1
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
2
|
Fortunato S, Lasorella C, Tadini L, Jeran N, Vita F, Pesaresi P, de Pinto MC. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111265. [PMID: 35643615 DOI: 10.1016/j.plantsci.2022.111265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signals, is one of the main players of retrograde signaling. Here, we focused on the interplay between GUN1 and redox regulation during biogenic retrograde signaling, by investigating redox parameters in Arabidopsis wild type and gun1 seedlings. Our data highlight that during biogenic retrograde signaling superoxide anion (O2-) and hydrogen peroxide (H2O2) play a different role in response to GUN1. Under physiological conditions, even in the absence of a visible phenotype, gun1 mutants show low activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX), with an increase in O2- accumulation and lipid peroxidation, suggesting that GUN1 indirectly protects chloroplasts from oxidative damage. In wild type seedlings, perturbation of chloroplast development with lincomycin causes H2O2 accumulation, in parallel with the decrease of ROS-removal metabolites and enzymes. These redox changes do not take place in gun1 mutants which, in contrast, enhance SOD, APX and catalase activities. Our results indicate that in response to lincomycin, GUN1 is necessary for the H2O2-dependent oxidation of cellular environment, which might contribute to the redox-dependent plastid-to nucleus communication.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Cecilia Lasorella
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | | |
Collapse
|
3
|
Choi B, Hyeon DY, Lee J, Long TA, Hwang D, Hwang I. E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues. Mol Cells 2022; 45:294-305. [PMID: 35422451 PMCID: PMC9095504 DOI: 10.14348/molcells.2022.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.
Collapse
Affiliation(s)
- Bongsoo Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Juhun Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Terri A. Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Bioinformatics Institute, Seoul National University, Seoul 08826, Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
4
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
6
|
Lidón-Soto A, Núñez-Delegido E, Pastor-Martínez I, Robles P, Quesada V. Arabidopsis Plastid-RNA Polymerase RPOTp Is Involved in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E834. [PMID: 32630785 PMCID: PMC7412009 DOI: 10.3390/plants9070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 05/05/2023]
Abstract
Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric plastid-encoded polymerase (PEP), and a monomeric nuclear-encoded polymerase (NEP). A single NEP in monocots (RPOTp, RNA polymerase of the T3/T7 phage-type) and two NEPs in dicots (plastid-targeted RPOTp, and plastid- and mitochondrial-targeted RPOTmp) have been hitherto identified. To unravel the role of PGE in plant responses to abiotic stress, we investigated if Arabidopsis RPOTp could function in plant salt tolerance. To this end, we studied the sensitivity of T-DNA mutants scabra3-2 (sca3-2) and sca3-3, defective in the RPOTp gene, to salinity, osmotic stress and the phytohormone abscisic acid (ABA) required for plants to adapt to abiotic stress. sca3 mutants were hypersensitive to NaCl, mannitol and ABA during germination and seedling establishment. Later in development, sca3 plants displayed reduced sensitivity to salt stress. A gene ontology (GO) analysis of the nuclear genes differentially expressed in the sca3-2 mutant (301) revealed that many significantly enriched GO terms were related to chloroplast function, and also to the response to several abiotic stresses. By quantitative RT-PCR (qRT-PCR), we found that genes LHCB1 (LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING1) and AOX1A (ALTERNATIVE OXIDASE 1A) were respectively down- and up-regulated in the Columbia-0 (Col-0) salt-stressed plants, which suggests the activation of plastid and mitochondria-to-nucleus retrograde signaling. The transcript levels of genes RPOTp, RPOTmp and RPOTm significantly increased in these salt-stressed seedlings, but this enhanced expression did not lead to the up-regulation of the plastid genes solely transcribed by NEP. Similar to salinity, carotenoid inhibitor norflurazon (NF) also enhanced the RPOTp transcript levels in Col-0 seedlings. This shows that besides salinity, inhibition of chloroplast biogenesis also induces RPOTp expression. Unlike salt and NF, the NEP genes were significantly down-regulated in the Col-0 seedlings grown in ABA-supplemented media. Together, our findings demonstrate that RPOTp functions in abiotic stress tolerance, and RPOTp is likely regulated positively by plastid-to-nucleus retrograde signaling, which is triggered when chloroplast functionality is perturbed by environmental stresses, e.g., salinity or NF. This suggests the existence of a compensatory mechanism, elicited by impaired chloroplast function. To our knowledge, this is the first study to suggest the role of a nuclear-encoded plastid-RNA polymerase in salt stress tolerance in plants.
Collapse
Affiliation(s)
| | | | | | | | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain; (A.L.-S.); (E.N.-D.); (I.P.-M.); (P.R.)
| |
Collapse
|
7
|
Page MT, Garcia-Becerra T, Smith AG, Terry MJ. Overexpression of chloroplast-targeted ferrochelatase 1 results in a genomes uncoupled chloroplast-to-nucleus retrograde signalling phenotype. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190401. [PMID: 32362255 DOI: 10.1098/rstb.2019.0401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chloroplast development requires communication between the progenitor plastids and the nucleus, where most of the genes encoding chloroplast proteins reside. Retrograde signals from the chloroplast to the nucleus control the expression of many of these genes, but the signalling pathway is poorly understood. Tetrapyrroles have been strongly implicated as mediators of this signal with the current hypothesis being that haem produced by the activity of ferrochelatase 1 (FC1) is required to promote nuclear gene expression. We have tested this hypothesis by overexpressing FC1 and specifically targeting it to either chloroplasts or mitochondria, two possible locations for this enzyme. Our results show that targeting of FC1 to chloroplasts results in increased expression of the nuclear-encoded chloroplast genes GUN4, CA1, HEMA1, LHCB2.1, CHLH after treatment with Norflurazon (NF) and that this increase correlates to FC1 gene expression and haem production measured by feedback inhibition of protochlorophyllide synthesis. Targeting FC1 to mitochondria did not enhance the expression of nuclear-encoded chloroplast genes after NF treatment. The overexpression of FC1 also increased nuclear gene expression in the absence of NF treatment, demonstrating that this pathway is operational in the absence of a stress treatment. Our results therefore support the hypothesis that haem synthesis is a promotive chloroplast-to-nucleus retrograde signal. However, not all FC1 overexpression lines enhanced nuclear gene expression, suggesting there is still a lot we do not understand about the role of FC1 in this signalling pathway. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Mike T Page
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Tania Garcia-Becerra
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Núñez-Delegido E, Robles P, Ferrández-Ayela A, Quesada V. Functional analysis of mTERF5 and mTERF9 contribution to salt tolerance, plastid gene expression and retrograde signalling in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:459-471. [PMID: 31850621 DOI: 10.1111/plb.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 05/16/2023]
Abstract
We previously showed that Arabidopsis mda1 and mterf9 mutants, defective in the chloroplast-targeted mitochondrial transcription termination factors mTERF5 and mTERF9, respectively, display altered responses to abiotic stresses and abscisic acid (ABA), as well as perturbed development, likely through abnormal chloroplast biogenesis. To advance the functional analysis of mTERF5 and mTERF9, we obtained and characterized overexpression (OE) lines. Additionally, we studied genetic interactions between sca3-2, affected in the plastid-RNA polymerase RpoTp, and the mda1-1 and mterf9 mutations. We also investigated the role of mTERF5 and mTERF9 in plastid translation and plastid-to-nucleus signalling. We found that mTERF9 OE reduces salt and ABA tolerance, while mTERF5 or mTERF9 OE alter expression of nuclear and plastid genes. We determined that mda1-1 and mterf9 mutations genetically interact with sca3-2. Further, plastid 16S rRNA levels were reduced in mda1-1 and mterf9 mutants, and mterf9 was more sensitive to chemical inhibitors of chloroplast translation. Expression of the photosynthesis gene LHCB1, a retrograde signalling marker, was differentially affected in mda1-1 and/or mterf9 compared to wild-type Col-0, after treatments with inhibitors of carotenoid biosynthesis (norflurazon) or chloroplast translation (lincomycin). Moreover, mterf9, but not mda1-1, synergistically interacts with gun1-1, defective in GUN1, a central integrator of plastid retrograde signals. Our results show that mTERF9, and to a lesser extent mTERF5, are negative regulators of salt tolerance and that both genes are functionally related to RpoTp, and that mTERF9 is likely required for plastid ribosomal stability and/or assembly. Furthermore, our findings support a role for mTERF9 in retrograde signalling.
Collapse
Affiliation(s)
- E Núñez-Delegido
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - P Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - A Ferrández-Ayela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - V Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
9
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
10
|
Garcia LE, Zubko MK, Zubko EI, Sanchez-Puerta MV. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. PLANT MOLECULAR BIOLOGY 2019; 100:433-450. [PMID: 30968307 DOI: 10.1007/s11103-019-00869-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions. The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.
Collapse
Affiliation(s)
- Laura E Garcia
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Mikhajlo K Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Elena I Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
11
|
van Tol N, Flores Andaluz G, Leeggangers HACF, Roushan MR, Hooykaas PJJ, van der Zaal BJ. Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:393-406. [PMID: 30398644 PMCID: PMC6375250 DOI: 10.1093/pcp/pcy216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Gema Flores Andaluz
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Hendrika A C F Leeggangers
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - M Reza Roushan
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Bert J van der Zaal
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| |
Collapse
|
12
|
Xu H, Zhang L, Li R, Wang X, Liu S, Liu X, Jing Y, Xiao J. SKL1 Is Essential for Chloroplast Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:179. [PMID: 29515603 PMCID: PMC5826214 DOI: 10.3389/fpls.2018.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Arabidopsis shikimate kinase-like 1 (skl1-8) mutant is characterized by a pigment-defective phenotype. Although the related phenotypical defect mainly has been attributed to the blocking of chloroplast development, the molecular functions of SKL1 remain largely unknown. In this study, we combined multiple approaches to investigate the potential functions of SKL1. Results showed that the skl1-8 mutant exhibited an albino phenotype and had dramatically reduced chlorophyll content as a consequence of a single nuclear recessive gene mutation. Chemical complementation analysis indicated that SKL1 does not function as SK enzyme in the shikimate pathway. In addition, by chlorophyll fluorescence parameters and immunoblot analysis, the levels of photosynthetic proteins are substantially reduced. Moreover, by transcriptome analysis, specific groups of nuclear genes involved in photosynthesis, such as light-harvesting complex, pigment metabolism, carbon metabolism, and chloroplast gene expression, were down-regulated, whereas several defense and oxidative stress responsive genes were up-regulated in the skl1-8 mutant compared with the wide type. Furthermore, we found the expression of genes related to auxin transport and response was repressed in the skl1-8 mutant, probable suggesting that SKL1 is involved in auxin-related pathways during chloroplast development. Together, these results provide a useful reference for characterization of SKL1 function during chloroplast biogenesis and development.
Collapse
Affiliation(s)
- Huimin Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
| | - Liwen Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Shuai Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaomin Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
13
|
Zhang DW, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin Y, Lin HH. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:12-25. [PMID: 25158995 DOI: 10.1111/pce.12438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/08/2023]
Abstract
Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP(+) ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX-derived plastidial NADPH/NADP(+) ratio change. Further, our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Shu Yuan
- Institute of Ecological and Environmental Sciences, College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Ming Yuan
- College of Biology and Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hua-Xun Ye
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Hong-Qing Guo
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
14
|
Dobáková E, Flegontov P, Skalický T, Lukeš J. Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis. Genome Biol Evol 2015; 7:3358-67. [PMID: 26590215 PMCID: PMC4700960 DOI: 10.1093/gbe/evv229] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 11/29/2022] Open
Abstract
In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
Collapse
Affiliation(s)
- Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Skalický
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Yao X, Li J, Liu J, Liu K. An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6431-45. [PMID: 26163700 PMCID: PMC4588890 DOI: 10.1093/jxb/erv356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RETARDED ROOT GROWTH) is required for cell division in the root meristem. RRL shares 54% and 57% identity at the nucleotide and amino acid sequences, respectively, with RRG; nevertheless, RRL shows a different function in Arabidopsis. In this study, disruption of RRL decreased ABA sensitivity whereas overexpression of RRL increased ABA sensitivity during seed germination and seedling growth. High expression levels of RRL were found in germinating seeds and developing seedlings, as revealed by β-glucuronidase (GUS) staining of ProRRL-GUS transgenic lines. The analyses of the structure and function of mitochondria in the knockout rrl mutant showed that the disruption of RRL causes extensively internally vacuolated mitochondria and reduced ABA-stimulated reactive oxygen species (ROS) production. Previous studies have revealed that the expression of alternative oxidase (AOX) in the alternative respiratory pathway is increased by mitochondrial retrograde regulation to regain ROS levels when the mitochondrial electron transport chain is impaired. The APETALA2 (AP2)-type transcription factor ABI4 is a regulator of ALTERNATIVE OXIDASE1a (AOX1a) in mitochondrial retrograde signalling. This study showed that ABA-induced AOX1a and ABI4 expression was inhibited in the rrl mutant, suggesting that RRL is probably involved in ABI4-mediated mitochondrial retrograde signalling. Furthermore, the results revealed that ABI4 is a downstream regulatory factor in RRL-mediated ABA signalling in seed germination and seedling growth.
Collapse
Affiliation(s)
- Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Godar AS, Varanasi VK, Nakka S, Prasad PVV, Thompson CR, Mithila J. Physiological and Molecular Mechanisms of Differential Sensitivity of Palmer Amaranth (Amaranthus palmeri) to Mesotrione at Varying Growth Temperatures. PLoS One 2015; 10:e0126731. [PMID: 25992558 PMCID: PMC4437998 DOI: 10.1371/journal.pone.0126731] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Herbicide efficacy is known to be influenced by temperature, however, underlying mechanism(s) are poorly understood. A marked alteration in mesotrione [a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor] efficacy on Palmer amaranth (Amaranthus palmeri S. Watson) was observed when grown under low- (LT, 25/15 °C, day/night temperatures) and high (HT, 40/30° C) temperature compared to optimum (OT, 32.5/22.5 °C) temperature. Based on plant height, injury, and mortality, Palmer amaranth was more sensitive to mesotrione at LT and less sensitive at HT compared to OT (ED50 for mortality; 18.5, 52.3, and 63.7 g ai ha-1, respectively). Similar responses were observed for leaf chlorophyll index and photochemical efficiency of PSII (Fv/Fm). Furthermore, mesotrione translocation and metabolism, and HPPD expression data strongly supported such variation. Relatively more mesotrione was translocated to meristematic regions at LT or OT than at HT. Based on T50 values (time required to metabolize 50% of the 14C mesotrione), plants at HT metabolized mesotrione faster than those at LT or OT (T50; 13, 21, and 16.5 h, respectively). The relative HPPD:CPS (carbamoyl phosphate synthetase) or HPPD:β-tubulin expression in mesotrione-treated plants increased over time in all temperature regimes; however, at 48 HAT, the HPPD:β-tubulin expression was exceedingly higher at HT compared to LT or OT (18.4-, 3.1-, and 3.5-fold relative to untreated plants, respectively). These findings together with an integrated understanding of other interacting key environmental factors will have important implications for a predictable approach for effective weed management.
Collapse
Affiliation(s)
- Amar S. Godar
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Vijaya K. Varanasi
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Sridevi Nakka
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Curtis R. Thompson
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - J. Mithila
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
17
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
18
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
19
|
Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. MOLECULAR PLANT 2014; 7:1075-93. [PMID: 24711293 DOI: 10.1093/mp/ssu037] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regulate these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.
Collapse
Affiliation(s)
- Sophia Ng
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia
| | - Simon R Law
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Aneta Ivanova
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Patrick Willems
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium Department of Medical Protein Research and Department of Biochemistry, 9000 Ghent, Belgium
| | - Estelle Giraud
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Present address: Illumina, ANZ, 1 International Court, Scoresby Victoria 3179, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
20
|
Gabotti D, Caporali E, Manzotti P, Persico M, Vigani G, Consonni G. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:25-35. [PMID: 24767112 DOI: 10.1016/j.plantsci.2014.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light.
Collapse
Affiliation(s)
- Damiano Gabotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano - Via Celoria 26, 20133 Milano, Italy
| | - Priscilla Manzotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Martina Persico
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gianpiero Vigani
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gabriella Consonni
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
21
|
Larkin RM. Chloroplast Signaling in Plants. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Finster S, Eggert E, Zoschke R, Weihe A, Schmitz-Linneweber C. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:849-60. [PMID: 24118403 DOI: 10.1111/tpj.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 05/04/2023]
Abstract
Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process.
Collapse
Affiliation(s)
- Sabrina Finster
- Institut für Biologie, Humboldt-Universität Berlin, Chausseestraße 117, 10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Larkin RM. Cytoplasm: Chloroplast Signaling. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Schwarzländer M, König AC, Sweetlove LJ, Finkemeier I. The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1735-50. [PMID: 22131156 DOI: 10.1093/jxb/err374] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondria occupy a central position in cellular metabolism. Their protein complement must therefore be dynamically adjusted to the metabolic demands of the cell. As >95% of mitochondrial proteins are encoded by nuclear DNA, regulation of the mitochondrial proteome requires signals that sense the status of the organelle and communicate it back to the nucleus. This is referred to as retrograde signalling. Mitochondria are tightly integrated into the network of cellular processes, and the output of mitochondrial retrograde signalling therefore not only feeds back to the mitochondrion, but also regulates functions across the cell. A number of transcriptomic studies have assessed the role of retrograde signalling in plants. However, single studies of a specific mitochondrial dysfunction may also measure secondary effects in addition to the specific transcriptomic output of mitochondrial signals. To gain an improved understanding of the output and role of mitochondrial retrograde signalling, a meta-analysis of 11 transcriptomic data sets from different models of plant mitochondrial dysfunction was performed. Comparing microarray data from stable mutants and short-term chemical treatments revealed unique features and commonalities in the responses that are under mitochondrial retrograde control. In particular, a common regulation of transcripts of the following functional categories was observed: plant-pathogen interactions, protein biosynthesis, and light reactions of photosynthesis. The possibility of a novel mode of interorganellar signalling, in which the mitochondrion influences processes in the plastid and other parts of the cell, is discussed.
Collapse
Affiliation(s)
- Markus Schwarzländer
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
25
|
Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG. Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. FRONTIERS IN PLANT SCIENCE 2012; 3:234. [PMID: 23125844 PMCID: PMC3485569 DOI: 10.3389/fpls.2012.00234] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/01/2012] [Indexed: 05/04/2023]
Abstract
Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H(2)O(2) in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO(2) levels to ambient CO(2) concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H(2)O(2) production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H(2)O(2) may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H(2)O(2).
Collapse
Affiliation(s)
- Salma Balazadeh
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Nils Jaspert
- Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Muhammad Arif
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | | | - Veronica G. Maurino
- Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences, Heinrich-Heine-UniversityDüsseldorf, Germany
- *Correspondence: Veronica G. Maurino, Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
26
|
Isemer R, Krause K, Grabe N, Kitahata N, Asami T, Krupinska K. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid. FRONTIERS IN PLANT SCIENCE 2012; 3:283. [PMID: 23269926 PMCID: PMC3529394 DOI: 10.3389/fpls.2012.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/30/2012] [Indexed: 05/20/2023]
Abstract
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously.
Collapse
Affiliation(s)
- Rena Isemer
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, University of TromsøTromsø, Norway
| | - Nils Grabe
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Nobutaka Kitahata
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany. e-mail:
| |
Collapse
|
27
|
Busi MV, Gomez-Lobato ME, Araya A, Gomez-Casati DF. Mitochondrial dysfunction affects chloroplast functions. PLANT SIGNALING & BEHAVIOR 2011; 6:1904-1907. [PMID: 22101346 PMCID: PMC3337175 DOI: 10.4161/psb.6.12.18050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptomic response of A9:u-ATP9 and apetala3:u-ATP9 lines carrying a mitochondrial dysfunction in flower tissues has been characterized. Both lines showed an alteration in the transcription of several genes involved in carbon and nitrogen metabolism, stress responses, transcription factors and DNA binding proteins. Interestingly, several transcripts of photosynthetic-related genes were also affected in their expression such as the mRNAs encoding for chlorophyllase, chlorophyll binding proteins and a PSII. Moreover, chlorophyll levels were reduced and the Mg-dechelatase activity was increased, indicating an alteration in chlorophyll metabolism. Our results suggest that the mitochondrial dysfunction may also affect chloroplastic functions, and that our model could be useful to uncover retrograde signaling mechanisms operating between the three different plant genomes.
Collapse
Affiliation(s)
- Maria V. Busi
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Universidad Nacional de Rosario; Rosario, Argentina
| | - Maria E. Gomez-Lobato
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
| | - Alejandro Araya
- Microbiologie Cellulaire et Moléculaire et Pathogénicité; Centre National de la Recherche Scientifique and Université Victor Segalen; Bordeaux, France
| | - Diego F. Gomez-Casati
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Universidad Nacional de Rosario; Rosario, Argentina
| |
Collapse
|
28
|
Bally J, Job C, Belghazi M, Job D. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins. PLoS One 2011; 6:e25289. [PMID: 21966485 PMCID: PMC3178635 DOI: 10.1371/journal.pone.0025289] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2) metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.
Collapse
Affiliation(s)
- Julia Bally
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| | - Claudette Job
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| | - Maya Belghazi
- Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Marseille, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| |
Collapse
|
29
|
Leister D, Wang X, Haberer G, Mayer KF, Kleine T. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. PLANT PHYSIOLOGY 2011; 157:386-404. [PMID: 21775496 PMCID: PMC3165886 DOI: 10.1104/pp.111.177691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.
Collapse
|
30
|
|
31
|
A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 2011; 13:483-7. [PMID: 21378982 DOI: 10.1038/ncb2203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 01/06/2011] [Indexed: 11/08/2022]
Abstract
In plant cells, organelle DNA replication (ODR) is coordinated with nuclear DNA replication (NDR), with ODR preceding NDR during cell cycle progression. We previously showed that the occurrence of ODR is signalled by a tetrapyrrole compound, most likely Mg-protoporphyrin IX (Mg-ProtoIX), resulting in the activation of cyclin-dependent kinase A (CDKA) and consequent initiation of NDR (refs 1, 2, 3). Here we identify an F-box protein of SCF-type E3 ubiquitin ligase (Fbx3) in the red alga Cyanidioschyzon merolae, which inhibits CDKA by ubiquitylating the relevant cyclin and inducing its degradation. Mg-ProtoIX binds to Fbx3 and inhibits cyclin ubiquitylation. Thus, these observations indicate that Fbx3 serves as the receptor for the plastid-to-nucleus retrograde signal Mg-ProtoIX and thereby contributes to a checkpoint mechanism ensuring coordination of ODR and NDR.
Collapse
|
32
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
33
|
Pfannschmidt T. Plastidial retrograde signalling--a true "plastid factor" or just metabolite signatures? TRENDS IN PLANT SCIENCE 2010; 15:427-35. [PMID: 20580596 DOI: 10.1016/j.tplants.2010.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 05/03/2023]
Abstract
The genetic compartments of plant cells, nuclei, plastids and mitochondria exchange information by anterograde (nucleus-to-organelle) and retrograde (organelle-to-nucleus) signalling. These avenues of communication coordinate activities during the organelles' development and function. Despite extensive research retrograde signalling remains poorly understood. The proposed cytosolic signalling pathways and the putative organellar signalling molecules remain elusive, and a clear functional distinction from the signalling cascades of other cellular perception systems (i.e. photoreceptors or phytohormones) is difficult to obtain. Notwithstanding the stagnant progress, some basic assumptions about the process have remained virtually unchanged for many years, potentially obstructing the view on alternative routes for retrograde communication. Here, I critically assess the current models of retrograde signalling and discuss novel ideas and potential connections.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of General Botany and Plant Physiology, Department of Plant Physiology, University of Jena, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
34
|
Liu D, Gong Q, Ma Y, Li P, Li J, Yang S, Yuan L, Yu Y, Pan D, Xu F, Wang NN. cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1655-69. [PMID: 20194926 DOI: 10.1093/jxb/erq033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The endosymbiont-derived Sec-dependent protein sorting pathway is essential for protein import into the thylakoid lumen and is important for the proper functioning of the chloroplast. Two loss-of-function mutants of cpSecA, the ATPase subunit of the chloroplast Sec translocation machinery, were analysed in Arabidopsis. The homozygous mutants were albino and seedling lethal under autotrophic conditions and remained dwarf and infertile with an exogenous carbon supply. They were subject to oxidative stress and accumulated superoxide under normal lighting conditions. Electron microscopy revealed that the chloroplast of the mutants had underdeveloped thylakoid structures. Histochemical GUS assay of the AtcpSecA::GUS transgenic plants confirmed that AtcpSecA was expressed in green organs in a light-inducible way. Real-time RT-PCR and microarray analysis revealed repressed transcription of nucleus- and chloroplast- encoded subunits of photosynthetic complexes, and induced transcription of chloroplast protein translocation machinery and mitochondrion-encoded respiratory complexes in the mutants. It is inferred that AtcpSecA plays an essential role in chloroplast biogenesis, the absence of which triggered a retrograde signal, eventually leading to a reprogramming of chloroplast and mitochondrial gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chloroplast Proteins
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Oligonucleotide Array Sequence Analysis
- Oxidative Stress/genetics
- Oxidative Stress/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Plants, Genetically Modified/ultrastructure
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Thylakoids/enzymology
- Thylakoids/ultrastructure
Collapse
Affiliation(s)
- Dong Liu
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yue R, Wang X, Chen J, Ma X, Zhang H, Mao C, Wu P. A rice stromal processing peptidase regulates chloroplast and root development. PLANT & CELL PHYSIOLOGY 2010; 51:475-485. [PMID: 20097911 DOI: 10.1093/pcp/pcq012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The stromal processing peptidase (SPP) is a metalloendopeptidase that cleaves a broad range of precursor substrates. In this study, we isolated a rice mutant showing leaf chlorosis at the early seedling stage but inhibition of root growth during the whole growth period. Genetic analysis demonstrates that the phenotypes of the mutant were caused by a recessive single gene mutation. The mutated gene was cloned by map-based cloning, and was shown to encode an SPP. Sequence analysis showed a glutamate deletion in the highly conserved C-terminus of SPP in the mutant. The mutation of SPP in the mutant was verified by transgenic complementation. SPP is constitutively expressed in all tissues. Subcellular localization analysis indicates that SPP is targeted to the chloroplast. The expression of some genes associated with chloroplast development was decreased in young seedlings of the spp mutant, but not in 14-day-old seedlings. Western blot analysis revealed that the Rubisco small subunit is not precisely processed in the spp mutant in 7-day-old seedlings, but the processing activity in the spp mutant is restored in 14-day-old seedlings. Moreover, the expression levels of Cab1R and Cab2R for the light-harvesting chlorophyll a/b-binding protein (LHCP) were highly up-regulated in the transgenic plants with overexpression of SPP. The present results reveal that SPP is essential for chloroplast biogenesis at the early growth stage and for rice root development; this is the first report on the function of SPP in monocot plants.
Collapse
Affiliation(s)
- Runqing Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Jung HS, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? PLANT PHYSIOLOGY 2010; 152:453-9. [PMID: 19933385 PMCID: PMC2815895 DOI: 10.1104/pp.109.149070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
|
37
|
Xie X, Zhang H, Paré PW. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). PLANT SIGNALING & BEHAVIOR 2009; 4:948-53. [PMID: 19826235 PMCID: PMC2801358 DOI: 10.4161/psb.4.10.9709] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Volatile emissions from the commercial growth promoting soil bacterium Bacillus subtilis (GB03) are effective in augmenting short-term growth, photosynthetic capacity and salt tolerance in Petri-dish grown Arabidopsis seedlings. In contrast, the impact sustained GB03 volatile exposure on plant growth and development has yet to be examined. Here is provided physical and physiological data establishing that bacterial volatiles induce long-term growth promotion, elevated photosynthetic capacity and iron accumulation, as well as delayed albeit higher seed count compared with water-treated control plants. Plants were grown unrestricted in double Magenta boxes containing solid MS media for up to twelve weeks with GB03 volatiles introduced in separate containers within the chamber so that plant bacterial interactions were only by airborne transmission. These results establish that GB03 volatiles induce sustained beneficial effects on Arabidopsis growth including robust and extended vegetative growth followed by elevated seed set.
Collapse
Affiliation(s)
- Xitao Xie
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, USA
| | | | | |
Collapse
|
38
|
Campoli C, Caffarri S, Svensson JT, Bassi R, Stanca AM, Cattivelli L, Crosatti C. Parallel pigment and transcriptomic analysis of four barley albina and xantha mutants reveals the complex network of the chloroplast-dependent metabolism. PLANT MOLECULAR BIOLOGY 2009; 71:173-191. [PMID: 19557521 DOI: 10.1007/s11103-009-9516-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
We investigated the pigment composition and the transcriptome of albina (alb-e ( 16 ) and alb-f ( 17 )) and xantha (xan-s ( 46 ) and xan-b ( 12 )) barley mutants to provide an overall transcriptional picture of genes whose expression is interconnected with chloroplast activities and to search for candidate genes associated with the mutations. Beside those encoding plastid-localized proteins, more than 3,000 genes involved in non-chloroplast localized metabolism were up-/down-regulated in the mutants revealing the network of chloroplast-dependent metabolic pathways. The alb-e ( 16 ) mutant was characterized by overaccumulation of protoporphyrin IX upon ALA (5-amino levulinic acid) feeding and down-regulation of the gene encoding one subunit of Mg-chelatase, suggesting a block of the chlorophyll biosynthetic pathway before Mg-protoporphyrin IX biosynthesis, while alb-f ( 17 ) overaccumulated Mg-protoporphyrin IX and repressed PorA expression, without alterations in Mg-chelatase mRNA level. The alb-f ( 17 )mutant also showed overexpression of several genes involved in phytochrome and in phytochrome-dependent pathways. The results indicate that the down-regulation of Lhcb genes in alb-e ( 16 ) cannot be mediated by the accumulation of Mg-protoporphyrin IX. After ALA treatment, xan-s ( 46 ) showed overaccumulation of Mg-protoporphyrin IX, while the relative porphyrin composition of xan-b ( 12 ) was similar to wild type. The transcripts encoding the components of several mitochondrial metabolic pathways were up-regulated in albina/xantha leaves to compensate for the absence of active chloroplasts. The mRNAs encoding gun3, gun4, and gun5 barley homologous genes showed significant expression variations and were used to search for co-expressed genes across all samples. These analyses provide additional evidences on a chloroplast-dependent covariation of large sets of nuclear genes.
Collapse
Affiliation(s)
- Chiara Campoli
- CRA Genomic Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Giraud E, Van Aken O, Ho LHM, Whelan J. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a. PLANT PHYSIOLOGY 2009; 150:1286-96. [PMID: 19482916 PMCID: PMC2705018 DOI: 10.1104/pp.109.139782] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/22/2009] [Indexed: 05/17/2023]
Abstract
Plant cells integrate signals from external sources and from organelles to regulate gene expression, referred to as anterograde and retrograde signaling, respectively. Functional characterization of the promoter of ALTERNATIVE OXIDASE1a (AOX1a) from Arabidopsis (Arabidopsis thaliana), a marker for mitochondrial retrograde response, was carried out by testing the ability of the AOX1a promoter to drive expression of the reporter gene GUS. This approach identified a strong repressor element, designated the B element, that was necessary for an increased promoter activity in response to the mitochondrial complex I inhibitor rotenone. This element overlaps with a previously identified potential binding site for the transcription factor ABSCISIC ACID INSENSITIVE4 (ABI4). AOX1a promoter activity was fully derepressed in abi4 mutants and was unresponsive to rotenone. Furthermore, deletion of the B element of the AOX1a promoter resulted in increased GUS staining activity compared to the wild-type promoter in transgenic plants. Binding of the ABI4 transcription factor to this region of the AOX1a promoter was demonstrated by electromobility shift and yeast one-hybrid assays. Analysis of transcript abundance for AOX1a in abi4 mutant lines revealed significantly increased levels of AOX1a mRNA that could not be further induced by rotenone, consistent with the role of ABI4 as a repressor that is derepressed in response to rotenone. These results show that ABI4 plays a central role in mediating mitochondrial retrograde signals to induce the expression of AOX1a. Furthermore, they provide a molecular link between mitochondrial and chloroplast retrograde signaling, as ABI4 has been previously shown to act downstream of at least two chloroplast retrograde signaling pathways.
Collapse
Affiliation(s)
- Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
40
|
Kleine T, Voigt C, Leister D. Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 2009; 25:185-92. [PMID: 19303165 DOI: 10.1016/j.tig.2009.02.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 02/05/2023]
Abstract
The concept of plastid signalling posits that signals originating from chloroplasts modulate nuclear gene expression (NGE). Put simply, it claims that signalling factors are exported from the chloroplast, traverse the cytosol, and act in the nucleus. Pertinent signals are thought to derive from various sources, including the tetrapyrrole pathway, protein synthesis, reactive oxygen species, or the redox state of the organelle. Recent studies have cast doubt on the most popular candidate signalling molecule, the tetrapyrrole pathway intermediate Mg-protoporphyrin IX, indicating that chloroplast activity might control NGE indirectly by affecting cytosolic metabolite levels or redox states (metabolic signalling). Here, we focus on recent developments and confusions in the field of plastid signalling research and highlight alternative scenarios of plastid-nucleus signal transduction. Future analyses of chloroplast-nucleus communication should focus on providing an integrated view of plastid signalling under physiologically relevant conditions.
Collapse
Affiliation(s)
- Tatjana Kleine
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
41
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
42
|
Atkin OK, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. ANNALS OF BOTANY 2009; 103:581-97. [PMID: 18552366 PMCID: PMC2707344 DOI: 10.1093/aob/mcn094] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/21/2008] [Accepted: 05/09/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Around the world, the frequency and intensity of droughts is increasing as a result of global climate change, with important consequences for the growth and survival of agricultural and native plant species. Understanding how plants respond to water stress is thus crucial for predicting the impacts of climate change on the crop productivity and ecosystem functioning. In contrast to the large number of studies assessing drought impacts on photosynthesis, relatively little attention has been devoted to understanding how mitochondrial respiratory metabolism is altered under water stress conditions. SCOPE This review provides an overview of the impacts of water stress on mitochondrial respiration (R), combining studies at the whole-plant, individual organ, cellular and organelle levels. To establish whether there are clear patterns in the response of in vivo R to water stress, a wide range of root, leaf and whole-plant studies are reviewed. It is shown that water stress almost always inhibits R in actively growing roots and whole plants. However, in fully expanded, mature leaves the response is more variable, with water stress reducing R in near two-thirds of reported studies, with most of the remainder showing no change. Only a few studies reported increases in leaf R under severe water stress conditions. The mechanisms responsible for these variable responses are discussed. Importantly, the fact is highlighted that irrespective of whether drought increases or decreases respiration, overall the changes in R are minor compared with the large decreases in photosynthetic carbon gain in response to drought. Based on recent work highlighting the link between chloroplast and mitochondrial functions in leaves, we propose a model by which mitochondrial R enables survival and rapid recovery of productivity under water stress conditions. Finally, the effects of water stress on mitochondrial function, protein abundance and overall metabolism are reviewed.
Collapse
Affiliation(s)
- Owen K. Atkin
- Functional Ecology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - David Macherel
- IFR 149 QUASAV, Unité Mixte de Recherche 1191 Physiologie Moléculaire des Semences, Université d'Angers/Institut National d'Horticulture/Institut National de la Recherche Agronomique, ARES, 49045 Angers Cedex 01, France
| |
Collapse
|
43
|
Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci U S A 2009; 106:803-7. [PMID: 19141634 DOI: 10.1073/pnas.0804270105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eukaryotic cells arose from an ancient endosymbiotic association of prokaryotes, with plant cells harboring 3 genomes as the remnants of such evolution. In plant cells, plastid and mitochondrial DNA replication [organelle DNA replication (ODR)] occurs in advance of the subsequent cell cycles composed of nuclear DNA replication (NDR) and cell division. However, the mechanism by which replication of these genomes with different origins is coordinated is largely unknown. Here, we show that NDR is regulated by a tetrapyrrole signal in plant cells, which has been suggested as an organelle-to-nucleus retrograde signal. In synchronized cultures of the primitive red alga Cyanidioschyzon merolae, specific inhibition of A-type cyclin-dependent kinase (CDKA) prevented NDR but not ODR after onset of the cell cycle. In contrast, inhibition of ODR by nalidixic acid also resulted in inhibition of NDR, indicating a strict dependence of NDR on ODR. The requirement of ODR for NDR was bypassed by addition of the tetrapyrrole intermediates protoporphyrin IX (ProtoIX) or Mg-ProtoIX, both of which activated CDKA without inducing ODR. This scheme was also observed in cultured tobacco cells (BY-2), where inhibition of ODR by nalidixic acid prevented CDKA activation and NDR, and these inhibitions were circumvented by Mg-ProtoIX without inducing ODR. We thus show that tetrapyrrole-mediated organelle-nucleus replicational coupling is an evolutionary conserved process among plant cells.
Collapse
|
44
|
Pogson BJ, Woo NS, Förster B, Small ID. Plastid signalling to the nucleus and beyond. TRENDS IN PLANT SCIENCE 2008; 13:602-9. [PMID: 18838332 DOI: 10.1016/j.tplants.2008.08.008] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/21/2008] [Accepted: 08/27/2008] [Indexed: 05/02/2023]
Abstract
Communication between the compartments or organelles of cells is essential for plant growth and development. There is an emerging understanding of signals generated within energy-transducing organelles, such as chloroplasts and mitochondria, and the nuclear genes that respond to them, a process known as retrograde signalling. A recent series of unconnected breakthroughs have given scientists a glimpse inside the 'black box' of organellar signalling thanks to the identification of some of the factors involved in generating and propagating signals to the nucleus and, in some instances, systemically throughout photosynthetic tissues. This review will focus on recent developments in our understanding of retrograde and systemic signals generated by organelles, with an emphasis on chloroplasts.
Collapse
Affiliation(s)
- Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
45
|
Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:264-273. [PMID: 18573192 DOI: 10.1111/j.1365-313x.2008.03593.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosynthesis is regulated by environmental factors as well as endogenous sugar signals. Whereas light-driven sugar biosynthesis is essential for terrestrial organisms, as well as belowground microflora, whether and how soil symbionts regulate photosynthesis has yet to be reported. Here, we show that the plant growth-promoting soil bacterium Bacillus subtilis GB03 augments photosynthetic capacity by increasing photosynthetic efficiency and chlorophyll content in Arabidopsis. Mechanistic studies reveal an elevation of sugar accumulation as well as the suppression of classic glucose signaling responses, including hypocotyl elongation and seed germination, with exposure to GB03. Compared with wild-type plants, two Arabidopsis mutants defective in hexokinase-dependent sugar signaling exhibit increased photosynthetic capacity, which is not further enhanced with GB03 exposure. Overlap in sugar/ABA sensing is observed in GB03-exposed plants, with a reduction of ABA-biosynthetic transcripts as well as downstream metabolite levels in leaves. Moreover, exogenous ABA abrogates GB03-triggered increases in photosynthetic efficiency and chlorophyll content. These results demonstrate that certain rhizobacteria elevate photosynthesis through the modulation of endogenous sugar/ABA signaling, and establish a regulatory role for soil symbionts in plant acquisition of energy.
Collapse
Affiliation(s)
- Huiming Zhang
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Xitao Xie
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Mi-Seong Kim
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Dmytro A Kornyeyev
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Scott Holaday
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Paul W Paré
- Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
46
|
Moon S, Giglione C, Lee DY, An S, Jeong DH, Meinnel T, An G. Rice peptide deformylase PDF1B is crucial for development of chloroplasts. PLANT & CELL PHYSIOLOGY 2008; 49:1536-46. [PMID: 18718933 DOI: 10.1093/pcp/pcn121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because protein synthesis begins with N-formylmethionine in plant endosymbiotic organelles, removal of the formyl group by peptide deformylase (PDF) is essential to allowing the excision of the first methionine. Rice contains three copies (OsPDF1A, OsPDF1B and OsPDF1B2) of the PDF genes. Unlike OsPDF1A and OsPDF1B, OsPDF1B2 is apparently non-functional, with several deleterious substitutions and deletions. OsPDF1A is more strongly expressed in the roots, while OsPDF1B is expressed at higher levels in mature leaves. Transient expression of PDF-green fluorescent protein (GFP) fusion proteins in the protoplasts demonstrates that, unlike OsPDF1A, OsPDF1B is localized in both the chloroplasts and the mitochondria. We used T-DNA insertional alleles to elucidate functional roles associated with OsPDF1B. Homozygous plants of pdf1b/pdf1b exhibited the phenotypes of chlorina and growth retardation. Histochemical analysis showed that the length of their mesophyll cells was increased 4- to 5-fold, resulting in a reduction in the total number of cells. Transmission electron microscopy analyses revealed that chloroplasts were severely damaged and mitochondria appeared to be mildly altered in the pdf1b mutants. Expression of genes encoded in the chloroplasts and mitochondria was altered in the mutants. Based on these results, we conclude that OsPDF1B is essential for the development of chloroplast and perhaps mitochondria.
Collapse
Affiliation(s)
- Sunok Moon
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 PMCID: PMC3243404 DOI: 10.1199/tab.0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
Affiliation(s)
- A. Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - Ian D. Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - David A. Day
- School of Biological Sciences, The University of Sydney 2006, NSW, Australia
| | - James Whelan
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| |
Collapse
|
48
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hsieh MH, Chang CY, Hsu SJ, Chen JJ. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 66:663-73. [PMID: 18236010 DOI: 10.1007/s11103-008-9297-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/14/2008] [Indexed: 05/05/2023]
Abstract
Plant isoprenoids are derived from two independent pathways, the cytosolic mevalonate pathway and the plastid methylerythritol 4-phosphate (MEP) pathway. We used green fluorescent fusion protein assays to demonstrate that the Arabidopsis MEP pathway enzymes are localized to the chloroplast. We have also characterized three Arabidopsis albino mutants, ispD-1, ispD-2 and ispE-1, which have T-DNA insertions in the IspD and IspE genes of the MEP pathway. Levels of photosynthetic pigments are almost undetectable in these albino mutants. Instead of thylakoids, the ispD and ispE mutant chloroplasts are filled with large vesicles. Impairments in chloroplast development and functions may signal changes in the expression of nuclear, chloroplast and mitochondrial genes. We used northern blot analysis to examine the expression of photosynthetic and respiratory genes in the ispD and ispE albino mutants. Steady-state mRNA levels of nucleus- and chloroplast-encoded photosynthetic genes are significantly decreased in the albino mutants. In contrast, transcript levels of nuclear and mitochondrial genes encoding subunits of the mitochondrial electron transport chain are increased or not affected in these mutants. Genomic Southern blot analysis revealed that the DNA amounts of mitochondrial genes are not enhanced in the ispD and ispE albino mutants. These results support the notion that the functional state of chloroplasts may affect the expression of nuclear and mitochondrial genes. The up-regulation of mitochondrial genes in the albino mutants is not caused by changes of mitochondrial DNA copy number in Arabidopsis.
Collapse
Affiliation(s)
- Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | |
Collapse
|
50
|
Ahn CS, Pai HS. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2008; 66:503-17. [PMID: 18180879 DOI: 10.1007/s11103-007-9286-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/27/2007] [Indexed: 05/20/2023]
Abstract
Isoprenoid biosynthesis in plants occurs by two independent pathways: the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. In this study, we investigated the cellular effects of depletion of IspE, a protein involved in the MEP pathway, using virus-induced gene silencing (VIGS). The IspE gene is preferentially expressed in young tissues, and induced by light and methyl jasmonate. The GFP fusion protein of IspE was targeted to chloroplasts. Reduction of IspE expression by VIGS resulted in a severe leaf yellowing phenotype. At the cellular level, depletion of IspE severely affected chloroplast development, dramatically reducing both the number and size of chloroplasts. Interestingly, mitochondrial development was also impaired, suggesting a possibility that the plastidic MEP pathway contributes to mitochondrial isoprenoid biosynthesis in leaves. A deficiency in IspE activity decreased cellular levels of the metabolites produced by the MEP pathway, such as chlorophylls and carotenoids, and stimulated expression of some of the downstream MEP pathway genes, particularly IspF and IspG. Interestingly, the IspE VIGS lines had significantly increased numbers of cells of reduced size in all leaf layers, compared with TRV control and other VIGS lines for the MEP pathway genes. The increased cell division in the IspE VIGS lines was particularly pronounced in the abaxial epidermal layer, in which the over-proliferated cells bulged out of the plane, making the surface uneven. In addition, trichome numbers dramatically increased and the stomata size varied in the affected tissues. Our results show that IspE deficiency causes novel developmental phenotypes distinct from the phenotypes of other MEP pathway mutants, indicating that IspE may have an additional role in plant development besides its role in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Biology, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|