1
|
Carta A, Vandelook F, Ramírez-Barahona S, Chen SC, Dickie J, Steinbrecher T, Thanos CA, Moles AT, Leubner-Metzger G, Mattana E. The seed morphospace, a new contribution towards the multidimensional study of angiosperm sexual reproductive biology. ANNALS OF BOTANY 2024; 134:701-710. [PMID: 38908008 DOI: 10.1093/aob/mcae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends in floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. SCOPE Here we present a roadmap to synthesize the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realized morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm and seed coat but also fruit attributes (e.g. dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. CONCLUSIONS We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.
Collapse
Affiliation(s)
- Angelino Carta
- Department of Biology, Botany Unit, University of Pisa, Pisa, Italy
| | | | | | - Si-Chong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| | - John Dickie
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Costas A Thanos
- Section of Botany, National and Kapodistrian University of Athens, Athens, Greece
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| |
Collapse
|
2
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Li H, Yue H, Lu M, Jia R, Jiang X. Rupture Test: A New Method for Evaluating Maize ( Zea mays) Seed Vigour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1847. [PMID: 38999687 PMCID: PMC11243803 DOI: 10.3390/plants13131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
To explore the application of seed germination biomechanical event(s) in seed vigour tests, a new procedure for the evaluation of maize seed vigour tests based on pericarp-testa rupture (PR) and coleorhiza rupture (CR) during seed germination was developed. Twenty-four lots of hybrid maize were used to determine the feasibility of the rupture test (RT) as a seed vigour test in Zea mays. The results showed that the physiological quality pattern of 24 maize seed lots assessed through RT was similar to that obtained through analysis with other seed test methods. Correlation and regression analyses revealed that the percentage of CR and percentage of PR + CR at "15 ± 0.5 °C for 120 h ± 1 h" and "20 ± 0.5 °C for 72 h ± 15 min" exhibited positive correlations with the field seedling emergence data (p < 0.01). Hence, the proposed method (the rupture test) is cogent and effective, thus providing an important reference for more crops to select for seed germination event(s) and establishing corresponding new methods for seed vigour tests in the future.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiwang Yue
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Miaomiao Lu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ru Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
5
|
Wen Z, Lu X, Wen J, Wang Z, Chai M. Physical Seed Dormancy in Legumes: Molecular Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1473. [PMID: 38891282 PMCID: PMC11174410 DOI: 10.3390/plants13111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Physical dormancy of seeds is a form of dormancy due to the presence of an impermeable seed coat layer, and it represents a feature for plants to adapt to environmental changes over an extended period of phylogenetic evolution. However, in agricultural practice, physical dormancy is problematic. because it prevents timely and uniform seed germination. Therefore, physical dormancy is an important agronomical trait to target in breeding and domestication, especially for many leguminous crops. Compared to the well-characterized physiological dormancy, research progress on physical dormancy at the molecular level has been limited until recent years, due to the lack of suitable research materials. This review focuses on the structure of seed coat, factors affecting physical dormancy, genes controlling physical dormancy, and plants suitable for studying physical dormancy at the molecular level. Our goal is to provide a plethora of information for further molecular research on physical dormancy.
Collapse
Affiliation(s)
- Zhaozhu Wen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuran Lu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Arshad W, Steinbrecher T, Wilhelmsson PK, Fernandez-Pozo N, Pérez M, Mérai Z, Rensing SA, Chandler JO, Leubner-Metzger G. Aethionema arabicum dimorphic seed trait resetting during transition to seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1358312. [PMID: 38525145 PMCID: PMC10957558 DOI: 10.3389/fpls.2024.1358312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
Collapse
Affiliation(s)
- Waheed Arshad
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Tina Steinbrecher
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Department Plant Breeding and Physiology, Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga, Spain
| | - Marta Pérez
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Jake O. Chandler
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gerhard Leubner-Metzger
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
7
|
Jaganathan GK, Harrison RJ. Decoding the decisive role of seed moisture content in physical dormancy break: filling the missing links. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:3-10. [PMID: 38031719 DOI: 10.1111/plb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Species producing seeds with a water-impermeable seed coat, i.e., physical dormancy (PY), dominate the dry tropical forests. Despite increasing interest and understanding of the germination ecology of a PY species, less is known about how PY break occurs, particularly what changes lead to the opening of the 'water gap'. Based on the moisture conent (MC) attained, two ranges of PY may exist: shallow PY, a state with higher MC and seeds could reverse to a permeable state when the relative humidity increases; and absolute PY, a completely dry state. Here, we demonstrate that this MC variation between seeds affects preconditioning and the 'water-gap' opening stages. A conceptual model developed shows a strong relationship between temperature and duration, with high temperature breaking PY in seconds, but seasonal temperature fluctuations and constant temperatures require a longer time. The duration required at any conditions to break PY is purported to depend on the hydrophobic bonds of the lipids, which are likely weakened during the preconditioning, and the amount of water influences hydrolysis, leading to the 'water-gap' opening. We argue that the moisture content of the seeds and its interaction with biochemical compounds are a possible explanation for why only a proportion of PY seeds become permeable to water each year. Nonetheless, empirical investigations must validate these notions.
Collapse
Affiliation(s)
- G K Jaganathan
- Germplasm Conservation Laboratory, University of Shanghai for Science and Technology, Shanghai, China
| | - R J Harrison
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Legume and Rhizobium Studies, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Losada JM. Concluding Embryogenesis After Diaspora: Seed Germination in Illicium Parviflorum. Integr Comp Biol 2023; 63:1352-1363. [PMID: 37349968 PMCID: PMC10755177 DOI: 10.1093/icb/icad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Albuminous seeds, dispersed with a minimally developed embryo surrounded by nutrient storage tissue, are pervasive across extinct and extant early diverging angiosperm lineages. Typically, seed ontogenic studies have focused on the time between fertilization and seed release, but in albuminous seeds, embryogenesis is incomplete at the time of seed dispersal. Here, I studied the morphological and nutritional relationships between the embryo and the endosperm after seed dispersal in Illicium parviflorum (Austrobaileyales). Seeds of I. parviflorum germinate over a period of three months. Different stages during the germination process were anatomically evaluated using a combination of histochemistry and immunocytochemistry. At dispersal, the seeds of Illicium contain a tiny achlorophyllous embryo with minimal histological differentiation, surrounded by copious amounts of lipo-protein globules stored in the endosperm within cell walls rich in un-esterified pectins. Six weeks later, the embryo expanded and differentiated the vascular tissues before the emergence of the radicle through the seed coat, as the stored lipids and proteins coalesced within cells. Six weeks later, the cotyledons contained starch and complex lipids intracellularly, and accumulated low-esterified pectins in their cell walls. The proteolipid-rich albuminous seeds of Illicium exemplify how woody angiosperms of the Austrobaileyales, Amborellales, and many magnoliids release seeds with high-energy storage compounds that are reprocessed by embryos that complete development during germination. Seedlings of these lineages thrive in the understory of tropical environments, which match with the predicted habitats where angiosperms evolved.
Collapse
Affiliation(s)
- Juan M Losada
- Institute of Subtropical and Mediterranean Hortofruticulture La Mayora – CSIC – UMA. Avda. Dr. Wienberg s/n., Algarrobo-Costa, Málaga, 29750, Spain
| |
Collapse
|
9
|
Erlichman OA, Weiss S, Abu Arkia M, Ankary-Khaner M, Soroka Y, Jasinska W, Rosental L, Brotman Y, Avin-Wittenberg T. Autophagy in maternal tissues contributes to Arabidopsis seed development. PLANT PHYSIOLOGY 2023; 193:611-626. [PMID: 37313772 DOI: 10.1093/plphys/kiad350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Seeds are an essential food source, providing nutrients for germination and early seedling growth. Degradation events in the seed and the mother plant accompany seed development, including autophagy, which facilitates cellular component breakdown in the lytic organelle. Autophagy influences various aspects of plant physiology, specifically nutrient availability and remobilization, suggesting its involvement in source-sink interactions. During seed development, autophagy affects nutrient remobilization from mother plants and functions in the embryo. However, it is impossible to distinguish between the contribution of autophagy in the source (i.e. the mother plant) and the sink tissue (i.e. the embryo) when using autophagy knockout (atg mutant) plants. To address this, we employed an approach to differentiate between autophagy in source and sink tissues. We investigated how autophagy in the maternal tissue affects seed development by performing reciprocal crosses between wild type and atg mutant Arabidopsis (Arabidopsis thaliana) plants. Although F1 seedlings possessed a functional autophagy mechanism, etiolated F1 plants from maternal atg mutants displayed reduced growth. This was attributed to altered protein but not lipid accumulation in the seeds, suggesting autophagy differentially regulates carbon and nitrogen remobilization. Surprisingly, F1 seeds of maternal atg mutants exhibited faster germination, resulting from altered seed coat development. Our study emphasizes the importance of examining autophagy in a tissue-specific manner, revealing valuable insights into the interplay between different tissues during seed development. It also sheds light on the tissue-specific functions of autophagy, offering potential for research into the underlying mechanisms governing seed development and crop yield.
Collapse
Affiliation(s)
- Ori Avraham Erlichman
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Shahar Weiss
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Maria Abu Arkia
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Moria Ankary-Khaner
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Yoram Soroka
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Wu Y, Sun XR, Pritchard HW, Shen YB, Wu XQ, Peng CY. The metagenomics of soil bacteria and fungi and the release of mechanical dormancy in hard seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1187614. [PMID: 37441178 PMCID: PMC10335401 DOI: 10.3389/fpls.2023.1187614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023]
Abstract
Persistence in the soil is a function of seed physiology, particularly non-germination and inherent lifespan. However, for seeds with mechanical dormancy, non-germination is also a function of the composition and activity of the soil microbiota. We attempted to screen out microorganisms in the soil that can specifically and rapidly decompose the hard fruit pericarps of Tilia miqueliana Maxim., a unique native tree species in China. Using the classical replica plating method, more than 100 different culturable microorganisms that could rapidly erode the pericarp were collected from the surface of pericarps under different culture conditions. At the same time, we successfully extended the concept of metagenomics and applied it to the identification of mixed artificial cultures. The decomposition process of the pericarps in soil was also simulated artificially. The physical and chemical data suggested a potential mechanism of microbial scarification and cracking in pericarp, whilst the embryos inside the eroded fruits retained good viability. Our discoveries could pave the way for the removal of physical and mechanical obstacles that prevent hard coat seeds from germinating. We anticipate that the use of this technology will improve the germination of other hard coat seeds. More research is needed to investigate the impacts on other seeds. The findings of this research can inform the design of experiments on the seed ecology of persistence.
Collapse
Affiliation(s)
- Yu Wu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, Nanjing, Jiangsu, China
| | - Xiao-Rui Sun
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hugh W. Pritchard
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, United Kingdom
| | - Yong-Bao Shen
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, Nanjing, Jiangsu, China
| | - Xiao-Qin Wu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Yin Peng
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Mphethe V, Weier S, Westphal C, Linden B, Swanepoel L, Parker D, Taylor P. Epauletted fruit bats prefer native plants and contribute to seed dispersal in a South African agricultural landscape. Afr J Ecol 2023. [DOI: 10.1111/aje.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Vusani Mphethe
- SARChI Chair on Biodiversity Value and Change Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
- Department of Biological Sciences Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
| | - Sina Weier
- SARChI Chair on Biodiversity Value and Change Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
| | - Catrin Westphal
- Functional Agrobiodiversity Georg‐August‐University Göttingen Göttingen Germany
| | - Birthe Linden
- SARChI Chair on Biodiversity Value and Change Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
- Lajuma Research Centre Louis Trichardt Limpopo Province South Africa
- Department of Zoology & Entomology & Afromontane Research Unit University of the Free State Phuthaditjhaba South Africa
| | - Lourens Swanepoel
- Department of Biological Sciences Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
| | - Daniel Parker
- School of Biology and Environmental Sciences University of Mpumalanga Mbombela South Africa
- Wildlife and Reserve Management Research Group, Department of Zoology and Entomology Rhodes University Makhanda South Africa
| | - Peter Taylor
- SARChI Chair on Biodiversity Value and Change Faculty of Science, Engineering and Agriculture Thohoyandou South Africa
- Department of Zoology & Entomology & Afromontane Research Unit University of the Free State Phuthaditjhaba South Africa
| |
Collapse
|
12
|
Shohat H, Cheriker H, Cohen A, Weiss D. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. PLANT PHYSIOLOGY 2023; 191:1404-1415. [PMID: 36449559 PMCID: PMC9922386 DOI: 10.1093/plphys/kiac545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Amir Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
13
|
Takahashi Y, Sakai H, Ariga H, Teramoto S, Shimada TL, Eun H, Muto C, Naito K, Tomooka N. Domesticating Vigna stipulacea: Chromosome-Level genome assembly reveals VsPSAT1 as a candidate gene decreasing hard-seededness. FRONTIERS IN PLANT SCIENCE 2023; 14:1119625. [PMID: 37139108 PMCID: PMC10149957 DOI: 10.3389/fpls.2023.1119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
To increase food production under the challenges presented by global climate change, the concept of de novo domestication-utilizing stress-tolerant wild species as new crops-has recently gained considerable attention. We had previously identified mutants with desired domestication traits in a mutagenized population of the legume Vigna stipulacea Kuntze (minni payaru) as a pilot for de novo domestication. Given that there are multiple stress-tolerant wild legume species, it is important to establish efficient domestication processes using reverse genetics and identify the genes responsible for domestication traits. In this study, we identified VsPSAT1 as the candidate gene responsible for decreased hard-seededness, using a Vigna stipulacea isi2 mutant that takes up water from the lens groove. Scanning electron microscopy and computed tomography revealed that the isi2 mutant has lesser honeycomb-like wax sealing the lens groove than the wild-type, and takes up water from the lens groove. We also identified the pleiotropic effects of the isi2 mutant: accelerating leaf senescence, increasing seed size, and decreasing numbers of seeds per pod. While doing so, we produced a V. stipulacea whole-genome assembly of 441 Mbp in 11 chromosomes and 30,963 annotated protein-coding sequences. This study highlights the importance of wild legumes, especially those of the genus Vigna with pre-existing tolerance to biotic and abiotic stresses, for global food security during climate change.
Collapse
Affiliation(s)
- Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Yu Takahashi,
| | - Hiroaki Sakai
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hirotaka Ariga
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi L. Shimada
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Inage-ku, Japan
| | - Heesoo Eun
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Chiaki Muto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
14
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
16
|
Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: The gateway to a seed's new life. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:31-39. [PMID: 35276594 DOI: 10.1016/j.plaphy.2022.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Collapse
Affiliation(s)
| | - Xiaoting Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
| |
Collapse
|
17
|
Gao Y, Ji J, Zhang Y, Yang N, Zhang M. Biochemical and transcriptomic analyses of the symbiotic interaction between Cremastra appendiculata and the mycorrhizal fungus Coprinellus disseminatus. BMC PLANT BIOLOGY 2022; 22:15. [PMID: 34983403 PMCID: PMC8725509 DOI: 10.1186/s12870-021-03388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cremastra appendiculata is a rare terrestrial orchid with a high market value as an ornamental and medicinal plant. However, the species depends entirely on fungi for seed germination under natural conditions. In a previous study, we have successfully isolated and identified the mycorrhizal fungus Coprinellus disseminatus which was able to induce the germination of C. appendiculata seeds. We then speculated that C. disseminatus may do so by breaking the testa imposed dormancy of the seeds. In this study, biochemical and transcriptomic analyses were used to characterize the germination of C. appendiculata seeds, collected at different stages of germination, as affected by C. disseminatus. RESULTS The lignocellulose in the seeds coat of C. appendiculata was degraded by the mycorrhizal fungus resulting in facilitated absorption of water. The rate of decline in lignin content was 67 and 73% at 6 and 12 days after sowing, respectively. The water content increased from 13 to 90% during symbiosis. A total of 15,382 genes showing significantly different levels of expression (log2 FPKM≥2.0, Qvalue≤0.05) were successfully identified among all libraries, where the highest number of DEGs was shared between 6 days versus 0 day after symbiotic germination. Gene annotation results suggested that 15 key genes related water-status, such as DHN gene family and Xero 1 were down-regulated. The genes zeaxanthin epoxidase ZEP, 9-cis-epoxycarotenoid dioxygenase NCED3 and β-carotene hydroxylase involved in the biosynthesis of abscisic acid (ABA) were significantly down-regulated in 6 days as compared to 0 day after symbiotic germination. CONCLUSIONS This work demonstrates that mycorrhizal fungus C. disseminatus can stimulate C. appendiculata seeds germination through a mechanism of breaking the testa imposed dormancy and inducing water absorption of the embryo.
Collapse
Affiliation(s)
- Yanyan Gao
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Jun Ji
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Yujin Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Ningxian Yang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Mingsheng Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China.
| |
Collapse
|
18
|
Live imaging Arabidopsis thaliana embryos under different hydration conditions. STAR Protoc 2021; 2:101025. [PMID: 34977672 PMCID: PMC8683761 DOI: 10.1016/j.xpro.2021.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the ecological and agronomical importance of seed germination, how seeds integrate environmental signals to trigger germination remains enigmatic. Recently we reported that a protein called FLOE1 is involved in sensing and responding to water availability during germination. Here, we present a live-imaging protocol to assess the subcellular localization of a protein of interest during imbibition of desiccated Arabidopsis thaliana seeds with the goal of understanding protein dynamics during the early stages of water uptake. For complete details on the use and execution of this profile, please refer to Dorone et al. (2021).
Collapse
|
19
|
Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlović I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1020-1036. [PMID: 34510583 DOI: 10.1111/tpj.15489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | | | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
20
|
Zablatzká L, Balarynová J, Klčová B, Kopecký P, Smýkal P. Anatomy and Histochemistry of Seed Coat Development of Wild ( Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea ( Pisum sativum subsp. sativum L.). Int J Mol Sci 2021; 22:4602. [PMID: 33925728 PMCID: PMC8125792 DOI: 10.3390/ijms22094602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
Collapse
Affiliation(s)
- Lenka Zablatzká
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Jana Balarynová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Barbora Klčová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Pavel Kopecký
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
- Genetic Resources for Vegetables and Specialty Crops, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| |
Collapse
|
21
|
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. THE NEW PHYTOLOGIST 2021; 229:2179-2191. [PMID: 32970853 DOI: 10.1111/nph.16948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
How the biophysical properties of overlaying tissues control growth, such as the embryonic root (radicle) during seed germination, is a fundamental question. In eudicot seeds the endosperm surrounding the radicle confers coat dormancy and controls germination responses through modulation of its cell wall mechanical properties. Far less is known for grass caryopses that differ in tissue morphology. Here we report that the coleorhiza, a sheath-like organ that surrounds the radicle in grass embryos, performs the same role in the grass weed Avena fatua (common wild oat). We combined innovative biomechanical techniques, tissue ablation, microscopy, tissue-specific gene and enzyme activity expression with the analysis of hormones and oligosaccharides. The combined experimental work demonstrates that in grass caryopses the coleorhiza indeed controls germination for which we provide direct biomechanical evidence. We show that the coleorhiza becomes reinforced during dormancy maintenance and weakened during germination. Xyloglucan endotransglycosylases/hydrolases may have a role in coleorhiza reinforcement through cell wall remodelling to confer coat dormancy. The control of germination by coleorhiza-enforced dormancy in grasses is an example of the convergent evolution of mechanical restraint by overlaying tissues.
Collapse
Affiliation(s)
- Thomas Holloway
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Anne Seville
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - David Stock
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
22
|
Huss JC, Antreich SJ, Bachmayr J, Xiao N, Eder M, Konnerth J, Gierlinger N. Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004519. [PMID: 33079407 DOI: 10.1002/adma.202004519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Indexed: 05/20/2023]
Abstract
Many organisms encapsulate their embryos in hard, protective shells. While birds and reptiles largely rely on mineralized shells, plants often develop highly robust lignocellulosic shells. Despite the abundance of hard plant shells, particularly nutshells, it remains unclear which fundamental properties drive their mechanical stability. This multiscale analysis of six prominent (nut)shells (pine, pistachio, walnut, pecan, hazelnut, and macadamia) reveals geometric and structural strengthening mechanisms on the cellular and macroscopic length scales. The strongest tissues, found in walnut and pistachio, exploit the topological interlocking of 3D-puzzle cells and thereby outperform the fiber-reinforced structure of macadamia under tensile and compressive loading. On the macroscopic scale, strengthening occurs via an increased shell thickness, spherical shape, small size, and a lack of extended sutures. These functional interrelations suggest that simple geometric modifications are a powerful and resource-efficient strategy for plants to enhance the fracture resistance of entire shells and their tissues. Understanding the interplay between structure, geometry, and mechanics in hard plant shells provides new perspectives on the evolutionary diversification of hard seed coats, as well as insights for nutshell-based material applications.
Collapse
Affiliation(s)
- Jessica C Huss
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Sebastian J Antreich
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Jakob Bachmayr
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Nannan Xiao
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, 3430, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna, Vienna, 1190, Austria
| |
Collapse
|
23
|
Grafi G. Dead but Not Dead End: Multifunctional Role of Dead Organs Enclosing Embryos in Seed Biology. Int J Mol Sci 2020; 21:ijms21218024. [PMID: 33126660 PMCID: PMC7662896 DOI: 10.3390/ijms21218024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Dry fruits consist of two types, dehiscent and indehiscent, whereby the fruit is splitting open or remains closed at maturity, respectively. The seed, the dispersal unit (DU) of dehiscent fruits, is composed of three major parts, the embryo and the food reserve, encapsulated by the maternally-derived organ, the seed coat. Indehiscent fruit constitutes the DU in which the embryo is covered by two protective layers (PLs), the seed coat and the fruit coat. In grasses, the caryopsis, a one-seeded fruit, can be further enclosed by the floral bracts to generate two types of DUs, florets and spikelets. All protective layers enclosing the embryo undergo programmed cell death (PCD) at maturation and are thought to provide mainly a physical shield for embryo protection and a means for dispersal. In this review article, I wish to highlight the elaborate function of these dead organs enclosing the embryo as unique storage structures for beneficial substances and discuss their potential role in seed biology and ecology.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| |
Collapse
|
24
|
The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J 2020; 476:3019-3032. [PMID: 31657442 DOI: 10.1042/bcj20190159] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are versatile compounds which can have toxic or signalling effects in a wide range living organisms, including seeds. They have been reported to play a pivotal role in the regulation of seed germination and dormancy but their mechanisms of action are still far from being fully understood. In this review, we sum-up the major findings that have been carried out this last decade in this field of research and which altogether shed a new light on the signalling roles of ROS in seed physiology. ROS participate in dormancy release during seed dry storage through the direct oxidation of a subset of biomolecules. During seed imbibition, the controlled generation of ROS is involved in the perception and transduction of environmental conditions that control germination. When these conditions are permissive for germination, ROS levels are maintained at a level which triggers cellular events associated with germination, such as hormone signalling. Here we propose that the spatiotemporal regulation of ROS production acts in concert with hormone signalling to regulate the cellular events involved in cell expansion associated with germination.
Collapse
|
25
|
MacDonald JG, Rodriguez K, Quirk S. An Oxygen Delivery Polymer Enhances Seed Germination in a Martian-like Environment. ASTROBIOLOGY 2020; 20:846-863. [PMID: 32196355 PMCID: PMC7368388 DOI: 10.1089/ast.2019.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Critical to the success of establishing a sustainable human presence on Mars is the ability to economically grow crop plants. Several environmental factors make it difficult to fully rely on local resources for agriculture. These include nutrient sparse regolith, low and fluctuating temperatures, a high amount of ultraviolet radiation, and water trapped locally in the form of ice or metal oxides. While the 96% CO2 martian atmosphere is ideal to support photosynthesis, high CO2 concentrations inhibit germination. An added difficulty is the fact that a vast majority of crop plants require oxygen for germination. Here, we report the production of a polymer-based oxygen delivery system that supports the germination and growth of cress seeds (Lepidium sativum) in a martian regolith simulant under a martian atmosphere at 101 kPa. The oxygen-donating system is based on a low-density lightly cross-linked polyacrylate that is foamed and converted into a dry powder. It is lightweight, added in low amounts to regolith simulant, and efficiently donates enough oxygen throughout the volume of hydrated regolith simulant to fully support seed germination and plant growth. Germination rates, plant development, and plant mass are nearly identical for L. sativum grown in 100% CO2 in the presence of the oxygen-donating lightly cross-linked polyacrylate compared with plants grown in air. The polymer system also serves to protect root structures and better anchors plants in the regolith simulant.
Collapse
|
26
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
27
|
Matilla AJ. Auxin: Hormonal Signal Required for Seed Development and Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E705. [PMID: 32492815 PMCID: PMC7356396 DOI: 10.3390/plants9060705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem 2020; 315:126224. [DOI: 10.1016/j.foodchem.2020.126224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
29
|
Yan H, Chaumont N, Gilles JF, Bolte S, Hamant O, Bailly C. Microtubule self-organisation during seed germination in Arabidopsis. BMC Biol 2020; 18:44. [PMID: 32354334 PMCID: PMC7191766 DOI: 10.1186/s12915-020-00774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Upon water uptake and release of seed dormancy, embryonic plant cells expand, while being mechanically constrained by the seed coat. Cortical microtubules (CMTs) are key players of cell elongation in plants: their anisotropic orientation channels the axis of cell elongation through the guidance of oriented deposition of load-bearing cellulose microfibrils in the cell wall. Interestingly, CMTs align with tensile stress, and consistently, they reorient upon compressive stress in growing hypocotyls. How CMTs first organise in germinating embryos is unknown, and their relation with mechanical stress has not been investigated at such an early developing stage. RESULTS Here, we analysed CMT dynamics in dormant and non-dormant Arabidopsis seeds by microscopy of fluorescently tagged microtubule markers at different developmental time points and in response to abscisic acid and gibberellins. We found that CMTs first appear as very few thick bundles in dormant seeds. Consistently, analysis of available transcriptome and translatome datasets show that limiting amounts of tubulin and microtubule regulators initially hinder microtubule self-organisation. Seeds imbibed in the presence of gibberellic acid or abscisic acid displayed altered microtubule organisation and transcriptional regulation. Upon the release of dormancy, CMTs then self-organise into multiple parallel transverse arrays. Such behaviour matches the tensile stress patterns in such mechanically constrained embryos. This suggests that, as CMTs first self-organise, they also align with shape-derived tensile stress patterns. CONCLUSIONS Our results provide a scenario in which dormancy release in the embryo triggers microtubule self-organisation and alignment with tensile stress prior to germination and anisotropic growth.
Collapse
Affiliation(s)
- Huifang Yan
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
| | - Jean François Gilles
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Susanne Bolte
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69000, Lyon, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France.
| |
Collapse
|
30
|
Wang Z, Zhao Y, Zhang Y, Zhao B, Yang Z, Dong L. The role of seed appendage in improving the adaptation of a species in definite seasons: a case study of Atriplex centralasiatica. BMC PLANT BIOLOGY 2019; 19:538. [PMID: 31801470 PMCID: PMC6894244 DOI: 10.1186/s12870-019-2090-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/21/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND As a common accompanying dispersal structure, specialized seed appendages play a critical role in the successful germination and dispersal of many plants, and are regarded as an adaptation character for plants survival in diverse environments. However, little is known about how the appendages modulate the linkage between germination and environmental factors. Here, we tested the responses of germination to seasonal environmental signals (temperature and humidity) via seed appendages using Atriplex centralasiatica, which is widely distributed in salt marshlands with dry-cold winter in northern China. Three types of heteromorphic diaspores that differ in morphology of persistent bracteole and dormancy levels are produced in an individual plant of A. centralasiatica. RESULTS Except for the nondormant diaspore (type A, with a brown seed enclosed in a persistent bracteole), bracteoles regulated inner seed dormancy of the other two dormant diaspore types, i.e., type B (flat diaspore with a black inner seed) and type C (globular diaspore with a black inner seed). For types B and C, germination of bracteole-free seeds was higher than that of intact diaspores, and was limited severely when incubated in the bracteole-soaking solution. Dormancy was released at a low temperature (< 10 °C) and suitable humidity (5-15%) condition. Oppositely, high temperature and unfit humidity induced secondary dormancy via inhibitors released by bracteoles. Type C with deeper dormancy needed more stringent conditions for dormancy release and was easier for dormancy inducement than type B. The germination windows were broadened and the time needed for dormancy release decreased after the bracteole flushing for the two dormant types in the field condition. CONCLUSIONS Bracteoles determine the germination adaptation by bridging seeds and environmental signals and promising seedlings establishment only in proper seasons, which may also restrict species geographical distribution and shift species distributing ranges under the global climate change scenarios.
Collapse
Affiliation(s)
- Zhaoren Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yufei Zhao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| | - Yuanyuan Zhang
- College of life science, Shanxi Normal University, Linfen, Shanxi People’s Republic of China
| | - Baoshan Zhao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| | - Zhen’an Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Lijia Dong
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| |
Collapse
|
31
|
Ferreira Moura AC, Ribeiro LM, Mazzottini-Dos-Santos HC, Mercadante-Simões MO, Nunes YRF. Cytological and histochemical evaluations reveal roles of the cotyledonary petiole in the germination and seedling development of Mauritia flexuosa (Arecaceae). PROTOPLASMA 2019; 256:1299-1316. [PMID: 31049757 DOI: 10.1007/s00709-019-01375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The cotyledonary petiole (CP) completely envelops the embryo axis during embryogenesis in Arecaceae. There is little information available, however, on the roles of that structure in seed germination and initial seedling development-crucial plant life cycle phases. The study therefore sought to evaluate the roles of CP in the germination and post-seminal development of the recalcitrant seeds of Mauritia flexuosa, an ecologically and economically important neotropical palm. The CP and the embryo/vegetative axis were evaluated during germination and initial seedling development using standard morphological, anatomical, histochemical, and ultrastructural methodologies. Evaluations of dormant seeds incubated for 60 days were also performed. The CP (a) promotes seedling protrusion in the germination, extending the embryo axis outside the seed; (b) protects the vegetative axis through the development of coating rich in phenolic compounds and lignin; (c) participates in reserve translocation, with the conversion of its own proteinaceous/mucilaginous reserves into transitional starch, as well as acting in the transport of endospermic reserves; (d) favors aeration, with the formation of pathways among stomata, substomatal chambers, and intercellular spaces; (e) controls seedling morphogenesis by modulating the curvature of the vegetative axis; and (f) contributes to overcoming seed bank dormancy through cytological alterations (protein synthesis and mitochondrial proliferation). The cotyledonary petiole of palms is a unique and multifunctional structure among angiosperms, with crucial roles in germination and seedling establishment.
Collapse
Affiliation(s)
- Anne Caroline Ferreira Moura
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil
| | - Leonardo Monteiro Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil.
| | | | - Maria Olívia Mercadante-Simões
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil
| | - Yule Roberta Ferreira Nunes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil
| |
Collapse
|
32
|
Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:541-563. [PMID: 30565406 DOI: 10.1111/jipb.12762] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
This review highlights recent progresses in seed germination and dormancy research. Research on the weakening of the endosperm during germination, which is almost a classic theme in seed biology, was resumed by α-xylosidase studies. Strong genetic evidence was presented to suggest that the quality control of xyloglucan biosynthesis in the endosperm (and the embryo) plays a critical role in germination. Further analyses on the endosperm and the adjacent layers have suggested that the cutin coat in the endosperm-testa interphase negatively affects germination while the endosperm-embryo interphase produces a sheath that facilitates germination. These progresses significantly advanced our understanding of seed germination mechanisms. A breakthrough in dormancy research, on the other hand, revealed the unique abscisic acid signaling pathway that is regulated by DELAY OF GERMINATION1 (DOG1). The detailed analysis of DOG1 expression uncovered the intriguing story of reciprocal regulation of the sense-antisense pair, which generated new questions. Recent studies also suggested that the DOG1 function is not limited to dormancy but extended through general seed maturation, which provokes questions about the evolution of DOG1 family proteins. Seed biology is becoming more exciting with the classic stories being revitalized and new puzzles emerging from the frontier.
Collapse
|
33
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|