1
|
Kendrick R, Chotewutmontri P, Belcher S, Barkan A. Correlated retrograde and developmental regulons implicate multiple retrograde signals as coordinators of chloroplast development in maize. THE PLANT CELL 2022; 34:4897-4919. [PMID: 36073948 PMCID: PMC9709983 DOI: 10.1093/plcell/koac276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 05/09/2023]
Abstract
Signals emanating from chloroplasts influence nuclear gene expression, but roles of retrograde signals during chloroplast development are unclear. To address this gap, we analyzed transcriptomes of non-photosynthetic maize mutants and compared them to transcriptomes of stages of normal leaf development. The transcriptomes of two albino mutants lacking plastid ribosomes resembled transcriptomes at very early stages of normal leaf development, whereas the transcriptomes of two chlorotic mutants with thylakoid targeting or plastid transcription defects resembled those at a slightly later stage. We identified ∼2,700 differentially expressed genes, which fall into six major categories based on the polarity and mutant-specificity of the change. Downregulated genes were generally expressed late in normal development and were enriched in photosynthesis genes, whereas upregulated genes act early and were enriched for functions in chloroplast biogenesis and cytosolic translation. We showed further that target-of-rapamycin (TOR) signaling was elevated in mutants lacking plastid ribosomes and declined in concert with plastid ribosome buildup during normal leaf development. Our results implicate three plastid signals as coordinators of photosynthetic differentiation. One signal requires plastid ribosomes and activates photosynthesis genes. A second signal reflects attainment of chloroplast maturity and represses chloroplast biogenesis genes. A third signal, the consumption of nutrients by developing chloroplasts, represses TOR, promoting termination of cell proliferation during leaf development.
Collapse
Affiliation(s)
- Rennie Kendrick
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
2
|
Loss of key endosymbiont genes may facilitate early host control of the chromatophore in Paulinella. iScience 2022; 25:104974. [PMID: 36093053 PMCID: PMC9450145 DOI: 10.1016/j.isci.2022.104974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023] Open
Abstract
The primary plastid endosymbiosis (∼124 Mya) that occurred in the heterotrophic amoeba lineage, Paulinella, is at an earlier stage of evolution than in Archaeplastida, and provides an excellent model for studying organelle integration. Using genomic data from photosynthetic Paulinella, we identified a plausible mechanism for the evolution of host control of endosymbiont (termed the chromatophore) biosynthetic pathways and functions. Specifically, random gene loss from the chromatophore and compensation by nuclear-encoded gene copies enables host control of key pathways through a minimal number of evolutionary innovations. These gene losses impact critical enzymatic steps in nucleotide biosynthesis and the more peripheral components of multi-protein DNA replication complexes. Gene retention in the chromatophore likely reflects the need to maintain a specific stoichiometric balance of the encoded products (e.g., involved in DNA replication) rather than redox state, as in the highly reduced plastid genomes of algae and plants. Endosymbiont DNA replication cannot be completed without several key host proteins Endosymbiont nucleotide biosynthesis is completed by import of host proteins Limited gene loss allowed the host to gain control of endosymbiont division Paulinella regulates chromatophore function using the stringent response pathway
Collapse
|
3
|
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci U S A 2020; 117:32739-32749. [PMID: 33273113 PMCID: PMC7768757 DOI: 10.1073/pnas.2014294117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Yukari Asakura
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Morgane Boone
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Kazuaki Takafuji
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Emine Dinc
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Crèvecoeur
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Masato Nakai
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan;
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland;
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
4
|
Leister D, Kleine T. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. PHYSIOLOGIA PLANTARUM 2016; 157:297-309. [PMID: 26876646 DOI: 10.1111/ppl.12431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| | - Tatjana Kleine
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
5
|
Li L, Wurtele ES. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:177-87. [PMID: 25146936 PMCID: PMC4345402 DOI: 10.1111/pbi.12238] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago.
Collapse
Affiliation(s)
- Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
6
|
|
7
|
Leister D, Romani I, Mittermayr L, Paieri F, Fenino E, Kleine T. Identification of target genes and transcription factors implicated in translation-dependent retrograde signaling in Arabidopsis. MOLECULAR PLANT 2014; 7:1228-47. [PMID: 24874869 DOI: 10.1093/mp/ssu066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Changes in organellar gene expression (OGE) trigger retrograde signaling. The molecular dissection of OGE-dependent retrograde signaling based on analyses of mutants with altered OGE is complicated by compensatory responses that mask the primary signaling defect and by secondary effects that influence other retrograde signaling pathways. Therefore, to identify the earliest effects of altered OGE on nuclear transcript accumulation, we have induced OGE defects in adult plants by ethanol-dependent repression of PRORS1, which encodes a prolyl-tRNA synthetase located in chloroplasts and mitochondria. After 32h of PRORS1 repression, the translational capacity of chloroplasts was reduced, and this effect subsequently intensified, while basic photosynthetic parameters were still unchanged at 51h. Analysis of changes in whole-genome transcriptomes during exposure to ethanol revealed that induced PRORS1 silencing affects the expression of 1020 genes in all. Some of these encode photosynthesis-related proteins, including several down-regulated light-harvesting chlorophyll a/b binding (LHC) proteins. Interestingly, genes for presumptive endoplasmic reticulum proteins are transiently up-regulated. Furthermore, several NAC-domain-containing proteins are among the transcription factors regulated. Candidate cis-acting elements which may coordinate the transcriptional co-regulation of genes sets include both G-box variants and sequence motifs with no similarity to known plant cis-elements.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Isidora Romani
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Lukas Mittermayr
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Francesca Paieri
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Elena Fenino
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| |
Collapse
|
8
|
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KFX. Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks. MOLECULAR PLANT 2014; 7:1167-90. [PMID: 24719466 DOI: 10.1093/mp/ssu042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastid-to-nucleus signaling is essential for the coordination and adjustment of cellular metabolism in response to environmental and developmental cues of plant cells. A variety of operational retrograde signaling pathways have been described that are thought to be triggered by reactive oxygen species, photosynthesis redox imbalance, tetrapyrrole intermediates, and other metabolic traits. Here we report a meta-analysis based on transcriptome and protein interaction data. Comparing the output of these pathways reveals the commonalities and peculiarities stimulated by six different sources impinging on operational retrograde signaling. Our study provides novel insights into the interplay of these pathways, supporting the existence of an as-yet unknown core response module of genes being regulated under all conditions tested. Our analysis further highlights affiliated regulatory cis-elements and classifies abscisic acid and auxin-based signaling as secondary components involved in the response cascades following a plastidial signal. Our study provides a global analysis of structure and interfaces of different pathways involved in plastid-to-nucleus signaling and a new view on this complex cellular communication network.
Collapse
Affiliation(s)
- Christine Gläßer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Georg Haberer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Iris Finkemeier
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Thomas Pfannschmidt
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, D-07743 Jena, Germany Laboratoire de Physiologie Cellulaire Végétale (LPCV), CEA/CNRS/UJF iRTSV, CEA Grenoble 17, rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Tatjana Kleine
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Rainer Erich Häusler
- University of Cologne, Botanical Institute, Cologne Biocenter, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Klaus Franz Xaver Mayer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
9
|
Wang B, Du Q, Yang X, Zhang D. Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC PLANT BIOLOGY 2014; 14:81. [PMID: 24673936 PMCID: PMC3986721 DOI: 10.1186/1471-2229-14-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. RESULTS Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. CONCLUSIONS This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, Feil R, Lunn J, Nikoloski Z, Stitt M, Fernie AR, Arrivault S. Metabolic fluxes in an illuminated Arabidopsis rosette. THE PLANT CELL 2013; 25:694-714. [PMID: 23444331 PMCID: PMC3608787 DOI: 10.1105/tpc.112.106989] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/25/2013] [Accepted: 02/12/2013] [Indexed: 05/18/2023]
Abstract
Photosynthesis is the basis for life, and its optimization is a key biotechnological aim given the problems of population explosion and environmental deterioration. We describe a method to resolve intracellular fluxes in intact Arabidopsis thaliana rosettes based on time-dependent labeling patterns in the metabolome. Plants photosynthesizing under limiting irradiance and ambient CO2 in a custom-built chamber were transferred into a (13)CO2-enriched environment. The isotope labeling patterns of 40 metabolites were obtained using liquid or gas chromatography coupled to mass spectrometry. Labeling kinetics revealed striking differences between metabolites. At a qualitative level, they matched expectations in terms of pathway topology and stoichiometry, but some unexpected features point to the complexity of subcellular and cellular compartmentation. To achieve quantitative insights, the data set was used for estimating fluxes in the framework of kinetic flux profiling. We benchmarked flux estimates to four classically determined flux signatures of photosynthesis and assessed the robustness of the estimates with respect to different features of the underlying metabolic model and the time-resolved data set.
Collapse
Affiliation(s)
- Marek Szecowka
- Central Metabolism Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Robert Heise
- Systems Biology and Mathematical Modeling Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Central Metabolism Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Central Metabolism Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Vosloh
- Metabolic Systems Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jan Huege
- Central Metabolism Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Metabolic Systems Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John Lunn
- Metabolic Systems Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Metabolic Systems Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Central Metabolism Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Address correspondence to
| | - Stéphanie Arrivault
- Metabolic Systems Research Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
11
|
Abstract
Intracellular signaling from plastids to the nucleus, called retrograde signaling, coordinates the expression of nuclear and plastid genes and is essential for plastid biogenesis and for maintaining plastid function at optimal levels. Recent identification of several components involved in plastid retrograde generation, transmission, and control of nuclear gene expression has provided significant insight into the regulatory network of plastid retrograde signaling. Here, we review the current knowledge of multiple plastid retrograde signaling pathways, which are derived from distinct sources, and of possible plastid signaling molecules. We describe the retrograde signaling-dependent regulation of nuclear gene expression, which involves multilayered transcriptional control, as well as the transcription factors involved. We also summarize recent advances in the identification of key components mediating signal transduction from plastids to the nucleus.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
12
|
Motohashi R, Rödiger A, Agne B, Baerenfaller K, Baginsky S. Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level. PLANT PHYSIOLOGY 2012; 160:2189-201. [PMID: 23027667 PMCID: PMC3510140 DOI: 10.1104/pp.112.204032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants.
Collapse
|
13
|
Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC PLANT BIOLOGY 2012; 12:107. [PMID: 22780875 PMCID: PMC3491035 DOI: 10.1186/1471-2229-12-107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/25/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. RESULTS We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. CONCLUSION We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Gautam Kumar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Ritturaj Kushwaha
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vaishali Panjabi-Sabharwal
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sumita Kumari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shweta Mittal
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
14
|
Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. PLANT PHYSIOLOGY 2012; 158:1172-92. [PMID: 22274653 PMCID: PMC3291262 DOI: 10.1104/pp.111.193144] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/19/2012] [Indexed: 05/18/2023]
Abstract
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions.
Collapse
Affiliation(s)
- Peter K. Lundquist
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Anton Poliakov
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Nazmul H. Bhuiyan
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | | | - Qi Sun
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
15
|
Kleine T. Arabidopsis thaliana mTERF proteins: evolution and functional classification. FRONTIERS IN PLANT SCIENCE 2012; 3:233. [PMID: 23087700 PMCID: PMC3471360 DOI: 10.3389/fpls.2012.00233] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/27/2012] [Indexed: 05/18/2023]
Abstract
Organellar gene expression (OGE) is crucial for plant development, photosynthesis, and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming, and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF) family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes-especially the duplicated genes-display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology (GO) annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the "chloroplast" and "chloroplast-associated" clusters are principally involved in chloroplast gene expression, embryogenesis, and protein catabolism, while representatives of the "mitochondrial" cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the "mitochondrion-associated" cluster and the "low expression" group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression (NGE), mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear genomes.
Collapse
Affiliation(s)
- Tatjana Kleine
- *Correspondence: Tatjana Kleine, Department Biology I, Plant Molecular Biology (Botany), Ludwig-Maximilians-University Munich (LMU), Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany. e-mail:
| |
Collapse
|
16
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Tadini L, Romani I, Pribil M, Jahns P, Leister D, Pesaresi P. Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signaling in the prors1-1 mutant. FRONTIERS IN PLANT SCIENCE 2012; 3:282. [PMID: 23293642 PMCID: PMC3530781 DOI: 10.3389/fpls.2012.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/30/2012] [Indexed: 05/04/2023]
Abstract
Perturbations in organellar gene expression (OGE) and the thylakoid redox state (TRS) activate retrograde signaling pathways that adaptively modify nuclear gene expression (NGE), according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1) which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signaling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signaling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific), which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl) fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins.
Collapse
Affiliation(s)
- Luca Tadini
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Isidora Romani
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Mathias Pribil
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenMunich, Germany
- *Correspondence: Dario Leister, Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany. e-mail:
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di MilanoMilan, Italy
| |
Collapse
|
18
|
Abstract
The vast majority of the several thousands of chloroplast proteins are encoded by nuclear genes. Regulation of their expression involves control of their transcription, and thus requires the transmission of information from chloroplast to nucleus (retrograde signalling). The most powerful approach to the analysis of the transcriptional regulation of chloroplast functions involves RNA hybridization to microarrays representing almost all nuclear genes of Arabidopsis thaliana, followed by statistical data analysis. This chapter provides detailed protocols for the preparation of RNA for microarray experiments, in particular the widely used Affymetrix ATH1 array. Finally, the use of the publicly available program Robin for statistical data analysis, as well as approaches to confirm microarray data, is introduced.
Collapse
|
19
|
Bolle C, Schneider A, Leister D. Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Curr Genomics 2011; 12:1-14. [PMID: 21886450 PMCID: PMC3129038 DOI: 10.2174/138920211794520187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022] Open
Abstract
Since the sequencing of the nuclear genome of Arabidopsis thaliana ten years ago, various large-scale analyses of gene function have been performed in this model species. In particular, the availability of collections of lines harbouring random T-DNA or transposon insertions, which include mutants for almost all of the ~27,000 A. thaliana genes, has been crucial for the success of forward and reverse genetic approaches. In the foreseeable future, genome-wide phenotypic data from mutant analyses will become available for Arabidopsis, and will stimulate a flood of novel in-depth gene-function analyses. In this review, we consider the present status of resources and concepts for systematic studies of gene function in A. thaliana. Current perspectives on the utility of loss-of-function and gain-of-function mutants will be discussed in light of the genetic and functional redundancy of many A. thaliana genes.
Collapse
Affiliation(s)
- C Bolle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
20
|
Bischof S, Baerenfaller K, Wildhaber T, Troesch R, Vidi PA, Roschitzki B, Hirsch-Hoffmann M, Hennig L, Kessler F, Gruissem W, Baginsky S. Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. THE PLANT CELL 2011; 23:3911-28. [PMID: 22128122 PMCID: PMC3246318 DOI: 10.1105/tpc.111.092882] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/19/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
Import of nuclear-encoded precursor proteins from the cytosol is an essential step in chloroplast biogenesis that is mediated by protein translocon complexes at the inner and outer envelope membrane (TOC). Toc159 is thought to be the main receptor for photosynthetic proteins, but lacking a large-scale systems approach, this hypothesis has only been tested for a handful of photosynthetic and nonphotosynthetic proteins. To assess Toc159 precursor specificity, we quantitatively analyzed the accumulation of plastid proteins in two mutant lines deficient in this receptor. Parallel genome-wide transcript profiling allowed us to discern the consequences of impaired protein import from systemic transcriptional responses that contribute to the loss of photosynthetic capacity. On this basis, we defined putative Toc159-independent and Toc159-dependent precursor proteins. Many photosynthetic proteins accumulate in Toc159-deficient plastids, and, surprisingly, several distinct metabolic pathways are negatively affected by Toc159 depletion. Lack of Toc159 furthermore affects several proteins that accumulate as unprocessed N-acetylated precursor proteins outside of plastids. Together, our data show an unexpected client protein promiscuity of Toc159 that requires a far more differentiated view of Toc159 receptor function and regulation of plastid protein import, in which cytosolic Met removal followed by N-terminal acetylation of precursors emerges as an additional regulatory step.
Collapse
Affiliation(s)
- Sylvain Bischof
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Katja Baerenfaller
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Thomas Wildhaber
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Raphael Troesch
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | | | | | | | - Lars Hennig
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, 2007 Neuchâtel, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland
| | - Sacha Baginsky
- Department of Biology, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
- Address correspondence to
| |
Collapse
|
21
|
Leister D, Wang X, Haberer G, Mayer KF, Kleine T. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. PLANT PHYSIOLOGY 2011; 157:386-404. [PMID: 21775496 PMCID: PMC3165886 DOI: 10.1104/pp.111.177691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.
Collapse
|
22
|
|
23
|
Alboresi A, Dall'Osto L, Aprile A, Carillo P, Roncaglia E, Cattivelli L, Bassi R. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC PLANT BIOLOGY 2011; 11:62. [PMID: 21481232 PMCID: PMC3083342 DOI: 10.1186/1471-2229-11-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/11/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. RESULTS To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2) accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. CONCLUSIONS We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are discussed.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I - 37134 Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I - 37134 Verona, Italy
| | - Alessio Aprile
- CRA Centro di Ricerca per la Genomica, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Petronia Carillo
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta, Italy
| | - Enrica Roncaglia
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | - Luigi Cattivelli
- CRA Centro di Ricerca per la Genomica, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I - 37134 Verona, Italy
| |
Collapse
|
24
|
Manfre A, Glenn M, Nuñez A, Moreau RA, Dardick C. Light quantity and photosystem function mediate host susceptibility to Turnip mosaic virus via a salicylic acid-independent mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:315-27. [PMID: 21091158 DOI: 10.1094/mpmi-08-10-0191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Evidence going as far back as the early part of the 20th century suggests that both light and chloroplast function may play key roles in host susceptibility to viruses. Despite the long history of such work, confirmation of these phenomena and a determination of the underlying mechanisms remain elusive. Here, we revisited these questions using modern imaging technologies to study the susceptibility of Nicotiana benthamiana to Turnip mosaic virus (TuMV). We found that both light deficiency and photosystem impairment increased the susceptibility of N. benthamiana to TuMV infection. Time-lapse photography studies indicated that, under these conditions, rub-inoculated plants exhibited greater numbers of infection foci and more rapid foci development. The rate of systemic movement was also accelerated though cell-to-cell movement appeared unchanged. Inhibition of salicylic acid (SA)-mediated defense responses is not likely responsible for changes in susceptibility because SA and pathogen response-1 gene induction were not affected by light deficiency or chloroplast impairment and treatment of plants with SA had no measureable impact on TuMV infection. Taken together, these data suggest that both light and optimal chloroplast function influence virus infection either by limiting the cellular resources needed by TuMV to establish replication complexes or the host's ability to activate SA-independent defenses.
Collapse
Affiliation(s)
- A Manfre
- United States Department of Agriculture, Appalachian Fruit Research Station, WV, USA
| | | | | | | | | |
Collapse
|
25
|
Infanger S, Bischof S, Hiltbrunner A, Agne B, Baginsky S, Kessler F. The chloroplast import receptor Toc90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant. MOLECULAR PLANT 2011; 4:252-63. [PMID: 21220583 DOI: 10.1093/mp/ssq071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana, precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied, but the function of Toc90 still remains unclear. Here, we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.
Collapse
Affiliation(s)
- Sibylle Infanger
- Laboratoire de physiologie végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol 2011; 214:303-11. [PMID: 21177950 PMCID: PMC3008634 DOI: 10.1242/jeb.046540] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
Abstract
Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO(2) fixation (photosynthesis). 'Solar-powered' sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a 'plant' when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ~10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating 'green animal' provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | |
Collapse
|
27
|
Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D. Update on chloroplast research: new tools, new topics, and new trends. MOLECULAR PLANT 2011; 4:1-16. [PMID: 20924030 DOI: 10.1093/mp/ssq060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
28
|
Pfannschmidt T. Plastidial retrograde signalling--a true "plastid factor" or just metabolite signatures? TRENDS IN PLANT SCIENCE 2010; 15:427-35. [PMID: 20580596 DOI: 10.1016/j.tplants.2010.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 05/03/2023]
Abstract
The genetic compartments of plant cells, nuclei, plastids and mitochondria exchange information by anterograde (nucleus-to-organelle) and retrograde (organelle-to-nucleus) signalling. These avenues of communication coordinate activities during the organelles' development and function. Despite extensive research retrograde signalling remains poorly understood. The proposed cytosolic signalling pathways and the putative organellar signalling molecules remain elusive, and a clear functional distinction from the signalling cascades of other cellular perception systems (i.e. photoreceptors or phytohormones) is difficult to obtain. Notwithstanding the stagnant progress, some basic assumptions about the process have remained virtually unchanged for many years, potentially obstructing the view on alternative routes for retrograde communication. Here, I critically assess the current models of retrograde signalling and discuss novel ideas and potential connections.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of General Botany and Plant Physiology, Department of Plant Physiology, University of Jena, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
29
|
Zhong R, Thompson J, Ottesen E, Lamppa GK. A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:44-59. [PMID: 20374530 DOI: 10.1111/j.1365-313x.2010.04220.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A genetic screen in Arabidopsis was developed to explore the regulation of chloroplast protein import in vivo using two independent reporters representing housekeeping and photosynthetic pre-proteins. We first used 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase*), a key enzyme in the shikimic acid pathway, with a mutation that confers tolerance to the herbicide glyphosate. Because the EPSP synthase* pre-protein must be imported for its function, the loss of glyphosate tolerance provided an initial indication of an import deficiency. Second, the fate of GFP fused to a ferredoxin transit peptide (FD5-GFP) was determined. A class of altered chloroplast import (aci) mutants showed both glyphosate sensitivity and FD5-GFP mislocalized to nuclei. aci2-1 was selected for further study. Yellow fluorescent protein (YFP) fused to the transit peptide of EPSP synthase* or the small subunit of Rubisco was not imported into chloroplasts, but also localized to nuclei during protoplast transient expression. Isolated aci2-1 chloroplasts showed a 50% reduction in pre-protein import efficiency in an in vitro assay. Mutants did not grow photoautotrophically on media without sucrose and were small and dark green in soil. aci2-1 and two alleles code for Moco-sulfurase, which activates the aldehyde oxidases required for the biosynthesis of the plant hormones abscisic acid (ABA) and indole-acetic acid (IAA) and controls purine nucleotide (ATP and GTP) turnover and nitrogen recycling via xanthine dehydrogenase. These enzyme activities were not detected in aci2-1. ABA, IAA and/or purine turnover may play previously unrecognized roles in the regulation of chloroplast protein import in response to developmental, metabolic and environmental cues.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Jung HS, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? PLANT PHYSIOLOGY 2010; 152:453-9. [PMID: 19933385 PMCID: PMC2815895 DOI: 10.1104/pp.109.149070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
|
32
|
Benz J, Stengel A, Lintala M, Lee YH, Weber A, Philippar K, Gügel I, Kaieda S, Ikegami T, Mulo P, Soll J, Bölter B. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. THE PLANT CELL 2009; 21:3965-83. [PMID: 20040542 PMCID: PMC2814497 DOI: 10.1105/tpc.109.069815] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/29/2009] [Accepted: 12/14/2009] [Indexed: 05/18/2023]
Abstract
Translocation of nuclear-encoded preproteins across the inner envelope of chloroplasts is catalyzed by the Tic translocon, consisting of Tic110, Tic40, Tic62, Tic55, Tic32, Tic20, and Tic22. Tic62 was proposed to act as a redox sensor of the complex because of its redox-dependent shuttling between envelope and stroma and its specific interaction with the photosynthetic protein ferredoxin-NADP(H) oxidoreductase (FNR). However, the nature of this close relationship so far remained enigmatic. A putative additional localization of Tic62 at the thylakoids mandated further studies examining how this feature might be involved in the respective redox sensing pathway and the interaction with its partner protein. Therefore, both the association with FNR and the physiological role of the third, thylakoid-bound pool of Tic62 were investigated in detail. Coexpression analysis indicates that Tic62 has similar expression patterns as genes involved in photosynthetic functions and protein turnover. At the thylakoids, Tic62 and FNR form high molecular weight complexes that are not involved in photosynthetic electron transfer but are dynamically regulated by light signals and the stromal pH. Structural analyses reveal that Tic62 binds to FNR in a novel binding mode for flavoproteins, with a major contribution from hydrophobic interactions. Moreover, in absence of Tic62, membrane binding and stability of FNR are drastically reduced. We conclude that Tic62 represents a major FNR interaction partner not only at the envelope and in the stroma, but also at the thylakoids of Arabidopsis thaliana and perhaps all flowering plants. Association with Tic62 stabilizes FNR and is involved in its dynamic and light-dependent membrane tethering.
Collapse
Affiliation(s)
- J.P. Benz
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - A. Stengel
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - M. Lintala
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | - Y.-H. Lee
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - A. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | - K. Philippar
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - I.L. Gügel
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - S. Kaieda
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - T. Ikegami
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - P. Mulo
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | - J. Soll
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - B. Bölter
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Address correspondence to
| |
Collapse
|
33
|
Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T. Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. THE PLANT CELL 2009; 21:2715-32. [PMID: 19737978 PMCID: PMC2768923 DOI: 10.1105/tpc.108.062018] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/22/2009] [Accepted: 08/20/2009] [Indexed: 05/18/2023]
Abstract
Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Lars Dietzel
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Elke Ströher
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Dennis Wormuth
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Dörte Radke
- Hans Knöll Institute, 07745 Jena, Germany
- Institute for Community Medicine, Ernst Moritz Arndt University of Greifswald, 17475 Greifswald, Germany
| | - Markus Wirtz
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Nicolas Schauer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Sandra N. Oliver
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Peter Geigenberger
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Dario Leister
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Thomas Pfannschmidt
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
- Address correspondence to
| |
Collapse
|
34
|
Sun CW, Huang YC, Chang HY. CIA2 coordinately up-regulates protein import and synthesis in leaf chloroplasts. PLANT PHYSIOLOGY 2009; 150:879-88. [PMID: 19386807 PMCID: PMC2689949 DOI: 10.1104/pp.109.137240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/14/2009] [Indexed: 05/21/2023]
Abstract
Plastid biogenesis and maintenance depend on the coordinated assembly of proteins imported from the cytosol with proteins translated within plastids. Chloroplasts in leaf cells have a greater need for protein import and protein synthesis than plastids in other organs due to the large amount of proteins required for photosynthesis. We previously reported that the Arabidopsis (Arabidopsis thaliana) transcription factor CIA2 specifically up-regulates leaf expression of genes encoding protein translocons Toc33 and Toc75, which are essential for protein import into chloroplasts. Protein import efficiency was therefore reduced in cia2 mutant chloroplasts. To further understand the function of CIA2, gene expression profiles of the wild type and a cia2 mutant were compared by microarray analysis. Interestingly, in addition to genes encoding protein translocon components, other genes down-regulated in cia2 almost exclusively encode chloroplast ribosomal proteins. Isolated cia2 mutant chloroplasts showed reduced translation efficiency and steady-state accumulation of plastid-encoded proteins. When CIA2 was ectopically expressed in roots, expression of both the protein translocon and ribosomal protein genes increased. Further analyses in vivo revealed that CIA2 up-regulated these genes by binding directly to their promoter regions. We propose that CIA2 is an important factor responsible for fulfilling the higher protein demands of leaf chloroplasts by coordinately increasing both protein import and protein translation efficiencies.
Collapse
Affiliation(s)
- Chih-Wen Sun
- Department of Life Sciences, National Taiwan Normal University, Taipei 116, Taiwan.
| | | | | |
Collapse
|
35
|
Kleine T, Voigt C, Leister D. Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 2009; 25:185-92. [PMID: 19303165 DOI: 10.1016/j.tig.2009.02.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 02/05/2023]
Abstract
The concept of plastid signalling posits that signals originating from chloroplasts modulate nuclear gene expression (NGE). Put simply, it claims that signalling factors are exported from the chloroplast, traverse the cytosol, and act in the nucleus. Pertinent signals are thought to derive from various sources, including the tetrapyrrole pathway, protein synthesis, reactive oxygen species, or the redox state of the organelle. Recent studies have cast doubt on the most popular candidate signalling molecule, the tetrapyrrole pathway intermediate Mg-protoporphyrin IX, indicating that chloroplast activity might control NGE indirectly by affecting cytosolic metabolite levels or redox states (metabolic signalling). Here, we focus on recent developments and confusions in the field of plastid signalling research and highlight alternative scenarios of plastid-nucleus signal transduction. Future analyses of chloroplast-nucleus communication should focus on providing an integrated view of plastid signalling under physiologically relevant conditions.
Collapse
Affiliation(s)
- Tatjana Kleine
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
36
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
37
|
Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. ANNALS OF BOTANY 2009; 103:599-607. [PMID: 18492734 PMCID: PMC2707342 DOI: 10.1093/aob/mcn081] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 04/21/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO(2) fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses. SCOPE The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches. CONCLUSIONS The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular activities to counterbalance the environmental changes or stresses.
Collapse
|
38
|
Frenkel M, Külheim C, Jänkänpää HJ, Skogström O, Dall'Osto L, Ågren J, Bassi R, Moritz T, Moen J, Jansson S. Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC PLANT BIOLOGY 2009; 9:12. [PMID: 19171025 PMCID: PMC2656510 DOI: 10.1186/1471-2229-9-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 01/26/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant performance is affected by the level of expression of PsbS, a key photoprotective protein involved in the process of feedback de-excitation (FDE), or the qE component of non-photochemical quenching, NPQ. RESULTS In studies presented here, under constant laboratory conditions the metabolite profiles of leaves of wild-type Arabidopsis thaliana and plants lacking or overexpressing PsbS were very similar, but under natural conditions their differences in levels of PsbS expression were associated with major changes in metabolite profiles. Some carbohydrates and amino acids differed ten-fold in abundance between PsbS-lacking mutants and over-expressers, with wild-type plants having intermediate amounts, showing that a metabolic shift had occurred. The transcriptomes of the genotypes also varied under field conditions, and the genes induced in plants lacking PsbS were similar to those reportedly induced in plants exposed to ozone stress or treated with methyl jasmonate (MeJA). Genes involved in the biosynthesis of JA were up-regulated, and enzymes involved in this pathway accumulated. JA levels in the undamaged leaves of field-grown plants did not differ between wild-type and PsbS-lacking mutants, but they were higher in the mutants when they were exposed to herbivory. CONCLUSION These findings suggest that lack of FDE results in increased photooxidative stress in the chloroplasts of Arabidopsis plants grown in the field, which elicits a response at the transcriptome level, causing a redirection of metabolism from growth towards defence that resembles a MeJA/JA response.
Collapse
Affiliation(s)
- Martin Frenkel
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Carsten Külheim
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Oskar Skogström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Luca Dall'Osto
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 15- 37134 Verona, Italy
| | - Jon Ågren
- Department of Ecology and Evolution, EBC, Uppsala University, Villavägen 14. SE-752 36 Uppsala, Sweden
| | - Roberto Bassi
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 15- 37134 Verona, Italy
- Université Aix-Marseille II, LGBP- Faculté des Sciences de Luminy, Département de Biologie, Case 901, 163, Avenue de Luminy, 13288 Marseille, France
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jon Moen
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
39
|
Häusler RE, Geimer S, Kunz HH, Schmitz J, Dörmann P, Bell K, Hetfeld S, Guballa A, Flügge UI. Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts. PLANT PHYSIOLOGY 2009; 149:515-33. [PMID: 18978072 PMCID: PMC2613729 DOI: 10.1104/pp.108.128124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/26/2008] [Indexed: 05/20/2023]
Abstract
An Arabidopsis (Arabidopsis thaliana) double mutant impaired in starch biosynthesis and the triose phosphate/phosphate translocator (adg1-1/tpt-1) is characterized by a diminished utilization of photoassimilates and the concomitant consumption of reducing power and energy produced in the photosynthetic light reaction. In order to guarantee survival, the double mutant responds to this metabolic challenge with growth retardation, an 80% decline in photosynthetic electron transport, diminished chlorophyll contents, an enhanced reduction state of plastoquinone in the dark (up to 50%), a perturbation of the redox poise in leaves (increased NADPH/NADP ratios and decreased ascorbate/dehydroascorbate ratios), hyperstacking of grana thylakoids, and an increased number of plastoglobules. Enhanced oxygen consumption and applications of inhibitors of alternative mitochondrial and chloroplast oxidases (AOX and PTOX) suggest that chlororespiration as well as mitochondrial respiration are involved in the enhanced plastoquinone reduction state in the dark. Transcript amounts of PTOX and AOX were diminished and nucleus-encoded components related to plastidic NADH reductase (NDH1) were increased in adg1-1/tpt-1 compared with the wild type. Cytochrome b559, proposed to be involved in the reoxidation of photosystem II, was not regulated at the transcriptional level. The hyperstacking of grana thylakoids mimics adaptation to low light, and increased plastoglobule numbers suggest a response to enhanced oxidative stress. Altered chloroplast organization combined with perturbations in the redox poise suggests that adg1-1/tpt-1 could be a tool for the in vivo study of retrograde signaling mechanisms controlling the coordinated expression of nucleus- and plastome-encoded photosynthetic genes.
Collapse
Affiliation(s)
- Rainer E Häusler
- Universität zu Köln, Botanisches Institut, D-50931 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:115-38. [PMID: 19014347 DOI: 10.1146/annurev.arplant.043008.092119] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotes, DNA is exchanged between endosymbiosis-derived compartments (mitochondria and chloroplasts) and the nucleus. Organelle-to-nucleus DNA transfer involves repair of double-stranded breaks by nonhomologous end-joining, and resulted during early organelle evolution in massive relocation of organelle genes to the nucleus. A large fraction of the products of the nuclear genes so acquired are retargeted to their ancestral compartment; many others now function in new subcellular locations. Almost all present-day nuclear transfers of mitochondrial or plastid DNA give rise to noncoding sequences, dubbed nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). Some of these sequences were recruited as exons, thus introducing new coding sequences into preexisting nuclear genes by a novel mechanism. In organisms derived from secondary or tertiary endosymbiosis, serial gene transfers involving nucleus-to-nucleus migration of DNA have also occurred. Intercompartmental DNA transfer therefore represents a significant driving force for gene and genome evolution, relocating and refashioning genes and contributing to genetic diversity.
Collapse
Affiliation(s)
- Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
41
|
Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F. Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:207-219. [PMID: 18785996 DOI: 10.1111/j.1365-313x.2008.03680.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplastic NAD(P)H dehydrogenase (NDH) plays a role in cyclic electron flow around photosystem I to produce ATP, especially in adaptation to environmental changes. Although the NDH complex contains 11 subunits that are homologous to NADH:ubiquinone oxidoreductase (complex I; EC 1.6.5.3), recent genetic and biological studies have indicated that NDH also comprises unique subunits. We describe here an in silico approach based on co-expression analysis and phylogenetic profiling that was used to identify 65 genes as potential candidates for NDH subunits. Characterization of 21 Arabidopsis T-DNA insertion mutants among these ndh gene candidates indicated that three novel ndf (NDH-dependent cyclic electron flow) mutants (ndf1, ndf2 and ndf4) had impaired NDH activity as determined by measurement of chlorophyll fluorescence. The amount of NdhH subunit was greatly decreased in these mutants, suggesting that the loss of NDH activity was caused by a defect in accumulation of the NDH complex. In addition, NDF1, NDF2 and NDF4 proteins co-migrated with the NdhH subunit, as shown by blue native electrophoresis. These results strongly suggest that NDF proteins are novel subunits of the NDH complex. Further analysis revealed that the NDF1 and NDF2 proteins were unstable in the mutants lacking hydrophobic subunits of the NDH complex, but were stable in mutants lacking the hydrophilic subunits, suggesting that NDF1 and NDF2 interact with a hydrophobic sub-complex. NDF4 protein was predicted to possess a redox-active iron-sulfur cluster domain that may be involved in the electron transfer.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606 8502, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Leister D, Kleine T. Towards a comprehensive catalog of chloroplast proteins and their interactions. Cell Res 2008; 18:1081-3. [PMID: 18978803 DOI: 10.1038/cr.2008.297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dario Leister
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
43
|
Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS. Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. PLANT PHYSIOLOGY 2008; 148:2050-8. [PMID: 18829981 PMCID: PMC2593674 DOI: 10.1104/pp.108.128488] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/26/2008] [Indexed: 05/18/2023]
Abstract
Sensors and regulatory circuits that maintain redox homeostasis play a central role in adjusting plant metabolism and development to changing environmental conditions. We report here control networks in Arabidopsis (Arabidopsis thaliana) that respond to photosynthetic stress. We independently subjected Arabidopsis leaves to two commonly used photosystem II inhibitors: high light (HL) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Microarray analysis of expression patterns during the period of redox adjustment to these inhibitors reveals that 20% and 8% of the transcriptome are under HL and DCMU regulation, respectively. Approximately 6% comprise a subset of genes common to both perturbations, the redox responsive genes (RRGs). A redox network was generated in an attempt to identify genes whose expression is tightly coordinated during adjustment to homeostasis, using expression of these RRGs under HL conditions. Ten subnetworks were identified from the network. Hierarchal subclustering of subnetworks responding to the DCMU stress identified novel groups of genes that were tightly controlled while adjusting to homeostasis. Upstream analysis of the promoters of the genes in these clusters revealed different motifs for each subnetwork, including motifs that were previously identified with responses to other stresses, such as light, dehydration, or abscisic acid. Functional categorization of RRGs demonstrated involvement of genes in many metabolic pathways, including several families of transcription factors, especially those in the AP2 family. Using a T-DNA insertion in one AP2 transcription factor (redox-responsive transcription factor 1 [RRTF1]) from the RRGs, we showed that the genes predicted to be within the subnetwork containing RRTF1 were changed in this insertion line (Deltarrtf1). Furthermore, Deltarrtf1 showed greater sensitivity to photosynthetic stress compared to the wild type.
Collapse
Affiliation(s)
- Abha Khandelwal
- Department of Biology , Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Following the acquisition of chloroplasts and mitochondria by eukaryotic cells during endosymbiotic evolution, most of the genes in these organelles were either lost or transferred to the nucleus. Encoding organelle-destined proteins in the nucleus allows for host control of the organelle. In return, organelles send signals to the nucleus to coordinate nuclear and organellar activities. In photosynthetic eukaryotes, additional interactions exist between mitochondria and chloroplasts. Here we review recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus, with a focus on photosynthetic plants.
Collapse
|
45
|
DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 2008; 132:273-85. [PMID: 18243102 DOI: 10.1016/j.cell.2007.12.028] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/13/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
Abstract
During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Lehrstuhl für Botanik, Department Biologie, Ludwig-Maximilians-Universität, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sakamoto W, Miyagishima SY, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. THE ARABIDOPSIS BOOK 2008; 6:e0110. [PMID: 22303235 PMCID: PMC3243408 DOI: 10.1199/tab.0110] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Address correspondence to
| | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
47
|
Pesaresi P, Schneider A, Kleine T, Leister D. Interorganellar communication. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:600-6. [PMID: 17719262 DOI: 10.1016/j.pbi.2007.07.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 05/16/2023]
Abstract
Signals originating from chloroplasts and mitochondria modulate nuclear gene expression (retrograde signalling). Relevant signals are derived from the pool of reactive oxygen species or generated by changes in redox state, flux through the tetrapyrrole biosynthetic pathway, or rates of organelle protein synthesis. In addition, multiple interactions of these four pathways with sugar and hormone signalling occur. Although the nature of the molecules that relay information through the cytosol to the nucleus is still unknown, the first putative signalling components in the chloroplast have recently been identified, and give tentative hints of overlaps between the different pathways. Retrograde signalling-dependent modulation of nuclear gene expression seems to involve multilayered transcriptional control and the transcription factor ABI4.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Produzione Vegetale, Università Statale di Milano c/o Fondazione Parco Tecnologico Padano, 26900 Lodi, Italy
| | | | | | | |
Collapse
|
48
|
Hassidim M, Yakir E, Fradkin D, Hilman D, Kron I, Keren N, Harir Y, Yerushalmi S, Green RM. Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:551-62. [PMID: 17617174 DOI: 10.1111/j.1365-313x.2007.03160.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis circadian system regulates the expression of up to 36% of the nuclear genome, including many genes that encode photosynthetic proteins. The expression of nuclear-encoded photosynthesis genes is also regulated by signals from the chloroplasts, a process known as retrograde signaling. We have identified CHLOROPLAST RNA BINDING (CRB), a putative RNA-binding protein, and have shown that it is important for the proper functioning of the chloroplast. crb plants are smaller and paler than wild-type plants, and have altered chloroplast morphology and photosynthetic performance. Surprisingly, mutations in CRB also affect the circadian system, altering the expression of both oscillator and output genes. In order to determine whether the changes in circadian gene expression are specific to mutations in the CRB gene, or are more generally caused by the malfunctioning of the chloroplast, we also examined the circadian system in mutations affecting STN7, GUN1, and GUN5, unrelated nuclear-encoded chloroplast proteins known to be involved in retrograde signaling. Our results provide evidence that the functional state of the chloroplast may be an important factor that affects the circadian system.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dardick C. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1004-17. [PMID: 17722703 DOI: 10.1094/mpmi-20-8-1004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.
Collapse
Affiliation(s)
- Christopher Dardick
- United States Department of Agriculture-Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA.
| |
Collapse
|
50
|
Abstract
Chloroplast-derived signals modulate expression of nuclear genes for chloroplast proteins. GUN1 has recently been identified as a chloroplast-localized pentatricopeptide repeat protein that integrates information from several different signalling pathways.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester, UK.
| |
Collapse
|