essential issue for feeding the prawns. Scutellaria polysaccharide (SPS) extracted from Scutellaria baicalensis (a Chinese medicinal herb) is conducive to the survival rate of organisms by enhancing immunity and antioxidant ability. In this study, M. rosenbergii was fed 50, 100, and 150 mg/kg of SPS. The immunity and antioxidant capacity of M. rosenbergii were tested by mRNA levels and enzyme activities of related genes. The mRNA expressions of NF-κB, Toll-R, and proPO (participating in the immune response) in the heart, muscle, and hepatopancreas were decreased after four weeks of SPS feeding (P < 0.05). This indicated that long-term feeding of SPS could regulate the immune responses of M. rosenbergii tissues. The activity levels of antioxidant biomarkers, alkaline phosphatase (AKP), and acid phosphatase (ACP) had significant increases in hemocytes (P < 0.05). Moreover, catalase (CAT) activities in the muscle and hepatopancreas, as well as superoxide dismutase (SOD) activities in all tissues, significantly decreased after four weeks of culture (P < 0.05). The results demonstrated that long-term feeding of SPS could improve the antioxidant capacity of M. rosenbergii. In summary, SPS was conducive to regulating the immune capacity and enhancing the antioxidant capacity of M. rosenbergii. These results provide a theoretical basis for supporting SPS addition to the feed of M. rosenbergii.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|
12
|
Zarantoniello M, Chemello G, Ratti S, Pulido-Rodríguez LF, Daniso E, Freddi L, Salinetti P, Nartea A, Bruni L, Parisi G, Riolo P, Olivotto I. Growth and Welfare Status of Giant Freshwater Prawn ( Macrobrachium rosenbergii) Post-Larvae Reared in Aquaponic Systems and Fed Diets including Enriched Black Soldier Fly ( Hermetia illucens) Prepupae Meal. Animals (Basel) 2023; 13:ani13040715. [PMID: 36830501 PMCID: PMC9952608 DOI: 10.3390/ani13040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Due to the limited application of insect meal in giant freshwater prawn (Macrobrachium rosenbergii) culture, the present study aimed to (i) produce spirulina-enriched full-fat black soldier fly (Hermetia illucens) prepupae meal (HM) and (ii) test, for the first time, two experimental diets characterized by 3% or 20% of fish meal and fish oil replacement with full-fat HM (HM3 and HM20, respectively) on M. rosenbergii post-larvae during a 60-day feeding trial conducted in aquaponic systems. The experimental diets did not negatively affect survival rates or growth. The use of spirulina-enriched HM resulted in a progressive increase in α-tocopherol and carotenoids in HM3 and HM20 diets that possibly played a crucial role in preserving prawn muscle-quality traits. The massive presence of lipid droplets in R cells in all the experimental groups reflected a proper nutrient provision and evidenced the necessity to store energy for molting. The increased number of B cells in the HM3 and HM20 groups could be related to the different compositions of the lipid fraction among the experimental diets instead of a nutrient absorption impairment caused by chitin. Finally, the expression of the immune response and stress markers confirmed that the experimental diets did not affect the welfare status of M. rosenbergii post-larvae.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
- Correspondence:
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Stefano Ratti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | | | - Enrico Daniso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Lorenzo Freddi
- Mj Energy srl Società Agricola, Contrada SS. Crocifisso, 22, 62010 Treia, Italy
| | - Pietro Salinetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Leonardo Bruni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Paola Riolo
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
13
|
Yin X, Zhuang X, Liao M, Cui Q, Yan C, Huang J, Jiang Z, Huang L, Luo W, Liu Y, Wang W. Andrographis paniculata improves growth and non-specific immunity of shrimp Litopenaeus vannamei, and protects it from Vibrio alginolyticus by reducing oxidative stress and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104542. [PMID: 36122733 DOI: 10.1016/j.dci.2022.104542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Andrographis paniculata (AP) is a traditional medicinal plant with many pharmacological activities, including anti-inflammatory, antimicrobial, immunity stimulation and so on. Several studies have reported that AP plays a strong role in promoting the immune system of aquatic animals to resist several pathogens. In the present study, we investigate the effects of a diet containing AP on the immune responses, growth, and the resistance to Vibrio alginolyticus (V. alginolyticus) in Litopenaeus vannamei (L. vannamei). Four diets were formulated by adding AP at the dosage of 0% (Control), 0.25%, 0.5%, and 1% in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 28-day feeding trial. The results showed that dietary AP improved the growth performance and non-specific immune function of shrimps. To investigate the effect of AP on disease resistance of L. vannamei, shrimps fed with diet containing AP were challenged with V. alginolyticus. Compared with the control group, the shrimps fed diet containing AP showed significantly higher survival. Furthermore, the hepatopancreas injury in the shrimp fed with AP was less than control group at 6 h after V. alginolyticus infection. However, no difference was observed in the degree of hepatopancreas injury between AP groups and control group at 12 h and 24 h after V. alginolyticus infection. Based on this result, the samples at 6 h after V. alginolyticus infection was selected for subsequent detection. Reactive oxygen species (ROS) accumulation in hemocytes and O2- production in hepatopancreas caused by V. alginolyticus infection was significantly reduced after feeding a diet containing 0.25% and 0.5% AP (p < 0.05). In addition, we found that feeding AP significantly up-regulated the expression of pro-apoptotic genes (Bax, Caspase 3, p53) and down-regulated the expression of anti-apoptotic genes (Bcl-2) in hepatopancreas after V. alginolyticus infection. In conclusion, AP promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating the oxidative damage and apoptosis. These results provide useful information regarding the effects of AP extracts as a shrimp feed additive for sustainable shrimp culture.
Collapse
Affiliation(s)
- Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qiqian Cui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chunxia Yan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Jiayi Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zixiang Jiang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Weitao Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Responses of Micropterus salmoides under Ammonia Stress and the Effects of a Potential Ammonia Antidote. Animals (Basel) 2023; 13:ani13030397. [PMID: 36766286 PMCID: PMC9913073 DOI: 10.3390/ani13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ammonia is a common environmental limiting factor in aquaculture. To investigate the effects of ammonia stress and explore the protective effect of N-carbamylglutamate (NCG) on Micropterus salmoides (M. salmoides), tissue sections and parameters related to oxidative stress and the inflammatory response in M. salmoides were carried out during the ammonia stress test and feeding test. The results demonstrated that the LC50 for 24 h, 48 h, 72 h, and 96 h under ammonia stress in M. salmoides were 25.78 mg/L, 24.40 mg/L, 21.90 mg/L, and 19.61 mg/L, respectively. Under ammonia stress, the structures of the tissues were damaged, and the GSH content decreased, while the MDA content increased with the increase in stress time and ammonia concentration. The NO content fluctuated significantly after the ammonia nitrogen stress. In the 15-day feeding test, with the increased NCG addition amount and feeding time, the GSH content increased while the MDA and NO contents decreased gradually in the NCG addition groups (NL group: 150 mg/kg; NM group: 450 mg/kg; NH group: 750 mg/kg) when compared with their control group (CK group: 0 mg/kg). In the ammonia toxicology test after feeding, the damage to each tissue was alleviated in the NL, NM, and NH groups, and the contents of GSH, MDA, and NO in most tissues of the NH group were significantly different from those in the CK group. The results suggested that ammonia stress caused tissue damage in M. salmoides, provoking oxidative stress and inflammatory response. The addition of NCG to the feed enhances the anti-ammonia ability of M. salmoides. Moreover, the gill and liver might be the target organs of ammonia toxicity, and the brain and kidney might be the primary sites where NCG exerts its effects. Our findings could help us to find feasible ways to solve the existing problem of environmental stress in M. salmoides culture.
Collapse
|
15
|
Mahmoud HK, Farag MR, Reda FM, Alagawany M, Abdel-Latif HMR. Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci Rep 2022; 12:21748. [PMID: 36526884 PMCID: PMC9758223 DOI: 10.1038/s41598-022-25611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg-1 of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L-1 for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.
Collapse
Affiliation(s)
- Hemat K. Mahmoud
- grid.31451.320000 0001 2158 2757Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mayada R. Farag
- grid.31451.320000 0001 2158 2757Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511 Egypt
| | - Fayiz M. Reda
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mahmoud Alagawany
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Hany M. R. Abdel-Latif
- grid.7155.60000 0001 2260 6941Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Zhou X, Forrester SP, Fan J, Liu B, Zhou Q, Miao L, Shao P, Li X. Effects of M. oleifera leaf extract on the growth, physiological response and related immune gene expression of crucian carp fingerlings under Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:358-367. [PMID: 36183982 DOI: 10.1016/j.fsi.2022.09.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
We evaluated the effect of dietary supplementation with Moringa oleifera leaf extract on the resistance to Aeromonas hydrophila infection in crucian carp. The fish were randomly divided into five groups: the basal diet, the basal diet supplied with 0.25% (0.25 M), 0.5% (0.5 M), 0.75% (0.75 M) and 1.0% M. oleifera leaf extract (1.0 M) for 8 weeks. The growth, antioxidant capabilities, related immune genes as well as resistance to A. hydrophila infection were determined. The results showed that compared with the control group, the weight gain, specific growth rate in the group of 0.5% M. oleifera leaf extract, serum superoxide dismutase (SOD), albumin (ALB) and glutathione peroxidase (GSH-Px), the gene expression of hepatopancreas BTB and CNC homolog 1 (Bach1), NF-E2-related factor 2 (Nrf2), peroxidases (PRX) and NADPH oxidase (NOX) in the group of 0.5%-1.0% M. oleifera leaf extract increased, while feed conversion ratio, serum cortisol, red blood cell (RBC), alanine aminotransferase (ALT), malonaldehyde (MDA) decreased in the group of 0.5%-1.0% M. oleifera leaf extract before the stress. After the infection, the group of 0.5% or 0.75% M. oleifera leaf extract also could improve the serum ALB, hepatopancreas Kelch-like-ECH-associated protein 1 (Keap1), Bach1, Nrf2, TOR, PRX and NOX and reduce cortisol compared with the control group. In summary, this study suggested that 0.5% M. oleifera leaf extract inclusion increased the growth performance, even had positive effects on physiological and immune function, and enhanced resistance against pathogenic infections in crucian carp. The optimum level of M. oleifera leaf extract for crucian carp was estimated to be 0.35%-0.48% based on polynomial comparison with FCR and SGR.
Collapse
Affiliation(s)
- Xixun Zhou
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China.
| | | | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Bo Liu
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Qunlan Zhou
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Peng Shao
- Yancheng Academy of Fishery Science, Yancheng, 224051, China
| | - Xiaoxiang Li
- Yancheng Zhongsui Technology Co. LTD, Yancheng, 224000, China
| |
Collapse
|
17
|
Zhuang Y, Li Q, Cao C, Tang XS, Wang NA, Yuan K, Zhong GF. Bovine lactoferricin on non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:891-897. [PMID: 36334700 DOI: 10.1016/j.fsi.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effects of dietary Bovine lactoferricin (LFcinB) on the growth performance and non-specific immunity in Macrobrachium rosenbergii. Five experimental diets were 1.0‰ Bovine lactoferricin (LCB1); 1.5‰ Bovine lactoferricin (LCB1.5); 2.0‰ Bovine lactoferricin (LCB2); 2.5‰ Bovine lactoferricin (LCB2.5); the control group, basal diet without Bovine lactoferricin. A total of 600 prawns were randomly assigned to 5 groups in triplicate in 15 tanks for an 8-week feeding trial. The results showed the final weight, weight gain rate, specific growth rate and survival rate of prawns in the treatment groups were significantly improved versus the control (P < 0.05). The feed conversion ratio was reduced significantly in treatment groups compared to the control (P < 0.05). Compared with the control, alkaline phosphatase (AKP), acid phosphatase (ACP), lysozyme (LZM), catalase (CAT), superoxide dismutase (SOD) activities in the hepatopancreas of the treatment groups were significantly enhanced, and malondialdehyde (MDA) content was reduced significantly (P < 0.05). Compared with the control, the relative expression levels of AKP, ACP, LZM, CAT, SOD, Hsp70, peroxiredoxin-5, Toll, dorsal and relish genes were significantly higher among treatment groups, except for the AKP gene in the LCB1 group and the Hsp70 gene in the LCB1.5 group (P < 0.05). Compared with the control, the relative expression levels of TOR, 4E-BP, eIF4E1α and eIF4E2 genes were significantly enhanced in the LCB1.5 group (P < 0.05). When resistance against Vibrio parahaemolyticus in prawn is considered, higher doses of Bovine lactoferricin show better antibacterial ability. The present study indicated that dietary Bovine lactoferricin could significantly improve the growth performance and improve the antioxidative status of M. rosenbergii. The suitable addition level is 1.5 g/kg. LFcinB has great potential as a new feed additive without the threat of drug resistance.
Collapse
Affiliation(s)
- Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Cong Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang-Shan Tang
- Zhejiang Hangzhou Tiao Wang Biological Technology Co., Ltd., Hangzhou, 310015, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Kun Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| |
Collapse
|
18
|
Effects of dietary Plantago ovata seed extract administration on growth performance and immune function of common carp (Cyprinus carpio) fingerling exposed to ammonia toxicity. Vet Res Commun 2022; 47:731-744. [DOI: 10.1007/s11259-022-10034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
|
19
|
Liu B, Gao Q, Liu B, Sun C, Song C, Liu M, Zhou Q, Zheng X, Liu X. Response of microbiota and immune function to different hypotonic stress levels in giant freshwater prawn Macrobrachium rosenbergii post-larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157258. [PMID: 35817098 DOI: 10.1016/j.scitotenv.2022.157258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study explored the effects of different hypotonic stress levels on antioxidant capacity, microbial composition, and gene expression of Macrobrachium rosenbergii post-larvae. The salinity of the control group was 15 ‰ (S15), and the hypotonic stress groups included three levels of 10 ‰ (S10), 8 ‰ (S8), and 6 ‰ (S6). Different hypotonic stress levels caused oxidative damage in post-larvae, evidenced by decreased superoxide dismutase (SOD) and anti-superoxide anion free radical (ASAFR). They increased malondialdehyde (MDA), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) levels. Microbiological analysis exhibited that different hypotonic stress levels significantly changed microbial composition and diversity. The microbial composition in the water environment where post-larvae living was different from post-larvae. The pathogenic bacteria, including Vibrio and Flavobacterium, were abundant in S6. Transcriptome analysis showed 2, 7967, 297 DEGs, including 1, 3564, 27 up-regulated genes and 1, 4403, 270 down-regulated genes in S10, S8, and S6 groups, respectively. KEGG enrichment results showed that immune and glucose metabolism-related pathways were enriched significantly. Correlation network analysis demonstrated close interactions among antioxidant parameters, microbes, and differentially-expressed genes. In conclusion, hypotonic stress reduced the antioxidant capacity, caused oxidative damage, and altered microbial composition in M. rosenbergii post-larvae. Moreover, when the salinity is below 8 ‰, hypotonic stress impairs the immune system of M. rosenbergii post-larvae.
Collapse
Affiliation(s)
- Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou 313001, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
20
|
Abidin Z, Huang HT, Hu YF, Chang JJ, Huang CY, Wu YS, Nan FH. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2022; 127:876-890. [PMID: 35810967 DOI: 10.1016/j.fsi.2022.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effect of the moringa (Moringa oleifera) leaf extract and Lactobacillus acidophilus individually or combined on growth performance, enzyme activity, intestinal and hepatopancreatic histology, intestinal microbiota, immune response, and resistance against Vibrio alginolyticus and Vibrio parahaemolyticus in whiteleg shrimp (Penaeus vannamei). Six diets were formulated: three diets without L. acidophilus containining 0 (control, ME0), 2.5 (ME2.5), and 5.0 g/kg of moringa (ME5.0) and the same three diets containing L. acidophilus at 1 × 107 CFU/g of diet (ME0+P, ME2.5 + P, and ME5.0 + P, respectively). Growth performance was measured after 60 days of the rearing period. On the final day, the shrimp were sampled to assess enzyme activity, intestinal and hepatopancreatic histology, and gut microbiota. Shrimp hemocytes were examined on Days 0, 1, 2, 4, 7, 14, 21, and 28 to measure the immune response in terms of the total hemocyte count, phenoloxidase activity, phagocytosis, and superoxide anion production. Furthermore, the shrimp were challenged with V. alginolyticus and V. parahaemolyticus. The results revealed that ME2.5 + P significantly increased (P < 0.05) final weight, weight gain, specific growth rate, enzyme activities, and villi height compared with ME2.5 and control. Wall thickness was increased in the shrimp fed diet supplemented with moringa and L. acidophilus compared with the control shrimp. Hepatopancreatic histology revealed that R cells were more abundant in the shrimp fed diet containing moringa and L. acidophilus compared with those fed diet containing moringa alone (P < 0.05) at the same concentration. High-throughput sequencing analysis indicated that the dietary supplementation with moringa and L. acidophilus affected the gut microbiota composition. All gene functions, members of KEGG level 2, related to metabolism were increased in diet supplemented with moringa with or without L. acidophilus compared with the control group. The immune assay revealed that the total hemocyte count, phenoloxidase activity, phagocytic rate, superoxide anion production, and immune-related gene expression (including those of prophenoloxidase II, alpha-2-macroglobulin, penaeidin2, antilipopolysaccharide factor, crustin, lysozyme, glutathione peroxidase, and superoxide dismutase) were higher in the experimental groups than in the control group on several observed days; however, the increases were observed more often in the ME2.5 + P group than in the other treatment groups. Furthermore, the ME2.5 + P group exhibited a significantly higher survival rate (P < 0.05) in the challenge test against V. alginolyticus and V. parahaemolyticus. In conclusion, supplementation with dietary moringa and L. acidophilus at ME2.5 + P improved growth performance, immune system, and resistance against Vibrio in the shrimp.
Collapse
Affiliation(s)
- Zaenal Abidin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
21
|
El-Kassas S, Aljahdali N, Abdo SE, Alaryani FS, Moustafa EM, Mohamed R, Abosheashaa W, Abdulraouf E, Helal MA, Shafi ME, El-Saadony MT, El-Naggar K, Conte-Junior CA. Moringa oleifera Leaf Powder Dietary Inclusion Differentially Modulates the Antioxidant, Inflammatory, and Histopathological Responses of Normal and Aeromonas hydrophila-Infected Mono-Sex Nile Tilapia ( Oreochromis niloticus). Front Vet Sci 2022; 9:918933. [PMID: 35812877 PMCID: PMC9260175 DOI: 10.3389/fvets.2022.918933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to detect the impact of Moringa oleifera leaf powder dietary inclusion on the antioxidant and innate immune responses of mono-sex Nile tilapia fingerlings. A total of 180 fingerlings were allocated in a random method into three groups with triplicate each. One group (1st group) received the control diet (basal diet (BD) free of moringa) and the other groups (2nd and 3rd) fed BD containing M. oleifera leaf powder at 5 and 10% of the diet, respectively. After 6 weeks of feeding, fish were randomly redistributed into four replicates and rested for 24 h. Then, each fish in the first two replicates was injected with 0.2 mL of PBS, while the others were injected with 0.2 mL of A. hydrophila suspension (1.8 × 106 CFU/mL). Healthy fish fed on M. oleifera leaf powder showed enhanced immune response manifested by significant increases in phagocytic and lysozyme activities with a marked H/L ratio (P < 0.05). In addition, significant alterations of the lymphocytic and heterophilic population in circulation with increasing infiltration in tissue such as the spleen were noticed. Also, M. oleifera significantly upregulated the antioxidants, CAT and GPx, proinflammatory cytokines, IL1-β, IL-8, and IFN-γ relative mRNA levels. On the other hand, following A. hydrophila challenging conditions, M. oleifera caused downregulations of IL1-β, IL-8, and IFN-γ transcription levels, and also lowered the CAT and GPx mRNA levels. In addition, a marked reduction of leukocytic infiltration plus a significant improvement of the degenerative changes in intestinal architecture has occurred. So, M. oleifera leaf powder can be included in the fish diet to enhance immune response under normal health conditions and lower the infection-associated inflammatory response.
Collapse
Affiliation(s)
- Seham El-Kassas
- 1Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt,*Correspondence: Seham El-Kassas
| | - Nesreen Aljahdali
- 2Department of Biological Science, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa E. Abdo
- 3Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fatima S. Alaryani
- 4Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman M. Moustafa
- 5Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Radi Mohamed
- 6Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wesam Abosheashaa
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Esraa Abdulraouf
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Atef Helal
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Manal E. Shafi
- 8Department of Biological Science, Zoology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Manal E. Shafi
| | - Mohamed T. El-Saadony
- 9Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt,Mohamed T. El-Saadony
| | - Karima El-Naggar
- 10Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Carlos Adam Conte-Junior
- 11Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Liu M, Sun C, Zheng X, Zhou Q, Liu B, Zhou Y, Xu P, Liu B. Comparative Proteomic Analysis Revealed the Mechanism of Tea Tree Oil Targeting Lipid Metabolism and Antioxidant System to Protect Hepatopancreatic Health in Macrobrachium rosenbergii. Front Immunol 2022; 13:906435. [PMID: 35711420 PMCID: PMC9195101 DOI: 10.3389/fimmu.2022.906435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Tea tree oil (TTO) is a pure natural plant essential oil. The studies evaluated the hepatopancreas lipid metabolism and antioxidant efficacy of Macrobrachium rosenbergii fed with 0 (CT group) and 100 mg/kg TTO (TT group) by label-free quantification proteomic analysis. Compared to the CT group, the TT group improved growth performance and increased the survival rate after stress. Dietary TTO also decreased hemolymph AST and ALT activities and decreased hepatopancreatic vacuolation. At the same time, hepatopancreas lipids droplets and hemolymph lipids (TG, TC, LDL-C) were decreased, and the peroxidation products content (MDA, LPO, 4-HNE) was also decreased. In addition, the levels of hepatopancreas antioxidant enzymes (T-AOC, CAT, and SOD) were increased in the TT group. With proteomic analysis, a total of 151 differentially expressed proteins (DEPs) (99 up-regulated and 52 down-regulated) were identified in the hepatopancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis showed that the 16 DEPs have interactions, which are mainly involved in the pathways related to lipid metabolism (fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism) and redox reaction (cytochrome P450 enzyme systems). Furthermore, the mRNA expression of 15 proteins followed the proteomic analysis with qRT-PCR validation. Pearson correlation analysis showed that fatty acids and glycerophospholipid metabolism-related proteins were highly correlated to peroxide content, glycerophospholipid metabolism, and cytochrome P450 system-related proteins (CYP1A1, GSTT1, GPX4) were highly correlated to AST and ALT. Additionally, GPX4 is closely related to peroxide content and antioxidant enzyme activity. Our results revealed that TTO plays a protective role in the hepatopancreas targeting the critical enzymes and antioxidant reactions in lipid metabolism. Provides a new perspective to elucidate the action path of TTO in protecting invertebrate hepatopancreas, highlights the influence of lipid metabolism on hepatopancreas health and the interaction between lipid metabolism and antioxidant system in the regulation of TTO.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yifan Zhou
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| |
Collapse
|
23
|
Mapanao R, Rangabpai T, Lee YR, Kuo HW, Cheng W. The effect of banana blossom on growth performance, immune response, disease resistance, and anti-hypothermal stress of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2022; 124:82-91. [PMID: 35367377 DOI: 10.1016/j.fsi.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Banana (Musa acuminata) blossom contains high nutritional value and bioactive compounds. In this study, Macrobrachium rosenbergii were fed with diets containing banana blossom powder (BBP) at 10 and 20 g kg-1, hot-banana blossom (BBH) extract at 10 and 20 g kg-1, and the basal diet for 56 days. The growth performance, physiological response and immune parameters were evaluated. The results showed that a significantly higher percentage weight gain (PWG) and percentage length gain (PLG) in prawns fed with BBH diet. The feed efficiency (FE) significantly increased in prawns fed BBP. The prawn fed both BBH and BBP diet showed higher survival rate than control group. The prawn fed with BBH showed a significant increase in total haemocyte count (THC) and different haemocyte count (DHC), whereas phenoloxidase (PO) activity and respiratory bursts (RBs) significant increase in prawns fed both BBP and BBH diet. Furthermore, M. rosenbergii fed with both BBP and BBH diets showed significantly higher phagocytic activity and clearance efficiency against Lactococcus garvieae infection. At the end of the 56 days of feeding trial, the susceptibility of prawns to L. garvieae infection and hypothermal (18 °C) stress were evaluated. The results showed that prawns fed BBH diets had a significantly higher survival rate against L. garvieae than those of fed with the basal diet. Anti-hypothermal stress was observed in prawns fed both BBP and BBH diets showing no significant difference in haemolymph glucose in prawns subjected to 18 °C and 28 °C, whereas the norepinephrine level in haemolymph of prawns fed with BBH diets subjected to 18 °C was significantly lower than in prawns subjected to 28 °C. In summary, we recommend addition of hot-banana blossom extract to the diet of M. rosenbergii at 20 g kg-1 to promote growth performance, improve physiological function, enhance immunity, increase anti-hypothermal stress, and to increase resistance against L. gavieae.
Collapse
Affiliation(s)
- Ratchaneegorn Mapanao
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Nong Khai Province, Thailand
| | - Tidawadee Rangabpai
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Yu-Ru Lee
- Department of Environmental Science and Occupational Safety and Health, Tajen University, Pingtung, Taiwan, ROC
| | - Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
24
|
Jahanbakhshi A, Pourmozaffar S, Adeshina I, Vayghan AH, Reverter M. Effect of garlic (Allium sativum) extract on growth, enzymological and biochemical responses and immune-related gene expressions in giant freshwater prawn (Macrobrachium rosenbergii). J Anim Physiol Anim Nutr (Berl) 2022; 106:947-956. [PMID: 35436379 DOI: 10.1111/jpn.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
Abstract
In the current study, growth performance, biochemical constituents of muscle, activities of enzymes in the haemolymph, and expressions of immune-related genes were evaluated in the giant freshwater prawns Macrobrachium rosenbergii fed diets supplemented with aqueous garlic (Allium sativum) extract at 0, 5, 10 and 20 g/kg (w/w) for 60 days. At the end of the feeding trial, weight gain and specific growth rate were significantly improved in garlic-fed prawn groups compared with the control (p < 0.05). Moreover, feed conversion ratio was significantly lower in the garlic-fed groups than in the control (p < 0.05). Activities of catalase, superoxide dismutase and glutathione peroxidase in the hepatopancreas, activities of alanine aminotransferase, aspartate aminotransferase and levels of albumin and total protein in the hemolymph were significantly increased in the garlic treatments (p < 0.05). Furthermore, garlic supplemented diets improved muscle biochemical profiles, particularly contents of crude protein and total ash and upregulations of immune deficiency and heat shock proteins (HSP70) gene expression (p < 0.05). Therefore, garlic has positive effects on growth performance and physio-biochemical responses of M. rosenbergii, and thus, it can be used as an additive for stress resistance and as a growth promoter in sustainable aquaculture.
Collapse
Affiliation(s)
- Abdolreza Jahanbakhshi
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran
| | - Ibrahim Adeshina
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Ali Haghi Vayghan
- Department of Ecology & Aquatic Stocks Management, Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Miriam Reverter
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, UK
| |
Collapse
|
25
|
Liu B, Gao Q, Liu B, Song C, Sun C, Liu M, Liu X, Liu Y, Li Z, Zhou Q, Zhu H. Application of Transcriptome Analysis to Understand the Adverse Effects of Hypotonic Stress on Different Development Stages in the Giant Freshwater Prawn Macrobrachium rosenbergii Post-Larvae. Antioxidants (Basel) 2022; 11:antiox11030440. [PMID: 35326091 PMCID: PMC8944765 DOI: 10.3390/antiox11030440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Salinity is one of the important environmental factors affecting survival and growth of aquatic animals. However, the impact of low-salinity stress on M. rosenbergii post-larvae at different development stages remains elusive. Therefore, the aim of this study was to explore the underlying mechanisms of hypotonic stress at different development stages of M. rosenbergii post-larvae through transcriptome analysis and antioxidant parameters detection. The salinity of the control group was 15 psu (S15) and the hypotonic stress group was 6 psu (S6). Samples were collected at 7 days-post-hatch (dph), 14 dph and 21 dph larvae. The results showed that hypotonic stress caused oxidative damage in post-larvae evidenced by decreased glutathione peroxidase (GSH-Px); superoxide dismutase (SOD); anti-superoxide anion free radical (ASAFR); and increased malondialdehyde (MDA); nitric oxide (NO); and inducible nitric oxide synthase (iNOS) levels. Transcriptome analysis showed that there were 1428, 1187, 132 DEGs including 301, 366, 4 up-regulated genes and 1127, 821, 128 down-regulated genes at 7 dph, 14 dph and 21 dph larvae under hypotonic stress, respectively. Furthermore, GO and KEGG enrichment indicated that hypotonic stress led to dysregulation of immune signals including lysosome and autophagy in the 7 dph larvae. The autophagy-related genes including beclin 1-associated autophagy-related key regulator (Barkor); ubiquitin-like modifier-activating enzyme ATG7 (ATG7); Beclin; autophagy-related protein 13 (ATG13); nuclear receptor-binding factor 2 (Nrbf2); ubiquitin-like-conjugating enzyme ATG3 (ATG3); vacuole membrane protein 1 (VMP1); and autophagy-related protein 2 (ATG2) decreased at 7 dph, and 14 dph larvae, and then increased at 21 dph larvae under hypotonic stress. In the 14 dph and 21 dph larvae, the renin-angiotensin system was activated. In conclusion, our data indicated that hypotonic stress reduced the antioxidant capacity and impaired the immune system in post-larvae, but as development progresses, the adaptability of post-larvae to hypotonic stress gradually increased, and might reach a new homeostasis through the RAS signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (C.S.); (C.S.)
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou 313001, China;
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (C.S.); (C.S.)
- Correspondence:
| | - Changyou Song
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (C.S.); (C.S.)
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (C.S.); (C.S.)
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
| | - Yunke Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
| | - Zhengzhong Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.L.); (M.L.); (X.L.); (Y.L.); (Q.Z.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (C.S.); (C.S.)
| | - Hao Zhu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Yangpu District, Shanghai 201306, China;
| |
Collapse
|
26
|
Liu M, Gao Q, Sun C, Liu B, Liu X, Zhou Q, Zheng X, Xu P, Liu B. Effects of dietary tea tree oil on the growth, physiological and non-specific immunity response in the giant freshwater prawn (Macrobrachium rosenbergii) under high ammonia stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:458-469. [PMID: 34929307 DOI: 10.1016/j.fsi.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou, 313001, PR China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| |
Collapse
|
27
|
Abidin Z, Huang HT, Liao ZH, Chen BY, Wu YS, Lin YJ, Nan FH. Moringa oleifera Leaves' Extract Enhances Nonspecific Immune Responses, Resistance against Vibrio alginolyticus, and Growth in Whiteleg Shrimp ( Penaeus vannamei). Animals (Basel) 2021; 12:ani12010042. [PMID: 35011148 PMCID: PMC8749943 DOI: 10.3390/ani12010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary This study found that moringa (Moringa oleifera) leaves’ water extract triggered phenoloxidase activity, phagocytic rate, and superoxide anion production in whiteleg shrimp (Penaeus vannamei) hemocytes by an in vitro assay. By an in vivo assay, a dietary moringa extract enhanced the total hemocyte count, phenoloxidase activity, phagocytic rate, immune-related gene expressions, and growth performance of the whiteleg shrimp. The administration of dietary moringa extract increased the survival rate after challenging the whiteleg shrimp with Vibrio alginolyticus. Abstract Moringa is widely known as a plant with high medicinal properties. Therefore, moringa has a high potential for use as an immunostimulant in shrimp. This study investigated the effect of a moringa water extract on the immune response, resistance against V. alginolyticus, and growth performance of whiteleg shrimp. To perform the in vitro assay, hemocytes were incubated with different concentrations of the moringa extract. Furthermore, the moringa extract was incorporated at 0 (control), 1.25 g (ME1.25), 2.5 g (ME2.5), and 5.0 g (ME5.0) per kg of diet for the in vivo assay. During the rearing period, immune responses, namely the total hemocyte count (THC), phenoloxidase (PO) activity, phagocytosis activity, superoxide anion production, and immune-related gene expression were examined on days 0, 1, 2, 4, 7, 14, 21, and 28. Growth performance was measured 60 days after the feeding period. Furthermore, the shrimp were challenged with V. alginolyticus after being fed for different feeding durations. The results of the in vitro assay revealed that 100–250 ppm of the moringa extract enhanced the PO activity, phagocytic rate (PR), and superoxide anion production. The findings of the in vivo assay demonstrated that the THC, PO activity, PR, and immune-related gene expression, including alpha-2-macroglobulin, prophenoloxidase II, penaeidin2, penaeidin3, anti-lipopolysaccharide factor, crustin, lysozyme, superoxide dismutase, and clotting protein, were higher in the group of ME.25 and ME5.0 than in the control and ME1.25 at several time points. Growth performance was significantly increased (p < 0.05) in the ME2.5 group compared to the control group. Furthermore, the dietary ME2.5 resulted in a higher survival rate compared to that of the control group after challenging with V. alginolyticus, especially at ME2.5 administered for 4 and 7 days. This study indicated that the incorporation of the moringa extract at 2.5 g per kg of diet enhanced the immune response, the growth performance of the whiteleg shrimp, and the resistance against V. alginolyticus infection.
Collapse
Affiliation(s)
- Zaenal Abidin
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Z.A.); (H.-T.H.); (Z.-H.L.); (B.-Y.C.)
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Z.A.); (H.-T.H.); (Z.-H.L.); (B.-Y.C.)
| | - Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Z.A.); (H.-T.H.); (Z.-H.L.); (B.-Y.C.)
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Z.A.); (H.-T.H.); (Z.-H.L.); (B.-Y.C.)
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Xue-Fu Road, Pingtung 912301, Taiwan;
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City 40227, Taiwan;
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Z.A.); (H.-T.H.); (Z.-H.L.); (B.-Y.C.)
- Correspondence: ; Tel.: +886-2-24622192 (ext. 2910)
| |
Collapse
|
28
|
Flores B, Ramírez E, Moncada A, Salinas N, Fischer R, Hernández C, Mora-Sánchez B, Sheleby-Elías J, Jirón W, Balcázar JL. Antimicrobial effect of Moringa oleifera seed powder against Vibrio cholerae isolated from the rearing water of shrimp (Penaeus vannamei) postlarvae. Lett Appl Microbiol 2021; 74:238-246. [PMID: 34806784 DOI: 10.1111/lam.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Shrimp farming has experienced rising costs as a result of disease outbreaks associated with Vibrio spp. Suitable strategies for disease prevention and control are therefore urgently needed. This study aimed to evaluate the antimicrobial effect of Moringa oleifera seed powder against Vibrio cholerae in the rearing water of Pacific white shrimp (Penaeus vannamei) postlarvae. In vitro assays included the determination of minimum inhibitory concentration (MIC) of M. oleifera seed powder against V. cholerae, whereas in vivo assays included the effect of M. oleifera seed powder on bacterial load and water quality parameters in the rearing tanks, as well as its effect on shrimp postlarvae survival. M. oleifera seed powder inhibited the growth of V. cholerae with MIC values of 62·5 µg ml-1 . Moreover, seawater pH of treated tanks (8·66) was significantly lower (P < 0·01) than pH of the control tanks (9·02), whereas the visibility of treated tanks (37·08 cm) was significantly higher (P < 0·01) as compared to control tanks (35·37 cm). Likewise, V. cholerae load was significantly reduced (P < 0·01) from 4·7 × 104 to 3·1 × 103 CFU per ml in tanks treated with M. oleifera seed powder. Altogether, this study demonstrates the antimicrobial activity of M. oleifera against V. cholerae in shrimp culture.
Collapse
Affiliation(s)
- B Flores
- Centro Veterinario de Diagnóstico e Investigación (CEVEDI), Departamento de Veterinaria y Zootecnia, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - E Ramírez
- Departamento Acuícola, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - A Moncada
- Departamento Acuícola, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - N Salinas
- Departamento Acuícola, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - R Fischer
- Department of Epidemiology and Biostatistics, Texas A & M University Health Science Center, College Station, TX, USA
| | - C Hernández
- Departamento Acuícola, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - B Mora-Sánchez
- Centro Veterinario de Diagnóstico e Investigación (CEVEDI), Departamento de Veterinaria y Zootecnia, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua.,Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - J Sheleby-Elías
- Centro Veterinario de Diagnóstico e Investigación (CEVEDI), Departamento de Veterinaria y Zootecnia, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - W Jirón
- Centro Veterinario de Diagnóstico e Investigación (CEVEDI), Departamento de Veterinaria y Zootecnia, Escuela de Ciencias Agrarias y Veterinarias, Universidad Nacional Autónoma de Nicaragua-León (UNAN-León), León, Nicaragua
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain
| |
Collapse
|
29
|
Ghosh AK, Panda SK, Luyten W. Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: A comprehensive review. FISH & SHELLFISH IMMUNOLOGY 2021; 117:192-210. [PMID: 34400334 DOI: 10.1016/j.fsi.2021.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Disease epidemics in shrimp aquaculture increase apace with the development of aquaculture systems throughout the world. The disease caused by Vibrio spp. (vibriosis) is considered the most devastating, which has made it the most feared bacterial disease in the shrimp sector. In aquaculture, several strategies have already been applied to control Vibrio strains, including chemicals, probiotics, antibiotics, natural products from plants, including plant oils; hence, there has been considerable attention for using plants in shrimp aquaculture to provide sustainable, eco-friendly and safe compounds, such as alkaloids, saponins, terpenoids and flavonoids for replacing chemical compounds and antibiotics in current aquaculture. Medicinal plants may also have immunostimulating activity, increase growth and resistance in shrimps. The present paper aims to review the inhibition of Vibrio spp. in shrimp by medicinal plants, using both in vitro or/and in vivo techniques. Several medicinal plants appear capable of inhibiting growth of Vibrio pathogens outside living shrimp or in the body of shrimp, through enhancing growth and immune capacity when shrimps are fed or injected with them. In the current review Gracilaria spp. (Gracilariaceae family) and Sargassum spp. (family Sargassaceae) have been used most for in vitro and in vivo experiments. Among the terrestrial plants, Eucalyptus camaldulensis, Psidium guajava, Rhodomyrtus tomentosa, and Syzygium cumini (Myrtaceae family) had significant activity against Vibrio.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, Utkal University, Odisha, India
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium
| |
Collapse
|
30
|
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, El-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112424. [PMID: 34174736 DOI: 10.1016/j.ecoenv.2021.112424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/07/2023]
Abstract
Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 μg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt.
| | - Doaaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M Alsadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A El-Sayed
- Department of Photochemistry, Industrial Chemical Division, National Research Centre, 33 EL Bohouthst., Dokki, Giza 12622, Egypt
| | - Amany T Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt
| |
Collapse
|
31
|
Mumtaz MZ, Kausar F, Hassan M, Javaid S, Malik A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: in vitro and in silico mechanistic study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00101-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Moringa oleifera is a common vegetable in many countries since ancient times, possesses numerous phenolic compounds having a wide array of biological activities. It possesses anticancer activity that can be used to develop new drugs for treatment of various types of cancers. The current study was conducted to evaluate the composition of phenolic compounds and in vitro and in silico anticancer activities of M. oleifera leaves extracts. The leaves of M. oleifera were subjected to extraction for solvent fraction using n-hexane, chloroform, ethyl acetate, butanol, and aqueous solvents. The solvent fractions were tested for anticancer activity in vitro against Hela cancer cell line and screened for phenolic compounds through reversed-phase high-performance liquid chromatography. The molecular docking approach was employed to check binding conformations of phytochemicals against the target protein.
Result
The result revealed that all the solvent fractions possess in vitro anticancer activity against Hela cancer cell line. The n-hexane fraction showed a 50% reduction in Hela cancer cell viability at 416 μg mL−1 as compared to control. The extracts of solvent-fraction contained 10 phenolic compounds viz. quercetin, gallic acid, sinapic acid, vanillic acid, 4-hydroxy-3-methoxy benzoic acid, p-coumaric acid, m-coumaric acid, 4-hydroxy-3-methoxy cinnamic acid, caffeic acid, and syringic acid. Molecular docking studies revealed that the ligands bind within the active site of target protein have good binding energy values.
Conclusion
This study shows that M. oleifera leaves may have the potential to inhibit cancer cell growth and improving human health in addition to food ingredient innovations. Based on in vitro and in silico results, the phytochemicals from M. oleifera leaves can be used as leading drugs to treat cancer.
Graphical abstract
Collapse
|
32
|
Gao Q, Yi S, Luo J, Xing Q, Lv J, Wang P, Wang C, Li Y. Construction of a Vibrio anguillarum flagellin B mutant and analysis of its immuno-stimulation effects on Macrobrachium rosenbergii. Int J Biol Macromol 2021; 174:457-465. [PMID: 33493561 DOI: 10.1016/j.ijbiomac.2021.01.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/16/2023]
Abstract
Vibrio anguillarum is a globally distributed aquatic pathogen, and its flagellin B (FlaB) protein can evoke innate immune responses in hosts. In order to explore the role of FlaB in V. anguillarum infection, we constructed a FlaB-deficient mutant using overlapping PCR and two-step homologous recombination, and gene sequencing confirmed successful knockout of the FlaB gene. Scanning electron microscopy showed no significant differences in the morphological structure of the flagellum between wild-type and FlaB-deficient strains. The mutant was subsequently injected into the freshwater prawn (Macrobrachium rosenbergii) to explore its pathogenicity in the host, and expression of myeloid differentiation factor 88, prophenoloxidase, catalase, superoxide dismutase and glutathione peroxidase was investigated by real-time PCR. The results showed that deletion of FlaB had little effect on V. anguillarum-induced expression of these immune-related genes (p > 0.05). In general, the FlaB mutant displayed similar flagella morphology and immune characteristics to the wild-type strain, hence we speculated that knockout of FlaB might promote the expression and function of other flagellin proteins. Furthermore, this study provides a rapid and simple method for obtaining stable mutants of V. anguillarum free from foreign plasmid DNA.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jiali Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Panhuang Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, People's Republic of China.
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
33
|
Zhou T, Liu J, Chan S, Wang W. Molecular characterization and expression dynamics of three key genes in the PI3K-AKT pathway reveal its involvement in the immunotoxicological responses of the giant river prawn Macrobrachium rosenbergii to acute ammonia and nitrite stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111767. [PMID: 33396085 DOI: 10.1016/j.ecoenv.2020.111767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Ammonia nitrogen and nitrite are two common forms of environmental toxicants for aquatic organisms including crustaceans. The PI3K-AKT pathway is an important intracellular signaling pathway related to cellular stress response, but involvement of this pathway in the immunotoxicological response of decapod crustaceans to aquatic toxicants such as ammonia nitrogen and nitrite still remains enigmatic. In this study, based on transcriptome mining and molecular cloning techniques, three key genes (named as MrPI3K, MrAKT and MrFoxO) in the PI3K-AKT signaling pathway were identified from the giant river prawn Macrobrachium rosenbergii. Sequence homology and phylogenetic analysis revealed that all the three genes harbored signature sequences of corresponding protein families, and shared high levels of similarities with their respective homologs from other species. MrPI3K, MrAKT and MrFoxO all displayed ubiquitous tissue distribution profiles, but their expression levels varied to a great extend among different tissues and between sexes. Following exposure to nitrite (20 mg/L nitrite-N) or ammonia (25 mg/L total ammonia-N) stresses for 24 h and 48 h, the three genes all responded by altering their expression levels at different time points, but they didn't show uniform expression patterns following these stresses, indicating the diversified roles of these genes in different tissues and the complexity of this signaling pathway. Remarkably, MrPI3K and MrAKT were induced only in the hemocytes and intestine, respectively, indicating their specific roles in these organs. Our study demonstrated the potential utility of these genes as biomarkers of acute ammonia or nitrite toxicity in prawns, and also provided evidence that the PI3K-AKT pathway is involved in the immunotoxicological responses to nitrite and ammonia stress in M. rosenbergii.
Collapse
Affiliation(s)
- Tingting Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Jiahui Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Province, PR China.
| |
Collapse
|
34
|
Naderi Farsani M, Hoseinifar SH, Rashidian G, Ghafari Farsani H, Ashouri G, Van Doan H. Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. FISH & SHELLFISH IMMUNOLOGY 2019; 91:233-240. [PMID: 31102711 DOI: 10.1016/j.fsi.2019.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
This investigation was aimed to determine the efficacy of coriander seed extract (Coriandrum sativum) on physiological responses, immunity and disease resistance of rainbow trout, Oncorhynchus mykiss for eight weeks. A total number of six hundred rainbow trout (62 ± 0.81 g) were divided into four feeding groups including 0 (control), 0.5%, 1% and 2% of coriander seed extract (CSE). In the present study, rainbow trout fed with 2% of CSE showed significantly higher values of specific growth rate (SGR), final weight (FW) and condition factor (CF) in comparison with control group after eight weeks (P < 0.05). Regarding hematological indices results, the 2% dosage of CSE showed the highest amount of hematocrit and hemoglobin compared to control group (P < 0.05). In addition, significant improvement of lysozyme and alternative complement activity, were observed in 2% of CSE treatment (P < 0.05). After eight weeks post-feeding, 30 fish from each treatment were challenged with Yersinia ruckeri for 14 days. The findings presented that fish fed with CES, especially 2% of CSE inclusion, improved survival rate of rainbow trout against Y. ruckeri; however, there were no significant differences among the fish in control and treatment groups at the end of the eight weeks feeding with coriander seed extract. The present study demonstrated, dietary incorporation of coriander extract can improve growth factors, immunological indices and resistance of rainbow trout (O. mykiss) against Y. ruckeri infection.
Collapse
Affiliation(s)
- Mehdi Naderi Farsani
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghasem Rashidian
- Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Ghafari Farsani
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ghasem Ashouri
- Department of Marine Sciences, Marche Polytechnic University, via Brecce Bianche, 60100, Ancona, Italy
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|